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Abstract

This paper studies the effects of resource pooling on system performance in the
presence of failures. The goal is to understand whether pooling increases efficiency
and/or reduces risk. We consider four queueing systems with different degrees of pool-
ing (one has no pooling, one has only queues pooled, one has queues and failures pooled,
and one has servers pooled), estimate efficiency via the mean number of customers in
each system, and assess risk via the probability that there are many customers in each
system. Our results show that when servers are subject to failures, pooling queues is
always beneficial, whereas pooling both queues and servers improves efficiency but also
increases risk. Thus there is a tradeoff between efficiency and risk in the presence of
failures. These conclusions are different from reliable systems where pooling simultane-
ously improves efficiency and reduces risk and more pooling is better than less pooling
(e.g., pooling queues and servers is better than pooling queues only). Thus, insights
about resource pooling obtained from studying reliable systems should be used with
caution in the presence of failures.

Keywords: unreliable servers, pooling, mean system size, tail asymptotics, stochastic or-
dering
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1 Introduction

This paper considers systems with resources that are subject to failures (in that they experi-
ence downtimes during which they cannot serve customers). The objective is to understand
the effects of pooling on system performance. More specifically, we consider the following
four queueing systems, denoted as P∅, PQ, PQ,F , and PS, where P refers to pooling and the
subscript indicates what is pooled:

P∅: s single-server queues in parallel with servers subject to independent failures (no pool-
ing);

PQ: a single queue with s servers subject to independent failures (the queues are pooled);

PQ,F : a single queue with s servers subject to synchronous failures (the queues and failures
are pooled);

PS: a single-server queue (with the server subject to failures) where the service rate is s
times the rate of the servers in the other systems (the servers, and hence the queues
and failures, are pooled). This corresponds to the servers working together as a team
with no loss of efficiency.

These four systems will be described more precisely in Section 2; the relationship between
them is depicted in Figure 1.

P∅
����������1

queues pooled

PPPPPPPPPPq
queues and
failures pooled

PQ

?

failures pooled

PPPPPPPPPPq

servers (and failures)
pooled

PQ,F
����������1

servers pooled
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Figure 1: Relationship between systems P∅, PQ, PQ,F , and PS.

The performance measures we consider are the mean system size and tail probabilities of
the number of customers in the system. These two performance measures capture efficiency
(mean system size) and risk (tail probabilities of system size). We capture efficiency with
mean system size since this reflects the average behavior of the systems and risk via tail
probabilities of system size since this measures undesirable variation (large values, not small)
and also provides the entire distribution of system size. Thus, higher efficiency means lower
mean system size whereas higher risk means larger tail probabilities. Throughout the paper,
we will compute the two performance measures for the four systems P∅, PQ, PQ,F , and
PS, and compare them to investigate the effects of pooling on system performance. We
are specifically interested in identifying the effects that changes made with the intent of
increasing efficiency have on risk. In particular, resource pooling is aimed at increasing
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operational efficiency, but may expose the servers to the same (or correlated) failures, and
hence increase risk.

It is well known that pooling queues improves the performance of reliable systems. For
example, an M/M/s queue with arrival rate sλ and service rate µ for each server is superior
(in the sense of standard stochastic ordering) to s parallel M/M/1 queues, each having an
arrival rate of λ and service rate µ, in terms of the number of customers in the system.
In fact, Smith and Whitt [19] establish the stronger monotone likelihood-ratio ordering of
the number of customers in these two systems. Similarly, it is well known that an M/M/1
queue with arrival rate sλ and service rate sµ is superior to an M/M/s queue with arrival
rate sλ and service rate µ for each server with respect to the mean number of customers
in the system (see for example Wolff [28], page 258). Moreover, when s = 2, the number
of customers in an M/M/1 queue with arrival rate sλ and service rate sµ is stochastically
smaller than the number of customers in the corresponding M/M/s queue (see Wolff [28],
pages 257 and 258; a generalization of this result to s servers is provided in Proposition A.1
in the Appendix). We can then conclude that pooling queues and servers improves efficiency
and risk (i.e., reduces both the mean and the tail probability of the number of customers) in
reliable Markovian systems (however, Scheller-Wolf [18] shows that pooling can increase risk
in certain systems with heavy-tailed service times and van Dijk and van der Sluis [21, 22]
numerically argue that pooling may not be advantageous when there are two (or more)
classes of customers, one class being short jobs, the other long jobs, and investigate how to
improve the performance of pooling in this scenario). Note that using basic queueing theory,
it is easy to determine that the tail probabilities of system size in these three systems all
have a decay rate of λ

µ
. Interested readers are referred to Benjaafar [2], Calabrese [5], Larson

[11], Rothkopf and Rech [17], and Smith and Whitt [19] for additional discussions of the
effects of pooling on system performance in reliable systems. Our objective is to investigate
if the same comparisons hold when servers are unreliable. To the best of our knowledge, this
is the first paper that addresses the performance of pooling when the servers are subject to
failures.

Argon and Andradóttir [1], Buzacott [4], Mandelbaum and Reiman [14], and Van Oyen,
Gel, and Hopp [23] study pooling in queueing networks. In particular, Argon and Andradóttir
[1] provide sufficient conditions for partial pooling of multiple adjacent queueing stations
to be beneficial in tandem lines, allowing the service rate of a team of pooled servers to
be additive, sub-additive, or super-additive. Buzacott [4] studies two models of pooling
stations in a tandem line, namely parallel facilities (where each server completes all tasks in
order) and teams (where the total processing time is the maximum duration of the subtasks
completed by different team members). He shows that high task processing time variability
makes the parallel system attractive compared to the tandem system, but pooling with
teams is not superior to the (un-pooled) tandem line unless factors such as motivation
improve the performance of team members. Mandelbaum and Reiman [14] show that for a
tandem Jackson network, complete pooling always helps, but for Jackson networks with more
general routing, complete pooling becomes advantageous only when the service variability
is low. Van Oyen, Gel, and Hopp [23] study tandem lines with cross-trained servers. They
show that if all servers are identical, then complete resource pooling maximizes throughput
along all sample paths. Finally, Borst, Mandelbaum, and Reiman [3] and Wallace and Whitt
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[25] discuss the effects of resource pooling in call centers.
Note that none of the studies reviewed in the previous paragraphs consider server failures.

We first use results in the literature, probability generating functions, and large deviations
techniques to provide closed-form expressions for the mean and tail asymptotics of the num-
ber of customers in the systems P∅, PQ, PQ,F , and PS. We then compare these systems
using closed-form expressions, stochastic ordering techniques, and numerical experiments.
We find that some standard ordering results comparing the mean and tail probabilities of
the number of customers in pooled and un-pooled systems may be reversed when servers are
unreliable. Thus, the benefits of pooling may no longer apply when the servers are subject
to failures, and one needs to use caution pooling servers in these systems.

The rest of the paper is organized as follows. In Section 2, we provide a detailed de-
scription of the four systems we consider. The steady-state mean numbers of customers for
these four systems are given in Section 3. Section 4 focuses on the tail probabilities of the
number of customers in the four systems. In Section 5, we compare the systems analytically.
Section 6 provides numerical experiments to compare the four systems for different numbers
of servers s. In Section 7, we use numerical experiments to investigate if the conclusions of
Section 6 hold for systems with reliable servers. Finally, Section 8 concludes the paper, and
the Appendix provides proofs of some of the technical results presented in the paper and
three new propositions with their proofs.

2 Models

We compare various degrees of pooling under different failure scenarios. For these purposes,
we consider queueing systems with s ≥ 2 servers and with the arrivals following a Poisson
process with rate sλ. Each server has service times that are exponentially distributed with
rate µ. The time between failures is exponentially distributed with rate f . Repair times are
exponentially distributed with rate r. We assume that servers can fail anytime.

Specifically, we focus on four different systems within the class of systems described above.
The first system, P∅, is s M/M/1 queues in parallel with arrival rate λ to each queue (no
pooling). The second system, PQ, is an M/M/s queue with independent server failures (the
queues have been pooled). The third system, PQ,F , is an M/M/s queue with synchronous
server failures (the queues and failures have been pooled). Finally, the last system, PS, is
an M/M/1 queue where the service rate is sµ (the servers have been pooled into a team,
implying the pooling of the queues and failures). In all four systems, the proportion of
time R (for reliability) that each server is available is the same (i.e., R = r/(r + f)). We
assume that a failure occurring while a customer is served results in preemption of the
customer, and the displaced customer becomes the first in the queue. Since the service times
are exponentially distributed, the remaining service time is exponentially distributed with
rate µ, like the original service time (because if X is the original service time and Y is an
exponential random variable with rate f that is independent of X, then both X and the
remaining service time X−Y given that X > Y are exponential with rate µ). Our objective
is to compare the mean number of customers and the tail probabilities of the number of
customers in these four systems. Note that the stability condition for all four systems is
λ < µ[r/(r + f)] = µR.
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The pooling of queues and servers is well known from the study of reliable queueing
systems (see, e.g., the literature review in Section 1). The motivation for considering the
pooling of failures is that pooling the queues may involve co-locating the servers, and hence
subjecting them to the same failures (e.g., power outages).

