For each orbit of faces of codimension k we give a canonical representative face f_i.
The face fk_i is defined by a set of k inequalities of rank k satisfied with equality.

A triangular inequality Tr of met_n is represented by a {-1,0,1}-valued vector V of
length n with 3 nonzero entries with: Tr_ij = V_i x V_j. The left hand side of Tr 
is 2 if V is a {0,1}-valued vector and 0 otherwise.

+++++ remark ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
the set of all inequalities satisfied with equality by f_i might be larger than k
but we show only k facets. This way the codimension is directly readable and the
presentation is homogeneous)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


-------------- canonical representatives --------------------------
f4_1

  1  1  1  0
  1  1  0  1
  1  0  1  1
  0  1  1  1

f4_2

  1  1  1  0  0
  1  1  0  1  0
  1  0  1  1  0
  1  1  0  0  1

f4_3

  1  1  1  0  0
  1  1  0  1  0
  1  0  1  1  0
  0  1  1  0  1
 
f4_4

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  1  0  0
  1  0  0  0  1  1

f4_5

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  1  0  0
  0  1  0  0  1  1

f4_6

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  1  1  0  0  0
  0  0  0  0  1  1  1

f4_7

  1  1  1  0  0
  1  1  0  1  0
  1  0 -1  1  0
  1  1  0  0  1

f4_8

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0 -1  1  0  0
  1  0  0  0  1  1

f4_9

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0 -1  1  0  0  0
  0  0  0  0  1  1  1

f4_10

  1  1  1  0  0
  1  1  0  1  0
  1  1  0  0  1
  0  0  1  1  1

f4_11

  1  1  1  0  0
  1  1  0  1  0
  1  1  0  0  1
  0  0 -1  1  1

f4_12

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  1  0  0  1  0
  1  1  0  0  0  1

f4_13

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  1  0  0  1  0
  1  0  1  0  0  1

f4_14

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  1  0  0  1  0
  0  0  1  1  0  1

f4_15

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  1  0  0  1  0
  0  0 -1  1  0  1

f4_16

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  1  0  0  1  0  0
  1  0  0  0  0  1  1

f4_17

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  1  0  0  1  0  0
  0  0  1  0  0  1  1

f4_18

  1  1  1  0  0
  1  1  0  1  0
  1  0  1  0  1
  1  0  0  1  1

f4_19

  1  1  1  0  0
  1  1  0  1  0
  1  0  1  0  1
  0  1  0  1  1

f4_20

  1  1  1  0  0
  1  1  0  1  0
  1  0  1  0  1
  0  1  0  1 -1

f4_21

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  1  0  0  1  0  1

f4_22

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0  1  1  0  0  1

f4_23

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0  1  0  1  0  1

f4_24

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0  1  0  0  1  1

f4_25

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0 -1  0  0  1  1

f4_26

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0  0  0  1  1  1

f4_27

  1  1  1  0  0  0
  1  1  0  1  0  0
  1  0  1  0  1  0
  0  0  0 -1  1  1

f4_28

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  1  0  1  0  0
  1  0  0  0  0  1  1

f4_29

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  1  0  1  0  0
  0  1  0  0  0  1  1

f4_30

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  1  0  1  0  0
  0  0  0  1  0  1  1

f4_31

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  1  1  0
  1  0  0  0  1  1

f4_32

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  1  1  0
 -1  0  0  0  1  1

f4_33

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  1  1  0
  0  0  1  1  0  1

f4_34

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  1  1  0
  0  0  1  0  1  1

f4_35

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  1  1  0  0
  1  0  0  0  0  1  1

f4_36

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  1  1  0  0
  0  0  1  0  0  1  1

f4_37

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  1  1  0  0
  0  0  0  0  1  1  1

f4_38

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0 -1  1  1  0
  1  0  0  0  1  1

f4_39

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0 -1  1  1  0
  0  0 -1  1  0  1

f4_40

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0 -1  1  1  0
  0  0 -1  0  1  1

f4_41

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0 -1  1  1  0  0
  1  0  0  0  0  1  1

f4_42

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0 -1  1  1  0  0
  0  0  1  0  0  1  1

f4_43

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0 -1  1  1  0  0
  0  0  0  0  1  1  1

f4_44

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  1  0  0  0  1  0  1

f4_45

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  0  1  0  0  1  0  1

f4_46

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  0 -1  0  0  1  0  1

f4_47

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  0  0  1  0  1  0  1

f4_48

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  0  0 -1  0  1  0  1

f4_49

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  1  0  0  0  1  1  0
  0  0  0  0  1  1  1

f4_50

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  0  1  1
  0  0  0  1  1  1

f4_51

  1  1  1  0  0  0
  1  1  0  1  0  0
  0  0  1  0  1  1
  0  0  0 -1  1  1

f4_52

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  0  1  1  0
  0  0  0  1  1  0  1

f4_53

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  0  1  1  0
  0  0  0 -1  1  0  1

f4_54

  1  1  1  0  0  0  0
  1  1  0  1  0  0  0
  0  0  1  0  1  1  0
  0  0  0  0  1  1  1

f4_55

  1  1  1  0  0  0
  1  0  0  1  1  0
  0  1  0  1  0  1
  0  0 -1  0  1  1

f4_56

  1  1  1  0  0  0  0
  1  0  0  1  1  0  0
  0  1  0  1  0  1  0
  1  0  0  0  0  1  1

f4_57

  1  1  1  0  0  0  0
  1  0  0  1  1  0  0
  0  1  0  1  0  1  0
 -1  0  0  0  0  1  1

f4_58

  1  1  1  0  0  0  0
  1  0  0  1  1  0  0
  0  1  0  1  0  1  0
  0  0  1  0  1  0  1

f4_59

  1  1  1  0  0  0  0
  1  0  0  1  1  0  0
  0  1  0  1  0  1  0
  0  0 -1  0  1  0  1

f4_60

  1  1  1  0  0  0
  1  0  0  1  1  0
  0 -1  0  1  0  1
  0  0  1  0 -1  1

f4_61

  1  1  1  0  0  0  0
  1  0  0  1  1  0  0
  0 -1  0  1  0  1  0
  0  0 -1  0  1  0  1