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Abstract

A lattice (d, k)-polytope is the convex hull of a set of points in RY whose coordinates are
integers ranging between 0 and k. We consider the smallest possible distance ¢(d, k) between
two disjoint lattice (d, k)-polytopes. We propose an algebraic model for this distance and
derive from it an explicit formula for £(2, k). Our model also allows for the computation of
previously intractable values of (d, k). In particular, we compute £(3, k) when 4 < k < 8§,
g4, k)ywhen2 <k <3,and (6, 1).
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1 Introduction

The smallest possible distance between two disjoint lattice (d, k)-polytopes—convex hulls of
sets of points with integer coordinates in [0, k]*—is a natural quantity in discrete geometry.
This quantity, which we refer to as e(d, k) in the sequel, is connected to the complexity of
algorithms such as the linear minimization formulation by Gdbor Braun, Sebastian Pokutta,
and Robert Weismantel [3] of the von Neumann alternating projections algorithm [8]. It is
also related to several notions that appear in optimization. For instance, the facial distance
of a polytope P, studied by Javier Pefia and Daniel Rodriguez [9] and by David Gutman and
Javier Pefia [6, 10], is the smallest possible distance between a face F of P and the convex
hull of the vertices of P that are not contained in F'. The vertex-facet distance of a polytope P,
considered by Amir Beck and Shimrit Shtern [2], is the smallest possible distance between the
affine hull of a facet F of P and a vertex of P that does not belong to F'. The smallest possible
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vertex-facet distance of a lattice (d, 1)-simplex has been estimated by Noga Alon and Vin
Vii [1]. Another such notion is the pyramidal width of a finite set of points, investigated by
Simon Lacoste-Julien and Martin Jaggi [7] and by Luis Rademacher and Chang Shu [11],
which coincides with the facial distance of the convex hull of these points [9]. Gdbor Braun,
Alejandro Carderera, Cyrille Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari,
and Sebastian Pokutta provide a comprehensive overview of these notions in [4]. Lower and
upper bounds on €(d, k) that are almost matching as d goes to infinity and a number of
properties of this quantity as a function of d and k have been established by Shmuel Onn,
Sebastian Pokutta, and two of the authors in [5]. The values of (2, k) when 1 < k < 6, of
e(3,k) when 1 < k < 3, of €(4, 1), and of (5, 1) have been computed as a consequence
of these properties and reported in [5]. These values are the non-bolded entries shown in
Table 1. Building on the results of [5], we develop an algebraic model that allows for the
computation of previously intractable values of £(d, k) in Section 2. More precisely, £(d, k)
is bounded by the smallest non-zero value of a certain algebraic fraction over a subset of
the lattice points contained in the hypercube [—k, k]dz. Using this model, we provide the
following formula for (2, k) in Section 3.

Theorem 1 Ifk is greater than 1, then
1

Vk=DZ+k2

We further show in Section 4 how the subset of the lattice points in the hypercube [k, k
over which the minimization is performed can be reduced, and discuss the computational
efficiency of the resulting strategy. This makes it possible to determine values of e(d, k)
whose computation was previously intractable. Using this strategy, we compute & (3, k) when
4 <k <8,e(4,k)when2 < k < 3, and (6, 1). These values of ¢(d, k) are the inverse of
the numbers shown in bold in Table 1. For each of the obtained values of (d, k), we provide
an explicit pair of lattice (d, k)-polytopes whose distance is precisely €(d, k). We shall refer
to such a pair of polytopes as kissing polytopes.

e(2,k) =

1

2 A Least Squares Model for Polytope Distance
Let us consider two disjoint lattice (d, k)-simplices P and Q whose affine hulls are disjoint.

Denote by p to p" the vertices of P and by q° to g™ the vertices of Q, where n and m
denote the dimension of P and Q, respectively.