3 Average Performance (Efficiency)

In this section, we provide expressions for the steady-state mean number of customers in the
systems P∅, PQ, PQ,F , and PS in Sections 3.1, 3.2, 3.3, and 3.4, respectively.

3.1 Mean Number in System P∅ – s M/M/1 Queues

Mitrani and Avi-Itzhak [15] derived the probability generating function of the number of
customers in the system for an M/M/s queue with independent server failures. In particular,
the mean number in the system for an M/M/1 queue with failures is given in equation (29)
of [15] and the result below simply follows by multiplying that expression with s:

L∅ =
sλ((f + r)2 + fµ)

(f + r)(rµ− λ(r + f))
. (1)

3.2 Mean Number in System PQ – One M/M/s Queue, Indepen-
dent Failures

As mentioned in Section 3.1, Mitrani and Avi-Itzhak [15] derived the probability generating
function of the number of customers in the system for an M/M/s queue with independent
server failures. More recently, Pang and Whitt [16] derive many server limit results in M/M/s
queues with service interruptions (i.e., their results hold asymptotically as s increases). Even
though it is difficult to compute (exactly) the performance measures that we are interested
in for systems with general numbers of servers (from the probability generating function),
one can obtain the mean number of customers for specific values of s. For example when
s = 2, we have

LQ =

(
µ

2(f + r)(rµ− λ(r + f))2

)[
α(µ(µ− λ)r2 + λµf 2 + λ(f + r)3)

+2β(µf(2λ(f + r)− µr) + λ(f + r)3) + γ(µr(f + r)2 + λµfr)
]
,

where

α = 2f(rµ− λ(r + f))(µ+ (λ+ f)z1)/
[
µ(f + r)((f + r)(µ+ λ+ fz1) + λ(1− z1)(µ+ λ))

]
,

β = (rµ− λ(r + f))[λµ+ µr + (fr − λµ)z1]/
[
µ(f + r)((f + r)(µ+ λ+ fz1) + λ(1− z1)(µ+ λ))

]
,

γ = [2(λ+ f)β − rα]/µ,

z1 = [(2λ+ µ+ f + r)−
√

(2λ+ µ+ f + r)2 − 8λµ]/4λ.
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3.3 Mean Number in System PQ,F – One M/M/s Queue, Syn-
chronous Failures

There do not appear to be results in the literature for this system. There are results for
systems in which the failures (vacations) occur when the system becomes idle (see Chao and
Zhao [6], Levy and Yechiali [12], Tian, Li and Cao [20], Vinod [24], and Zhang and Tian
[29]), but not for when the failures occur at any point in time. Consequently, our results in
this section may be of some independent interest.

Let pk,w (pk,f ) be the steady-state probability of having k customers in the system and
the servers working (failed). The balance equations are

(sλ+ sµ+ f)pk,w = sλpk−1,w + sµpk+1,w + rpk,f , k ≥ s, (2)

(sλ+ kµ+ f)pk,w = sλpk−1,w + (k + 1)µpk+1,w + rpk,f 1 ≤ k ≤ s− 1, (3)

(sλ+ f)p0,w = µp1,w + rp0,f , (4)

(sλ+ r)pk,f = sλpk−1,f + fpk,w, k ≥ 1, (5)

(sλ+ r)p0,f = fp0,w. (6)

Define pk = pk,w+pk,f , the steady-state probability that there are k customers in the system.
The probability generating function for the number in the system, P (z), may be expressed
as P (z) = Pw(z)+Pf (z), where Pw(z) =

∑∞
k=0 z

kpk,w and Pf (z) =
∑∞

k=0 z
kpk,f . Multiplying

both sides of (5) with zk, summing up over all k ≥ 1, and adding this to (6), we derive

Pf (z) =
f

sλ+ r − sλz
Pw(z). (7)

Multiplying both sides of (2) and (3) with zk, summing up over all k ≥ 1, and adding this
to (4), we obtain

[sλ(1− z) + sµ(1− z−1) + f ]Pw(z) = rPf (z) + p0,wsµ(1− z−1) +µ(z− 1)
s−1∑
k=1

(s− k)zk−1pk,w.

Combining the last two equations, we have

Pw(z) =
(sλ+ r − sλz)

[
p0,wsµ(1− z−1) + µ(z − 1)

∑s−1
k=1(s− k)zk−1pk,w

]
sλ(1− z)

[
sλ(1− z) + sµ(1− z−1) + f

]
+ rs

[
λ(1− z) + µ(1− z−1)

] . (8)

Note that using equations (3) to (6), one can express p1,w, p2,w, . . ., ps−1,w in terms of p0,w.
Then using the fact that Pw(1) =

r
r+f

and equation (8), one can obtain p0,w, which together

with (7) and (8) will yield P (z).
The previous discussion provides a mechanism for computing P (z), and, hence, LQ,F for

specific s. As an example, consider the case with s = 2 servers. Then

p0,w =
(µr − λ(r + f))(2λ+ r)[

2λ2 + λ(r + f) + 2λµ+ µr
]
(r + f)

,

LQ,F =
2λµ(r3 + 2fλ2 + rf 2 + 2fr2 + 2λr2 + rfµ+ 2fλµ+ 4rλf + 2λf 2)[

2λ2 + λ(r + f) + 2λµ+ µr
]
(rµ− λ(r + f))(r + f)

.
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3.4 Mean Number in System PS – One M/M/1 Queue

The result immediately follows from equation (29) of Mitrani and Avi-Itzhak [15] since we
have an M/M/1 queue with server failures, arrival rate λs and service rate µs (see (1)):

LS =
λ((f + r)2 + sfµ)

(f + r)(rµ− λ(r + f))
.

4 Tail Behavior (Risk)

In this section, we provide exact tail asymptotics for the number of customers in systems
P∅, PS, and PQ,F in Sections 4.1, 4.2, and 4.3, respectively. Since obtaining this expression
is more challenging for system PQ (because the large deviation paths appear to become
complex), we will consider the tail probabilities of this system numerically in Section 6.
Note that even though the probability generating function for the number in the system is
available either in closed form (for systems P∅ and PS) or via an algorithm (for systems PQ

and PQ,F ), it is challenging to invert these functions to obtain the exact probabilities.

4.1 Tail Behavior of System P∅ – s M/M/1 Queues

Examining one queue in isolation, we have that XI(t) = (QI(t), NI(t)) is a Continuous-
Time Markov Chain (CTMC), where QI(t) is the number of customers in the system and
NI(t) is the status of the server at time t. This system has been studied in Lorek [13],
where the techniques in Foley and McDonald [7, 8] are applied to compute the exact tail
asymptotics of the steady-state distribution forXI(t), as well as the corresponding large devi-
ations paths. We are only concerned with the former here. Let f ∼ g denote the relationship
limk→∞ f(k)/g(k) = 1. For P∅, the system stateX(t) = (Q1(t), N1(t), Q2(t), N2(t), . . . , Qs(t),
Ns(t)) is a CTMC, where Qi(t) and Ni(t) are independent copies of QI(t) and NI(t), for
i = 1, . . . , s (as each queue operates independently from the others). The proof of the
following result is given in the Appendix.

Proposition 4.1 There exist finite constants ca, cb such that

ca

(
ℓ+ s− 1

ℓ

)
γℓ
∅ ≤ P{Q1(t) +Q2(t) + · · ·+Qs(t) = ℓ} ≤ cb

(
ℓ+ s− 1

ℓ

)
γℓ
∅ (9)

as ℓ → ∞, where

γ∅ =
2λ

λ+ r + µ+ f −√
α∅

, α∅ = (µ− λ− f − r)2 + 4fµ.

4.2 Tail Behavior of System PS – One M/M/1 Queue

This system is a direct application of Proposition 2.1 of Lorek [13], where the arrival and
service rates are sλ and sµ, respectively. So, for finite constants cS,w and cS,f ,

pk,w ∼ cS,wγ
k
S, pk,f ∼ cS,fγ

k
S, (10)
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where

γS =
2sλ

sλ+ r + sµ+ f −√
αS

, αS = (sµ− sλ− f − r)2 + 4sfµ.

