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Research Goal

To advance machine learning methods by 
leveraging tensor network representations

‣ Model compression

‣ Tensor completion

‣ Multi-task learning

‣ Multi-modal learning



Machine Learning Physics

Neural Nets

Phase Transitions

Topological Phases

Quantum Monte Carlo Sign Problem

Boltzmann 
Machines

Supervised 
Learning

Tensor Networks

Materials Science 
 & Chemistry

Unsupervised 
Learning

Kernel Learning
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Background & Motivation

Machine Learning
‣ Curse of dimensionality

‣ Nonlinear mapping is unknown

Kernel learning 
‣ “kernelization” scales quadratically with training data size

‣ Low generalization due to representer theorem

Deep neural network
‣ Model parameters are huge (space)
‣ Computational inefficient due to model complexity (time)
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Tensor diagrams of the approach

�(x)

W=

⇡

⇡

(Ms1Ms2 · · ·MsN )�s1s2···sN (x)

f(x) W · �(x)=
Nature of Weight Tensor

Representer theorem says exact W =
X

j

↵j�(xj)

Tensor network approx. can violate this condition

for any 

• Tensor network learning not interpolation 

• Interesting consequences for generalization?
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Popular approaches

ML Overview

Neural Networks

Non-Linear Kernel Learning

f(x) = W · �(x)
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Are tensor networks useful in solving these problems ?  
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Background & Motivation

High-order structured data 
‣ Video, Hyperspectral image, fMRI, EEG

‣ Social network (user x user x relation)

‣ …

Multi-modal, multi-view learning
‣ Multi-linear mapping:

Multi-task deep learning 
‣ Model parameters                                   form a tensor.     

High-order moment, joint PMF

f(x1,x2,x3) = W ⇥1 �(x1)⇥2 �(x2)⇥3 �(x3)
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Problem Statement
Background

Joint PMF Recovery
Approach

Results

Joint PMF from marginals (‘projections’)?

+

Pr𝑋,𝑌(𝑖, 𝑗)

Pr𝑌(𝑗)

+
Pr𝑋(𝑖) Pr𝑋(𝑖)

Pr𝑌(𝑗)

Pr𝑋(𝑖) Pr𝑌(𝑗)
independent; rank=1

Completely dependent; 
full rank

Pr (𝑗)
Pr𝑌,𝑍(𝑗, 𝑘)

Nikos Sidiropoulos Tensors and Probability: An Intriguing Union

Moment Based Approaches

Multivariate Moments

M1 := E[x], M2 := E[x⊗ x], M3 := E[x⊗ x⊗ x].

Matrix

E[x⊗ x] ∈ Rd×d is a second order tensor.

E[x⊗ x]i1,i2 = E[xi1xi2 ].

For matrices: E[x⊗ x] = E[xx⊤].

Tensor

E[x⊗ x⊗ x] ∈ Rd×d×d is a third order tensor.

E[x⊗ x⊗ x]i1,i2,i3 = E[xi1xi2xi3 ].

{Wn, 8n = 1, . . . , T}
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What Are Tensor Networks (TNs) ?

‣ A powerful tool to describe strongly entangled quantum 
many-body systems in physics

‣ Decompose a high-order tensor into a collection of low-
order tensors connected according to a network pattern

‣ Tensor network diagram
12 Introduction and Motivation
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Figure 1.5: (a) Basic building blocks for tensor network diagrams. (b) Tensor network
diagrams for matrix-vector multiplication, matrix by matrix multiplication and con-
traction of two tensors. The order of reading of indices is anti-clockwise, from the left
(west) position.

(first-order tensor), matrix (2nd-order tensor) or 3rd-order tensor is
represented by a circle, while the order of a tensor is determined by
the number of lines (edges) connected to it. According to this nota-
tion, an Nth-order tensor X RI1 IN is represented by a circle (or
any shape) with N branches each of size In, (n = 1, 2, . . . , N) (see
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TT/MPS Representation and Properties

‣ Efficient to represent       data values by           
parameters 
‣ Efficient to compute or optimize TT/MPS by DMRG 

algorithm

2.2. Tensor Train network 51

(a)
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Figure 2.17: Comparison of the concept of the tensor train and tensor chain de-
compositions (MPS with OPC and PBC, respectively) for an Nth-order data ten-
sor, X RI1 I2 IN . (a) Tensor Train (TT) can be mathematically described as
xi1,i2,...,iN = G(1)

i1
G(2)

i2
G(N)

iN
, where the slice matrices of TT cores G(n)

RRn 1 In Rn are defined as G(n)
in

= G(n)(:, in, :) RRn 1 Rn with R0 = RN = 1;
while (b) for Tensor Chain (TC) entries of a tensor are expressed as xi1,i2,...,iN =

tr (G(1)
i1

G(2)
i2

G(N)
iN

) =
R1

r1=1

R2

r2=1

RN

rN=1
g(1)rN , i1, r1

g(2)r1, i2, r2
g(N)

rN 1, iN , rN
, where

the lateral slices of TC cores G(n)
in

= G(n)(:, in, :) RRn 1 Rn and g(n)rn 1, in , rn
=

G(n)(rn 1, in, rn) for n = 1, 2, . . . , N, with R0 = RN 1.

O(NIR2)
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TT: tensor train decomposition; MPS: matrix product state

[V. Oseledets, SIAM J. Sci. Comput., 2011]



‣ Input:
‣ Nonlinear mapping by tensor product (Hilbert space)

‣ Decision function -        is an Nth-order tensor

‣ TT representation of weight parameter

Total feature map
� = local feature map

x = input

raw inputs

�(x) =

x = [x1, x2, x3, . . . , xN ]

�1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [⌦ �1( )

�2( )[ [x1

x1

x2

x2

x3 xN

x3 xN

⌦. . . feature 
vector 

More detailed notation

�(x)
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Total feature map
� = local feature map

x = input

raw inputsx = [x1, x2, x3, . . . , xN ]

feature 
vector 

Tensor diagram notation

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

· · ·
sN

�sN

�(x)

�(x)

For example, following local feature map

�(xj) =
h
cos

⇣⇡
2
xj

⌘
, sin

⇣⇡
2
xj

⌘i
xj 2 [0, 1]

x = input

Picturesque idea of pixels as "spins" or "qubits"

[E. Stoudenmire, NIPS 2016]

Tensor diagrams of the approach

x �(x) =

s1 s2 s3 s4 s5 s6

· · ·
sN

=

sj

[ [1

xj

Other choices include:

[
1
xj[ x2
j

[ [cos
⇣⇡
2
xj

⌘

sin
⇣⇡
2
xj

⌘or

Tensor diagrams of the approach

�(x)

W=

⇡

⇡

(Ms1Ms2 · · ·MsN )�s1s2···sN (x)

f(x) W · �(x)=

[A. Novikov, NIPS 2015]

W
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Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Main approximation

W = order-N tensor

⇡
matrix 
product 
state (MPS)

⇡ PEPS ))
© Edwin Miles Stoudenmire, Flatiron Institute, 2018
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Relations Between TNs and DNNs
‣ Equivalence of Restricted Boltzmann Machines and Tensor Networks

‣ Equivalence of Deep Convolutional Network and Hierarchical Tucker 
Decomposition

‣ Recurrent Neural Networks and Tensor Train 

‣ Powerful tools to study theory behind DNN

CHEN, CHENG, XIE, WANG, AND XIANG PHYSICAL REVIEW B 97, 085104 (2018)

v1 v2 v3 v5v4 v6

h1 h2 h4

(a)

(c)

h3

A(1) AA(2) A(4)(3) A(5) A(6)

(b)

TNSRBM
Sec II

Sec III

FIG. 1. (a) Graphical representation of the RBM defined by
Eq. (2). The blue dots represent visible units v and the magenta dots
represent the hidden unitsh. They are coupled through the connections
indicated by the solid lines. (b) MPS defined by Eq. (3). Each red dot
denotes a three-index tensor A(i). Throughout this paper, we use dots
to represent units of RBM, and ball to represent tensors. Lines in the
RBM denote connection weights while lines in the tensor network
denote tensor indices. (c) RBM and TNS are two ways to parametrize
multivariable functions. With unlimited resources (number of hidden
units or bond dimensions) both of them can represent any function
to arbitrary accuracy. However, with limited resources they represent
two independent sets with overlapping region. Detailed discussions
on their relationship are given in Secs. II and III.

One can train an RBM by specifying its parameters such that
the probability distribution of the visible units reproduces that
of the input data [12,13]. The hidden units of a trained RBM
may also reveal correlations in the data with appealing physical
meanings. For example, in an RBM trained with a data set of
images containing handwritten digits, the connection weight
contains the information about the pen stokes [14]. These
learning features can be used either for discriminative tasks,
such as pattern recognition, or for generative tasks, such as
generating more samples according to the learned distribution.
RBM has played an important role in the recent renaissance of
deep learning [15,16] because of its versatile abilities in feature
extraction and dimensionality reduction of complex data sets.

Recently, RBM has attracted great attention in the field of
quantum many-body physics. Carleo and Troyer [17] proposed
an RBM inspired variational wave function to study quan-
tum many-body systems at or away from equilibrium. Deng
et al. [18] constructed exact RBM representations for several
interesting topological states. Torlai and Melko [19] trained an
RBM to reproduce the thermodynamics of a statistical physics
model. Huang and Wang [20] used RBM as a recommender
system to accelerate Monte Carlo simulation of quantum
many-body systems. Liu et al. [21] reported similar ideas using
classical spin models instead of the RBM.

These developments raise several critical questions about
the expressive power of neural nets in the physics contexts. Is
RBM more expressive than the standard variational wave func-
tions of quantum states [17]? Can RBM efficiently describe
the probability distribution of physical models at criticality
[19,20]? Unfortunately, the existing universal approximation
theorem [9– 11] and its further developments [22– 24] are
not particularly instructive for practical purpose because they
involve exponentially large resources, and it cannot be used
as a guiding principle to solve practical physical or industrial
problems.