Table 1 The known values of 1/&(d, k)

d k
I 2 3 7 5 6 7 3

2 V2 NG V13 5 NZSY NG V85 V113

3 NG 52 V299 5/42 V2870 /6466 5./510 /22826

4 32 2/113 1171

5 V58

6 V202
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Small Kissing Polytopes 903

The distance of P and Q is the smallest possible value of

n ) m ) 2
Y oipt =) wid'
i=0 i=0

, (1
where Ag to A, and po to w,, are two sets of non-negative numbers that each sum to 1. The
constraint that each of these sets of numbers sum to 1 can be avoided by first expressing 1g
and po as a function of the other numbers as

M=1 —iki
i=1

m ()
mo=1- Z Wi
i=1
and replacing them in (1) by these expressions. As a consequence,
d(P,0)* = min fpo(h, ),
LEA,
HEAM
where
n m 2
frotm =" ="+ >4 (0 = p°) = Y ni (4" = ") 3)
i=1 i=1

and A denotes the j-dimensional simplex
o
Aj={xel0,4ool/: Y xi <1

i=1

We will consider fp o as a function from R” x R” to [0, +-00[. Note that this function
depends on the ordering of the vertices of P and Q but this ordering will not play a role in
the sequel, and we assume that a prescribed ordering has been fixed for the vertices of each
pair of polytopes P and Q. Relaxing the constraint that A and y should be contained in A,
and A,, provides a lower bound on d (P, Q) of the form

d(P, Q)" = min fp o(h, ). “)
AER”
}LERM
Note that the right-hand side of (4) is the distance between the affine hull of P and the
affine hull of Q. In particular, the accuracy of this bound is related to how close the distance
of P and Q is to the distance of their affine hulls.
Now consider the d x (d — 1) matrix

pr=pl e pi=plai—a) o al =
A= : : : : ®)
pi=0% i —=pYal—aq% - at —q)
and the vector
b=q"—p°. (6)

It will be important to keep in mind that A and b depend on P and Q. Observe that, with
these notations, (3) can be rewritten into

fr.o, 1) = [lAx — b|%, (7
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where x is the vector such that
Xt=[Alv---»)\na_ﬂlv---»_l/vm]- (®)

Remark 1 According to (7), fp o (A, u) is the sum of the squares of the coordinates of the
vector Ay — b. In particular, negating both a row of A and the corresponding coefficient
of b will not change the value of that function. Likewise, negating a column of A and the
corresponding row of x will not change the value of fp o(A, u). As a consequence, if
one computes fp o(A, ) via (7), then the right-hand side of (4) does not change when a
subset of the columns of A are negated or a subset of its rows are negated together with the
corresponding coefficients of b.

Let us now give an expression for the right-hand side of (4).

Lemma 2 The function fp o admits a unique minimum over R" x R™ if and only if A’ A is
non-singular. Moreover, in that case,

min fp,o(h p) = [AA’A)"'A'b — b ©9)
ek

Proof The minimum of fp o is reached at a pair (A, u) from R” x R” such that all the
partial derivatives of fp o simultaneously vanish, that is when

dfp.0
=, n)=0
o ()
for all i satisfying 1 <i <n and
. fp,
G0 ) =0
Wi

for all i satisfying 1 < i < m. Since fp ¢ is a quadratic function of A and p, its partial
derivatives are linear. In other words, finding the minimum of fp o over R" x R™ amounts
to solve a least squares problem. In particular setting to O all of these partial derivatives results
in the system of linear equalities

A'Ay = A'b. (10)

Since fp, g is a convex quadratic function, the solutions of (10) correspond bijectively via
(8) with the pairs (A, 1) such that fp ¢ is minimal. It immediately follows that fp ¢ admits
a unique minimum over R” x R™ if and only if A’ A is non-singular. Moreover, in that case,
the unique solution of (10) is

x = (A"A) 1A

and substituting this expression of x in (7) completes the proof. o

According to (4), Lemma 2 provides a lower bound on the distance between P and Q in
the case when A’ A is non-singular. The following remark provides a necessary and sufficient
condition on (A’ A)~! A’ for this bound to be sharp.

