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Abstract The load-dependent Mean Value Analysis (MVA) algorithm suffers from
numerical instability issues. Different techniques have been adopted to avoid these
issues, however, they either have complexity problems or restrictive assumptions. In
this paper, we introduce a numerically Stable MVA (SMVA) algorithm for closed
product-form queueing networks that allows for load-dependent queues. The SMVA
algorithm is inspired by Seidmann’s approximation for the numerical stability, and
employs the Bard-Schweitzer approximation for the accuracy. The SMVA algorithm
offers a numerically stable, efficient and accurate approximate solution. We validate
SMVA by comparing it to other MVA algorithms in concrete examples, and analyze
its errors. We also extend it to a multi-class model.

1 Introduction

The Mean Value Analysis (MVA) algorithm [16] is an efficient solution for steady-
state analysis of queueing networks. However, it relies on product-form assump-
tions, which can be violated by common features introduced in modern com-
puter systems, e.g., simultaneous resource possession, locking behaviours, priority
scheduling, high service demand variability, and process synchronization (see Chap-
ter 15 in [14]). An approximate solution is to reduce a non-product-form network by
using Flow-Equivalent Servers (FESs) [7]. An FES is load dependent, whose service
rate with n jobs present is equal to the observed throughput of the original network
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with n jobs. The performance model can then be analyzed using the load-dependent
MVA algorithm [15].

Unfortunately, the load-dependent MVA algorithm suffers from numerical in-
stability issues [15, 16]. The underlying reason is that the computation of state
probabilities can yield negative results when the utilization is close to one. Con-
sequently, negative values of mean performance measures (i.e., response times and
throughputs) can be produced. Static and dynamic scaling techniques are potential
approaches to cope with precision limits, but they are complicated to implement. In
addition, Casale and Serazzi [4] show that they do not work in general, as the mean
queue length computations are not affected. To the best of our knowledge, the lit-
erature is lacking efficient solutions for the numerical instability of load-dependent
MVA.

In this paper, we propose a Stable MVA (SMVA) algorithm for closed networks
with load-dependent queues (the initial idea was presented in [21]). The main contri-
butions of this paper include: (1) the SMVA algorithm, which is an efficient approx-
imate solution for closed networks with load-dependent queues, and (2) an extended
multi-class model used to determine class-level performance metrics.

This paper is structured as follows. Section 2 introduces the required background.
Section 3 provides a review of solutions proposed in the literature for the numerical
instability. We then present SMVA in Section 4. In Section 5, the results from SMVA
are compared with other MVA algorithms in two case studies. Section 6 gives the
multi-class SMVA algorithm. This paper ends with Section 7, in which we give a
summary of the pros and cons of SMVA.

2 Background

The exact MVA algorithm for closed networks with load-dependent queues has nu-
merical instability issues. It may exhibit numerical difficulties under heavy load
conditions which eventually result in unreasonable results, such as negative through-
puts, response times and queue lengths. The numerical problem is that the proba-
bility of a resource being idle is calculated in every iteration of the load-dependent
MVA algorithm. The calculation is as follows:

Pm(0|n) = 1−
n

∑
i=1

Pm(i|n), (1)

where Pm(i|n) is the probability that i jobs are at the mth resource when a total of n
jobs are in the system. When the utilization is close to one, (1) can yield negative
values, and those errors propagate as the MVA algorithm iterates. Subsequently,
other calculations which have direct or indirect dependence on (1) may result in
negative values, such as mean response times and throughputs, which do not make
any physical sense.
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3 Related Work

Chandy and Sauer [6] provide the initial reports of the numerical instability of the
MVA algorithm with load-dependent queues. Reiser [15] confirms this issue. To
replace (1) in a single-class model, he proposes a new calculation of Pm(0|n) evalu-
ated by Pm(0|n−1) and the throughput X [m](n) in an m-complement system, which
is defined as a queueing system without the mth queue and all other parameters re-
maining the same. However, the expense of the evaluation grows exponentially as
the number of load-dependent queues increases.

