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Research Goal

To advance machine learning methods by

leveraging tensor network representations

> Model compression
> Tensor completion
> Multi-task learning

> Multi-modal learning



Background & Motivation

Machine Learning fx) = W-&(x)
» Curse of dimensionality

> Nonlinear mapping is unknown

Kernel learning

> “kernelization” scales quadratically with training data size

Kernel Learning
W = Z Oéjq)(ilﬁj)
J

> Low generalization due to representer theorem Q00 O

Deep neural network f(x) =P (M2<I>1(M1x)) QOO0

» Model parameters are huge (space) O000000

» Computational inefficient due to model complexity (time) el Nets

Are tensor networks useful in solving these problems ?



Background & Motivation

High-order structured data

> Video, Hyperspectral image, fMRI, EEG

> Social network (user x user x relation) T /

> _—

Multi-modal, multi-view learning
> Multi-linear mapping: f(xi,x2,x3) = W x1 ®(x1) X2 ®(x2) X3 P(x3)

Multi-task deep learning

> Model parameters {W,,,Vn=1,...,T} form a tensor.
High-order moment, joint PMF — Pyl
Elr ® x ® 2] € R¥9%4 s a third order tensor. O o ﬁ
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independent; rank=1
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What Are Tensor Networks (TNs) ?

> A powerful tool to describe strongly entangled quantum

many-body systems in physics

» Decompose a high-order tensor into a collection of low-
order tensors connected according to a network pattern

> Tensor network diagram

Scalar Vector Matrix

J
a a A
<o IH@O—L 1 oLl ol

3rd-order tensor 3rd-order diagonal tensor

I R
I = R & ——
I, b R R




TT/MPS Representation and Properties

[V. Oseledets, SIAM J. Sci. Comput., 2011]
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TT: tensor train decomposition; MPS: matrix product state

» Efficient to represent I data values by O(NIR?)
parameters

> Efficient to compute or optimize TT/MPS by DMRG
algorithm



TNs for Weight Compression & Kernel Learning

> |nput: X =[xy, X3, T3, ... , TN] [E. Stoudenmire, NIPS 2016]

> Nonlinear mapping by tensor product (Hilbert space)
S; S1 S22 S3 S4 S5 Sg

B L[] 0886468
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» Decision function - W is an Nth-order tensor

B W
0 = W = T IR

> TT representation of weight parameter
[A. Novikov, NIPS 2015]




Relations Between TNs and DNNs

» Equivalence of Restricted Boltzmann Machines and Tensor Networks

Sec 11

[Chen et al, Physical Review B, 2018]
RBM p— TNS
seetl [Carleo et al, Science, 2017]

» Equivalence of Deep Convolutional Network and Hierarchical Tucker

input X representation 1x1 conv

[N. Cohen & A. Shashua, ICML 2016]
a } pooling - .
ﬁ f. / B ) E! ' {output) network structure
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(depth, width, pooling etc)
0,/ re l.’:)> _ H ] }/)
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decomposition type
(dim tree, internal ranks etc)
out(y) = <aL""’,poolL . ()>

network weights —

decomposition parameters

» Recurrent Neural Networks and Tensor Train [Khrulkov, ICLR 2018]

Tensor Decompositions Deep Learning
-Z-d--l @ () CP-decomposition shallow network
TT-decomposition
0(x1) fe X3) fe(Xs)

RNN
fo(xa) HT-decomposition
rank of the decomposition

CNN
width of the network

» Powerful tools to study theory behind DNN
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Tensor Networks for Large-Scale Optimization Problems

- T
Eigenvalue problem: maxz” Ax

» TT format of a large vector

a = ---
I=LL 1y 11 I, I Iy

» TT format of a large matrix

J=Ji b0y J A "
A -
I=Lily Iy 1h ) I Iy

» Fast ALS/DMRG algorithm

» Applicable to large-scale
SVD/PCA/CCA and etc




Fundamental Tensor Network Model

Tensor train (TT) representation

_ o Tensor Train
» Powerful but still some limitations

MR A A
> TT-ranks of middle cores are large g \52 \f/% Iy

Tensor ring representation

» Generalized TT without constraints on boundary cores
» Efficient computation for multilinear operations

> Highly expressive capacity

Tensor Ring na

W o/
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[Zhao et al, ICLR workshop 2018, ICASSP 2019] el N
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Efficient Operations

» Sum of tensors

T = %(Zyl,_...,zd) Ts = T1+ T Xk(ik)=<zk(ik) 0 ) i =1,... n,

T2 - §R(3)17°"73Jd)l T3:§R(X1,...,Xd), 0 Yk(zk) , kzl, "d'
» Multilinear products

T:%(Zl,...,zd) c:Txlufxg---xdug

c=R(Xq,...,Xy) where Xy, = Z Zy (g )ug (ix).