In fact, the quest for more expressive wave function is cen-
tral to quantum many-body physics. An ideal parametrization
of wave function should accurately describe a quantum state
with exponentially large degree of freedoms with polynomial
resources. Tensor network states (TNS) [25] are promising
candidates to meet this demand. Figure 1(b) shows one of
the simplest TNS, the matrix product state (MPS) [26], as an
example. The MPS parametrizes a wave function ofnv physical
variables as

!MPS(v) = Tr
∏

i

A(i)[vi], (3)

where A(i) is a three-index tensor represented by a red dot in
Fig. 1(b). For a given value of vi , which is represented by a
dangling vertical bond, A(i)[vi] is a matrix. The dimension of
this matrix is commonly called the virtual bond dimension of
the MPS, indicated by the thickness of the horizontal bonds
in Fig. 1(b). Connecting these horizontal bonds is to take
tensor contraction over all the virtual degree of freedoms.
By increasing the bond dimension, MPS can represent with
increasing accuracy any complex multivariable functions [26].

MPS representation is equivalent to the tensor train decom-
positions in the applied math community [27]. Similarly, one
can connect higher-order tensors to represent a physical state
in a two-dimensional network. This kind of TNS is named
projected entangled pair state (PEPS) [28]. A generalization
of PEPS to include the entanglement of all particles in a
larger unit cell is call projected entangled simplex state (PESS)
[29]. In the past decades, solid theoretical understanding and
efficient numerical techniques for TNS have been established.
See [25,30] for pedagogical reviews on TNS. Moreover, the
application of TNS to classical systems also has a long history
(see [31– 33] for example).

The physics community also has an answer to the “unrea-
sonable effectiveness” of TNS. It relies on the entanglement
area law [34], which states that the entanglement entropy
scales just linearly with the boundary size separating any two
subsystems. The entanglement entropy [35] is a measure of
the information content between these two subsystems. Many
physical states of practical interests fulfill this area law [34].
It indicates that the degrees of freedom needed to describe
a quantum state of physical interest is generally much less
than the total degrees of freedom of the whole system. TNS
are designed to efficiently represent these quantum states
with relatively low entanglement entropy and have achieved
remarkable successes in the past decades [36].

RBM and TNS share some similarities in their mathematical
structures, especially expressed using the graphical language
in Figs. 1(a) and 1(b). As for machine learning, Refs. [2,8]

085104-2

Convolutional Arithmetic Circuits

Example 2: Deep Network Ωæ HT Decomposition
Deep network with size-2 pooling:
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d irep i d fT x
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1x1 conv pooling dense 
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corresponds to Hierarchical Tucker (HT) decomposition:
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Our main theoretical results are related to a comparison of the expressive power of these kinds of
networks. Namely, the question that we ask is as follows. Suppose that we are given a TT-Network.
How complex would be a CP- or HT-Network realizing the same score function? A natural measure
of complexity, in this case, would be the rank of the corresponding tensor decomposition. To make
transitioning between tensor decompositions and deep learning vocabulary easier, we introduce the
following table.

Table 1: Correspondence between languages of Tensor Analysis and Deep Learning.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network

5 THEORETICAL ANALYSIS

In this section we prove the expressive power theorem for the Tensor Train decomposition, that is
we prove that given a random d-dimensional tensor in the TT format with ranks r and modes n, with
probability 1 this tensor will have exponentially large CP-rank. Note that the reverse result can not
hold true since TT-ranks can not be larger than CP-ranks: rankTT X  rankCP X .

It is known that the problem of determining the exact CP-rank of a tensor is NP-hard.

To bound CP-rank of a tensor the following lemma is useful.
Lemma 1. Let X i1i2...id and rankCP X = r. Then for any matricization X (s,t) we have
rankX (s,t)  r, where the ordinary matrix rank is assumed.

Proof. Proof is based on the following observation. Let

Ai1i2...id = vi1
1 vi2

2 . . . vid
d

,

be a CP-rank 1 tensor. Note for any s, t

rankA(s,t) = 1,

because A(s,t) can be written as uwT for some u and w. Then the statement of the lemma follows
from the facts that matricization is a linear operation, and that for matrices

rank(A + B)  rank A + rank B.

We use this lemma to provide a lower bound on the CP-rank in the theorem formulated below. For
example, suppose that we found some matricization of a tensor X which has matrix rank r. Then,
by using the lemma we can estimate that rankCP X � r.

Let us denote n = (n1, n2 . . . nd). Set of all tensors X with mode sizes n representable in TT-format
with

rankTT X  r,
for some vector of positive integers r (inequality is understood entry-wise) forms an irreducible
algebraic variety (Shafarevich & Hirsch (1994)), which we denote by Mr. This means that Mr is
defined by a set of polynomial equations in Rn1⇥n2...nd , and that it can not be written as a union
(not necessarily disjoint) of two proper non-empty algebraic subsets. An example where the latter
property does not hold would be the union of axes x = 0 and y = 0 in R2, which is an algebraic
set defined by the equation xy = 0. The main fact that we use about irreducible algebraic varieties
is that any proper algebraic subset of them necessarily has measure 0 (Ilyashenko & Yakovenko
(2008)).
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3. Combining the obtained and known results, we compare the expressive power of recurrent
(TT), convolutional (HT), and shallow (CP) networks with each other (see Table 2).

G2G1 G3 Gd

f✓(x1) f✓(x2) f✓(x3) f✓(xd)

z1 z2 zd�1 ly(X)

Figure 1: Recurrent-type neural architecture that corresponds to the Tensor Train decomposition.
Gray circles are bilinear maps (for details see Section 4).

2 DEEP LEARNING AND TENSOR NETWORKS

In this section, we review the known connections between tensor decompositions and deep learn-
ing and then show the new connection between Tensor Train decomposition and recurrent neural
networks.

Suppose that we have a classification problem and a dataset of pairs {(X(b)
, y

(b))}N

b=1. Let us
assume that each object X

(b) is represented as a sequence of vectors

X
(b) = (x1, x2, . . . xd), xk 2 Rn

, (1)

which is often the case. To find this kind of representation for images, several approaches are
possible. The approach that we follow is to split an image into patches of small size, possibly
overlapping, and arrange the vectorized patches in a certain order. An example of this procedure is

41 32
5 …6

Figure 2: Representation of an image in the form of Eq. (1). A window of size 7 ⇥ 7 moves across
the image of size 28 ⇥ 28 extracting image patches, which are then vectorized and arranged into a
matrix of size 49 ⇥ 16.

presented on Fig. 2.

We use lower-dimensional representations of {xk}d

k=1. For this we introduce a collection of pa-
rameter dependent feature maps {f✓` : Rn ! R}m

`=1, which are organized into a representation
map

f✓ : Rn ! Rm
.

A typical choice for such a map is
f✓(x) = �(Ax + b),

that is an affine map followed by some nonlinear activation �. In the image case if X was constructed
using the procedure described above, the map f✓ resembles the traditional convolutional maps – each
image patch is projected by an affine map with parameters shared across all the patches, which is
followed by a pointwise activation function.

Score functions considered in Cohen et al. (2016) can be written in the form

ly(X) = hWy, �(X)i, (2)

2

[Chen et al, Physical Review B, 2018]

[N. Cohen & A. Shashua, ICML 2016]

[Khrulkov, ICLR 2018]

Convolutional Arithmetic Circuits

Convolutional Arithmetic Circuits
Ωæ Hierarchical Tensor Decompositions

Observation
Grid tensors of func realized by ConvACs are given by hierarchical tensor
decompositions:

network structure Ωæ decomposition type
(depth, width, pooling etc) (dim tree, internal ranks etc)

network weights Ωæ decomposition parameters

We can study networks through corresponding decompositions!

Nadav Cohen (Hebrew U.) Expressiveness of Convolutional Networks Science of Intelligence, 2017 21 / 44

[Carleo et al, Science, 2017]
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Tensor Networks for Large-Scale Optimization Problems

‣ Fast ALS/DMRG algorithm

‣ Applicable to large-scale 
SVD/PCA/CCA and etc

166 TT Networks for Optimization Problems
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TT-cores need to be stored and processed, which makes the number of
parameters to scale linearly in the tensor order, N , of a data tensor and
all mathematical operations are then performed only on the low-order
and relatively small size core tensors.

The TT rank is defined as an N 1 -tuple of the form

rankTT X rT T R1, . . . , RN 1 , Rn rank X n , (2.21)

where X n RI1 In In 1 IN is an nth canonical matricization of
the tensor X. Since the TT rank determines memory requirements
of a tensor train, it has a strong impact on the complexity, i.e., the
suitability of tensor train representation for a given raw data tensor.

The number of data samples to be stored scales linearly in the tensor
order, N , and the size, I, and quadratically in the maximum TT rank
bound, R, that is

N

n 1
Rn 1RnIn O NR

2
I , R : max

n
Rn , I : max

n
In . (2.22)

This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I N 2 for an Nth-order
tensor.
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summation over the indices of that mode. As we can see
from (2), Z1 and Z2 is multiplied along one dimension in-
dexed by ↵2, which is thus denoted by a connection together
with the size of that mode (i.e., r2) in the graph. It should be
noted that Zd is connected to Z1 by the summation over the
index ↵1, which corresponding to the trace operation. From
the graphical representation and mathematic expression in
(1), we can easily derive that TR representation is a circular
multilinear products of a sequence of 3rd-order tensors,
resulting in that the sequence can be shifted circularly
without changing the result essentially, which corresponds
to a circular shift of tensor modes. Since our model graph-
ically looks like a ring and its multilinear operations can
be circularly shifted, we thus call it naturally as tensor ring
decomposition. For simplicity, we denote TR decomposition
by T = <(Z1,Z2, . . . ,Zd).

Tn1

nd · · ·

nk

· · ·n2

= Z1

Zd · · ·

Zk

· · ·Z2

n1

nd · · ·

nk

· · ·n2

r1

r2

rd

rk+1

rk

r3

Fig. 1. A graphical representation of the tensor ring decomposition

Theorem 2.1. Circular dimensional permutation invari-

ance. Let T 2 Rn1⇥n2⇥...⇥nd be a dth-order tensor and
its TR decomposition is given by T = <(Z1,Z2, . . . ,Zd).
If we define

 �T k
2 Rnk+1⇥···⇥nd⇥n1⇥···⇥nk as circularly

shifting the dimensions of T by k, then we have
 �T k =

<(Zk+1, . . . ,Zd,Z1, . . .Zk).

It is obvious that (1) can be easily rewritten as

T (i1, i2, . . . , id) = Tr(Z2(i2),Z3(i3), . . . ,Zd(id),Z1(i1))

= · · · = Tr(Zd(id),Z1(i1), . . . ,Zd�1(id�1)). (4)

Therefore, we have
 �T k = <(Zk+1, . . . ,Zd,Z1, . . . ,Zk).