Tucci and Sauer [20], and Hoyme et al. [11] independently propose two simi-
lar tree-structured MVA algorithms, which are invulnerable to numerical instability.
The main idea is to build a tree data structure, where queues are leaves. The internal
nodes are intermediate functions, resulting from convolving all queue functions in
the subtree with the internal node as the root. For dense queueing networks, tree
MVA algorithms can give even worse performance than the original MVA algo-
rithms whose complexities grow linearly, but they are efficient when customers visit
only a small number of queues.

Casale et al. [5] suggest an approximate MVA algorithm (QD-MVA) for queue-
dependent stations in a multi-class setting. Its computational cost is O(MC) for
a model with M queues and C classes. However, it may not converge in some
instances. Moreover, it relies on queue-dependent functions to analyze queue-
dependent service times, which introduces excessive computational requirements.
They show that the QD-MVA algorithm has very good accuracy for the estimation
of mean queue lengths, but the results from QD-MVA on other performance metrics,
such as mean response times and system throughput, are not provided.

In the literature, Seidmann’s approximation [18] is also widely used to address
MVA’s numerical issues [8, 9, 13]. The basic idea is to replace a multi-server queue
with k servers by two tandem servers. The first one is a single server queue with
service demand D/k, where D is one server’s service demand. The second one is
a pure delay server with service demand D · (k− 1)/k. In practice, Seidmann’s ap-
proximation can yield noticeable errors under intermediate loads, but it has the same
time and space complexities as the original MVA algorithm. However, Seidmann’s
approximation assumes that the servers in the multi-server queue are load inde-
pendent. Such an approximation may not be realistic when the FES technique is
employed.

To address numerical issues, Casale [3] introduces the Conditional MVA (CMVA)
algorithm, which avoids the computations of the state probabilities, and as a con-
sequence, overcomes the limitation. Although the CMVA algorithm is an exact so-
lution, its time and space complexities grow much faster than the original MVA
algorithm. Given M is the number of queues, and N is the number of jobs, the time
and space complexities for the original MVA algorithm only grow as O(MN), while
those for the CMVA algorithm grow as O(MNL+1), where L is the number of load-
dependent queues in the system . This may cause significant time and memory issues
for the computation when N or L is large, which is very common in performance
evaluation for stress tests.
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4 Stable Mean Value Analysis

We study a closed queueing network with N jobs and M queues, and we focus on a
generic load-dependent queue with service demand Dm(nm), where m is the index
of the queue, and nm is the number of jobs at the queue (with n = ∑

M
m=1 nm where

m = 1, . . . ,M and n = 1, . . . ,N). Here, we assume that the service demand of the
load-dependent queue becomes a constant beyond some N̄m, i.e., there exists a finite
N̄m such that Dm(nm) = Dm(N̄m) for all nm ≥ N̄m. This assumption is reasonable for
many systems, in particular when Dm(nm) becomes sufficiently close to Dm(N̄m).

The basic idea of the SMVA algorithm is inspired by Seidmann’s approximation,
replacing the load-dependent queue with two tandem servers. The first is a load-
independent (LI) queue with service demand Dq

m = Dm(N̄m). The second is a load-
dependent (LD) delay centre with service demand

Dd
m(nm) =

{
nmDm(nm)−Dm(N̄m), if nm < N̄m

(N̄m−1)Dm(N̄m), if nm ≥ N̄m.
(2)

To make sure the service demands in (2) are positive, we assume that nmD(nm) ≥
D(N̄m), for nm < N̄m. In multi-core computer systems, it is a common assumption
that Dm(nm) decreases as nm increases, so Dm(nm) > Dm(N̄m) when nm < N̄m and
nmDm(nm) ≥ Dm(N̄m) holds. Although the delay centre is load dependent, there is
no need to calculate its state probabilities because it does not have a queue. As a
result, the SMVA algorithm is numerically stable.

