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Abstract

This paper is concerned with the dynamic assignment of servers to tasks in queueing

networks where demand may exceed the capacity for service. The objective is to maxi-

mize the system throughput. We use fluid limit analysis to show that several quantities

of interest, namely the maximum possible throughput, the maximum throughput for a

given arrival rate, the minimum arrival rate that will yield a desired feasible through-

put, and the optimal allocations of servers to classes for a given arrival rate and desired

throughput, can be computed by solving linear programming problems. We develop

generalized round robin policies for assigning servers to classes for a given arrival rate

and desired throughput, and show that our policies achieve the desired throughput

as long as this throughput is feasible for the arrival rate. We conclude with numeri-

cal examples that illustrate the points discussed and provide insights into the system

behavior when the arrival rate deviates from the one the system is designed for.

Key words and phrases: multi-class queueing networks, stability, fluid model, maximum

throughput, Jackson networks.
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1 Introduction

This paper investigates multi-class discrete-flow networks with flexible servers when demand

is allowed to exceed the capacity for service. Multiple types of customers are serviced by

flexible servers that are able to work on several different classes. Offered demand to each

class can come from both external sources as well as internal transitions. The same server

can have different service rates for different classes. Moving the servers among the classes

is assumed to incur switching times that can be different for each origin-destination pair of

classes. More than one server can be assigned to a given class, possibly with different service

rates. In that case, servers at a class can either cooperate by working simultaneously on

a customer, or work in parallel and process the customers separately. We concentrate on

the case where the servers work in parallel and there is one arrival stream routed to various

classes (cooperating servers and multiple arrival streams are straightforward extensions).

Our aim in this paper is to find the best assignment of servers to classes so that the

throughput of the system is maximized. We will refer to the process that the servers use to

decide what classes to work on as a policy. To motivate our analysis, consider manufacturing

processes where demand exceeds the production capacity and work in process can be either

salvaged for some profit or scrapped at small cost compared to the final product value. In

these cases, allowing instability in the system might be desirable given the right parameters.

Flexible server systems with unstable nodes have not been studied to date. We will quantify

the effects of allowing instability on both throughput and server assignments.

In recent years, there has been a growing interest in queueing systems with flexible servers,

with most of the work examining holding costs or throughput. Works that minimize total

holding costs by studying how servers should be assigned to stations include Ahn, Duenyas,

and Lewis [1], Ahn, Duenyas, and Zhang [2, 3], Bell and Williams [9, 10], Bramson and

Williams [12], Farrar [21], Hajek [24], Harrison and López [26], Pandelis and Teneketzis [35],

Rosberg, Varaiya, and Walrand [36] and Williams [44]. Works that aim to maximize the long-

run average throughput through dynamic assignment of reliable servers include Andradóttir,

Ayhan, and Down [4, 5, 6] and Tassiulas et al. [39, 40]. By contrast, Andradóttir, Ayhan,

and Down [7, 8] and Wu, Lewis, and Veatch [45] determine the optimal allocation of flexible

servers in a tandem-line system where servers are not necessarily reliable.

The earliest work we are aware of that considers overloaded systems is by Goodman and

Massey [23]. They study non-ergodic Jackson networks and propose a way to determine the

maximal subnetwork that achieves steady state. Weiss [43] considers a Jackson network in

which some nodes have an infinite supply of customers. He shows that when only customers

in transit are counted as congestion, the stable subset of nodes has the usual product-form
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distribution. Similarly, a marginal distribution for the number of customers in transit exists

for nodes with infinite supply of work, but the joint distribution does not have product-

form. Kopzon, Nazarathy, and Weiss [31] and Nazarathy and Weiss [34] determine policies

for push-pull networks that ensure that the networks are working at full utilization.

Chen and Mandelbaum [13] conduct a bottleneck analysis of a dynamic, discrete-flow

network, where customers are indistinguishable. They use a fluid approximation to identify

the system throughput, and show that calculating equilibrium throughput rates is equivalent

to identifying the bottlenecks of the original network. Unlike our work, in their network,

servers are dedicated to a single class. We will find that allowing the servers to be flexible

considerably complicates the analysis, as it is difficult to precisely control the amount of

time a server spends at each class. A diffusion approximation for the fluid model in Chen

and Mandelbaum [13] is described by the same authors in [14]. Andradóttir, Ayhan, and

Down [6] identify a tight upper bound on the capacity, while maintaining stability, and

provide a method to construct server assignment policies with performance arbitrarily close

to this bound. By contrast, our paper does not require the system to be stable, which also

significantly complicates the analysis. Note that if the class of a customer determines the

server (that is if only one server is allowed per class) and the servers are not allowed to move,

then our problem reduces to production scheduling of classes at each node.