Remark 2 Recall that the minimum of fp g over R” x R™ is the distance between the affine
hulls of P and Q. Therefore, if A’ A is non-singular, then according to (7), (8), and Lemma 2,
the first n coordinates of the vector

x = (A"A) 1A
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Small Kissing Polytopes 905

provide an affine combination p* of the vertices of P and its last m coordinates an affine
combination ¢* of the vertices of Q such that

d(p*.q") = d (aff (P), aff (Q)) .

In particular, if the first n coefficients of the vector x are all non-negative and sum to at
most 1 while its last m coefficients are all non-positive and sum to at least —1, then according
to (2), p* is contained in P and ¢* in Q. In that case, the distance of P and Q coincides with
the distance of their affine hulls. Otherwise the distance of P and Q is strictly greater than
the distance of their affine hulls.

We shall now focus on certain pairs of simplices whose distance is precisely e(d, k). The
following is proven in [5] (see Theorem 5.2 therein).

Theorem 3 There exist two lattice (d, k)-polytopes P and Q such that
(i) d(P, Q) isequaltoe(d,k),

(ii) both P and Q are simplices,

(iii) dim(P) + dim(Q) is equal to d — 1, and

(iv) the affine hulls of P and Q are disjoint.

We shall prove that when P and Q satisfy the assertions (i) to (iv) in the statement of
Theorem 3, fp o admits a unique minimum over R” x R™ as a consequence of two results
from [5]. The first of these results states that

d(P, Q) > e(dim(P U Q), k) (11)

(see Lemma 4.3 in [5]) and the second that, when & is fixed, £(d, k) is a strictly decreasing
function of d (see Theorem 5.1 in [5]).

Proposition 4 If P and Q satisfy the assertions (i) to (iv) in the statement of Theorem 3, then
fp,o has a uniqgue minimum over R"xR™.

Proof Denote by aff (P) and aff(Q) the affine hulls of P and Q, respectively. Consider a
point p* in aff (P) and a point ¢g* in aff(Q) such that

lg* = p*| = d(aff(P), aff (Q)). (12)

According to the above discussion, the pair (p*, ¢g*) corresponds to a point (A*, u*) in
R xR"™ at which the function fp ¢ reaches its minimum. Assume that the function fp_ ¢ also
reaches its minimum at a point (? w*) in R" x R™ different from (1*, *) By construction,
", w*) then prov1des the coefﬁ01ents of an affine combination p* of p° to p” and of an
affine combination g* of ¢° to ¢ such that

|g* —P*| = d(aft(P), aff (Q)). (13)

Since p* and p* are both contained in aff (P), so is their midpoint. Likewise, the midpoint
of ¢* and g™ is contained in aff (Q). Hence,

d(aff(P), aff(Q)) <

‘q*+? p*+F*H
> :

However, by the triangle inequality,

Hq -p ||+ la* =7

¢ +q p +p
2
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906 A.Deza et al.

with equality if and only if g* — p* is a multiple of g* — p* by a positive coefficient or one
of these vectors is equal to 0. Under the assumption that assertion (iv) from the statement of
Theorem 3 holds, these vectors are both non-zero. Hence, ¢* — p* is a multiple of g* — p* by
a positive coefficient and according to (12) and (13), these vectors must therefore be equal.
It immediately follows that the vectors p* — p* and ¢* — ¢* also coincide.

Now recall that (A*, u*) and (T, w*) are different points. As a consequence, so are the
pairs (p*, ¢*) and (p*, ¢*). Since the vectors p* — p* and ¢* —g* coincide they must therefore
be non-zero. Hence, the translates of aff (P) and of aff (Q) through the origin of R intersect
in a non-zero vector. Therefore,

dim(P U Q) < dim(P) + dim(Q).

Under the assumption that P and Q satisfy the assertion (iii) in the statement of Theorem 3,
it follows that P U Q has dimension at most d — 1. By (11), this implies that the distance
between P and Q is at least e(d — 1, k). Hence, if the assertion (i) in the statement of
Theorem 3 holds for P and Q, then one obtains that

e(d, k) > ed—1,k).