Under light load, the two tandem servers behave as a server which has service de-
mand Dm(nm). If nm jobs are being served and no jobs are waiting in the queue, the
time spent by a job in the approximating node is Dm(N̄m)+nmDm(nm)−Dm(N̄m) =
nmDm(nm). If there are jobs waiting in the first queue, the time spent by a job in the
approximating node is dominated by the time spent at the first queue. The node be-
haves as a server which has service demand Dm(N̄m). As a result, this approximation
should perform well for both light and heavy loads. Note that SMVA is identical to
Seidmann’s approximation when nmDm(nm) = Dm(1), for nm ≤ N̄m.

Once we finish the service demand parameterization, the mean response times
at the load-independent queue in the approximating network with n jobs can be
computed by the arrival theorem [12, 19]:

Rq
m(n) = Dq

m[1+Qm(n−1)], (3)

where Qm(n− 1) is the mean queue length at the mth queue with n− 1 jobs in the
network.

To compute the mean response time at the delay centre, we need to estimate the
mean number of jobs, because its service demand is load dependent. We employ the
Bard-Schweitzer approximation [1, 17] to estimate the mean number of jobs at the
delay centre. The Bard-Schweitzer approximation is based on the following idea:
The number of jobs at each queue increases proportionately as the total number of
jobs increases in the network. Mathematically:
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Qm(n−1)
Qm(n)

=
n−1

n
. (4)

There are two things that we need to clarify here: (1) We use the term “mean number
of jobs” rather than “mean queue length”, because it is a pure delay centre, and it
has no jobs waiting for service. (2) When we mention the mean number of jobs,
we refer to the actual mean number of jobs of the original network instead of those
of the approximating network. Let Qo

m(n− 1) be the mean number of jobs at the
mth queue when there are n− 1 jobs in the network, and Qe

m(n) be the estimated
mean number of jobs at the mth queue when there are n jobs in the network. We can
rewrite (4) as:

Qe
m(n) =

{
1, if n = 1,

n
n−1

Qo
m(n−1), if n > 1.

Then, we can compute the mean response times at the delay centre as Rd
m(n) =

Dd
m(dQe

m(n)e). The ceiling function ensures that the index of the load-dependent
service demands starts from one, rather than zero.

The system throughput is calculated using Little’s Law:

X(n) = n/{Z +
M

∑
m=1

[Rq
m(n)+Rd

m(n)]}, (5)

where Z is the mean think time. To compute the mean queue length at the mth queue
in the approximating network, we just continue applying Little’s Law: Qa

m(n) =
X(n) ·Rq

m(n). The mean queue length at the mth queue in the original network is:

Qo
m(n) = X(n) · [Rq

m(n)+Rd
m(n)].

Algorithm 1 illustrates the single-class SMVA algorithm in detail. SMVA has
two features: (1) SMVA is numerically stable, because it avoids the calculation of
stationary probabilities at load-dependent queues; (2) SMVA is efficient, because its
time and space complexities are both O(MN).

There are two things that we would like to highlight in Algorithm 1. Firstly, we
assume that all queues are load dependent in Algorithm 1. If the mth queue is load
independent, we can simply set Dq

m = Dm and Dd
m = 0, and Algorithm 1 is still

applicable. Secondly, we do not check whether Qe
m(n) and Qo

m(n) converge to each
other in SMVA, because we are iterating over n and we do not guess the initial values
of Qe

m(n) (the Bard-Schweitzer approximation has both of them). In the Appendix,
we propose an alternative SMVA algorithm which has a comparison between Qe

m(n)
and Qo

m(n).
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Algorithm 1 The single-class SMVA algorithm
Input:
Z,M,N,Dm(n), N̄m
Output:
Qo

m(N),X(N),R(N)
Condition:
nDm(n)≥ Dm(N̄m),∀n,m
Initialization:
Qa

m(0) = 0,∀m = 1, . . . ,M
Iteration:

for m = 1→M do
for n = 1→ N do

Dq
m = Dm(N̄m)