Note that the difference between γ∅ and γS arises from the fact that pooling impacts the
arrival and service rates, but not the failure and repair rates (if pooling resulted in failure
and repair rates sf and sr, then γ∅ and γS would be equal).

4.3 Tail Behavior of System PQ,F – One M/M/s Queue, Syn-
chronous Failures

Let Q(t) be the number of customers in the system at time t. Then {Q(t)} is a CTMC and
the transition rates for PQ,F and PS agree for all but a finite number of states (those with
Q(t) = 0, 1, . . . , s− 1). Thus, the decay rates of the tails of the steady-state distribution are
identical. In other words, for finite constants cQ,F,w and cQ,F,f ,

pk,w ∼ cQ,F,wγ
k
S, pk,f ∼ cQ,F,fγ

k
S. (11)

While the decay rate is the same as for system PS, the constants will in general be different.

5 Comparison

In this section, we compare the means and tail probabilities of the number of customers in
the four systems described in Section 2. In what follows, we first summarize the comparison
results and then show how these results were obtained by comparing two systems at a time.

5.1 Comparison Summary

We start by addressing the efficiency of the systems P∅, PQ, PQ,F , and PS. In particular,
we have shown that:

If s = 2, then

{
LQ, LS < LQ,F < L∅,
both LQ < LS and LS < LQ are possible;

(12)

If s > 2, then

{
LQ, LS ≤ L∅ (with LS < L∅),
LS ≤ LQ,F .

(13)

In addition, we have:

As ρ → 1,

{
LQ ≪ LS < LQ,F ≪ L∅ if s = 2,
LS ≪ L∅ if s > 2,

(14)

where ≪ indicates that the difference between the limits is infinite and < means that the
difference is finite. (Note that throughout the paper, ρ = λ(r+f)

µr
→ 1 is equivalent to

λ → µr
r+f

. Thus, we increase λ as µ, r, and f remain the same). Finally, when it comes to
risk, we have shown that:

γ∅ < γS = γQ,F ,
P{NQ(t) ≥ k} ≤ P{N∅(t) ≥ k},∀t ≥ 0, k ≥ 0,
P{NS(t) ≥ k} ≤ P{NQ,F (t) ≥ k},∀t ≥ 0, k ≥ 0.

(15)
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We next prove the comparison results summarized above. In each case, we start with
the comparison of the mean number of customers (but in certain cases we will have stronger
stochastic ordering results), and then continue with the comparison of the tail asymptotics
(except for the cases involving system PQ). Numerical results are provided in Section 6 to
study the tail asymptotics of system PQ. More specifically, in Sections 5.2, 5.3, and 5.4, we
compare the un-pooled system P∅ with the pooled systems PQ, PQ,F , and PS, respectively;
in Section 5.5, we compare the two partially pooled systems PQ and PQ,F ; and in Sections
5.6 and 5.7, we compare the two partially pooled systems PQ and PQ,F with the fully pooled
system PS, respectively.

5.2 Comparison of Systems P∅ and PQ

We show that PQ (the system with pooled queues) has a better mean system size performance
than P∅ (the un-pooled system). In fact, Proposition 5.1 below proves the stronger result
that the number of customers in P∅ at any time t is stochastically larger than the number of
customers in PQ at time t. This is due to the fact that P∅ can have idle servers even when
there are customers waiting in line. Moreover, the arrival process can be a general renewal
process (i.e., not necessarily Poisson). The proof of Proposition 5.1 is given in the Appendix.

Proposition 5.1 Consider systems P∅ and PQ with s servers and general renewal arrival
processes. Let N∅(t) and NQ(t) be the number of customers at time t in these more general
versions of systems P∅ and PQ, respectively. Then

NQ(t)
st

≤ N∅(t) for all t ≥ 0,

where st denotes the standard stochastic ordering.

Proposition 5.1 immediately implies that L∅ ≥ LQ. For Markovian systems with s = 2,
we can use the expressions in Sections 3.1 and 3.2 to compute L∅ − LQ = Υ/∆, where

Υ = λ
[
(1− z1)

(
2λ2(r + f)3 + λ(2λµf 2 + f 4 + 3f 3r + 3f 2r2 + fr3 + µrf 2 + λµrf + 2f 3µ) +

µ2(r2f + µrf)
)
+ λ

(
7fr3 + 9f 2r2 + 5f 3r + µf 3 + 4µrf 2 + 2r4 + f 4

)
+

µ(1 + z1)
(
3rf 3 + 3f 2r2 + f 4 + fr3

)
+ µ2f 2

(
f + 2r

)
+

fz1
(
4f 3r + 6f 2r2 + 4fr3 + f 4 + r4

)]
,

∆ = (f + r)2(µr − λr − λf)[(1− z1)λ(µ+ λ) + (r + f)(z1f + λ+ µ)],

with z1 defined in Section 3.2. Note that Υ > 0 since 0 < z1 < 1 (see Mitrani and Avi-Itzhak
[15]) and ∆ > 0 since 0 < z1 < 1 and the stability condition holds. Furthermore, the above
expression verifies that L∅−LQ → ∞ as ρ → 1 (note that ∆ tends to 0 as ρ tends to 1). This
is intuitive because idling the servers (when there are customers waiting) will have higher
impact on the mean number of customers in the system as the system load increases and
the difference will tend to ∞ (as ρ → 1) as in the case with reliable systems (see [22]).

Proposition 5.1 also implies that P{NQ(t) ≥ k} ≤ P{N∅(t) ≥ k} for all t ≥ 0 and k ≥ 0,
and hence system PQ performs better than system P∅ in terms of both efficiency and risk.
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5.3 Comparison of Systems P∅ and PQ,F

We compute L∅ −LQ,F when s = 2 (as we do not have a closed-form expression for LQ,F for
general s, see Section 3.3). In this case, we have

L∅ − LQ,F =
2λ2

[
r2 + 2λr + 2rf + 2λf + fµ+ f 2

]
[2λ2 + λr + λf + 2λµ+ µr][µr − λ(r + f)]

> 0,

which implies that PQ,F , which has correlated server failures, is more efficient than P∅ where
the servers fail independently and have dedicated queues. This again is due to the fact that
P∅ can have idle servers even when there are customers waiting in line. Moreover, as ρ → 1,
L∅ − LQ,F approaches ∞ since idling the servers when there are customers waiting is more
wasteful as the system load increases.

As far as the comparison of tail asymptotics for these two systems is concerned, we have
that γ∅ < γQ,F = γS if (after some algebra):

s
√

(µ− λ− f − r)2 + 4fµ < (s− 1)(f + r) +
√
(sµ− sλ− f − r)2 + 4sfµ.

If we square both sides and rearrange, we see that the above inequality is true if and only if

sλf − sµr + sλr + sfµ+ 2fr + f 2 + r2 < (f + r)
√

(sµ− sλ− f − r)2 + 4sfµ.

Again squaring both sides and rearranging, we have that γ∅ < γQ,F holds if

fs2µ(µr − λr − fλ) > 0,

which holds under the stability condition. Thus, the pooling of queues and server failures
helps to reduce the mean number of customers in the system, but actually has the opposite
effect on the tail probabilities. Hence, pooling queues and server failures improves efficiency
but increases risk in unreliable systems (because the servers are now exposed to the same
failures). This suggests that while pooling queues and server failures, one needs to take into
the account the tradeoff between risk and efficiency.

Remark 5.1 Consider a system PF that is composed of s M/M/1 queues with synchronized
server failures (i.e., only the failures are pooled). Let LF be the mean number of customers
in PF . Then it is easy to see that LF = L∅, which is given in equation (1). Moreover,
using an argument similar to the one in the proof of Proposition 5.1, one can show that

NQ,F (t)
st

≤ NF (t) for all t ≥ 0, where NF (t) is the total number of customers in system PF

at time t, and hence, P{NF (t) ≥ k} ≥ P{NQ,F (t) ≥ k}, for all k ≥ 0 and t ≥ 0. Hence,
PF has the worst performance among the five systems both in terms of the mean and the tail
probability of the number of customers in the system.

5.4 Comparison of Systems P∅ and PS

It is easy to see that

L∅ − LS =
λ(s− 1)(f + r)

(µr − λr − λf)
> 0.
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As expected, system PS, which has a single server whose service rate is s times faster, has
lower mean number in the system than system P∅, where the servers fail independently and
have dedicated queues. Moreover, as ρ → 1, L∅ − LS approaches ∞. This is intuitive since
having dedicated servers (which implies servers may idle when there are customers waiting
in line) results in higher number of customers in the system as the load increases.