However, Theorem 5.1 in [5] states that e(d, k) is less than e(d — 1, k). By this contra-
diction, fp o has a unique minimum over R" x R"™. O

Combining Proposition 4, Lemma 2, and Theorem 3, one obtains a lower bound on ¢(d, k)
from (4) of the form
e(d, k) zr;1ig{||A(A’A)_lA’b—bH}, (14)

where the minimum ranges over the pairs of lattice (d, k)-simplices P and Q whose dimen-
sions sum to d — 1, for which the matrix A obtained from (5) is such that A’ A is non-singular
and the vector b obtained from (6) satisfies

A(ATA) T AT #£ b.

3 The 2-dimensional Case

In this section, we give a formula for £(2, k) using the model described in Section 1. Consider
two disjoint lattice (2, k)-polytopes P and Q that satisfy assertions (i) to (iv) from the
statement of Theorem 3. Since the dimensions of P and Q sum to 1, one of these polytopes
has dimension 0 and the other has dimension 1. We assume that P is a line segment and that
Q is made of a single point by exchanging these two polytopes if needed.

Let us first observe that according to (5) and (6),

{A — pl _ pO’
b=q"—p°.

As a consequence, (14) simplifies into

(3 = PD@} = D) = (pf = P43 = PI)I

e(2,k) >
Joh = o2+ (o) - P
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It follows that €(2, k) is at least the smallest possible value of

[x2x3 — x1X4]

2 2
1/““1 + x5

over all the lattice points x contained in the hypercube [—k, k]* such that neither x12 + x% nor
X2Xx3 — Xx1x4 is equal to 0. We bound (15) as follows.

(15)

Lemma5 Ifk is greater than 1 then, for every lattice point x in the hypercube [—k, k]* such
that x12 + x% and xpx3 — x1x4 are both non-zero,

|x2x3 — x1x4] - 1
S+ VE-D R

(16)

Proof Consider a lattice point x in [—k, k]* such that neither x]2 + x% Nnor xpx3 — X|X4 18
equal to 0. We assume without loss of generality that x| and x; are non-negative thanks to
the symmetries of [k, k]*. We review two cases.

First assume that x; and x; coincide. In that case,

|x2x3 — x1xa]  |x3 — x4

v/ xlz + x22 \/E
Since xpx3 — x1x4 is not equal to 0, x3 and x4 cannot coincide and the right-hand side of
(17) is at least 1/+/2. As k is greater than 1,
1 1
e — 5 —_
Vk=12+k2 7 V2

and the lemma follows in this case.
Now assume that x| and x, are different. Since |xpx3 — x1x4| is at least 1,

amn

|x2x3 — x1x4]

1
> .
1/x12+x22 ,/xlz—l—x%

Recall that x; and x; are integers contained in [0, k]. Since they are different, one of them
is at most k — 1. As a consequence,

L 1
\/Xf a2 VE=1D2+E

and combining this with (18) completes the proof. O

(18)

By Lemma 5, and the preceding discussion, £(2, k) is at least the right-hand side of (16)
when k is at least 2. Theorem 1 states that this is sharp.

Proof of Theorem 1 1Tt suffices to exhibit a lattice point P and a lattice segment Q, both
contained in the square [0, k]? satisfying

1

N R

Such an example is obtained by taking for P the lattice point whose two coordinates are
equal to 1 and for Q any of the two line segments that are incident to the origin and whose
other vertex has coordinates k and k — 1. This point and one of these line segments are
represented in Fig. 1 when k is equal to 4. O

d(P, Q)=

@ Springer



908 A.Deza et al.

Fig.1 A pair of kissing lattice
(2, 4)-polytopes

/
0

pl

Remark 3 The strategy exposed in this section in the 2-dimensional case can be generalized to
any higher dimension. In particular, a quotient similar to (15) can be explicitly computed for
any fixed dimension d that depends on a lattice point x contained in the hypercube [k, k]dz.
The first d(d — 1) coordinates of the point x are the entries of A and its last d coordinates are
the coordinates of ». The minimum of that quotient under the constraint that its numerator
and denominator are positive provides a lower bound on &(d, k). For instance, when d is
equal to 3, the minimal value of the ratio

|x1 (x6x8 — X5x9) + X2 (X4x9 — X6x7) + X3(X5x7 — X4x8)|

19)