Dd
m(n) =

{
nDm(n)−Dm(N̄m), if n < N̄m

(N̄m−1)Dm(N̄m), if n≥ N̄m

end for
end for
for n = 1→ N do

for m = 1→M do
if n = 1 then

Qe
m(n) = 1

else
Qe

m(n) =
n

n−1
Qo

m(n−1)

end if
Rq

m(n) = Dq
m[1+Qa

m(n−1)]
Rd

m(n) = Dd
m(dQe

m(n)e)
end for
X(n) = n/{Z +∑

M
m=1[R

q
m(n)+Rd

m(n)]}
for m = 1→M do

Qa
m(n) = X(n) ·Rq

m(n)
Qo

m(n) = X(n) · [Rq
m(n)+Rd

m(n)]
end for

end for
R(N) = ∑

M
m=1[R

q
m(N)+Rd

m(N)]

5 Experimental Results

In order to verify the accuracy and the efficiency of the SMVA algorithm, we com-
pare the results of the SMVA algorithm, the CMVA algorithm, and Seidmann’s ap-
proximation in two different closed queueing networks. The first one is a closed
network with one generic load-dependent queue (FES), and the second one is a
closed network with two FESs. To generate the input parameters - service demands
- for these two queueing networks, we set up a testbed on an Intel i7-2600 quad-
core computer with 8 GB memory, 1 TB hard drive, and Ubuntu 12.04.3 LTS. We
employ JBoss 3.2.7 as the application server, MySQL 5.1.70 as the database server,
and TPC-W [10] to generate the workload. TPC-W can simulate three workloads
for an e-commerce environment - browsing, shopping, and ordering. We choose the
first two workloads in our tests, and plot their service demands in Figs. 1 and 2.
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Fig. 1 Service demands for browsing
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Fig. 2 Service demands for shopping

5.1 One load-dependent queue

For the first network, we aggregate and model the computer system by an FES. We
then run the browsing workloads to obtain the system throughputs, and calculate
the service demands of the FES to parameterize the MVA algorithms (as shown in
Fig. 1). As can be seen in the figure, the service demand curve adopted by Seid-
mann’s approximation can only address the ideal case of a load-dependent server,
where D(n) = D(1)/n for n ≤ 8. By overestimating the service demands in such a
case, the outcomes of Seidmann’s approximation are conservative in terms of per-
formance metrics, but this may not be true in general.
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Fig. 3 Response time with Z=0
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Fig. 4 Throughput with Z=0

To test the accuracy of SMVA under different loads, we vary the number of users
and the mean think time in the system. Both the mean response time and the through-
put are compared for the three candidate MVA algorithms. Three sets of results are
presented. The results of the first set are presented in Figs. 3 and 4, where N ranges
from 1 to 30, and Z = 0. The results of the second set are presented in Figs. 5 and 6,
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Fig. 5 Response time with Z=0.7 seconds
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Fig. 6 Throughput with Z=0.7 seconds
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Fig. 7 Response time with Z=3.5 seconds
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Fig. 8 Throughput with Z=3.5 seconds

where N ranges from 1 to 300, and Z = 0.7 seconds. The results of the third set are
presented in Figs. 7 and 8, where N ranges from 1 to 1300, and Z = 3.5 seconds.

Using CMVA as the benchmark (as it is an exact solution), SMVA works better
than Seidmann’s approximation in all three cases. However, we also observe some
errors for both of the approximate MVA algorithms from those figures, except for
Figs. 6 and 8, where the largest errors are only −1.05% and −0.23%, respectively
(negative means underestimate). The reason is that for those figures, the throughput
is given by (5). As Z increases, the error in R has a smaller effect on the accuracy of
X .

To verify the observations from Fig. 3 to Fig. 8, we calculate the Root-Mean-
Square Percentage Error (RMSPE) for both SMVA and Seidmann’s approximation

in the three test sets. Here, RMSPE =
√

∑
T
i=1 E2

i /T , where Ei is the percentage error
of the ith estimate, and T is the total number of estimates. The results can be found
in Table 1, and they verify the two observations that we have in the figures:

• In terms of accuracy, SMVA works better than Seidmann’s approximation in all
cases.