=1

» Hadamard product of tensors

T3 = T1® T2 = §R<X1,. ..,Xd), Xk(zk) = Zk(’tk) ®Yk(ik), k=1,...,d.

> |nner product of two tensors

* Apply Hadamard product followed by multilinear products with vectors of all
ones.
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Tensor Ring Representation

. ] [Bengua et al, IEEE TIP, 2017]
> High-order structure relations can be captured —

» Compact representation by many small cores -

> Interpretability -

i1 =1 i1 =3 i1 =1 =3

1st core 2nd core 3rd core 4th core n

19 = 2 19 =4

(7:3—,‘),4,9_1
c=2 1=2|u=2ju=2]u="

c=1
Higher-order tensorization
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Tensor Networks for Data Representation

Real data is often high-dimensional

» Recommender system (user x item x time)

» (Gene expression, remote sensing, MR

Real data is often incomplete

> Low-rank approximation via convex optimization (high computation cost)
> Decomposition based approach (model selection problem)

» How much structure information can be used?
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Tensor Networks for Data Imputation

Tensor completion based on TT/TR decomposition

Observed entries

/ High-order """’ Approximated entries
tensorization ||| sl
~ b i =2 )ii=4a)ii=2])i=4
=1 =3 fi=1]i=3
-'— H=9 2 =4 p— \
[ ry o
Observed data _
Higher-order tensor
[/ .
. XO“
Y(e&&

Recovered data

/
Low-rank TT/TR approximation

P
TT/TR decomposition
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Tensor Ring Low-rank Factors [Yiuan et al, AAAI 2019]

> Tensor ring decomposition with low-rank factors via nuclear norm

regularizaiton

Theorem 1. Given an N-th order tensor X € RIv<I2>X-XIN wyhich has TR-
format, then the following inequality holds for alln =1,...,N:

Rank(G{3)) > Rank(X ). (1)

Z ||X(n)”* -_— Z HG(z)

> Theoretically prove the relations between tensor rank and rank of cores

> Robust to rank section by imposing nuclear norm on TR-cores

N
(n) (n)
> IGG- +ZHG(3>




Experiment Validation

RSE

097
08+
0.7F
0.6
05¢
04r
03F

02Y

0.1¢

—a—TRLRF
—-4-TRALS
*-TRWOPT
—-#-TenALS
—o—FBCP
—4¢--HaLRTC
—v—TMac
-#-t-SVD

04 05
Missing rate

Average performance of 8 benchmark images

0.6

0.7

PSNR

"Higher performance
i than the state-of-the- |
art algorithms.

- |—a—TRLRF
5 —-4&-TRALS
\ *—-TRWOPT
15+ |-#-TenALS
—o—FBCP
-4--HalLRTC
10 |——TMac
-%-t-SVD
5,
0 I I I I I I
03 04 05 06 07 08 09

Missing rate

TenALS: [Jain, NIPS, 2014]
FBCP: [Zhao, TPAMI, 2015]
HaLRTC: [Liu, TPAMI, 2013]
TMac: [Xu, arXiv, 2013]
t-SVD: [Zhang, CVPR, 2014]

Benchmarks



Beyond Unfolding: Reshuffling Operation

mode—/
Mode-1 Unfolding

mode-1 B EEREH T [ --------- > 'é

mode-2 >

high rank

Y

(a) a 3rd-order tensor with the size 3x3x3

he correspondence

1 . . Y
“Restore Ithc Rubix Cube s

Y

(c) The matrix Y by the propsoed tensor reshuftling

' low rank

Fig. Difference between tensor unfolding and reshuffling.
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Problem Setting

Image 1 o Recovery
Mixing Observation
Reshufflin .__A\ i
s
RS
v~
\ h ~
Image 2 / ' )
\
. \
Reshufflin / \

Image N

Is it possible to exactly recover the original
images only by using the observation?

Image steganography Single-shot compressive sensing
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Reshuffled Tensor Decomposition

Formulation

Assume that the observation X € Rihixkxxlk is 3 mixture of N compo-

nents, then the recovery of the original components can be formulated as
tensor decomposition, i.e.,

X = Ri(A1) + Ra(A2) + - -+ + Ry(Ap). (1)

where A;, i € [N] denote latent components (original images) and R; de-
notes the corresponding reshuffling operation w.r.t. A;.