It should be noted that this property is an essential
feature that distinguishes TR decomposition from the TT de-
composition. For TT decomposition, the product of matrices
must keep a strictly sequential order, which results in that
the cores for representing the same tensor with a circular
dimension shifting cannot keep invariance. Hence, it is
necessary to choose an optimal dimensional permutation
when applying the TT decomposition.

3 LEARNING ALGORITHMS

In this section, we develop several algorithms to learn the
TR model. Since the exact tensor decompositions usually
require heavy computation and storage, we focus on the
low-rank tensor approximation under the TR framework.
The selection of the optimum TR-ranks r 2 Rd is a challeng-
ing model selection problem. In general, r can be manually

given, or be optimized based on the specific objective func-
tion such as nuclear norm or maximum marginal likelihood.
Since the true noise distribution is unknown in practice, we
usually prefer to a low-rank approximation of the data with
a relative error that can be controlled in an arbitrary scale.
Therefore, given a tensor T , our main objective is to seek
a set of cores which can approximate T with a prescribed
relative error ✏p, while the TR-ranks are minimum, i.e.,

min
Z1,...,Zd

: r

s. t. : kT �<(Z1,Z2, . . . ,Zd)kF  ✏pkT kF .
(5)

Definition 3.1. Let T 2 Rn1⇥n2⇥···⇥nd be a dth-order tensor.
The k-unfolding of T is a matrix, denoted by Thki of sizeQk

i=1 ni ⇥
Qd

i=k+1 ni, whose elements are defined by

Thki(i1 · · · ik, ik+1 · · · id) = T (i1, i2, . . . , id), (6)

where the first k indices enumerate the rows of Thki, and
the last d� k indices for its columns.

Definition 3.2. The mode-k unfolding matrix of T is denoted
by T[k] of size nk ⇥

Q
j 6=k nj with its elements defined by

T[k](ik, ik+1 · · · idi1 · · · ik�1) = T (i1, i2, . . . , id), (7)

where kth index enumerate the rows of T[k], and the rest
d � 1 indices for its columns. Note that the classical mode-k
unfolding matrix is denoted by T(k) of size nk⇥

Q
j 6=k nj and

defined by

T(k)(ik, i1 · · · ik�1ik+1 · · · id) = T (i1, i2, . . . , id). (8)

The difference between these two types of mode-k unfold-
ing operations lie in the ordering of indices associated to the
d � 1 modes, which corresponds to a specific dimensional
permutation performed on T . We use these two type of
definitions for clarity and notation simplicity.

Definition 3.3. Let T = <(Z1,Z2, . . . ,Zd) be a TR repre-
sentation of dth-order tensor, where Zk 2 Rrk⇥nk⇥rk+1 , k =
1, . . . , d be a sequence of cores. Since the adjacent cores Zk

and Zk+1 have an equivalent mode size rk+1, they can be
merged into a single core by multilinear products, which is
defined by Z(k,k+1)

2 Rrk⇥nknk+1⇥rk+2 whose lateral slice
matrices are given by

Z(k,k+1)(ikik+1) = Zk(ik)Zk+1(ik+1). (9)

Note that Zk, k = 1, . . . , d forms a circular sequence, imply-
ing that Zd is linked to Z1 as well. This merging operation
can be extended straightforwardly to multiple linked cores.

The new core obtained by merging multiple linked cores
Z1, . . . ,Zk�1, called a subchain, is defined and denoted
by Z<k

2 Rr1⇥
Qk�1

j=1 nj⇥rk whose lateral slice matrices are
given by

Z<k(i1 · · · ik�1) =
k�1Y

j=1

Zj(ij). (10)

Similarly, the subchain tensor by merging multiple
linked cores Zk+1, . . . ,Zd is denoted by Z>k

2

Rrk+1⇥
Qd

j=k+1 nj⇥r1 whose lateral slice matrices are defined
as

Z>k(ik+1 · · · id) =
dY

j=k+1

Zj(ij). (11)

Tensor Ring 
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TT-cores need to be stored and processed, which makes the number of
parameters to scale linearly in the tensor order, N , of a data tensor and
all mathematical operations are then performed only on the low-order
and relatively small size core tensors.

The TT rank is defined as an N 1 -tuple of the form

rankTT X rT T R1, . . . , RN 1 , Rn rank X n , (2.21)

where X n RI1 In In 1 IN is an nth canonical matricization of
the tensor X. Since the TT rank determines memory requirements
of a tensor train, it has a strong impact on the complexity, i.e., the
suitability of tensor train representation for a given raw data tensor.

The number of data samples to be stored scales linearly in the tensor
order, N , and the size, I, and quadratically in the maximum TT rank
bound, R, that is

N

n 1
Rn 1RnIn O NR

2
I , R : max

n
Rn , I : max

n
In . (2.22)

This is why it is crucially important to have low-rank TT approxima-
tions7. A drawback of the TT format is that the ranks of a tensor train

7In the worst case scenario the TT ranks can grow up to I N 2 for an Nth-order
tensor.
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Figure 2.19: Concepts of the tensor train (TT) and tensor chain (TC) de-
compositions (MPS with OBC and PBC, respectively) for an Nth-order data
tensor, X RI1 I2 IN . (a) Tensor Train (TT) can be mathematically de-
scribed as xi1,i2,...,iN G

1
i1 G

2
i2 G

N
iN

, where (bottom panel) the slice
matrices of TT-cores G

n RRn 1 In Rn are defined as G
n

in
G

n :, in, :
RRn 1 Rn with R0 RN 1. (b) For the Tensor Chain (TC), the en-

tries of a tensor are expressed as xi1,i2,...,iN tr G
1

i1 G
2

i2 G
N

iN
R1

r1 1

R2

r2 1

RN

rN 1
g 1

rN , i1, r1 g 2
r1, i2, r2 g N

rN 1, iN , rN
, where (bottom panel) the lat-

eral slices of the TC-cores are defined as G
n

in
G

n :, in, : RRn 1 Rn and
g n

rn 1, in, rn
G

n rn 1, in, rn for n 1, 2, . . . , N , with R0 RN 1. Notice
that TC/MPS is e�ectively a TT with a single loop connecting the first and the last
core, so that all TC-cores are of 3rd-order.

Tensor Train

[Zhao et al, ICLR workshop 2018, ICASSP 2019]
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity

Q. ZHAO et al. TENSOR RING DECOMPOSITION 7

to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
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k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))
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(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT
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d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX
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Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
putational cost.

4 PROPERTIES OF TR REPRESENTATION

In this section, we discuss some interesting properties of
TR representation. By assuming that tensor data have been
already represented as TR decompositions, i.e., a sequence
of third-order cores, we justify and demonstrate that the
basic operations on tensors, such as addition, multilinear
product, Hadamard product, inner product and Frobenius norm,
can be performed efficiently by the appropriate operations
on each individual cores. These properties are crucial and
essentially important for processing large-scale or large-
dimensional tensors, due to the ability of converting a large
problem w.r.t. the original tensor into many small problems
w.r.t. individual cores.

Theorem 4.1. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · · ⇥ nd. If the TR decompositions of these two tensors
are T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and
T 2 = <(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the
addition of these two tensors, T 3 = T 1 + T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk + sk. Each core X k can
be computed by

Xk(ik) =

✓
Zk(ik) 0

0 Yk(ik)

◆
,
ik = 1, . . . , nk,
k = 1, . . . , d.

(28)

Proof. According to the definition of TR decomposition, and
the cores shown in (28), the (i1, . . . , id)th element of tensor
T 3 can be written as

T3(i1, . . . , id) =Tr(X1(i1) . . .Xd(id))

=Tr

 Qd
k=1 Zk(ik) 0

0
Qd

k=1 Yk(ik)

!

=Tr

 
dY

k=1

Zk(ik)

!

+ Tr

 
dY

k=1

Yk(ik)

!

=T1(i1, . . . , id) + T2(i1, . . . , id).

(29)

Hence, the addition of tensors in the TR format can be
performed by merging of their cores.

Note that the sizes of new cores are increased and not
optimal in general. This problem can be solved by the
rounding procedure [39].

Theorem 4.2. Let T 2 Rn1⇥···⇥nd be a dth-order tensor whose
TR representation is T = <(Z1, . . . ,Zd) and uk 2 Rnk , k =
1, . . . , d be a set of vectors, then the multilinear products, denoted
by c = T ⇥1 uT

1 ⇥2 · · ·⇥d uT
d , can be computed by multilinear

product on each cores, which is

c = <(X1, . . . ,Xd) where Xk =
nkX

ik=1

Zk(ik)uk(ik). (30)

Proof. The multilinear product between a tensor and vectors
can be expressed by

c =T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d

=
X

i1,...,id

T (i1, . . . , id)u1(i1) · · ·ud(id)

=
X

i1,...,id

Tr

 
dY

k=1

Zk(ik)

!

u1(i1) · · ·ud(id)

=Tr

 
dY

k=1

 
nkX

ik=1

Zk(ik)uk(ik)

!!

.

(31)

Thus, it can be written as a TR decomposition shown in
(30) where each core Xk 2 Rrk⇥rk+1 becomes a matrix. The
computational complexity is equal to O(dnr2).

From (31), we can see that the multilinear product be-
tween T and uk, k = 1, . . . , d can be also expressed as an
inner product of T and the rank-1 tensor, i.e.,

T ⇥1 u
T
1 ⇥2 · · ·⇥d u

T
d = hT ,u1 � · · · � udi. (32)

It should be noted that the computational complexity in
the original tensor form is O(dnd), while it reduces to
O(dnr2 + dr3) that is linear to tensor order d by using TR
representation.

Theorem 4.3. Let T 1 and T 2 be dth-order tensors of size
n1 ⇥ · · ·⇥ nd. If the TR decompositions of these two tensors are
T 1 = <(Z1, . . . ,Zd) where Zk 2 Rrk⇥nk⇥rk+1 and T 2 =
<(Y1, . . . ,Yd), where Yk 2 Rsk⇥nk⇥sk+1 , then the Hadamard
product of these two tensors, T 3 = T 1 ~ T 2, can be also
represented in the TR format given by T 3 = <(X 1, . . . ,X d),
where X k 2 Rqk⇥nk⇥qk+1 and qk = rk ⇤ sk. Each core X k can
be computed by

Xk(ik) = Zk(ik)⌦Yk(ik), k = 1, . . . , d. (33)

Proof. Each element in tensor T 3 can be written as

T3(i1, . . . , id) =T1(i1, . . . , id)T2(i1, . . . , id)

=Tr

 
dY

k=1

Zk(ik)

!