V(x1xs — x2x4)% + (x1x6 — X3x4)% + (x2X6 — X3x5)2

over all the lattice points x in the hypercube [—k, k]° such that the numerator and the denom-
inator of (19) are positive is a lower bound on ¢(3, k). However, the expression for this
quotient gets complicated as the dimension increases and solving the corresponding integer
minimization problem becomes involved.

4 The Computation of £(d, k)

According to the discussion in Section 1, a lower bound on &(d, k) can be obtained by
considering all the sets of d + 1 pairwise distinct points from {0, . . ., k}¢ and for each such
set S, all the partitions of S into two subsets {po, ..., p"}and {qo, ...,q™M}, where n +m is
equal to d — 1. For each such partition, one can build a matrix A and a vector b according to
(5) and (6). The smallest possible non-zero value of the right-hand side of (14) over all the
obtained pairs (A, b) such that A’ A is non-singular will then be a lower bound on £(d, k).
However, this strategy requires to consider

d
Ry

pairs (A, b). Note that while this number would decrease to at best

2d+1 _ o (k + l)d
244! d+1
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if the enumeration could be performed up to the symmetries of the d-dimensional hypercube.
However, these symmetries are not all easy to handle in practice as one still needs to enumerate
all N pairs (A, b) just to check for them.

We adopt a different strategy in order to significantly decrease the search space without
having to handle symmetries. The main idea is to do the enumeration coordinate-wise in
order to build a list £ of the possible rows for the pair (A, b) for each n and m that sum to
d — 1 and such that n < m, and then building (A, b) back by selecting d pairwise different
rows from L. By a row of (A, b), we mean a vector r from RY whose first d — 1 entries
form a row of A and whose last entry is the corresponding coordinate of b. Note that our
requirement that the rows of £ selected to build a given pair (A, b) are pairwise distinct is
without loss of generality. Indeed, if two of these rows would coincide, a pair of columns of
A’ A would be multiples of one another and that matrix would then be singular. We shall see
that the size of £ does not depend on 7 or m.

As a consequence, this alternative strategy only considers

229

pairs (A, b). For each of these pairs such that A’ A is non-singular, the right-hand side of (14)
is evaluated, and the smallest non-zero value obtained for this quantity over all the considered
pairs (A, b) is the desired lower bound on &(d, k). It should be noted that the efficiency of
this strategy depends on how large L is.

Let us get into more details about how we build L. For a given pair of positive integers n
and m that sum to d — 1, we generate all the possible rows of the pair (A, b) as

(X1 = X0, -+« X — X0, Y1 — Y0, - -+ » Ym — Y0, Y0 — X0) » (20)
where x is a point from {0, ..., k}", y is a point from {0, . .., k}"* such that x and y are not
both equal to 0, and x¢ and yg are two integers from {0, ..., k}.

The list obtained from this procedure contains at most (k — 1)?*! rows. Its size can be
reduced using the following property.

Proposition 6 Consider a d x (d — 1) matrix A with integer entries such that A' A is non-
singular. Futher consider a vector b contained in Z¢. If the pair (A, b) is obtained by dividing
each row of the pair (A, b) by the greatest common divisor of its coordinates and by negating
a subset of the resulting rows, then

[aca ) atb —b| = [AGA"2) 4D~ | @1
and the two sides of this inequality are either both zero or both positive.

Proof Pick two non-negative integers n and m that sum to d — 1. Denote b by ¢° and the
origin of R by p°. Further denote by p! to p” the first n columns of A and consider the
points ¢ to g™ from Z< such that ¢! — ¢° to g™ — ¢V are the last m columns of A. According
to the construction described in Section 1,

|A@A AT A —b|* = min froh . (22)
=

where P is the convex hull of p? to p” and Q that of ¢° to ¢™.