As far as the comparison of the tail asymptotics is concerned, since the decay rate is the
same in systems PQ,F and PS, the comparison in the previous subsection holds and we have
γ∅ < γS. Hence, as in Section 5.3, pooling reduces the mean number of customers in the
system but not the tail probabilities, and there is again a tradeoff between risk and efficiency.

5.5 Comparison of Systems PQ and PQ,F

We prove that for systems with s = 2, PQ has better performance than system PQ,F in terms
of the mean number of customers. Using the expressions in Sections 3.2 and 3.3, we have

LQ,F − LQ =
Θ

∆(2λ2 + 2λµ+ λr + λf + µr)
,

where

Θ = λf
[
(µr − λ(r + f))

(
9z1λf

2r + 6z1f
2r2 + 7z1λr

2f + 3µrf 2 + 4z1f
3r + 2z1λ

2r2 +

4λ2rf + 2z1λr
3 + 3z1λf

3 + 2z1λ
2f 2 + µf 3 + µr3 + z1f

4 + z1r
4 + 3µr2f + 4z1r

3f
)
+

(1− z1)
(
µ4r2 + µ3r3 + 2µ4λr + λµ3fr + 4λ4µf + 2λ4µr + 2µ3rλ2 + 3µ3r2λ+

2λ3µ2r + 4λ3µ2f + 3λ3µf 2 + µ2r2λ2 + 2µ2λ2f 2
)
+

(µ− λ)(λ+ µ)(z1r
4 + 2fr3) + 2r2fz1(µ

2r − λ2(f + r)) + λ2µf(µr − z1λ(r + f)) +

µ
(
2µ2fr2 + λµf 3 + λ2f 3 + µ2f 2r + 3λ3f 2 + 4λ2µf 2 + 2µ2f 2λ+ 3λ3r2 + 8fµr2λ+

11λ2µfr + 2λ2rf 2 + λ2fr2 + 6µrλf 2 + 9λ3rf
)
+ λr3

(
3µ2 + z1µ

2) +

µz1
(
3λ3r2 + 2f 3µλ+ f 3µr + r2λ3 + 4fλµr2 + λ2r2f + 2rf 3µ+ λ2rf 2 + 4λµf 2r

)]
and z1 and ∆ are defined in Sections 3.2 and 5.2, respectively. From the stability condition
and the facts that 0 < z1 < 1 and ∆ > 0, we conclude that LQ,F − LQ > 0. This is
due to incurring longer waiting lines since all the servers fail at the same time in the PQ,F

system. Thus, pooling the failures does not improve efficiency. Moreover, using the closed
form expression of LQ,F − LQ above, we can again see that LQ,F − LQ approaches ∞ as
ρ → 1 (recall that ∆ → 0 as ρ → 1, see Section 5.2). This is intuitive because as the load
increases, customers accumulate faster in the PQ,F system since all servers fail at the same
time. In fact, we have shown that with fixed R, λ, and µ values, as r and f tend to zero
(and hence, failures become infrequent and long), the ratios L∅

LQ,F
, L∅

LS
,

LQ,F

LS
converge to one,

while the ratios L∅
LQ

,
LQ,F

LQ
, and LS

LQ
converge to limits that are equal to each other and greater

than one (see Proposition A.4).

5.6 Comparison of Systems PQ and PS

For the comparison of systems PQ and PS, we provide a numerical example that demonstrates
that one system does not necessarily dominate the other. In other words, the dominant mean
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number of customers depends on the system parameters. Figure 2 depicts LQ−LS as a func-
tion of the arrival rate λ when s = 2, r = 5, f = 1, and µ = 4.

Figure 2: The difference of the mean number of customers in systems PQ and PS as a
function of λ.

When s = 2, the expressions in Sections 3.2 and 3.4 yield LQ − LS = Γ/∆, where

Γ = λ
[
(z1 − 1)

(
λ2(r + f)3 + f(2λ2µf + f 3µ+ λr3 + µ3r + λ2µr + λ3µ+ 3µfr2 +

3fλr2 − rf 2µ− µr3 − µλr2 + µ2r2 + 3f 2λr) + µλr3
)
+

(1 + z1)µλrf
2 − λ

(
3fr3 + 3f 2r2 + f 3r + µf 3 + r4

)
+

µ
(
r4 − µf 3 − z1f

4 − 2z1rf
3 + 2fr3 − 2µrf 2 − 2z1fr

2λ
)]

and ∆ and z1 are as given in Sections 3.2 and 5.2, respectively. Furthermore, with some
algebra one can verify that as λ → µr

r+f
, Γ reduces to

−µ2f [(1− z1)(rf
3 + f 2r2 + 4fµr2 + f 2µr + 2r3µ) + 2r4]

(f + r)2
+

−µf 2(µf 3 + z1f
4 + 5µrf 2 + 4z1fr

3 + 6z1f
2r2 + 8µr3 + 4z1f

3r + 10µfr2 + z1r
4)

(f + r)2
.

Thus, LQ −LS tends to −∞ as ρ goes to 1, and pooling the servers (and hence the failures)
hurts efficiency when ρ is close to one. This is intuitive because customers accumulate quickly
in PS when the server fails (resulting in a service rate of zero).
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Remark 5.2 Consider a system PQ,S with pooled queues and servers (but not failures).
System PQ,S performs as an M/M/1 queue, but the head of the line customer is served by
the aggregate capacity of all the available servers. Using an argument similar to the proof of

Proposition 5.1, one can show that NQ,S(t)
st

≤ NQ(t) for all t ≥ 0, where NQ,S(t) is the total
number of customers in system PQ,S at time t .

5.7 Comparison of Systems PQ,F and PS

The next proposition shows that the number of customers at any point in time is stochas-
tically less for the system with pooled servers (PS) than for the system with pooled queues
and server failures (PQ,F ). Moreover, the result holds for general renewal arrival processes.
The proof of Proposition 5.2 is intuitive and is given in the Appendix.

Proposition 5.2 Consider systems PQ,F and PS with s servers and general renewal arrival
processes. Let NQ,F (t) and NS(t) be the number of customers in these more general versions
of systems PQ,F and PS, respectively. Then

NS(t)
st

≤ NQ,F (t) for all t ≥ 0.

The above proposition immediately implies that LQ,F ≥ LS which is intuitive since the
service rate is always sµ in the PS system (as long as the server is up). Hence, pooling the
servers improves efficiency when the failures are already pooled. Moreover, for Markovian
systems with s = 2 servers, we can quantify the difference in the mean number of customers
in these two systems as

LQ,F − LS =
λ(r + f + 2λ)

(2λ2 + λr + λf + 2λµ+ µr)
> 0. (16)

Note that LQ,F − LS < 1. Thus, unlike the differences of the mean number of customers in
Sections 5.2, 5.3, 5.4, 5.5, and 5.6, this difference does not tend to infinity as ρ → 1. This
is intuitive because in both systems a failure stops the entire service process, and hence,
increasing the load has similar effects on both systems.

The tail asymptotics of system size in these two systems have the same decay rate.

6 Numerical Results

In this section, we use numerical experiments to better understand how the systems P∅, PQ,
PQ,F , and PS compare and to study how our measures of efficiency and risk (mean number
of customers and tail asymptotics) depend on s and other system parameters. Our main
conclusion from the numerical results is that PQ appears to perform the best overall for the
systems we considered.

Specifically, we consider systems with s ∈ {2, 3, 5} and focus on six sets of rates as defined
below:

• Set 1: r = 1, f = 1, µ = 100, and λ = 25;
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• Set 2: r = 10, f = 1, µ = 100, and λ = 500
11
;

• Set 3: r = 10, f = 0.1, µ = 100, and λ = 5000
101

;

• Set 4: r = 1, f = 1, µ = 100, and λ = 45;

• Set 5: r = 10, f = 1, µ = 100, and λ = 900
11
;

• Set 6: r = 10, f = 0.1, µ = 100, and λ = 9000
101

.

Recall that the combined arrival rate to each system is sλ, and, thus, the parameters in sets
1, 2, and 3 yield a traffic intensity of ρ = 0.5 and the rates in sets 4, 5, and 6 result in systems
with traffic intensity of ρ = 0.9. On the other hand, the proportion of time that systems with
parameter sets 1 and 4 are reliable is R = 1/2, as compared to R = 10/11 for systems with
parameter sets 2 and 5 and R = 100/101 for systems with parameter sets 3 and 6. Hence,
these six parameter sets consider all combinations of medium and high traffic intensity
ρ ∈ {0.5, 0.9} and low, medium, and high server reliability R ∈ {1/2, 10/11, 100/101}.