Overloaded systems have also been considered in nonstandard queueing networks where

the service rates at individual classes are not independent, but depend deterministically on

the state of the entire system. In such a network, Jonckheere, van der Mei, and van der Weij

[29] obtain necessary conditions for rate stability at each class, and also provide bounds for

the output rate at each class. Similarly, for bandwidth sharing networks, Egorova, Borst, and

Zwart [20] give a partial characterization of the overloaded system’s behavior by providing a

fixed-point equation for the asymptotic growth rates of the queue lengths. For an overloaded

switched network, Shah and Wischik analyze a fluid model in [37], and show that the system

converges to an invariant state in [38]. Finally, Georgiadis and Tassiulas [22] study the effects

of overload in a single commodity network that models information flow.

The use of fluid limits in queueing systems is by now a standard technique. It is known

that there is a correspondence between stability of the fluid model and stability of the

queueing network in a class of networks considered by Dai [15]. It is also known that if the

fluid model is unstable in a strong sense, then the queueing network is unstable in the sense

that the total number of customers in the queueing network diverges (Dai [16]). However,

additional analysis is required to address how the network becomes unstable.

The organization of this paper is as follows. Section 2 describes our queueing network

model and assumptions. In Section 3, we construct a linear program (LP) that is used to
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identify the optimal allocation of servers to classes, as well as the resulting throughput, and

provide a uniqueness result for the sets of stable or unstable classes. Section 4 introduces two

server allocation policies that can achieve any throughput less than the optimal value (with

proofs in Appendix A). In Section 5, the concepts of “saturation” input and maximum output

are introduced, as well as modified linear programs to calculate those quantities. Section 6

gives numerical results that show how the assignments are determined for a specific network,

and provides information about the sensitivity of the optimal assignment to the demand, as

well as some simulation results. Finally, Section 7 summarizes our findings.

2 Queueing Network Model

We consider a multiclass network similar to that of Kelly and Laws [30]. It is a classical

queueing network generalized to have flexible servers, and is broad enough to cover a wide

range of application fields, including manufacturing systems, service systems, and computer

systems. Our model facilitates the translation of our stability results (obtained via fluid ap-

proximation) into implementable policies for the original system. As a result, it is somewhat

less general than the stochastic processing networks considered by Harrison [25, 27, 28].

More specifically, we consider a network of M servers and K classes, with a buffer of

infinite size for each class. The class of a customer represents its current processing stage

and customers can change class after each stage. The classes may all be at separate physical

stations or there may be several classes served at a particular station. The network is

supplied by an exogenous arrival process with independent and identically distributed (i.i.d.)

increments u(n) for the nth customer with E(u(1)) = 1/λ. An external arrival is routed to

class k with probability p0,k, for k = 1, . . . , K. Let the resulting interarrival time of the nth

customer at class k be denoted by uk(n). We allow p0,k = 0 for some k, meaning that the

external arrival process for customers to class k is null. The arrival rate to class k is denoted

by λk = λp0,k. Our results in Sections 3 and 4 are easily extended to the case where some

classes have independent arrival streams with i.i.d. interarrival times and rates λk at class k.

Upon completion of service, a class i customer becomes one of class k with probability

pi,k, and leaves the system with probability pi,0 = 1 −
∑K

k=1 pi,k for i, k = 1, . . . , K. Let

the routing matrix P have (i, k) entry pi,k for i, k = 1, . . . , K. We assume that the n-step

transition matrix P n satisfies P n → 0 as n → ∞, which implies that the network is open

and (I − P )−1 exists and is nonnegative.