Tr

 
dY

k=1

Yk(ik)

!

=Tr

( 
dY

k=1

Zk(ik)

!

⌦

 
dY

k=1

Yk(ik)

!)

=Tr

(
dY

k=1

⇣
Zk(ik)⌦Yk(ik)

⌘)

.

(34)

Hence, T 3 can be also represented as TR format with its
cores computed by (33), which costs O(dnq2).

Furthermore, one can compute the inner product of two
tensors in TR representations. For two tensors T 1 and T 2,
it is defined as

hT 1,T 2i =
X

i1,...,id

T3(i1, . . . , id), (35)

where T 3 = T 1 ~ T 2. Thus, the inner product can be
computed by applying Hadamard product and then com-
puting the multilinear product between T 3 and vectors of
all ones, i.e., uk = 1, k = 1, . . . , d. In contrast to O(nd)
in the original tensor form, the computational complexity
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to adapt TR-ranks during optimization, but requires many
iterations. TR-BALS enables us to find the optimum TR-
ranks efficiently without dramatically increasing the com-
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◆
,
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!
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!
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Algorithm 3 Tensor-train Stochastic Gradient Descent (TTSGD)

1: Input: Incomplete tensor Y and TT � rank r.

2: Initialization: core tensors G
(1),G(2), · · · ,G(N)of approximated tensor X .

3: While the optimization stopping condition is not satisfied

4: Randomly sample one observed entry from Y.

5: For i=1:N

6: Compute @f

@G
(n)
imn

= (ym � xm)(G>n
imn

G
<n
imn

)T .

7: End

8: Update corresponding G
(n)
imn

by gradient descent method.

9: End while

10: Output: G
(1),G(2), · · · ,G(N)

.

3.4. Computational Complexity

For tensorX 2 RI1⇥I2⇥···⇥IN with number of observed entriesM , we assume

all I1, I2, · · · , IN is equal to I, and r1 = r2 = · · · = rN�1 = r. According equa-

tion 10, 20 and 15,we list the computational complexity of our three algorithms

for every iteration in table 1. Though the time complexity will exponentially

increase by data dimensions, STTOPT and TTSGD is free from dimensionality

so they can deal with large-scale data. Besides, TTSGD uses the least time

complexity and space complexity.

Table 1: Computational complexity of TTWOPT, STTOPT, TTSGD for every iteration

Algorithm Time complexity Space complexity

TTWOPT O(rN�1IN�1) O(IN + r2IN�1)

STTOPT O(MrN�1) O(MIr)

TTSGD O(rN�1) O(Ir)

i2 = 1i2 = 2i2 = 3i2 = 4

4. Experiments

One advantage of gradient-based optimization is that we do not need too

tune so many hyper parameters, we can easily get any wanted accuracy within
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Higher-order tensorization

‣ High-order structure relations can be captured

‣ Compact representation by many small cores

‣ Interpretability
1st core 2nd core 3rd core 4th core

[Bengua et al, IEEE TIP, 2017]
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Tensor Networks for Data Representation
Real data is often high-dimensional
‣ Recommender system (user x item x time)

‣ Gene expression, remote sensing, fMRI

Real data is often incomplete
‣ Low-rank approximation via convex optimization (high computation cost)

‣ Decomposition based approach (model selection problem)

‣ How much structure information can be used?

Multilinear multitask learning

Tasks are associated with multiple indices, e.g. predict a rating
given to di↵erent aspects of a restaurant by di↵erent critics

Tasks’ regression vectors are “vertical” fibers of the tensor, e.g.
( , ‘food’)

4 / 36
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Tensor Networks for Data Imputation

Tensor completion based on TT/TR decomposition

Recovered data

Approximated entries

Prediction

Observed entries

Observed data

High-order  
tensorization
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Higher-order tensor

Low-rank TT/TR approximation

TT/TR decomposition
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‣ Tensor ring decomposition with low-rank factors via nuclear norm 
regularizaiton 

‣ Theoretically prove the relations between tensor rank and rank of cores

‣ Robust to rank section by imposing nuclear norm on TR-cores

Tensor Ring Low-rank Factors  [Yuan et al, AAAI 2019]

rithm: TRALS and TRWOPT. They apply the same opti-
mization model and it is formulated as:

min
[G]

kP⌦(T � ([G]))k2F , (2)

of which the optimization object is the TR factors [G].
P⌦(T ) denotes all the observed entries w.r.t. the set of in-
dices of observed entries represented by ⌦, and  ([G]) de-
notes the approximated tensor generated by [G]. Every ele-
ment of  ([G]) is calculated by equation (1). The two algo-
rithms are both based on the model (2). However, TRALS
applies alternative least squares (ALS) method and TR-
WOPT uses gradient-based algorithm to solve the model,
respectively. They perform well in both low-order and high-
order tensors due to the high representative ability and flex-
ibility of TR decomposition. However, these algorithms are
shown to suffer from high sensitiveness to rank selection,
which would lead to high computational cost.

Completion by nuclear norm regularization The model
of rank minimization-based tensor completion can be for-
mulated as:

min
X

Rank(X ) +
�

2
kP⌦(T �X )k2F , (3)

where X is the recovered low-rank tensor, and Rank(·) is a
rank regularizer. The model can find the low-rank structure
of the data and approximate the recovered tensor. Because
determining the tensor rank is an NP-hard problem (Hillar
and Lim 2013; Kolda and Bader 2009), work in (Liu et al.
2013) and (Signoretto et al. 2014) extends the concept of
low-rank matrix completion and defines the tensor rank as
the sum of the rank of mode-n unfolding of the object ten-
sor. Moreover, the convex surrogate named nuclear norm is
applied for tensor low-rank model and it simultaneously reg-
ularizes all the mode-n unfoldings of the object tensor. In
this way, model (3) can be reformulated as:

min
X

NX

n=1

kX(n)k⇤ +
�

2
kP⌦(T �X )k2F , (4)

where k · k⇤ denotes the nuclear norm regularization which
is the sum of the singular values of the matrix. Usually the
model is solved by ADMM algorithms and it is shown to
have fast convergence and good performance when data size
is small. However, when we need to deal with large-scale
data, the multiple SVD operations in the optimization step
will be intractable due to high computational cost.

Tensor Ring Low-rank Factors
Traditional rank minimization based tensor completion
methods give nuclear norm regularization on multiple ma-
trices generated by tensor unfoldings, they suffer from high
computational cost of large-scale SVD operations in ev-
ery iteration. To solve this problem, we give low-rankness
on each of the TR factors and our basic tensor completion
model is formulated as follow:

min
[G],X

NX

n=1

kG(n)k⇤ +
�

2
kX � ([G])k2F ,

s.t. P⌦(X ) = P⌦(T ).

(5)

We need firstly to deduce the relation of the tensor rank
and the corresponding core tensor rank, which can be ex-
plained by the following theorem:
Theorem 1. Given an N -th order tensor X 2
RI1⇥I2⇥···⇥IN which can be represented by equation (1),

then the following inequality holds for all n = 1, . . . , N :

Rank(G(n)
(2) ) � Rank(X(n)). (6)

Proof. For the n-th core tensor G(n), according to the works
in (Zhao et al. 2016a), we have:

X<n> = G(n)
(2) (G

(6=n)
<2> )T , (7)

where G
(6=n) 2 RRn+1⇥

QN
i=1,i 6=n Ii⇥Rn is a subchain tensor

by merging all but the n-th core tensor. Hence, the relation
of the rank satisfies:

Rank(X<n>)  min{Rank(G(n)
(2) ),Rank(G(6=n)

<n>)}

 Rank(G(n)
(2) ).

(8)

The proof is completed by:

Rank(X<n>) = Rank(X(n))  Rank(G(n)
(2) ), (9)

The theorem proves the relation between the tensor rank
and the rank of the TR factors. The rank of mode-n unfold-
ing of the tensor X is upper bounded by the rank of the
dimension-mode unfolding of the corresponding core tensor
G

(n), thus we can give low-rank constraint on G
(n). By the

new surrogate, our model (5) is reformulated by:

min
[G],X

NX

n=1

kG(n)
(2)k⇤ +

�

2
kX � ([G])k2F

s.t. P⌦(X ) = P⌦(T ).

(10)

The above model imposes nuclear norm regularization on
the dimension-mode unfoldings of the TR factors, which can
largely decrease the computational complexity compared to
the algorithms which are based on model (4). Moreover,
we consider to give low-rank constraints on the two rank-
modes of the TR factors, i.e., the unfoldings of the TR fac-
tors along mode-1 and mode-3, which can be expressed byPN

n=1 kG
(n)
(1)k⇤+

PN
n=1 kG

(n)
(3)k⇤. When the model is opti-

mized, nuclear norms of the rank-mode unfoldings and the
fitting error of the approximated tensor are minimized simul-
taneously, resulting in the initial TR-rank becomes the upper
bound of the real TR-rank of the tensor, thus giving the abil-
ity of rank selection robustness to our model. The tensor ring
low-rank factors (TRLRF) model is finally expressed by:

min
[G],X

NX

n=1

3X

i=1

kG(n)
(i) k⇤ +

�

2
kX � ([G])k2F

s.t. P⌦(X ) = P⌦(T ).

(11)

Our TRLRF model has two distinctive advantages. Firstly,
the low-rank assumption is placed on tensor factors instead
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tion on TR factors can bring robustness to rank selection,
which largely alleviates the model selection problem in the
experiments.

Benchmark images inpainting

Figure 3: The eight benchmark images. The first image is
named “Lena” and is used in the next two experiments.

RSE =
      0.19734       0.1398      0.11106      0.10673      0.10141      0.10109
      0.20025       0.1286      0.23614       0.3596      0.50176       15.226
      0.19725      0.12906       0.1358      0.16612      0.17618      0.26522   TR-rank(10)

   TRLRF
(proposed)

TRALS

TRWOPT

TR-rank(4) TR-rank(6) TR-rank(8) TR-rank(10) TR-rank(12)

RSE=0.1311 RSE=0.1067RSE=0.1111 RSE=0.1014 RSE=0.1011

RSE=0.1286 RSE=0.3596RSE=0.2361 RSE=0.5018 RSE=0.9522

RSE=0.1291 RSE=0.1661RSE=0.1358 RSE=0.1762 RSE=0.2652

Figure 4: Visual completion results of TRLRF (proposed),
TRALS, and TRWOPT on image “Lena” with different TR-
ranks when the missing rate is 0.8. The selected TR-ranks
are 4, 6, 8, 10, 12 respectively from the first column to the
last column. The RSE results are noted under each picture.