Let N denote the steady-state number of customers in the system. Hence, for all four
systems, E[N ] = L, and P{N = k} for all k = 0, 1, . . . denotes the probability mass function
of N . Tables 1 through 3 illustrate the steady-state mean number of customers in the
system and the tail probabilities P{N > k} for systems P∅, PQ, PQ,F , and PS and k ∈
{15, 50, 100, 150, 200} when the rates are chosen from the sets of parameters listed above
and s = 2, s = 3, and s = 5, respectively. The mean number in the system and the tail
probabilities were computed exactly using the probability generating function of N for each
system (and were not estimated via simulation). The missing entries in the tables correspond
to the cases where a straightforward implementation in Maple did not lead to results (as
Maple was unable to compute the derivatives of the probability generating function of N).
Furthermore, for parameter sets 3 and 6, we computed the mean number in the system and
the tail probabilities for equivalent systems where all rates are multiplied by 10, since Maple
was again unable to compute these characteristics for systems with the original rates. For
each parameter set in each table, we use bold font to indicate which system yields the best
(smallest) value of each performance measure when data for all performance measures are
available and the best is unique (up to the indicated precision); the corresponding system(s)
are also indicated in bold.

We start by considering the mean number in the system. Tables 1 to 3 are consistent
with equations (12) to (14), and suggest that the results for s = 2 also hold for s > 2.
More specifically, we know from Section 5 that LQ, LS ≤ L∅, that LS ≤ LQ,F , and that
L∅ − LS → ∞ as ρ → 1. Moreover, for systems with s = 2, LQ, LS < LQ,F < L∅ and the
differences L∅−LQ,F , L∅−LQ, LQ,F −LQ, and LS −LQ tend to ∞ as ρ → 1. The numerical
results in Tables 1 to 3 agree with these results, and suggest that LQ < LQ,F < L∅ and that
the differences L∅−LQ,F , L∅−LQ, LQ,F −LQ, and LS−LQ become large as ρ → 1 even when
s > 2. On the other hand, we know that LQ − LS can be negative or positive when s = 2
depending on the arrival, service, failure, and repair rates. In our numerical experiments for
systems with s = 2 and s = 3 (we do not have results for system PQ when s = 5), we have
LS < LQ for parameter set 3 and LS is slightly larger than LQ for parameter set 6. However,
LS is much larger than LQ for parameter sets 1, 2, 4, and 5. As given in equation (16), when
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System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 52.00 0.719531 0.401017 0.153173 0.053871 0.018032
Set 1: PQ 18.12 0.306645 0.124039 0.034043 0.009343 0.002565
ρ = 0.5 PQ,F 51.20 0.546591 0.345224 0.179066 0.092881 0.048177
R = 1/2 PS 51.00 0.545128 0.344300 0.178587 0.092632 0.048048

Parameter P∅ 3.65 0.036719 0.000112 0.000000 0.000000 0.000000
Set 2: PQ 1.67 0.004758 0.000008
ρ = 0.5 PQ,F 2.97 0.045000 0.001652 0.000015 0.000000 0.000000

R = 10/11 PS 2.65 0.043640 0.001602 0.000014 0.000000 0.000000

Parameter P∅ 2.20 0.004276 0.000008 0.000000 0.000000 0.000000
Set 3: PQ 1.37 0.000321 0.000005 0.000000 0.000000 0.000000
ρ = 0.5 PQ,F 1.53 0.005448 0.000195 0.000002 0.000000 0.000000

R = 100/101 PS 1.20 0.005270 0.000188 0.000002 0.000000 0.000000

Parameter P∅ 468.00 0.982109 0.950218 0.891658 0.823994 0.752295
Set 4: PQ 216.94 0.798465 0.693832 0.570820 0.469628 0.390398
ρ = 0.9 PQ,F 459.31 0.884064 0.824719 0.746784 0.676214 0.612313
R = 1/2 PS 459.00 0.883515 0.824207 0.746320 0.676214 0.611933

Parameter P∅ 32.88 0.676240 0.211824 0.031038 0.003959 0.000470
Set 5: PQ 16.20 0.349951
ρ = 0.9 PQ,F 24.33 0.425437 0.154734 0.037708 0.009190 0.002239

R = 10/11 PS 23.88 0.419105 0.152759 0.037227 0.009072 0.002211

Parameter P∅ 19.76 0.510514 0.049838 0.001424 0.000037 0.000001
Set 6: PQ 10.27 0.216603
ρ = 0.9 PQ,F 11.24 0.227820 0.023596 0.002102 0.000200 0.000019

R = 100/101 PS 10.76 0.218700 0.023107 0.002056 0.000195 0.000019

Table 1: Mean and tail probabilities for number in the system when s = 2.

s = 2, LQ,F − LS < 1, and the results in Table 2 suggest that this difference is also small
when s = 3, but we can conclude from Table 3 that LQ,F − LS increases as s increases .
Finally, we would like to point out that the results of Tables 1 and 2 suggest that unless the
servers are highly reliable, system PQ in general has significantly smaller mean number of
customers than the other three systems .

We next focus on the tail asymptotics of the number of customers in the system. The
results of Section 5 show that the decay rates of the tail probabilities for systems P∅, PQ,F ,
and PS are ordered as γ∅ < γQ,F = γS, and that system PQ outperforms system P∅ in terms
of tail probabilities (see equation (15)). Tables 1 through 3 illustrate that one does not need
to go far in the tail to observe γQ,F ≃ γS. However, the results for parameter set 4 indicate
that the ordering between γ∅ and γQ,F = γS may become apparent only for large values of
k in P{N > k} in certain cases. (This is consistent with the fact that the tail asymptotics
for P∅ include a polynomial term, unlike the tail asymptotics for PQ,F and PS, see equations
(9), (10), and (11).) For systems with two servers and the rates from parameter set 4, we
also computed P{N > k} for k = 650 and k = 700. We had
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System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 78.00 0.865102 0.596300 0.291977 0.125597 0.049760
Set 1: PQ 11.96 0.214479 0.079435 0.022508
ρ = 0.5 PQ,F 76.44 0.584804 0.429818 0.276852 0.178325 0.114862
R = 1/2 PS 76.00 0.580000 0.428160 0.275784 0.177637 0.114419

Parameter P∅ 5.48 0.069653 0.000300 0.000000 0.000000 0.000000
Set 2: PQ 1.87 0.002316
ρ = 0.5 PQ,F 4.17 0.069810 0.007348 0.000295 0.000012 0.000000

R = 10/11 PS 3.48 0.066694 0.007021 0.000282 0.000011 0.000000

Parameter P∅ 3.29 0.008323 0.000016 0.000000 0.000000 0.000000
Set 3: PQ 1.75 0.000048
ρ = 0.5 PQ,F 2.03 0.008420 0.000880 0.000035 0.000001 0.000000

R = 100/101 PS 1.29 0.008013 0.000838 0.000033 0.000001 0.000000

Parameter P∅ 702.00 0.997871 0.991300 0.974224 0.948156 0.913965
Set 4: PQ 207.86 0.780616
ρ = 0.9 PQ,F 684.69 0.892684 0.852045 0.797178 0.745845 0.697816
R = 1/2 PS 684.00 0.890000 0.851264 0.796447 0.745161 0.697177

Parameter P∅ 49.31 0.864000 0.398956 0.085459 0.014359 0.002114
Set 5: PQ 16.21 0.344596
ρ = 0.9 PQ,F 32.32 0.458782 0.220682 0.081305 0.029956 0.011037

R = 10/11 PS 31.31 0.446814 0.216278 0.079683 0.029358 0.010817

Parameter P∅ 29.65 0.754111 0.132218 0.005671 0.000191 0.000006
Set 6: PQ 10.77 0.219253
ρ = 0.9 PQ,F 12.70 0.243476 0.035323 0.006529 0.001282 0.000252

R = 100/101 PS 11.65 0.223026 0.033942 0.006307 0.001239 0.000243

Table 2: Mean and tail probabilities for number in the system when s = 3.