The servers are assumed to be flexible, with each server being capable of serving a set of

classes. If server j is capable of serving class k and service is in parallel and nonpreemptive,

then the nth customer served by server j at class k has a service time given by vj,k(n). Hence
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the service rate at a class can depend on both the server and the class being served. We

assume that the sequence {vj,k(n)} is i.i.d. for each j = 1, . . . ,M and k = 1, . . . , K. The

mean service time is given by mj,k = E(vj,k(1)) for server j at class k, with corresponding

service rate µj,k = 1/mj,k. If server j is not capable of serving class k, we set vj,k(n) = ∞
and µj,k = 0. Within a class, service is First Come First Served (FCFS). If there are

multiple servers available for service at a given class, they can be simultaneously working on

different customers, and any one of them can be assigned to a particular customer. Moving

server j from class i to class k the nth time incurs a switching time ξji,k(n), i, k = 1, . . . , K,

j = 1, . . . ,M . We assume that the sequence {ξji,k(n)} is i.i.d. for each i, k = 1, . . . , K,

j = 1, . . . ,M with mean sji,k = E(ξji,k(1)). The interarrival, service, and switchover times

(i.e., u(n), vj,k(n), and ξji,k(n) for all i, j, k, and n) are assumed to be mutually independent.

Next we define cumulative processes. The total number of exogenous arrivals at time t is

given by E0(t). The processes A = {A(t), t ≥ 0}, E = {E(t), t ≥ 0}, and D = {D(t), t ≥ 0}
are K-dimensional column vectors with Ak(t) denoting the cumulative number of class k

customers that arrive in (0, t], Ek(t) being the number of exogenous arrivals to class k in

(0, t], and Dk(t) being the number of departures from class k in (0, t]. The variable Φi,k(n) =∑n
l=1 ϕi,k(l), i = 1, . . . , K, k = 0, . . . , K is the number of customers that arrive to class k

from class i among the first n customers passing through class i (the k=0 case corresponds

to departures from the system), and ϕi,k(n) are multi-Bernoulli random variables; i.e., the

vectors (ϕi,0(n), ϕi,1(n), . . . , ϕi,k(n)) are independent, and for each i, n, exactly one ϕi,k(n) is

equal to 1 with probability pi,k, for k = 0, . . . , K, and the remainder are zero (meaning that

the nth customer from class i is routed to class k). Moreover, Vj,k(t) is the residual service

time for class k by server j at time t (set to infinity if µj,k = 0) and U(t), Uk(t) are the

residual exogenous interarrival time at time t to the system and to class k, respectively. Let

Tj,k(t) be the total amount of time that server j spends serving class k customers in (0, t]

and Sj,k(t) be the potential number of service completions by server j at class k if server j

devotes all its time to class k in (0, t]. Finally, let W j
i,k(n) denote the total time spent by

server j on switching from class i to class k up to and including the nth switch.

Expressing the cumulative processes in terms of the interarrival, service, and switching

times uk(n), vj,k(n), and ξji,k(n), we have

Sj,k(t) = max{n : Vj,k(0) + vj,k(1) + vj,k(2) + · · ·+ vj,k(n− 1) ≤ t}; (1)

E0(t) = max{n : U(0) + u(1) + u(2) + · · ·+ u(n− 1) ≤ t}; (2)

Ek(t) = max{n : Uk(0) + uk(1) + uk(2) + · · ·+ uk(n− 1) ≤ t}; (3)

W j
i,k(n) =

n∑
m=1

ξji,k(m). (4)
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By the Strong Law of Large Numbers (SLLN), we have,

lim
t→∞

Ek(t)

t
= λk, lim

t→∞

Sj,k(t)

t
= µj,k, and lim

n→∞

W j
i,k(n)

n
= sji,k,

for j = 1, . . . ,M, and i, k = 1, . . . , K. (5)

Finally, we assume that the interarrival times are unbounded and spread out. That is, there

exists some integer l, and some function q(x) ≥ 0 on R+ with
∫∞
0

q(x)dx > 0, such that

P (u(1) ≥ x) > 0, for any x > 0, (6)

P (a ≤ u(1) + . . .+ u(l) ≤ b) ≥
∫ b

a

q(x)dx, for any 0 ≤ a < b. (7)

This assumption is required for Theorem 4.2 in Dai [15], which we will use in Appendix A.

Let the queue length at class k at time t be denoted by Qk(t). For a given server

assignment policy (i.e., the functions Tj,k(t) are given for all j and k), the cumulative variables

satisfy the following queueing network equations

Ak(t) = Ek(t) +
K∑
i=1

Φi,k(Di(t)), k = 1, . . . , K; (8)

Dk(t) =
M∑
j=1

Sj,k(Tj,k(t)), k = 1, . . . , K; (9)

Qk(t) = Qk(0) + Ak(t)−Dk(t), k = 1, . . . , K; (10)

and 0 ≤
∑K

k=1 Tj,k(t) ≤ t, j = 1, . . . ,M . Finally, letD(t) =
∑K

k=1Φk,0(Dk(t)) be the number

of departures from the system by time t. Then the throughput of the system is given by

lim supt→∞ D(t)/t. Note that the switching times do not appear explicitly in equations (8)

through (10), but they are incorporated implicitly through the functions {Tj,k(t)}.