• Errors in throughput are minor when Z is relatively larger than R.
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Table 1 RMSPEs in one LD queue

Test Case SMVA Seidmann

Z = 0.0 sec. R 12.93% 25.54%

X 10.63% 18.72%

Z = 0.7 sec. R 12.02% 20.47%

X 0.38% 1.29%

Z = 3.5 sec. R 15.24% 42.42%

X 0.13% 1.03%

We also would like to quantify some large errors from SMVA and Seidmann’s ap-
proximation. In Figs. 3 and 4, the largest error for the mean response time of SMVA
is 27.16%, and the largest error for the throughput of SMVA is −21.36% when
N = 8. In contrast, the errors for both the mean response time and the throughput of
Seidmann’s approximation are the largest when N = 4 (46.78% and −31.87%, re-
spectively). We have similar observations from Fig. 5 to Fig. 8. In Fig. 5, the largest
error for the mean response time of SMVA is 33.17% when N = 200. In Fig. 7, the
largest error for the mean response time of SMVA is 32.48% when N = 1000. Sei-
dmann’s approximation has its worst case when N = 1300, the error for the mean
response time is 71.91%. As a conclusion, the SMVA algorithm works well when
the system is under light or heavy loads. However, some errors are significant when
the system is under intermediate loads.

5.2 Two load-dependent queues

For the second queueing network, we add one more FES to the previous network.
We derive the service demands of the second FES from the shopping web interaction
workloads of TPC-W (as shown in Fig. 2). We choose the shopping workloads,
because the service demand curve is close to (but not the same as) the one derived
from the browsing workloads in the first FES (in Fig. 1), so that no single queue can
dominate the performance in the network.

As discussed in Sect. 5.1, we vary the number of users and the mean think time in
the system, and compare the mean response time and the throughput among the three
candidate MVA algorithms. Since the results of throughputs are almost identical
when Z is larger than zero (similar to Figs. 6 and 8), those results are not shown.
The results of the first set are presented in Figs. 9 and 10, where N ranges from 1
to 40, and Z = 0. The results of the second set are presented in Fig. 11, where N
ranges from 1 to 400, and Z = 0.7 seconds. The results of the third set are presented
in Fig. 12, where N ranges from 1 to 1200, and Z = 3.5 seconds. Unlike the test set
of Z = 3.5 seconds in Sect. 5.1, where we could have maximum 1300 jobs in the
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Fig. 9 Response time with Z=0
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Fig. 10 Throughput with Z=0
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Fig. 11 Response time with Z=0.7 seconds
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system, we cannot have 1300 jobs in this test case, because the calculation space
requirement of the CMVA algorithm grows exponentially as the number of load-
dependent queues increases. In this case, it is O(MN3), and it exceeds the maximum
capacity of the memory on our machine. For instance, the initialization of the service
demands for a single queue requires N3×8 bytes = 16.37 GB.

As can be seen from Fig. 9 to Fig. 12, the results are quite consistent with those
from Fig. 3 to Fig. 8, respectively. Similarly, we have three observations as follows:

• Compared to CMVA, SMVA works better than Seidmann’s approximation in all
three cases.

• As the value of the mean think time grows, the errors in estimated throughputs
from SMVA decrease.

• Compared to the results under light and heavy workloads, larger errors are ob-
served for SMVA under intermediate workloads.

In Table 2, we show the RMSPEs for both SMVA and Seidmann’s approximation
in the three test sets. The results in Table 2 can be seen to verify the first two obser-
vations above. Compared to the results in Table 1, the SMVA algorithm performs
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Table 2 RMSPEs in two LD queues

Test Case SMVA Seidmann

Z = 0.0 sec. R 8.47% 22.15%

X 7.40% 17.18%

Z = 0.7 sec. R 11.23% 16.21%

X 0.66% 1.39%

Z = 3.5 sec. R 16.34% 26.27%

X 0.26% 0.39%

better when Z = 0 in the network with two LD queues than in the network with a
single LD queue in terms of the RMSPE.