P{N > 650} as 0.245499, 0.250597, and 0.250441, and
P{N > 700} as 0.212541, 0.226916, and 0.226775,

for systems P∅, PQ,F , and PS, respectively. Similarly, for systems with three servers and the
rates from parameter set 4, we also computed P{N > k} for k = 900 and k = 950. We had

P{N > 900} as 0.272061, 0.274816, and 0.274564, and
P{N > 950} as 0.241642, 0.257140, and 0.256884,

for systems P∅, PQ,F , and PS, respectively. Thus, for this set of rates, γ∅ < γQ,F = γS is
observed further in the tail and one needs to consider larger values of k in P{N > k} as s
increases. Moreover, the results of Tables 1 and 2 suggest that as in the comparison of L, the
tail probability for the number of customers in the system PQ declines faster than it does in
the other three systems . Note that this observation holds even for systems with parameters
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System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 130.00 0.972219 0.846337 0.581753 0.340648 0.177490
Set 1: PQ

ρ = 0.5 PQ,F 128.35 0.622375 0.516994 0.396634 0.304295 0.233453
R = 1/2 PS 126.00 0.580000 0.510562 0.391700 0.300510 0.230549

Parameter P∅ 9.13 0.165840 0.001296 0.000001 0.000000 0.000000
Set 2: PQ

ρ = 0.5 PQ,F 8.66 0.109407 0.027661 0.003882 0.000545 0.000076
R = 10/11 PS 5.13 0.064235 0.024064 0.003377 0.000474 0.000067

Parameter P∅ 5.49 0.024310 0.000045 0.000000 0.000000 0.000000
Set 3: PQ

ρ = 0.5 PQ,F 5.44 0.013456 0.003360 0.000474 0.000067 0.000009
R = 100/101 PS 1.49 0.011357 0.002878 0.000405 0.000057 0.000008

Parameter P∅ 1170.00 0.999974 0.999790 0.998937 0.996873 0.992994
Set 4: PQ

ρ = 0.9 PQ,F 1137.51 0.901213 0.876249 0.841788 0.808682 0.776878
R = 1/2 PS 1134.00 0.870000 0.891487 0.839417 0.806404 0.774690

Parameter P∅ 82.19 0.984166 0.738153 0.290812 0.078994 0.017176
Set 5: PQ

ρ = 0.9 PQ,F 50.08 0.514850 0.310016 0.165474 0.088329 0.047150
R = 10/11 PS 46.19 0.405847 0.295237 0.157591 0.084122 0.044904

Parameter P∅ 49.41 0.961504 0.414587 0.039421 0.002216 0.000097
Set 6: PQ

ρ = 0.9 PQ,F 17.40 0.314392 0.054232 0.018685 0.006871 0.002528
R = 100/101 PS 13.41 0.227116 0.049039 0.017249 0.006344 0.002334

Table 3: Mean and tail probabilities for number in the system when s = 5.

in sets 3 and 6 (i.e., when the proportion of time that each server is up is high).
We conclude this section by discussing how the behavior of systems P∅, PQ, PQ,F , and PS

depends on the number of servers s, traffic intensity ρ, and server reliability R. Our results
indicate that except for system PQ, the mean number in the system increases as the number
of servers s increases. For system PQ, our results in Tables 1 and 2 show that the mean
number in the system can increase or decrease with s. As expected, L is also an increasing
function of the traffic intensity ρ. Finally, we observe that the mean number in the system
decreases as the proportion of time R that each server is up increases.

On the other hand, tail probabilities of the number of customers in systems P∅, PQ,F , and
PS decay slower as s increases (the limited results for PQ suggest that the tail probabilities
can decay faster for larger s in this system). As expected, the decay rate becomes slower as
ρ increases. Finally, the decay in the tail probabilities is faster as R increases.
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7 Comparison with Reliable Systems

In order to better understand the effects of server failures on the mean number and tail
probabilities of system size, we have computed the values in Tables 1 through 3 for cor-
responding systems with reliable servers. In particular, we consider reliable systems with
traffic intensities ρ = 0.5 and ρ = 0.9. Thus, we have

• Set 7: µ = 100 and λ = 50;

• Set 8: µ = 100 and λ = 90.

Tables 4 through 6 provide the mean and the tail probabilities for these two sets of parameters
for systems with s = 2, s = 3, and s = 5, respectively. Note that when the servers are reliable,
PQ and PQ,F are identical.

System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 2.00 0.000137 0.000000 0.000000 0.000000 0.000000
Set 7: PQ 1.33 0.000020 0.000000 0.000000 0.000000 0.000000
ρ = 0.5 PS 1.00 0.000015 0.000000 0.000000 0.000000 0.000000

Parameter P∅ 18.00 0.481785 0.028294 0.000265 0.000002 0.000000
Set 8: PQ 9.47 0.195055 0.004883 0.000025 0.000000 0.000000
ρ = 0.9 PS 9.00 0.185302 0.004638 0.000024 0.000000 0.000000

Table 4: Mean and tail probabilities for number in the system when s = 2 and servers are
reliable.

System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 3.00 0.000656 0.000000 0.000000 0.000000 0.000000
Set 7: PQ 1.74 0.000029 0.000000 0.000000 0.000000 0.000000
ρ = 0.5 PS 1.00 0.000015 0.000000 0.000000 0.000000 0.000000

Parameter P∅ 27.00 0.733796 0.089799 0.001497 0.000016 0.000000
Set 8: PQ 10.05 0.207686 0.005199 0.000027 0.000000 0.000000
ρ = 0.9 PS 9.00 0.185302 0.004638 0.000024 0.000000 0.000000

Table 5: Mean and tail probabilities for number in the system when s = 3 and servers are
reliable.

Consistent with the literature on queues with reliable servers, Tables 4 to 6 illustrate that
LS ≤ LQ ≤ L∅. Thus, L∅ is larger than LQ and LS both for reliable and unreliable systems.
However, the ordering between LQ and LS depends on the system parameters when the
servers are subject to failures (see Section 5.6). Moreover, in most of our numerical results
in Section 6, we had LQ < LS for unreliable systems.

Tables 4 to 6 also show that the tail probabilities decline faster for systems PQ and
PS than for system P∅ when the servers are reliable. These results are consistent with the
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System L P{N > 15} P{N > 50} P{N > 100} P{N > 150} P{N > 200}
Parameter P∅ 5.00 0.005909 0.000000 0.000000 0.000000 0.000000
Set 7: PQ 4.62 0.000215 0.000000 0.000000 0.000000 0.000000
ρ = 0.5 PS 1.00 0.000015 0.000000 0.000000 0.000000 0.000000

Parameter P∅ 45.00 0.956826 0.345147 0.016716 0.000365 0.000000
Set 8: PQ 12.91 0.280002 0.007009 0.000036 0.000000 0.000000
ρ = 0.9 PS 9.00 0.185302 0.004638 0.000024 0.000000 0.000000

Table 6: Mean and tail probabilities for number in the system when s = 5 and servers are
reliable.

fact that it is beneficial to pool both the queues and the servers in reliable systems, and
different from the case with unreliable servers considered in Section 6 where we had the tail
probabilities for PQ declining much faster than those for P∅, which in turn decline faster than
those of PS. Hence, in general, it is only beneficial to pool queues in unreliable systems.

We now turn our attention to the dependence of the mean and tail probabilities on s,
ρ, and R. In system P∅ with reliable servers, both the mean and the tail probabilities
increase with s. This is consistent with the results for P∅ with unreliable servers. Similarly,
when servers are reliable, the mean number in the system and tail probabilities increase as
s increases for system PQ (we prove the former result in Proposition A.2 in the Appendix).
By contrast, when servers are unreliable, the mean number in the system PQ can increase
or decrease with s and the tail probabilities of the number in the system decrease (unless
the servers are highly reliable) as s increases (whereas the opposite holds for the other
systems with unreliable servers). Thus, PQ with reliable servers behaves more like PQ,F with
unreliable servers than like PQ with unreliable servers. Finally, both the mean and the tail
probabilities remain the same for all s in system PS with reliable servers. This is reasonable
because when the servers are reliable, increasing s in PS is equivalent to changing the time
scale. This equivalence does not hold for PS with unreliable servers (since the failure and
repair rates remain unchanged), and increasing s increases the number of customers arriving
during down times, which leads to an increase in both the mean and tail probabilities.

As expected, the relationship between the mean (and tail probabilities) of the number in
the system and ρ in reliable systems is consistent with the results for unreliable systems. In
particular, the mean number in the system increases with ρ, whereas the tail probabilities
decay slower for large ρ. Finally, note that the mean and the tail probabilities of the number
of customers in systems with rates drawn from parameter sets 7 (8) (depicted in Tables
4 through 6) are lower than those in systems with rates drawn from parameter sets 3 (6)
(depicted in Tables 1 through 3). This is consistent with our earlier observation that the
mean and the tail probabilities of the number in the system decrease as R increases.