3 Deterministic Analysis

Deterministic analysis (such as linear programs based on a fluid approximation) has been a

very useful tool for addressing production, resource, and input planning problems in stochas-

tic processing networks. Constructing a policy to achieve a given objective based on a simple

LP is also known as the “static planning problem,” introduced by Harrison in a series of

papers [25, 27, 28]. This type of problem has received a lot of attention (see for example

Nazarathy and Weiss [33, 34] and Dai and Lin [18] for various problem formulations).

When we allow instability in the system, the calculation of the flow rates is not obvious. In

particular, the usual traffic equation for the flow rate at class k (i.e., rk = λp0,k+
∑K

i=1 pi,kri,
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where rk is the effective inflow rate to class k) is not valid, because in our case the input rate

to a class does not necessarily equal the output rate from that class. In this section, given

the offered demand λ to the system, we construct an optimization problem whose solution

provides both the optimal allocation of servers to classes and also the corresponding input

and output rates at each class. The allocation of the servers is such that the maximum

capacity for the network is achieved for λ, while satisfying network constraints.

The outline of this section is as follows. In Section 3.1 the LP that is used to determine

the allocation of servers, is constructed. Section 3.2 introduces a uniqueness result for the

effective inflow and outflow from each node in the network given the allocation parameters.

Finally, in Section 3.3, we identify the stable and unstable classes based on the allocation

LP, and also consider the special case when we have a Jackson network.

3.1 The Allocation LP

In this section, we introduce the allocation LP that will be used for solving the static planning

problem. We start by defining the flows within the network. The effective inflow rate ak to

class k consists of inflow from the outside plus the inflow from the other classes within the

network. Similarly, dk is the effective outflow rate from class k. Let δj,k be the fraction of

time that server j devotes for class k customers. For all k = 1, . . . , K, we have

ak = λp0,k +
K∑
i=1

dipi,k, (11)

dk = min
( M∑

j=1

µj,kδj,k, ak

)
. (12)

Next, we maximize the throughput over the decision variables dk ≥ 0 and δj,k ≥ 0, for

j = 1, . . . ,M and k = 1, . . . , K, using the following allocation LP:

max
K∑
k=1

dkpk,0 such that (13)

dk ≤
M∑
j=1

µj,kδj,k, k = 1, . . . , K; (14)

dk ≤ λp0,k +
K∑
i=1

dipi,k, k = 1, . . . , K; (15)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M ; (16)

dk ≥ 0, δj,k ≥ 0, j = 1, . . . ,M, k = 1, . . . , K. (17)
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Our objective in this LP is to allocate the servers to the classes so that the output from the

system is maximized. The right-hand side of the first constraint (14) is the total amount

of service effort allocated to class k and the left-hand side is the long-run departure rate

from class k. So (14) simply means that the departure rate from a class k cannot exceed

the service allocation to that class. Similarly, the right-hand side of constraint (15) is the

long-run arrival rate to class k. So this constraint means that the long-run departure rate

from a class can not exceed the long-run arrival rate to that class. The constraint (16)

prevents us from overallocating a server, and (17) prevents negative allocations.

Let δ∗j,k ≥ 0 and d∗k ≥ 0 for all j, k be an optimal solution to the above LP for the

demand λ. Let µ∗(λ) =
∑K

k=1 d
∗
kpk,0 be the optimal value of the LP corresponding to λ.

Clearly, (d∗1, . . . , d
∗
K) is an optimal solution to the above LP if and only if (d∗1, . . . , d

∗
K) satisfy

equations (11) − (12) with δj,k = δ∗j,k, for all j, k. Consequently, one can obtain a solution

to (11)− (12) under the optimal allocation δ∗j,k, for all j, k, by solving the LP. The solution

to the allocation LP provides an upper bound on the maximum achievable throughput, and

we will see that we can get arbitrarily close to this value. The following theorem states this

fact; a proof will be given in Appendix A. Policies that achieve throughput arbitrarily close

to the optimum value of the allocation LP will be described in Sections 4.1 and 4.2.