In this section, we test our TRLRF and the state-of-the-art
algorithms on eight benchmark images which are shown in
Figure 3. The size of each RGB image is 256 ⇥ 256 ⇥ 3
which can be considered as a three-order tensor. For the first
experiment, we continue to testify the TR-rank robustness
of TRLRF on the image named “Lena”. Figure 4 shows
the completion results of TRLRF, TRALS, and TRWOPT
when different TR-ranks for each algorithm are selected.
The missing rate of the image is set as 0.8, which is the case
that the TR decomposition is easy to overfitting. From the
figure we can see, our TRLRF gives better results than the
other two TR-based algorithms in each case and the highest
performance is obtained when TR rank is set as 12. When
TR-rank increases, the completion performance of TRALS
and TRLRF decreases due to redundant model complexity
and overfitting of the algorithms, while our TRLRF shows
better results even the selected TR-rank is larger than the
desired TR-rank.
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Figure 5: Average completion performance of eight algo-
rithms under different missing rates

In the next experiment, we compare our TRLRF to
the two TR-based algorithm TRALS and TRWOPT, and
the other state-of-the-art algorithms, i.e., TenALS (Jain
and Oh 2014), FBCP (Zhao, Zhang, and Cichocki 2015),
HaLRTC (Liu et al. 2013), TMac (Xu et al. 2013) and
t-SVD (Zhang et al. 2014). We test these algorithms
on all the eight benchmark images by different miss-
ing rates: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. Relative
square error (RSE) and peak signal-to-noise ratio (PSNR)
are adopted for the evaluation of the completion perfor-
mance. For RGB image data, PSNR is defined as PSNR =
10 log10(255

2/MSE) where MSE is calculated by MSE =
kT real �Xk2F /num(T real), and num(·) denotes the num-
ber of element of the fully observed tensor.

For the three TR-based algorithms, we assume the TR-
ranks are equal for every core tensor (i.e. R1 = R2 =
. . . = RN ). The best completion results for each algorithm
are obtained by selecting best TR-ranks for the TR-based
algorithms by cross-validation method. Actually finding the
best TR-rank to get the best completion results is an annoy-
ing work. However, this is much easier for our proposed al-
gorithm because the performance of TRLRF is fairly sta-
ble even though the TR-rank is selected in a wide large.
For the other five compared algorithms, we tune the hyper-
parameters according to the suggestions of each paper to ob-
tain the best completion results. Finally, we show the aver-
age performance of the eight images for each algorithm un-
der different missing rates by line graphs. Figure 5 shows
the RSE and PSNR results of each algorithm. The smaller
RSE value and the larger PSNR value denote the better
performance. Our TRLRF performs the best among all the
compared algorithms in most cases. When the missing rate
increases, the completion results of all the algorithms de-
crease, especially when the missing rate is near 0.9. The per-
formance of most algorithm falls drastically when the miss-
ing rate is 0.95, however, the performance of TRLRF, HaL-
RTC, and FBCP remains stable and the best performance is
obtained from our TRLRF.

Hyperspectral image
A hyperspectral image (HSI) of size 200 ⇥ 200 ⇥ 80
which records an area of the urban landscape is tested in

Benchmarks

Average performance of 8 benchmark images

tion on TR factors can bring robustness to rank selection,
which largely alleviates the model selection problem in the
experiments.

Benchmark images inpainting

Figure 3: The eight benchmark images. The first image is
named “Lena” and is used in the next two experiments.
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Figure 4: Visual completion results of TRLRF (proposed),
TRALS, and TRWOPT on image “Lena” with different TR-
ranks when the missing rate is 0.8. The selected TR-ranks
are 4, 6, 8, 10, 12 respectively from the first column to the
last column. The RSE results are noted under each picture.

In this section, we test our TRLRF and the state-of-the-art
algorithms on eight benchmark images which are shown in
Figure 3. The size of each RGB image is 256 ⇥ 256 ⇥ 3
which can be considered as a three-order tensor. For the first
experiment, we continue to testify the TR-rank robustness
of TRLRF on the image named “Lena”. Figure 4 shows
the completion results of TRLRF, TRALS, and TRWOPT
when different TR-ranks for each algorithm are selected.
The missing rate of the image is set as 0.8, which is the case
that the TR decomposition is easy to overfitting. From the
figure we can see, our TRLRF gives better results than the
other two TR-based algorithms in each case and the highest
performance is obtained when TR rank is set as 12. When
TR-rank increases, the completion performance of TRALS
and TRLRF decreases due to redundant model complexity
and overfitting of the algorithms, while our TRLRF shows
better results even the selected TR-rank is larger than the
desired TR-rank.
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Figure 5: Average completion performance of eight algo-
rithms under different missing rates

In the next experiment, we compare our TRLRF to
the two TR-based algorithm TRALS and TRWOPT, and
the other state-of-the-art algorithms, i.e., TenALS (Jain
and Oh 2014), FBCP (Zhao, Zhang, and Cichocki 2015),
HaLRTC (Liu et al. 2013), TMac (Xu et al. 2013) and
t-SVD (Zhang et al. 2014). We test these algorithms
on all the eight benchmark images by different miss-
ing rates: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. Relative
square error (RSE) and peak signal-to-noise ratio (PSNR)
are adopted for the evaluation of the completion perfor-
mance. For RGB image data, PSNR is defined as PSNR =
10 log10(255

2/MSE) where MSE is calculated by MSE =
kT real �Xk2F /num(T real), and num(·) denotes the num-
ber of element of the fully observed tensor.

For the three TR-based algorithms, we assume the TR-
ranks are equal for every core tensor (i.e. R1 = R2 =
. . . = RN ). The best completion results for each algorithm
are obtained by selecting best TR-ranks for the TR-based
algorithms by cross-validation method. Actually finding the
best TR-rank to get the best completion results is an annoy-
ing work. However, this is much easier for our proposed al-
gorithm because the performance of TRLRF is fairly sta-
ble even though the TR-rank is selected in a wide large.
For the other five compared algorithms, we tune the hyper-
parameters according to the suggestions of each paper to ob-
tain the best completion results. Finally, we show the aver-
age performance of the eight images for each algorithm un-
der different missing rates by line graphs. Figure 5 shows
the RSE and PSNR results of each algorithm. The smaller
RSE value and the larger PSNR value denote the better
performance. Our TRLRF performs the best among all the
compared algorithms in most cases. When the missing rate
increases, the completion results of all the algorithms de-
crease, especially when the missing rate is near 0.9. The per-
formance of most algorithm falls drastically when the miss-
ing rate is 0.95, however, the performance of TRLRF, HaL-
RTC, and FBCP remains stable and the best performance is
obtained from our TRLRF.

Hyperspectral image
A hyperspectral image (HSI) of size 200 ⇥ 200 ⇥ 80
which records an area of the urban landscape is tested in

Higher performance 
than the state-of-the-
art algorithms.

TenALS: [Jain, NIPS, 2014] 
FBCP: [Zhao, TPAMI, 2015] 
HaLRTC: [Liu, TPAMI, 2013] 
TMac: [Xu, arXiv, 2013] 
t-SVD: [Zhang, CVPR, 2014]

Experiment Validation
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Beyond Unfolding: Reshuffling Operation

(a) a 3rd-order tensor with the size 3x3x3

Mode-1 Unfolding

Reshuffling

(b) The unfolded matrix X along the frist mode

(c) The matrix Y by the propsoed tensor reshuffling

mode-1

mode-3

mode-2

The correspondence

m
od

e-
1

mode-2 mode-2 mode-2

mode-3

high rank

low rank

“Restore the Rubix Cube”

Mode-3 Unfolding

Fig. Difference between tensor unfolding and reshuffling. 
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Problem Setting

Image 1
Observation

Image 2

Image N

Reshuffling

Reshuffling

Reshuffling
Question:

Is it possible to exactly recover the original 
images only by using the observation?

!"#$%&'()

Recovery
Mixing

Image steganography Single-shot compressive sensing
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Reshuffled Tensor Decomposition

FormulationFormulation

Assume that the observation X œ RI1◊I2◊···◊IK is a mixture of N compo-

nents, then the recovery of the original components can be formulated as

tensor decomposition, i.e.,

X = R1(A1) + R2(A2) + · · · + RN(AN). (1)

where Ai , i œ [N] denote latent components (original images) and Ri de-

notes the corresponding reshu�ing operation w.r.t. Ai .

NOTE

Recovering Ai only from X is a ill-posed problem.

Purpose

The aim of our work is to study what the condition is for exact recovery

of the latent components, and to develop an e�ective algorithm for this

decomposition.

Chao Li (RIKEN-AIP) Tensor Learning Unit February 23, 2019 3 / 30

The optimization model:

Main Results

Additional Assumption

We further assume that each component Ai has the low-rank structure.

The latent components can be exactly recovered by solving the following

problem:

min
Ai , iœ[N]

Nÿ

i=1
ÎAiÎú, s.t., X =

Nÿ

i=1
Ri(Ai), (2)

where we employ the matrix nuclear norm Î · Îú in the model as a surrogate

of the matrix rank.

In our study,

1. We develop a algorithm called Reshu�ed-TD to solve the model (2),

and the convergence of the algorithm is guaranteed.

2. We rigorously prove that the components can be exactly recovered if

the incoherence conditions are satisfied.

Chao Li (RIKEN-AIP) Tensor Learning Unit February 23, 2019 4 / 30

Main Results

Additional Assumption

We further assume that each component Ai has the low-rank structure.

The latent components can be exactly recovered by solving the following

problem:

min
Ai , iœ[N]

Nÿ

i=1
ÎAiÎú, s.t., X =

Nÿ

i=1
Ri(Ai), (2)

where we employ the matrix nuclear norm Î · Îú in the model as a surrogate

of the matrix rank.

In our study,

1. We develop a algorithm called Reshu�ed-TD to solve the model (2),

and the convergence of the algorithm is guaranteed.