@ Springer



910 A.Deza et al.

Further denote by (A, b) the pair obtained by dividing each row of (A, b) by the greatest
common divisor of its coordinates and by negating a fixed (but otherwise arbitrary) subset
of the resulting rows. As above,

S i 112
HA(A’A)—IA’b - b” = min 50k ). (23)
neRrR™

wheref and Q are the convex hulls of the points ﬁo to p" and 60 to g™ that are extracted
from (A, b) just as the points p' and ¢’ are extracted from (A, b).
By construction, for any pair (A, @) of vectors in R"xR"™,

n m 2
R RTES WAUEF))
i=1 i=1

1 =
d n ) m ) 2
(e Y ow) . e
j=1 i=1 i=1

where r| to rg denote the greatest common divisors of the rows of (A, b). Observe that
according to (3), the left-hand side of this equality is precisely fp o (A, ). Since the numbers
r1 to rg are not less than 1, its right-hand side is at least f;@(k, ) and it follows that, for
every point (A, n) contained in R"xR"™,

fr oG, ) = fr 50, 1.

In turn, by (22) and (23), the desired inequality holds. It remains to show that if the
right-hand side of (21) is equal to 0, then so is its left-hand side.

Assume that the right-hand side of (21) is equal to 0. In that case, there exists a pair (A, i)
in R"xR™ such that fﬁ@(k, w) is equal to 0. By (3), fﬁ@(k, W) is the squared norm of a
vector and since it is equal to 0, all of the coordinates of that vector must be equal to 0. In
other words, for every integer j satisfying 1 < j <d,

n m
@+ Y ki = Y (7 -a9) =0
i=1 i=1

and it follows from (3) and (24) that fp ¢ (A, i) must vanish. According to (22), the left-hand
side of (21) is then equal to 0, as desired. ]

d

J

By Proposition 6, we can assume that when several of the generated rows are multiples
of one another, only the one among them whose coordinates are relatively prime and whose
first non-zero coordinate is positive is included in £. It should be observed that, before L is
reduced this way, its size does not depend on n or m. As announced, this property still holds
once L has been reduced. Indeed, observe that the rows generated by (20) with the same two
points x and y and the same scalars xo and yo but with different values of n and m can be
recovered from one another by adding yp — xo to (or subtracting this quantity from) certain
of their coordinates. Hence, all of these rows have the same greatest common divisor for their
coordinates. We report in Table 2 as a function of d and k the number of rows contained in £
after this procedure has been carried out. Note that, when k is equal to 1, d to 3, n to 1, and
m to 1, there are only 6 rows in L:

L£=1{(,0,0), (0,1,0), (1,-1,0), (0,1, -1), (1,1, -1), (1,0, =D)}.

Only twenty pairs (A, b) are generated from this list of rows.
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Small Kissing Polytopes 911

Table 2 The number of rows in £ as a function of d and k

d k
1 2 3 4 5 6 7 8 9 10
3 6 24 72 144 288 432 720 1008 1440 1872
4 14 89 359 929 2189 4019 7469 11969
5 30 300 1620 5400 15120
6 62 965 6971
7 126 3024

When k is equal to 3 and d to 4, the number of pairs (A, b) that have to be considered
with the approach outlined at the beginning of the section is

@—DC

4

s ) = 264286471 680,

which would shrink down to at best
2 -2 (44

—_ = 688246020,
2441\ 5

if these pairs could be enumerated up to the symmetries of the hypercube. However, there is
no easy way to test for these symmetries without reviewing all of the 264 286 471 680 pairs.
With our approach, the number of rows contained in | £| is equal to 359 in that case as shown
in Table 2 and we only need to consider

2<329> = 1361176502

pairs (A, b) in order to compute our lower bound on ¢ (4, 3).