Theorem 3.1. (a) Any throughput less than µ∗(λ) can be achieved, where µ∗(λ) is the

optimal value of the allocation LP (13) − (17) for the offered demand λ. That is,

for any given λ and 0 < ϵ < 1, there exists a policy π with throughput µπ such that

µπ ≥ (1− ϵ)µ∗(λ).

(b) A throughput larger than µ∗(λ) cannot be achieved by any policy.

We also have a result on the behavior of the optimal objective function value µ∗(λ) as a

function of λ. This result is a corollary of Theorem 5.1 in Bertsimas and Tsitsiklis [11].

Lemma 3.1. The optimal objective function value µ∗(λ) obtained from the allocation LP

(13)-(17) is a continuous, non-decreasing, piece-wise linear, and concave function of λ.

Proof. The fact that µ∗(λ) is non-decreasing as we increase λ is obvious, since by increasing

λ, we are increasing the feasible set. The concavity and linearity of µ∗(λ) follows from

Theorem 5.1 in [11]. Finally, the continuity follows from the concavity.

3.2 Uniqueness

In this section, we discuss the uniqueness of the solution (a∗k, d
∗
k), where k = 1, . . . , K, of

equations (11)−(12) given allocations δ∗j,k, j = 1, . . . ,M, k = 1, . . . , K. Lemma 3.2 of Chen
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and Mandelbaum [13] shows that the a∗k, d
∗
k are unique. Tekin [41] discusses how this result

follows from converting (11)− (12) to a linear complementarity problem.

However, non-unique allocations may lead to non-unique (a∗k, d
∗
k) values. For instance,

consider a network with three classes, external input only to class 1, and each customer

equally likely to go to class 2 or class 3 from class 1, after which they exit the system. We

have two servers with µj,k, j = 1, 2, k = 1, 2, 3, values given by the (j, k) entry in the matrix

H =

(
5 0 0

0 2 2

)
.

Let λ = 6. Then, based on the solution of the allocation LP, µ∗(λ) is 2 and can be achieved

through different assignments, each resulting in different (a∗k, d
∗
k) values. For instance, let the

M ×K matrix T ∗ have (j, k) entry δ∗j,k, for all j, k. Consider the following two assignments:

T ∗
1 =

(
1 0 0

0 1 0

)
, T ∗

2 =

(
1 0 0

0 0 1

)
.

For both assignments, µ∗(λ) is 2. Then, for the first assignments we have a∗2 = a∗3 = 2.5 and

d∗2 = 2, d∗3 = 0; however for T ∗
2 , we have a∗2 = a∗3 = 2.5 and d∗2 = 0, d∗3 = 2.

3.3 Classification of the Nodes

In this section, we introduce stable and unstable sets of nodes based on the solution of the

LP. This classification will be used later to construct server allocation policies. In particular,

we separate the nodes into two sets as follows:

S = {k : a∗k = d∗k}, (18)

U = {k : a∗k > d∗k}. (19)

Since there is a unique solution for (11)−(12), see Section 3.2, the sets S and U are uniquely

determined given the allocations {δ∗j,k}. The sets S and U specify the classes that are stable

and unstable, respectively, in the solution of the allocation LP, where a class is defined

to be stable if the departure rate from the class equals the arrival rate. Note that the

unstable classes U cannot simply be determined by comparing the solution of the regular

balance equations {rk} with the effective processing rates at each station; i.e., U is in general

different from {k : rk ≥ µ∗
k}, where rk = λp0,k +

∑K
i=1 ripi,k and µ∗

k =
∑M

j=1 µj,kδ
∗
j,k for all k.

For example, consider the network shown in Figure 1, where all customers arrive to class

1 and each customer is equally likely to either depart or be routed to the other class from
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each class 1, 2; see also the routing matrix P . Suppose that we have three servers and that

the service rates for each class are given in the matrix H, where the (j, k) entry is µj,k:

P =

(
0 0.5

0.5 0

)
, H =

 6 2

5 1

4 0

 . (20)

Looking at the service rates µj,k in H, the best assignment of the servers to the classes is

not obvious. Since the effective arrival and departure rates at the classes depend on these

allocations, identifying the unstable classes from the matrix H by inspection is also not

obvious. So we resort to the allocation LP (13)− (17). When λ = 6, the optimum objective

function value (d∗1/2 + d∗2/2) is given by µ∗(6) ≃ 4.7727 and the assignments are as follows

T ∗ ≃

 0 1

0.6364 0.3636

1 0

 . (21)