Table 3 Largest error comparison for SMVA

Test Case Single LD Queue Two LD Queues

Z = 0.0 sec. R 27.16% 18.60%

X −21.36% −15.68%

Z = 0.7 sec. R 33.17% 33.33%

X −1.05% −1.96%

Z = 3.5 sec. R 32.48% 32.40%

X −0.23% −0.44%

In Table 3, we compare the largest errors of the SMVA algorithm in these two
case studies. As can be seen, the SMVA algorithm performs better when Z is zero in
the second case study, but has very similar results when Z is larger than zero. This
observation is consistent with the observation from the RMSPEs in Tables 1 and 2.
The underlying reason is not clear and is worth future study.

6 Multi-class Extension

For completeness, we extend the SMVA algorithm to the case of multi-class closed
networks. As in single-class networks, the scheduling discipline in multi-class net-
works is also constrained to preserve the product-form nature of the steady-state
distribution, for example the scheduling disciplines considered in the BCMP the-
orem [2] may be employed. We consider that there are C classes of transactions,
where the job population vector is given by n = (n1, . . . ,nc, . . . ,nC), where 0≤ nc ≤
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Nc and 1≤ c≤C. The service demand of class c at the mth load-independent queue
is given by Dq

m,c = Dm,c(N̄m,c). The service demand at the delay centre becomes

Dd
m,c(nc) =

{
ncDm,c(nc)−Dm,c(N̄m,c), if nc < N̄m,c,

(N̄m,c−1)Dm,c(N̄m,c), if nc ≥ N̄m,c.

Then, the multi-class SMVA iterates over all feasible n = (n1, . . . ,nC) such that
∑

C
c=1 nc = n and 1≤ n≤N to compute the mean response times at load-independent

queues:
Rq

m,c(n) = Dq
m,c[1+Qm(n−1c)].

Here, n−1c = (n1, . . . ,nc−1, . . . ,nC) is the job population vector with one less class
c job in the system. The mean response time at a pure delay centre is Rd

m,c(n) =
Dd

m,c(dQe
m(n)e), where

Qe
m(n) =

1, if nc = 1,
nc

nc−1
Qo

m(n−1c), if nc > 1.

The system throughput of class c is calculated by

Xc(n) = nc/{Zc +
M

∑
m=1

[Rq
m,c(n)+Rd

m,c(n)]}.

The mean queue length at the mth load-independent queue is

Qa
m(n) =

C

∑
c=1

Xc(n) ·Rq
m,c(n).

Finally, the mean queue length at the original load-dependent queue is

Qo
m(n) =

C

∑
c=1

Xc(n) · [Rq
m,c(n)+Rd

m,c(n)].

Both the time and space complexities of the multi-class SMVA algorithm are
O(MNC). Due to the complexities, we haven not evaluated the accuracy of the multi-
class model in a case study.

7 Conclusions

In this paper, we present the SMVA algorithm in both a single-class model and a
multi-class model. Compared to the CMVA algorithm and Seidmann’s approxima-
tion, the SMVA algorithm has two advantages:
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• The time and space complexities of SMVA are a significant improvement over
CMVA, especially when the number of jobs in the system is very large, or when
the number of load-dependent queues is larger than one.

• The SMVA algorithm is better able to handle cases when the service demands of
a load-dependent node do not have a linear relationship.

In terms of accuracy, we also have two additional observations about the SMVA
algorithm:

• The SMVA algorithm works as well as the CMVA algorithm when the system is
under light or heavy loads. However, the errors of the SMVA algorithm increase
when the system is under intermediate loads (but it still performs better than
Seidmann’s approximation).