This strategy does not only provide a lower bound on e(d, k) but also pairs (A, b) that
achieve this lower bound. Keeping track of the points x and y and of the scalars xo and yo
that are used to build each row in £ according to (20), one can recover two lattice (d, k)-
polytopes P and Q such that the obtained lower bound on &(d, k) is precisely the distance
of the affine hulls of P and Q. If the distance between these affine hulls coincides with the
distance between P and Q, which can easily be checked from the pair (A, b) according to
Remark 2, then this lower bound is sharp. Interestingly, using this observation, all the lower
bounds on &(d, k) that we have obtained using the presented strategy have turned out to be
the precise value of e(d, k). In Table 1, the bolded entries correspond to the values of e(d, k)
obtained in this article and the non-bolded entries are the ones computed in [5]. Theorem 1
further provides the values of (2, k) that are not shown in the table and its proof gives a pair
of kissing polytopes corresponding to these values of €(2, k). When d is at least 3, all the
known values of €(d, k) are shown in the table. Let us now provide, for each of these values
of e(d, k), a corresponding pair P and Q of kissing polytopes.

Ifkisequalto2,4,5,6,7,or8, then (3, k) is achieved by the line segment P with vertices
(0,0,0) and (k — 1, k, k) and the line segment Q with vertices (k, 1, 2) and (0, k, k — 1).
These two line segments are shown in Fig. 2 in the special case when k is equal to 4. Note
that for all k, the distance between these two segments is

1

d(P, Q) = 25
.0 V2(2k? — 4k + 5)(2k2 — 2k + 1) )
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Fig.2 A pair of kissing lattice (3, 4)-polytopes

and it is tempting to ask whether (3, k) is equal to this value for every integer k greater
than 8. In any case, note that the right-hand side of (25) provides an upper bound on £(3, k)
that decreases like 1/ (2v/2k?) as k goes to infinity. In the remaining two cases, when k is
equal to 1 or 3, the line segments that achieve ¢(3, k) do not follow the pattern we have just
described. Indeed, £(3, 1) is the distance between a diagonal P of the cube [0, 1% and a
diagonal Q of one of its square faces such that P and Q are disjoint (see [5]) while £(3, 3)
is the distance between the line segment with vertices (0, 0, 0) and (2, 3, 3) and the line
segment with vertices (3, 2, 0) and (0, 1, 2).

The values of €(4, k) reported in Table 1 are always achieved by a line segment P and a
triangle Q as follows. When k is equal to 1, the vertices of P are (0,0,0,0) and (1,1, 1, 1)
while the vertices of Q are (1, 0, 0, 0), (0, 1, 1, 0), and (0, 1, 0, 1). When k is equal to 2, the
vertices of P are (0, 0,0, 0) and (1, 2, 1, 2) and those of Q are (2,2, 1,0), (0,1, 0,2), and
(0,0,2,1). When k is equal to 3, the vertices of P are (0,0, 1, 0) and (2, 3, 3, 3) and the
vertices of Q are (3,0, 3, 2), (0,2,0,3), and (0, 3, 3, 0).

The unique value of ¢(5, k) reported in Table 1 is £(5, 1). This value is the distance between
the diagonal of the hypercube [0, 1]° incident to the origin of R> and the tetrahedron with
vertices (1, 1,0, 0,0),(0,1,0, 1, 1),(0,0, 1,0, 1),and (0, 0, 1, 1, 0). Finally, (6, 1) isequal
to the distance between the diagonal of the hypercube [0, 1]° incident to the origin of R® and
the 5-dimensional simplex with vertices (1,0, 1, 1,0, 0), (1,0,0,0, 1, 1), (0,1, 1,0, 1, 1),
0,1,0,1,0,1),and (0, 1,0, 1, 1, 0).

Remark 4 1t is noteworthy that, while an expression of £(2, k) can be guessed from the pairs
of kissing polytopes obtained for the first few values of k, this is not the case for ¢(d, k) when
k is fixed. Even when £ is equal to 1, the pairs of kissing polytopes known for the first few
values of d do not exhibit a clear pattern.
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