The optimization model:

N N
min A; s.t., X = Ri(A;
A,,ié[N]; [A], ; ; i(Ai),
where we employ the matrix nuclear norm || - ||« in the model as a surrogate

of the matrix rank.
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Reshuffled Tensor Decomposition

Theoretical results:

Definition: Reshuffled-low-rank incoherence

i () =max max [ O)], ©)
ol

where R denotes the conjugate of R;, and T;(A) denotes the tangent space
of low-rank manifold w.r.t R; to the point A.

v

Theorem (Exact-Recovery Condition)

The estimated A;, obtained by Reshuffled-TD, are equal to the true A’ for

all i, when
1

3N -2’ (7)

where N denotes the number of the components.

max  pii(AF) <

i=1,...,
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Reshuffled Tensor Decomposition
Application: Image steganography

cover image container reconstruction
‘ embed

—_— —_—

Figure lllustration of image steganography.

System design:

cover container

D

strength para.a%

secret — | j9
— our method
. Ry () >4
e reconstruction
Ry (+) / ’
R3 . Ve
‘ 7 g —e
AN Ve
\ 7
N 7

N 7’
Random permutation

21




Reshuffled Tensor Decomposition

Result illustration:

original: ; Reshuffled-TD: ', SB:

. | Deep stego:
o = 0.05 | 1 bit/channel 2 bits /channel

O

container

il

10N

secret

reconstruct

Figure Example of the experimentallresults by using Reshuffled-TD, LSB and deep
stego.
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Matrix Completion under Multiple Transformation

Lietal CVPR’19
Background: [Lieta /

» |n recent computer vision tasks, the completion is usually employed on

the variants of data, such as “non-local” or filtered, rather than their
original forms.

An example — Non-local Trick in Image Restoration

[]

Group matchng . Unfolding _ Concatenating

m m »~ »~ »~
£ O

. T

A linear transformation from high-rank to low-rank structure

A significant low-rank structure appears under some transformations. \
Problem
The conventional theoretical analysis for guarantee is no longer suitable.




Matrix Completion under Multiple Transformation

In the simplest case, the completion problem can be solved
by the following optimization problem:

min || QX)[« st [[Pa(X) = Pa(Y)|r <9,
XEle Xmo l |

Linear transformation

With some assumptions on the Q;,i € [K], and further assume that the tuning parameter
satisfies A > ||Pq (n) ||[2/v' M. Then the reconstruction error is upper-bounded by

5max({Qi})
5min({Qi})

where dmax(+) and dmin(-) denotes the maximum and the non-zero minimum singular values from
all Q;’s, respectively.

The upper-bound of the reconstruction error is linearly controlled by the condition number of
the transformations.

24
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lllustrative Experiment
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Tensor Networks for Model Representation

Deep Multi-task Learning

» Cannot handle data from

multiple sources/modalities

» Cannot consider
heterogeneous networks for

individual task

» Lack flexibility in knowledge-

sharing mechanism

[Long et al. NIPS 2017]  [Yang et al, ICLR 2017]

MRN DMTRL-TT
4 LJ 4 _v_?j_v_"
> A I3
; u\/.a _—v—:v:—v—ll
R R
4 4 ———
000l
= ——_—_—
t1 t1

Task A Task B Task A Task B

26



Tensor Ring Multi-task Learning

> Heterogeneous DNN for each task

> Flexibility in knowledge-sharing pattern

> High efficiency by sharing information in

latent space

> Disadvantages: choosing the number and

location of cores for sharing is difficult.
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Multimodal Learning
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Multimodal Tensor Fusion Network

[Liu et al, ACL 2018]
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Low-rank Tensor Fusion

[Liu et al, ACL 2018]
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Low-rank Tensor Fusion

[Liu et al, ACL 2018]
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Imperfect Time Series Data
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[Liang, ACL 2019]

Figure 2: The Temporal Tensor Fusion Network
(T2FN) creates a tensor M from temporal data. The
rank of M increases with imperfection in data so we
regularize our model by minimizing an upper bound on

the rank of M.
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Open problems

» Tensor network expressive power analysis

> Learning of tensor network structure

> Fast algorithms for tensor network representation

» What challenging problems in machine learning can

be solved by tensor network?
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