2. We rigorously prove that the components can be exactly recovered if

the incoherence conditions are satisfied.

Chao Li (RIKEN-AIP) Tensor Learning Unit February 23, 2019 4 / 30



 20

Reshuffled Tensor Decomposition

Theoretical results:

Conditions for Exact Recovery

Problem setting

Given a tensor X , suppose there exist low-rank matrices Aú
i with rank ki

such that X =
qN

i=1 Ri(Aú
i ). Under what conditions on Aú

i , Ri and ki , the

estimated Âi , obtained by using Reshu�ed-TD, will be equal to Aú
i for all

i?

Definition: Reshu�ed-low-rank incoherence

µi (A) := max
j ”=i

max
Y œ Ti (A),..Rı
i (Y)

..
2

Æ 1

...Rı
j (Y)

...
2

,
(6)

where Rı
j denotes the conjugate of Rj , and Ti(A) denotes the tangent space

of low-rank manifold w.r.t Ri to the point A.

Chao Li (RIKEN-AIP) Tensor Learning Unit February 23, 2019 14 / 30

Conditions for Exact Recovery

Theorem (Exact-Recovery Condition)

The estimated Âi , obtained by Reshu�ed-TD, are equal to the true Aú
i for

all i , when

max
i=1,...,N

µi(Aı
i ) <

1

3N ≠ 2
, (7)

where N denotes the number of the components.

Corollary

Assume that X =
qN

i=1 Ri(Aı
i ) is a K th-order tensor with the size I◊ . . .◊I,

and the the reshu�ing operators Ri : Rn◊n
æ RI◊...◊I

for each component.

In addition, suppose that (a) the rank of Aı
i equals r ; (b) it is full-rank

for all matrices Rı
j (Ri(Aı

i )) , ’j ”= i ; (c) For each matrix Rı
j (Ri(Aı

i )) , ’i , j,
its non-zero singular values are equal to each other. Then (A1, . . . , AN) =

(Aı
1, . . . , Aı

N) is the unique solution of Reshu�ed-TD if n > (3N ≠ 2)
2 r .

Chao Li (RIKEN-AIP) Tensor Learning Unit February 23, 2019 15 / 30
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Reshuffled Tensor Decomposition
Application: Image steganography

cover image container reconstruction
embed

Figure Illustration of image steganography.

strength para.

containercover

secret
our method

reconstruction

Random permutation
Fig. 14 Block diagram of the system scheme used in the experiment.

System design:
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Reshuffled Tensor Decomposition
Result illustration:

original: MsLi:
1 bit /channel 2 bits /channel

LSB: Deep stego:

co
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Figure Example of the experimental results by using Reshu�ed-TD, LSB and deep

stego.

Reshuffled-TD:
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Matrix Completion under Multiple Transformation

Background:
‣ In recent computer vision tasks, the completion is usually employed on 

the variants of data, such as “non-local” or filtered, rather than their 
original forms.

 [Li et al, CVPR’19]

An example – Non-local Trick in Image Restoration

Group matching Unfolding Concatenating

A linear transformation from high-rank to low-rank structure

Summary

A significant low-rank structure appears under some transformations.

Problem

The conventional theoretical analysis for guarantee is no longer suitable.

Zhun Sun (RIKEN-AIP) CVPR2019 June 20 3 / 7
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Matrix Completion under Multiple Transformation

In the simplest case, the completion problem can be solved 
by the following optimization problem:
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We can see that (2) degenerates (1) when K = 1 and Q1

is the identical function. But the difference with NNM is
that MCMT looks for the low-rank solution under linear
transformations rather than the matrix itself. It implies that
(2) can be used to complete the matrix that has a high-rank
structure.
Comparison with matrix sensing. Matrix sensing is to re-
cover the original matrix from the Gaussian measurements.
The model is formalized as

min
X2Rm1⇥m2

kXk⇤ , s.t. kQ(X)�Q(Y)kF < �, (3)

where the entries of Q follows the i.i.d. Gaussian distribu-
tion. Compared with (2), (3) only consider the linear trans-
formation Q in the constraint term. Furthermore, matrix
sensing also exploit the low-rank structure of the original
matrix like NNM, while MCMT takes into account the ad-
ditional low-rank structures under linear transformations.

comparison with CTD. As mentioned in the related
works, CTD is to seek for the approximation of a tensor
with multi-linear low-rank structures. For a K-th order ten-
sor and its perturbed variant Y , CTD is given by [?]

minX2Rm1⇥m2

X

i2[K]

���[X ](i)

���
⇤
,

s.t. kP⌦(X )� P⌦(Y)kF < �,

(4)

where [X ](i) denotes unfolding the tensor X along i-th
order [?]. Due to the fact that the unfolding operations
are linear functions, (4) is a special case of MCMT when
Qi(·) = [ · ](i). It is worthwhile to mention that tensor
unfolding only rearrange the tensor into different shapes,
but MCMT can use more general linear functions like re-
sampling, rotation and stretching in the linear space to dig
more structures of the matrix.

2.4. Examples of Qi in MCMT

In MCMT, the linear transformations Qi, 8i can be used
to formulate specific operations in various CV applications.
Here we show some examples.

Example 1 (non-local image restoration). To exploit the
non-local similarity of the images, the methods usually split
the whole matrix into many “non-local groups”, and each
group is a concatenation of similar patches of the image.
We can see that such grouping operation is mathematically
a down-sampling (definitely linear) function from the image
to the non-local group. Therefore, each Qi(X), i 2 [K] in
(2) corresponds to K non-local groups, and solving (2) is
to find the optimal low-rank approximation for each non-
local group and then merge the approximations back to the
global image.

Example 2 (occlusion removal). In the occlusion removal
problem, the original image is generally covered by some

other objects, and the aim of this application is to recover
the hidden part of the image. To solve this problem, the pre-
vious study [?] assume that both the original image and the
covered part have the low-rank structures. By using MCMT,
we can specify K = 2, set Q1 to be the identical function
to catch the low-rank structure of the image, and set Q2 to
obtain the covered sub-image with the low-rank structures.

Besides these examples, we can also specify Qi as the
2-D wavelet filters to catch the short-term fluctuation of
the image under multiple resolutions or even random shuf-
fling [?].

3. Identifiablity

One of the advantage of LRMC is that the completion
performance is theoretically guaranteed. In this section,
we theoretically analyze the reconstruction error of MCMT,
and reveal what conditions Qi, 8i should satisfy for exact
recovery.

In the rest of this section, we first establish an upper
bound of MCMT under a single linear transformation, i.e.
K = 1. After that, we extend the results to the case of
multiple transformations.

3.1. Single linear transformation

Assume that M0 2 Rm1⇥m2 denotes the “true” ma-
trix that we want to recover, and its rank equals R. The
noised variant of M0 is generated by Y = M0 +H where
the entries of H obey the i.i.d. Gaussian distribution, i.e.
H(i, j) ⇠ N(0,�2) for all i 2 [m1], j 2 [m2]. With the
single linear transformation, we simplify (2) as

min
X2Rm1⇥m2

kQ(X)k⇤ s.t. kP⌦(X)� P⌦(Y)kF  �,

(5)

where the subscript of Q 2 Rm1⇥m2⇥n1⇥n2 is removed
for brevity. Let Q(M0) = UDV

> be the truncated
singular value decomposition (SVD), in which only the
singular vectors with respect to non-zero singular val-
ues are kept. Furthermore, we define a linear space
T =

n
UX

> +YV
>
|X 2 Rn1⇥R, Y 2 Rn2⇥R

o
, which

reflects the properties of the neighborhood around M0. Let
T? denote the orthogonal complement to T. Based on the
dual theory, we define the dual certificate for unique solu-
tion of (5) as follow:

Definition 2 (Dual certificate). A matrix ⇤ 2 Rm1⇥m2 is
defined as a dual certificate of (5), if P⌦(⇤) = ⇤ and ⇤

can be decomposed as

⇤ = Q
?
⇣
UV

> +R⇤

⌘
, (6)

where R⇤ = PT? (⇤), PT? denotes the projection to T?

and kR⇤k2  1.

3

Linear transformation 
Our work – Main Contribution

Theorem

With some assumptions on the Qi , i œ [K ], and further assume that the tuning parameter
satisfies ⁄ > ÎP� (÷) Î2/

Ô
M. Then the reconstruction error is upper-bounded by

ÎM̂ ≠ M0ÎF Æ O

3
⁄ · M0.5 ”max({Qi})

”min({Qi})
1
K 2 + MK≠0.5”max({Qi})

24
, (2)

where ”max(·) and ”min(·) denotes the maximum and the non-zero minimum singular values from
all Qi ’s, respectively.

Remark

The upper-bound of the reconstruction error is linearly controlled by the condition number of
the transformations.

Zhun Sun (RIKEN-AIP) CVPR2019 June 20 5 / 7
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Illustrative ExperimentIllustrative Experiment

Observation FBCP SPC TRALS FaLRTC MCMT NNM
MCMT 

(Sketching)
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RC

URC

Zhun Sun (RIKEN-AIP) CVPR2019 June 20 6 / 7
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Tensor Networks for Model Representation
Deep Multi-task Learning

‣ Cannot handle data from 
multiple sources/modalities

‣ Cannot consider 
heterogeneous networks for 
individual task

‣ Lack flexibility in knowledge-
sharing mechanism 

Under review as a conference paper at ICLR 2019

TN 
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TN 
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Task A Task B Task A Task B Task A Task BTask A Task B

DMTRL-Tucker DMTRL-TT TRMTLMRN

Figure 1: The overall sharing mechanisms of MRN, two variants of DMTRL (for the setting of CNN)
and our TRMTL w.r.t. two tasks. The shared portion is depicted in yellow. The circles, squares and
thin rectangles represent tensor cores, matrices and vectors, respectively. MRN: original weights are
totally shared at the lower layers and the relatedness between tasks at the top layers is modeled by
tensor normal priors. DMTRL (TT or Tucker): all layer-wise weights must be equal-sized so as to
be stacked and decomposed into factors. For each task, almost all the factors are shard at each layer
except the very last 1D vector. Such pattern of sharing is identical at all layers. TRMTL: layer-wise
weights are separately encoded into TR-formats for different tasks, and a subset of latent cores are
selected to be tied across two tasks. The portions of sharing can be different from layer to layer.

phones and wearable computers. Yang & Hospedales (2017) alleviated the issue by integrating ten-
sor factorization with deep MTL and proposed deep multi-task representation learning (DMTRL).
Specifically, they first stack up the layer-wise weights from all tasks and then decompose them into
low-rank factors, yielding a succinct deep MTL model with fewer parameters. Despite the compact-
ness of the model, DMTRL turns out to be rather restricted on sharing knowledge effectively. This
is because, as shown in Figure 1, DMTRL (TT or Tucker) shares almost all fractions of layer-wise
weights as common factors, leaving only a tiny portion of weights to encode the task-specific in-
formation. Even worse, such pattern of sharing must be identical across all hidden layers, which is
vulnerable to the negative transfer of the features. As an effect, the common factors become highly
dominant at each layer and greatly suppress model’s capability in expressing task-specific variations.