• When the mean think time increases, the SMVA algorithm might produce less ac-
curate estimates of the mean response times under intermediate load. In contrast,
the estimated throughput becomes more accurate.

The accuracy of SMVA under intermediate loads is closely linked to the accu-
racy of the underlying approximations. It is inspired by Seidmann’s approximation.
Consequently, it behaves as Seidmann’s approximation under intermediate work-
loads. In addition, it employs the assumption in the Bard-Schweitzer approximation
to estimate the mean number of jobs at delay centres, which may also add errors to
the results.

Acknowledgements The work reported here was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

Appendix

In Algorithm 1, we estimate the mean number of jobs at a delay centre, Qe
m(n). In

the same iteration, new values are calculated as Qo
m(n). A natural thought would be

to add a comparison between these two values, similar to a technique in the Bard-
Schweitzer approximation. To accomplish this, we propose an alternative SMVA
algorithm (A-SMVA) for a single-class system. The details of A-SMVA can be seen
in Algorithm 2. Compared to SMVA, A-SMVA differs as follows:

• Iterations over n = 1→ N are removed. Instead, we focus only on the perfor-
mance metrics with N jobs in the system.

• Initialize Qe
m(N) with estimated values, e.g., N/(M+1).

• Employ (4) to replace Qa
m(N−1) by Qq

m(N) in (3), which is Qq
m(N)×(N−1)/N.

• Choose an error criterion - ε , e.g., 0.01.
• Compare the difference between Qe

m(N) and Qo
m(N), and compare the difference

between Qq
m(N) and Qa

m(N). If the maximum difference is larger than ε , replace
Qe

m(N) by Qo
m(N), and Qq

m(N) by Qa
m(N). Otherwise, stop the iteration.
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Algorithm 2 The single-class A-SMVA algorithm
Input:
Z,M,N,Dm(n), N̄m,ε
Output:
Qo

m(N),X(N),R(N)
Condition:
N ·Dm(N)≥ Dm(N̄m),∀m
Initialization:
Qa

m(N) = 0,∀m = 1, . . . ,M
Qo

m(N) = N/(M+1),∀m = 1, . . . ,M
Iteration:

for m = 1→M do
Dq

m = Dm(N̄m)

Dd
m(N) =

{
N ·Dm(N)−Dm(N̄m), if N < N̄m

(N̄m−1)Dm(N̄m), if N ≥ N̄m

end for
while maxi{|Qe

m(N)−Qo
m(N)|}> ε or maxi{|Qq

m(N)−Qa
m(N)|}> ε do

for m = 1→M do
Qe

m(N) = Qo
m(N)

Qq
m(N) = Qa

m(N)

Rq
m(N) = Dq

m[1+
N−1

N
Qq

m(N)]

Rd
m(N) = Dd

m(dQe
m(N)e)

end for
X(N) = N/{Z +∑

M
m=1[R

q
m(N)+Rd

m(N)]}
for m = 1→M do

Qa
m(N) = X(N) ·Rq

m(N)
Qo

m(N) = X(N) · [Rq
m(N)+Rd

m(N)]
end for

end while
R(N) = ∑

M
m=1[R

q
m(N)+Rd

m(N)]

We set ε = 0.01, and compare the results of A-SMVA with the results of SMVA
with the same input parameters in Sect. 5.1. The estimated mean response times
from A-SMVA are slightly larger than the results from SMVA, but they have very
similar trends.

When N is very large, A-SMVA can be efficient, because it avoids the iteration
over n = 1→ N. However, we have two concerns about A-SMVA:

• The initial values of Qe
m(N) may significantly affect the outputs. For example, if

they are too close to zero, the whole iteration will be skipped.
• The chosen value of ε may have a significant effect on the outputs. If ε is too

big, we have less iterations, but sacrifice accuracy. If ε is too small, it may not
converge in some instances (although we have not observed this).

As a summary, we provide one more numerically stable approach to determine the
performance metrics for closed queueing networks with load-dependent queues.
One can adopt SMVA or A-SMVA depending on the requirements.
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