Our numerical results are focused on systems in which failures and repairs occur on a
slower scale than arrivals and departures. We conclude this section by considering the mean
number of customers in systems with fixed R, λ, and µ values as r and f tend to ∞. This
corresponds to having short and frequent breakdowns. As detailed in Proposition A.3, when
s = 2, we prove that in the limit LS < LQ < LQ,F < L∅. This is consistent with the results
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of reliable systems. Thus, systems with frequent and short downtimes are similar to reliable
systems.

8 Conclusions

In this paper, we investigated the effects of resource pooling on system performance in the
presence of failures. The mean and tail probabilities of the number of customers in the
system were the performance measures, with the former capturing efficiency and the latter
assessing risk. We focused on four systems with differing degrees of pooling, namely P∅ (s
parallel queues with independent server failures), PQ (an M/M/s queue with independent
server failures – the queues have been pooled), PQ,F (an M/M/s queue with synchronous
server failures – the queues and failures have been pooled), and PS (an unreliable single-
server queue where the server is s times faster than the servers in the other three systems –
the servers, and hence queues and failures, have been pooled). Our objective was to study
the tradeoff between efficiency and risk.

Overall, the system PQ (with queues pooled) appears to show the best performance,
both in terms of efficiency and risk. However, for systems with highly reliable servers,
system PS can outperform system PQ in terms of efficiency. The systems PQ,F and PS in
which failures are pooled perform similarly both in terms of efficiency (unless servers are
highly reliable) and risk, and outperform the un-pooled system P∅ in terms of efficiency but
not risk. Thus, our results indicate that pooling queues is desirable, but that pooling servers
is not necessarily wise in the presence of failures. Moreover, changes aimed at improving
efficiency may increase risk and vice versa. By contrast, resource pooling in reliable systems
simultaneously improves efficiency and reduces risk, and more pooling is better than less
pooling (e.g., pooling queues is good, but pooling queues and servers is better). Thus, one
should use caution when applying insights obtained from studying reliable systems to make
resource pooling decisions for unreliable systems, and such decisions should address not only
efficiency but also risk.

The belief that resource pooling is always beneficial is deep-rooted in our community.
For example, the Wikipedia page on pooling [27] starts with the statement that “Pooling is
a resource management term that refers to the grouping together of resources (assets, equip-
ment, personnel, effort, etc.) for the purposes of maximizing advantage and/or minimizing
risk to the users.” Our research shows that pooling may decrease efficiency and increase risk,
contrary to conventional wisdom.
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A Appendix

A.1 Proof of Proposition 4.1

The probabilities pk,w and pk,f are as defined in Section 3.3. We apply Proposition 2.1 of
Lorek [13] to conclude that for finite constants c∗∅,w and c∗∅,f , pk,w ∼ c∗∅,wγ

k
∅ and pk,f ∼ c∗∅,fγ

k
∅
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(Lorek [13] discusses how these constants can be computed). Hence, pk = pk,w + pk,f ∼ c∗∅γ
k
∅ ,

where c∗∅ = c∗∅,w + c∗∅,f . Let ε > 0. Then, there exists a K such that for all k > K,∣∣∣∣ pk
c∗∅γ

k
∅
− 1

∣∣∣∣ < ε. (17)

Define
A = min

k=0,1,...,K
pk (18)

and

B = max
k=0,1,...,K

∣∣∣∣ pk
c∗∅γ

k
∅
− 1

∣∣∣∣ . (19)

We write

lim
t→∞

P{Q1(t) +Q2(t) + · · ·+Qs(t) = ℓ} =
∑

k1+k2+···+ks=ℓ

∏
i:ki≤K

pki
∏

i:ki>K

pki . (20)

We will now provide upper and lower bounds on (20) given that ℓ ≥ sK + 1, so that there
is at least one term in the second product. Using (17) and (18), a lower bound is∑

k1+k2+···+ks=ℓ

∏
i:ki≤K

A
∏

i:ki>K

(1− ε)c∗∅γ
ki
∅

≥
∑

k1+k2+···+ks=ℓ

As−1(1− ε)s min(c∗∅, (c
∗
∅)

s)γ
ℓ−

∑
i:ki≤K ki

∅

≥
∑

k1+k2+···+ks=ℓ

As−1(1− ε)s min(c∗∅, (c
∗
∅)

s)γℓ
∅

=

(
ℓ+ s− 1

ℓ

)
As−1(1− ε)smin(c∗∅, (c

∗
∅)

s)γℓ
∅.

From (17) and (19), when ℓ ≥ sK + 1, (20) has upper bound∑
k1+k2+···+ks=ℓ

∏
i:ki≤K

c∗∅γ
ki
∅ (B + 1)

∏
i:ki>K

(1 + ε)c∗∅γ
ki
∅

≤
∑

k1+k2+···+ks=ℓ

max(1, (c∗∅)
s−1)(B + 1)s−1(1 + ε)smax(1, (c∗∅)

s)γℓ
∅

=

(
ℓ+ s− 1

ℓ

)
max(1, (c∗∅)

s−1)(B + 1)s−1(1 + ε)s max(1, (c∗∅)
s)γℓ

∅.

The result now follows. □

A.2 Proof of Proposition 5.1

Let {an : n ≥ 1} denote the sequence of arrival times to both systems, where in P∅ each
arrival is assigned to one of the s queues with equal probability. Define {tn : n ≥ 1} as the
sequence of event epochs of a Poisson process with intensity sµ. Note that {tn : n ≥ 1} is
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the sequence of potential service completion times in both systems. Finally, generate the
server failure times and repair times so that each server in both systems experiences the same
down times (when the server is undergoing repair). For all t ≥ 0 and stochastic processes
{N(t)}, let N(t−) = lims↗t N(s). If all servers are functioning at time tn and NQ(tn−) ≥ s,
then tn is an actual departure time for PQ with probability 1, whereas if N∅(tn−) ≥ s, the
probability that tn is an actual departure time for P∅ can be less than 1 since some of the
s servers may be idle at time tn in P∅. Similarly, if 0 < k < s servers are down at time tn
and NQ(tn−) ≥ s, then tn is an actual departure time for PQ with probability s−k

s
, whereas

if N∅(tn−) ≥ s, the probability that tn is an actual departure time for P∅ can be less than
s−k
s

since some of the s − k functioning servers may be idle at time tn in P∅. If all servers
are functioning at time tn and NQ(tn−) = m < s, then tn is an actual departure time for
PQ with probability m

s
whereas if N∅(tn−) = m < s, the probability that tn is an actual

departure time for P∅ can be less than m
s
since the number of customers being served at

time tn can be less than m in P∅. Similarly, if 0 < k < s servers are down at time tn and
NQ(tn−) = m < s, then tn is an actual departure time for PQ with probability min{s−k,m}

s

whereas if N∅(tn−) = m < s, the probability that tn is an actual departure time for P∅ can

be less than min{s−k,m}
s

since the number of customers served at time tn can be less than
min{s− k,m} in P∅. Finally, if all s servers are down at time tn, then the probability that
tn is a departure time is zero for both systems regardless of the number of customers in the
system at time tn. Since both systems experience the same arrival process {an : n ≥ 1}, this
immediately yields that NQ(t)

st

≤ N∅(t) for all t ≥ 0. □

A.3 Proof of Proposition 5.2

Let {an : n ≥ 1} and {tn : n ≥ 1} be defined as in the proof of Proposition 5.1. First
assume that both servers are reliable. Then note that if NQ,F (tn−) = m ≥ 1, then tn is an

actual departure time for PQ,F with probability min{m,s}
s

, whereas if NS(tn−) ≥ 1, then tn
is an actual departure time for PS with probability 1. Since both systems experience the
same arrival process {an : n ≥ 1}, this immediately yields the desired stochastic ordering
result for systems with reliable servers. Similarly, one can generate the server failure times
and repair times so that both systems experience the same down times. Then having server
failures is equivalent to setting the probability of tn being a departure time equal to 0 (for
both systems) if tn occurs during a server down time, and the result follows. □

A.4 Results for Reliable Systems

The next two propositions are on reliable systems. Consider an M/M/1 queue with arrival
rate sλ and service rate sµ and an M/M/s queue with arrival rate sλ and service rate µ for
each server, where s ≥ 2. Let N (1) and N (s) be the steady-state number of customers in the
single-server and s-server queues, respectively, when λ

µ
< 1. We have the following result

whose proof uses an argument similar to the one in Wolff [28] (pages 257–258).