The last challenge arises from the flexibility of architecture in deep MTL. Most of deep MTL models
force tasks to have the equal-sized layer-wise weights or input dimensionality. This restriction makes
little sense for the case of loosely-related tasks, since individual tasks’ features (input data) can be
quite different and the sizes of layer-wise features (input data) may vary a lot from task to task.

In this work, we provide a generalized latent-subspace based solution to addressing aforementioned
difficulties of deep MTL, from all aspects of effectiveness, efficiency and flexibility. Regarding the
effectiveness, we propose to share different portions of weights as common knowledge at distinct
layers, so that each individual task can better convey its private knowledge. As for the efficiency,
our proposal shares knowledge in the latent subspace instead of original space by utilizing a general
tensor ring (TR) representation with a sequence of latent cores (Zhao et al., 2016; 2017). One moti-
vation of TR for MTL is it generalizes other chain structured tensor networks (Cichocki et al., 2016),
especially tensor train (TT) (Oseledets, 2011), in terms of model expressivity power, as TR can be
formulated as a sum of TT networks. On the other hand, TR is able to approximate tensors using
lower overall ranks than TT does (Zhao et al., 2016), thus yielding a more compact and sparsely-
connected model with significantly less parameters for deep MTL. Adopting TR-format with much
lower ranks could bring more benefits to deep MTL if we tensorize a layer-wise weight of each
task into a higher-order weight tensor, since the weight can be decomposed into a relatively larger
number but smaller-sized cores. This in turn facilitates the sharing of cores at a finer granularity and
further enhances the effectiveness of sharing. Additionally, Zhao et al. (2017) observed that different
cores control different levels of correlations in tensor data, e.g. for a tensorized image, each core

2

 [Long et al. NIPS 2017]
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phones and wearable computers. Yang & Hospedales (2017) alleviated the issue by integrating ten-
sor factorization with deep MTL and proposed deep multi-task representation learning (DMTRL).
Specifically, they first stack up the layer-wise weights from all tasks and then decompose them into
low-rank factors, yielding a succinct deep MTL model with fewer parameters. Despite the compact-
ness of the model, DMTRL turns out to be rather restricted on sharing knowledge effectively. This
is because, as shown in Figure 1, DMTRL (TT or Tucker) shares almost all fractions of layer-wise
weights as common factors, leaving only a tiny portion of weights to encode the task-specific in-
formation. Even worse, such pattern of sharing must be identical across all hidden layers, which is
vulnerable to the negative transfer of the features. As an effect, the common factors become highly
dominant at each layer and greatly suppress model’s capability in expressing task-specific variations.

The last challenge arises from the flexibility of architecture in deep MTL. Most of deep MTL models
force tasks to have the equal-sized layer-wise weights or input dimensionality. This restriction makes
little sense for the case of loosely-related tasks, since individual tasks’ features (input data) can be
quite different and the sizes of layer-wise features (input data) may vary a lot from task to task.

In this work, we provide a generalized latent-subspace based solution to addressing aforementioned
difficulties of deep MTL, from all aspects of effectiveness, efficiency and flexibility. Regarding the
effectiveness, we propose to share different portions of weights as common knowledge at distinct
layers, so that each individual task can better convey its private knowledge. As for the efficiency,
our proposal shares knowledge in the latent subspace instead of original space by utilizing a general
tensor ring (TR) representation with a sequence of latent cores (Zhao et al., 2016; 2017). One moti-
vation of TR for MTL is it generalizes other chain structured tensor networks (Cichocki et al., 2016),
especially tensor train (TT) (Oseledets, 2011), in terms of model expressivity power, as TR can be
formulated as a sum of TT networks. On the other hand, TR is able to approximate tensors using
lower overall ranks than TT does (Zhao et al., 2016), thus yielding a more compact and sparsely-
connected model with significantly less parameters for deep MTL. Adopting TR-format with much
lower ranks could bring more benefits to deep MTL if we tensorize a layer-wise weight of each
task into a higher-order weight tensor, since the weight can be decomposed into a relatively larger
number but smaller-sized cores. This in turn facilitates the sharing of cores at a finer granularity and
further enhances the effectiveness of sharing. Additionally, Zhao et al. (2017) observed that different
cores control different levels of correlations in tensor data, e.g. for a tensorized image, each core
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[Yang et al, ICLR 2017]  



 27

Tensor Ring Multi-task Learning
‣ Heterogeneous DNN for each task

‣ Flexibility in knowledge-sharing pattern 

‣ High efficiency by sharing information in 
latent space

‣ Disadvantages: choosing the number and 
location of cores for sharing is difficult. 

Under review as a conference paper at ICLR 2019

TN 
Prior

TN 
Prior

Task A Task B Task A Task B Task A Task BTask A Task B

DMTRL-Tucker DMTRL-TT TRMTLMRN

Figure 1: The overall sharing mechanisms of MRN, two variants of DMTRL (for the setting of CNN)
and our TRMTL w.r.t. two tasks. The shared portion is depicted in yellow. The circles, squares and
thin rectangles represent tensor cores, matrices and vectors, respectively. MRN: original weights are
totally shared at the lower layers and the relatedness between tasks at the top layers is modeled by
tensor normal priors. DMTRL (TT or Tucker): all layer-wise weights must be equal-sized so as to
be stacked and decomposed into factors. For each task, almost all the factors are shard at each layer
except the very last 1D vector. Such pattern of sharing is identical at all layers. TRMTL: layer-wise
weights are separately encoded into TR-formats for different tasks, and a subset of latent cores are
selected to be tied across two tasks. The portions of sharing can be different from layer to layer.

phones and wearable computers. Yang & Hospedales (2017) alleviated the issue by integrating ten-
sor factorization with deep MTL and proposed deep multi-task representation learning (DMTRL).
Specifically, they first stack up the layer-wise weights from all tasks and then decompose them into
low-rank factors, yielding a succinct deep MTL model with fewer parameters. Despite the compact-
ness of the model, DMTRL turns out to be rather restricted on sharing knowledge effectively. This
is because, as shown in Figure 1, DMTRL (TT or Tucker) shares almost all fractions of layer-wise
weights as common factors, leaving only a tiny portion of weights to encode the task-specific in-
formation. Even worse, such pattern of sharing must be identical across all hidden layers, which is
vulnerable to the negative transfer of the features. As an effect, the common factors become highly
dominant at each layer and greatly suppress model’s capability in expressing task-specific variations.

The last challenge arises from the flexibility of architecture in deep MTL. Most of deep MTL models
force tasks to have the equal-sized layer-wise weights or input dimensionality. This restriction makes
little sense for the case of loosely-related tasks, since individual tasks’ features (input data) can be
quite different and the sizes of layer-wise features (input data) may vary a lot from task to task.

In this work, we provide a generalized latent-subspace based solution to addressing aforementioned
difficulties of deep MTL, from all aspects of effectiveness, efficiency and flexibility. Regarding the
effectiveness, we propose to share different portions of weights as common knowledge at distinct
layers, so that each individual task can better convey its private knowledge. As for the efficiency,
our proposal shares knowledge in the latent subspace instead of original space by utilizing a general
tensor ring (TR) representation with a sequence of latent cores (Zhao et al., 2016; 2017). One moti-
vation of TR for MTL is it generalizes other chain structured tensor networks (Cichocki et al., 2016),
especially tensor train (TT) (Oseledets, 2011), in terms of model expressivity power, as TR can be
formulated as a sum of TT networks. On the other hand, TR is able to approximate tensors using
lower overall ranks than TT does (Zhao et al., 2016), thus yielding a more compact and sparsely-
connected model with significantly less parameters for deep MTL. Adopting TR-format with much
lower ranks could bring more benefits to deep MTL if we tensorize a layer-wise weight of each
task into a higher-order weight tensor, since the weight can be decomposed into a relatively larger
number but smaller-sized cores. This in turn facilitates the sharing of cores at a finer granularity and
further enhances the effectiveness of sharing. Additionally, Zhao et al. (2017) observed that different
cores control different levels of correlations in tensor data, e.g. for a tensorized image, each core

2
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Multimodal Learning



 29

Multimodal Tensor Fusion Network

[Liu et al, ACL 2018]
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Low-rank Tensor Fusion
[Liu et al, ACL 2018]
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Low-rank Tensor Fusion
[Liu et al, ACL 2018]
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Figure 2: The Temporal Tensor Fusion Network
(T2FN) creates a tensor M from temporal data. The
rank of M increases with imperfection in data so we
regularize our model by minimizing an upper bound on
the rank ofM.

vectors have lower rank, while complex tensors
have higher rank. To be more precise, we de-
fine the rank of a tensor using Canonical Polyadic
(CP)-decomposition (Carroll and Chang, 1970).
For an order-M tensorX ∈ Rd1×...×dM , there exists
an exact decomposition into vectors w:

X = r�
i=1

M�
m=1w

i
m. (1)

The minimal r for exact decomposition is called
the rank of the tensor. The vectors {{wi

m}Mm=1}ri=1
are called the rank r decomposition factors of X .

3.2 Multimodal Tensor Representations

Our model for creating tensor representations
is called the Temporal Tensor Fusion Network
(T2FN), which extends the model in Zadeh et al.
(2017) to include a temporal component. We
show that T2FN increases the capacity of TFN
to capture high-rank tensor representations, which
itself leads to improved prediction performance.
More importantly, our knowledge about tensor
rank properties allows us to regularize our model
effectively for imperfect data.

We begin with time series data from the lan-
guage, visual and acoustic modalities, denoted
as [x1

` , ...,x
T
` ], [x1

v, ...,x
T
v ], and [x1

a, ...,x
T
a ] re-

spectively. We first use Long Short-term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) to encode the temporal information

from each modality, resulting in a sequence of hid-
den representations [h1

` , ...,h
T
` ], [h1

v, ...,h
T
v ], and[h1

a, ...,h
T
a ]. Similar to prior work which found

tensor representations to capture higher-order in-
teractions from multimodal data (Liu et al., 2018;
Zadeh et al., 2017; Fukui et al., 2016), we form
tensors via outer products of the individual repre-
sentations through time (as shown in Figure 2):

M = T�
t=1 �

ht
`

1
�⊗ �ht

v

1
�⊗ �ht

a

1
� (2)

where we append a 1 so that unimodal, bimodal,
and trimodal interactions are all captured as de-
scribed in Zadeh et al. (2017). M is our multi-
modal representation which can then be used to
predict the label y using a fully connected layer.
Observe how the construction of M closely re-
sembles equation (1) as the sum of vector outer
products. As compared to TFN which uses a sin-
gle outer product to obtain a multimodal tensor of
rank one, T2FN creates a tensor of high rank (up-
per bounded by T ). As a result, the notion of rank

naturally emerges when we reason about the prop-
erties ofM.

3.3 How Does Imperfection Affect Rank?

We first state several observations about the rank
of multimodal representationM:
1) rnoisy: The rank ofM is maximized when data
entries are sampled from i.i.d. noise (e.g. Gaus-
sian distributions). This is because this setting
leads to no redundancy at all between the feature
dimensions across time steps.
2) rclean < rnoisy: Clean real-world data is of-
ten generated from lower dimensional latent struc-
tures (Lakshmanan et al., 2015). Furthermore,
multimodal time series data exhibits correlations
across time and across modalities (Yang et al.,
2017; Hidaka and Yu, 2010). This redundancy
leads to low-rank tensor representations.
3) rclean < rimperfect < rnoisy: If the data is im-
perfect, the presence of noise or incomplete val-
ues breaks these natural correlations and leads to
higher rank tensor representations.

These intuitions are also backed up by several
experimental results which are presented in §4.2.

3.4 Tensor Rank Regularization

Given our intuitions above, it would then seem
natural to augment the discriminative objective
function with a term to minimize the rank ofM.
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Imperfect Time Series Data [Liang, ACL 2019]
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Figure 2: The Temporal Tensor Fusion Network
(T2FN) creates a tensor M from temporal data. The
rank of M increases with imperfection in data so we
regularize our model by minimizing an upper bound on
the rank ofM.

vectors have lower rank, while complex tensors
have higher rank. To be more precise, we de-
fine the rank of a tensor using Canonical Polyadic
(CP)-decomposition (Carroll and Chang, 1970).
For an order-M tensorX ∈ Rd1×...×dM , there exists
an exact decomposition into vectors w:

X = r�
i=1

M�
m=1w

i
m. (1)

The minimal r for exact decomposition is called
the rank of the tensor. The vectors {{wi

m}Mm=1}ri=1
are called the rank r decomposition factors of X .

3.2 Multimodal Tensor Representations

Our model for creating tensor representations
is called the Temporal Tensor Fusion Network
(T2FN), which extends the model in Zadeh et al.
(2017) to include a temporal component. We
show that T2FN increases the capacity of TFN
to capture high-rank tensor representations, which
itself leads to improved prediction performance.
More importantly, our knowledge about tensor
rank properties allows us to regularize our model
effectively for imperfect data.

We begin with time series data from the lan-
guage, visual and acoustic modalities, denoted
as [x1

` , ...,x
T
` ], [x1

v, ...,x
T
v ], and [x1

a, ...,x
T
a ] re-

spectively. We first use Long Short-term Mem-
ory (LSTM) networks (Hochreiter and Schmid-
huber, 1997) to encode the temporal information

from each modality, resulting in a sequence of hid-
den representations [h1

` , ...,h
T
` ], [h1

v, ...,h
T
v ], and[h1

a, ...,h
T
a ]. Similar to prior work which found

tensor representations to capture higher-order in-
teractions from multimodal data (Liu et al., 2018;
Zadeh et al., 2017; Fukui et al., 2016), we form
tensors via outer products of the individual repre-
sentations through time (as shown in Figure 2):

M = T�
t=1 �

ht
`

1
�⊗ �ht

v

1
�⊗ �ht

a

1
� (2)

where we append a 1 so that unimodal, bimodal,
and trimodal interactions are all captured as de-
scribed in Zadeh et al. (2017). M is our multi-
modal representation which can then be used to
predict the label y using a fully connected layer.
Observe how the construction of M closely re-
sembles equation (1) as the sum of vector outer
products. As compared to TFN which uses a sin-
gle outer product to obtain a multimodal tensor of
rank one, T2FN creates a tensor of high rank (up-
per bounded by T ). As a result, the notion of rank

naturally emerges when we reason about the prop-
erties ofM.

3.3 How Does Imperfection Affect Rank?

We first state several observations about the rank
of multimodal representationM:
1) rnoisy: The rank ofM is maximized when data
entries are sampled from i.i.d. noise (e.g. Gaus-
sian distributions). This is because this setting
leads to no redundancy at all between the feature
dimensions across time steps.
2) rclean < rnoisy: Clean real-world data is of-
ten generated from lower dimensional latent struc-
tures (Lakshmanan et al., 2015). Furthermore,
multimodal time series data exhibits correlations
across time and across modalities (Yang et al.,
2017; Hidaka and Yu, 2010). This redundancy
leads to low-rank tensor representations.
3) rclean < rimperfect < rnoisy: If the data is im-
perfect, the presence of noise or incomplete val-
ues breaks these natural correlations and leads to
higher rank tensor representations.

These intuitions are also backed up by several
experimental results which are presented in §4.2.

3.4 Tensor Rank Regularization

Given our intuitions above, it would then seem
natural to augment the discriminative objective
function with a term to minimize the rank ofM.

In practice, the rank of an order-M tensor is com-
puted using the nuclear norm �X �∗ which is de-
fined as (Friedland and Lim, 2014),

�X �∗ = inf � r�
i=1
��i� ∶ X = r�

i=1
�i � M�

m=1
wi

m� , �wi
m� = 1, r ∈ N� .

(3)
When M = 2, this reduces to the matrix nuclear
norm (sum of singular values). However, com-
puting the rank of a tensor or its nuclear norm is
NP-hard for tensors of order ≥ 3 (Friedland and
Lim, 2014). Fortunately, there exist efficiently
computable upper bounds on the nuclear norm and
minimizing these upper bounds would also mini-
mize the nuclear norm �M�∗. We choose the up-
per bound as presented in Hu (2014), which upper
bounds the nuclear norm with the tensor Frobenius
norm scaled by the tensor dimensions:

�M�∗ ≤
���� ∏M

i=1 di
max{d1, ..., dM}�M�F , (4)

where the Frobenius norm �M�F is defined as the
sum of squared entries inM which is easily com-
putable and convex. Since �M�F is easily com-
putable and convex, including this term adds neg-
ligible computational cost to the model. We will
use this upper bound as a surrogate for the nu-
clear norm in our objective function. Our objec-
tive function is therefore a weighted combination
of the prediction loss and the tensor rank regular-
izer in equation (4).

4 Experiments

Our experiments are designed with two research
questions in mind: 1) What is the effect of various
levels of imperfect data on tensor rank in T2FN?
2) Does T2FN with rank regularization perform
well on prediction with imperfect data? We an-
swer these questions in §4.2 and §4.3 respectively.

4.1 Datasets

We experiment with real video data consisting of
humans expressing their opinions using a com-
bination of language and nonverbal behaviors.
We use the CMU-MOSI dataset which contains
2199 videos annotated for sentiment in the range[−3,+3] (Zadeh et al., 2016). CMU-MOSI and
related multimodal language datasets have been
studied in the NLP community (Gu et al., 2018;
Liu et al., 2018; Liang et al., 2018) from fully
supervised settings but not from the perspective
of supervised learning with imperfect data. We

use 52 segments for training, 10 for validation
and 31 for testing. GloVe word embeddings (Pen-
nington et al., 2014), Facet (iMotions, 2017), and
COVAREP (Degottex et al., 2014) features are
extracted for the language, visual and acoustic
modalities respectively. Forced alignment is per-
formed using P2FA (Yuan and Liberman, 2008) to
align visual and acoustic features to each word, re-
sulting in a multimodal sequence. Our data splits,
features, alignment, and preprocessing steps are
consistent with prior work on the CMU-MOSI
dataset (Liu et al., 2018).

4.2 Rank Analysis

We first study the effect of imperfect data on the
rank of tensor M. We introduce the following
types of noises parametrized by noise level =[0.0,0.1, ...,1.0]. Higher noise levels implies
more imperfection: 1) clean: no imperfection,
2) random drop: each entry is dropped inde-
pendently with probability p ∈ noise level,
and 3) structured drop: independently for each
modality, each time step is chosen with probabil-
ity p ∈ noise level. If a time step is cho-
sen, all feature dimensions at that time step are
dropped. For all imperfect settings, features are
dropped during both training and testing.

We would like to show how the tensor ranks
vary under different imperfection settings. How-
ever, as is mentioned above, determining the exact
rank of a tensor is an NP-hard problem (Friedland
and Lim, 2014). In order to analyze the effect of
imperfections on tensor rank, we perform CP de-
composition (equation (5)) on the tensor represen-
tations under different rank settings r and measure
the reconstruction error ✏,

✏ =min
wi

m

�� r�
i=1

M�
m=1w

i
m� −X�

F

. (5)

Given the true rank r∗, ✏ will be high at ranks
r < r∗, while ✏ will be approximately zero at ranks
r ≥ r∗ (for example, a rank 3 tensor would display
a large reconstruction error with CP decomposi-
tion at rank 1, but would show almost zero error
with CP decomposition at rank 3). By analyzing
the effect of r on ✏, we are then able to derive a
surrogate r̃ to the true rank r∗.

Using this approach, we experimented on
CMU-MOSI and the results are shown in Fig-
ure 3(a). We observe that imperfection leads to an
increase in (approximate) tensor rank as measured

Tensor Rank 
Regularization
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Open problems

‣ Tensor network expressive power analysis

‣ Learning of tensor network structure

‣ Fast algorithms for tensor network representation

‣What challenging problems in machine learning can 
be solved by tensor network? 