Proposition A.1 There exists 0 < k∗ ≤ s − 1 such that P{N (1) = k} > P{N (s) = k} for
all k < k∗ and P{N (1) = k} < P{N (s) = k} for all k ≥ k∗.
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Proof Using the corresponding CTMCs, one can immediately show that

P{N (1) = k + 1}
P{N (1) = k}

=
λ

µ
for all k = 0, 1, . . .,

P{N (s) = k + 1}
P{N (s) = k}

=
sλ

(k + 1)µ
for all k = 0, 1, . . . , s− 2,

P{N (s) = k + 1}
P{N (s) = k}

=
λ

µ
for all k = s− 1, s, . . ..

Thus,

P{N (1) = k + 1}
P{N (1) = k}

<
P{N (s) = k + 1}
P{N (s) = k}

for all k = 0, 1, . . . , s− 2,

P{N (1) = k + 1}
P{N (1) = k}

=
P{N (s) = k + 1}
P{N (s) = k}

for all k = s− 1, s, . . ..

The result now follows from the fact that
∑∞

k=0 P{N (1) = k} =
∑∞

k=0 P{N (s) = k} = 1. □

We now prove our observation that in a queueing system with Poisson arrivals of rate
sλ and s reliable servers whose service times are exponentially distributed with rate µ (i.e.,
system PQ with reliable servers), the mean number of customers in the system (L) increases
with the number of servers s.

Proposition A.2 Let Ls denote the steady-state mean number of customers in a reliable
M/M/s queue with arrival rate sλ and service rate µ for each server, where λ < µ. Then
Ls ≤ Ls+1 for s = 1, 2, . . ..

Proof It is well known that

Ls =
sλ

µ
+

( sλ
µ
)sλµ

s!(µ− λ)2

( s−1∑
i=0

1

i!
(
sλ

µ
)i +

1

s!

( sλ
µ
)sµ

µ− λ

)−1

(see for example page 88 of Gross and Harris [9]). This yields

Ls =
λ[s2e

sλ
µ (µ− λ)2Γ(s, sλ

µ
) + ( sλ

µ
)sµ((s+ 1)µ− sλ)]

(µ− λ)µ[s(µ− λ)e
sλ
µ Γ(s, sλ

µ
) + µ( sλ

µ
)s]

,

where Γ(a, z) =
∫∞
z

e−tta−1dt is the incomplete Gamma function. Then some algebra yields

Ls+1 − Ls

=
λ[e

λ(2s+1)
µ s(µ− λ)2Γ(s, sλ

µ
)Γ(s+ 1, (s+1)λ

µ
) + e

sλ
µ s(µ− λ)λ( (s+1)λ

µ
)sΓ(s, sλ

µ
)]

µ[e
sλ
µ s(µ− λ)Γ(s, sλ

µ
) + µ( sλ

µ
)s][e

(s+1)λ
µ (µ− λ)Γ(s+ 1, (s+1)λ

µ
) + λ( (s+1)λ

µ
)s]

(21)

+
[e

sλ
µ sµλ( (s+1)λ

µ
)sΓ(s, sλ

µ
)− e

(s+1)λ
µ µλ( sλ

µ
)sΓ(s+ 1, (s+1)λ

µ
) + µλ( sλ

µ
)s( (s+1)λ

µ
)s]

µ[e
sλ
µ s(µ− λ)Γ(s, sλ

µ
) + µ( sλ

µ
)s][e

(s+1)λ
µ (µ− λ)Γ(s+ 1, (s+1)λ

µ
) + λ( (s+1)λ

µ
)s]

. (22)
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Note that the expression in (21) is positive. Furthermore, using the definition of the incom-
plete Gamma function, with some algebra the numerator of (22) can be written as

λµs!(
λ

µ
)s

s−1∑
k=0

(s+ 1)ksk

k!
(
λ

µ
)k
[
(s+ 1)s−k − ss−k

]
> 0,

which completes the proof. □

A.5 Results for Frequent and Short Downtimes

In this section, we compute the limiting values of the mean number of customers in systems
P∅, PQ, PQ,F , and PS as both the failure rate f and the repair rate r tend to infinity (at the
same rate) and investigate how they compare to each other.

Proposition A.3 Suppose s = 2 and f = ar, where a > 0 (and, hence, R = 1
1+a

and
λ < µ

1+a
). Then

lim
r→∞

L∅ =
2(a+ 1)λ

µ− (a+ 1)λ
,

lim
r→∞

LQ =
2(a+ 1)2µλ

(µ− (a+ 1)λ)((2a+ 1)µ+ (a+ 1)λ)
,

lim
r→∞

LQ,F =
2(a+ 1)λµ

(µ+ (a+ 1)λ)(µ− (a+ 1)λ)
,

and

lim
r→∞

LS =
(a+ 1)λ

(µ− (a+ 1)λ)
.

Thus, we have

lim
r→∞

LS < lim
r→∞

LQ < lim
r→∞

LQ,F < lim
r→∞

L∅.

Proof The first part of the proposition follows from taking the limits of the closed form
expressions of L∅, LQ, LQ,F , and LS in Sections 3.1, 3.2, 3.3, and 3.4, respectively. Though
the limits for L∅, LQ,F , and LS are straightforward, computing the limit for LQ is more
tedious (due to the square root terms) and requires using the L’Hopital rule. Then with
some algebra we have

lim
r→∞

L∅ − lim
r→∞

LQ,F =
2(a+ 1)2λ2

(µ+ (a+ 1)λ)(µ− (a+ 1)λ)
> 0,
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lim
r→∞

LQ,F − lim
r→∞

LQ =
2a(a+ 1)λµ

(µ+ (a+ 1)λ)((2a+ 1)µ+ (a+ 1λ))
> 0,

and

lim
r→∞

LQ − lim
r→∞

LS =
(a+ 1)λ

(2a+ 1)µ+ (a+ 1)λ
> 0.

This concludes the proof. □

Note that in the limit P∅ behaves as two reliable M/M/1 queues with service rate µ
(a+1)

.

Similarly, in the limit, PS behaves as a reliable M/M/1 queue with arrival rate 2λ and service
rate 2µ

a+1
, and PQ,F behaves as a reliable M/M/2 system with arrival rate 2λ and service rate

of each server µ
a+1

.

A.6 Results for Infrequent and Long Downtimes

In this section, we compute the limiting values of the mean number of customers in systems
P∅, PQ, PQ,F , and PS as both the failure rate f and the repair rate r tend to 0 (at the same
rate) and investigate how they compare to each other.

Proposition A.4 Suppose s = 2 and f = ar, where a > 0 (and, hence, R = 1
1+a

and
λ < µ

1+a
). Then

(i)

lim
r→0

L∅ = lim
r→0

LQ = lim
r→0

LQ,F = lim
r→0

LS = ∞,

(ii)

lim
r→0

L∅

LQ,F

= lim
r→0

L∅

LS

= 1.

If 2λ ≥ µ,

lim
r→0

L∅

LQ

=
2λ(λ+ µ)(a+ 1)

λ(2aµ+ λ) + µ(2λ− µ)
> 1 (23)

and if 2λ ≤ µ,

lim
r→0

L∅

LQ

=
2(a+ 1)2(λ+ µ)(µ− λ)

(a2λ+ µ)(µ− 2λ) + (a+ 1)(λ2 + aµ2)
> 1, (24)

with limr→0
L∅
LQ

= 6(a+1)
4a+1

when 2λ = µ.

(iii)

lim
r→0

LQ,F

LS

= 1,

lim
r→0

LQ,F

LQ

= lim
r→0

LS

LQ

= lim
r→0

L∅

LQ

.
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Proof Parts (i) and (ii) of the proposition follow from taking the limits of the closed form
expressions of L∅, LQ, LQ,F , and LS in Sections 3.1, 3.2, 3.3, and 3.4, respectively. The
expressions in (23) and (24) are greater than 1 since

2λ(λ+ µ)(a+ 1)− [λ(2aµ+ λ) + µ(2λ− µ)] = λ2(2a+ 1) + µ2 > 0

and

2(a+ 1)2(λ+ µ)(µ− λ)− [(a2λ+ µ)(µ− 2λ) + (a+ 1)(λ2 + aµ2)]

= a2µ(µ− λ) + a(3µ2 − 5λ2) + µ(µ+ 2λ)− 3λ2 > 0

since in this case µ ≥ 2λ. Part (iii) follows immediately from part (ii). □
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