According to these results, we see that the effective processing capacities, departure, and

arrival rates at each class k = 1, . . . , K are given by

µ∗ ≃ [7.1818, 2.3636]′, d∗ ≃ [7.1818, 2.3636]′, a∗ ≃ [7.1818, 3.5909]′,

where µ∗ = [µ∗
1, . . . , µ

∗
K ]

′, d∗ = [d∗1, . . . , d
∗
K ]

′ and a∗ = [a∗1, . . . , a
∗
K ]

′. If we solve the regular

balance equations, we obtain r1 = 8 and r2 = 4, so that {k : rk ≥ µ∗
k} = {1, 2}. However,

according to our algorithm, the only unstable class in the solution of the allocation LP is

class 2, because we have a∗1 = d∗1 and a∗2 > d∗2, so that U = {2} and S = {1}.

-���� -�����
�
�
�

���

�
�
�
�
�

���

1 2

Figure 1: A two-class network

As shown before, we cannot simply determine stable and unstable nodes by inspection,

and Jackson networks are no exception. Goodman and Massey [23] identify the maximal

subnetwork that achieves steady state in a non-ergodic Jackson network. However, the

allocation LP can also determine the stable and unstable sets of nodes for Jackson networks

with the servers constrained to choose only one class to serve (i.e., δj,k ∈ {0, 1}, for all j
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and k). Unlike the algorithm suggested by Goodman and Massey [23] to find the stable

and unstable sets, our LP not only provides a classification of the nodes but also suggests

an optimal server allocation plan that maximizes throughput. If the server allocation is

predetermined (i.e., the δ∗j,k are given), then the stable and unstable sets defined as S ′ =

{k : a∗k < µ∗
k} and U ′ = {k : a∗k ≥ µ∗

k} coincide with those determined in Goodman

and Massey [23]. The difference between S, U and S ′, U ′ reflects the different definition of

stability considered in [23]. In particular, as we are considering rate stability, nodes with

a∗k = µ∗
k = d∗k are considered stable in our case. Moreover, an invariant distribution exists

for the stable set of classes as shown by Goodman and Massey [23].

Note that a policy π whose throughput µπ is arbitrarily close to the optimum throughput

µ∗(λ) (i.e., µπ ≥ µ∗(λ) − ϵ, where ϵ > 0 is small) does not necessarily have the same sets

of stable and unstable classes as determined by the allocation LP. For instance, consider a

network with two classes and demand λ = 1, where each job is equally likely to go to class 1

or 2, from which they exit the system. We have one flexible server with (µ1,1, µ1,2) = (1, 0.5).

Then, the unique optimal allocations are given by δ∗1,1 = 1/2 and δ∗1,2 = 1/2 with µ∗(λ) =

0.75. Hence the sets S and U are uniquely determined by {1} and {2}, respectively.
Next we consider three near-optimal allocations that yield different stable and unstable

sets. First, for any 0 < ϵ < 1, let (δ
(1)
1,1, δ

(1)
1,2) = ((1−ϵ)/2, 1/2), so that S(1) = ∅, U (1) = {1, 2},

and µ(1) = µ∗(λ)− ϵ/2 > µ∗(λ)− ϵ. Secondly, for any 0 < ϵ < 1, let (δ
(2)
1,1, δ

(2)
1,2) = (1/2, (1−

ϵ)/2), so that S(2) = {1}, U (2) = {2}, and µ(2) = µ∗(λ)− ϵ/4 > µ∗(λ)− ϵ. Finally, consider

the assignment (δ
(3)
1,1, δ

(3)
1,2) = (0, 1), then we have µ(3) = 0.5 ≥ µ∗(λ) − ϵ for ϵ ≥ 0.25,

and S(3) = {2}, U (3) = {1}. We observe that even if the allocation LP has unique set

classifications, we can construct policies based on ϵ with different stable and unstable sets.

Hence, we conclude that stability of a class according to the LP does not imply its stability

for a near-optimal policy, and vice versa. Returning to the example, if we want to get

arbitrarily close to µ∗(λ) with a small enough ϵ, then only policies 1 and 2 are valid, because

the last one violates this requirement. This suggests that as we get closer to the optimum

allocations (i.e., ϵ → 0), the set of unstable classes under a near-optimal policy will contain

the set of unstable classes of the allocation LP.

There appear to be connections between the unstable set of classes obtained as a result of

a given policy and the infinite virtual queues discussed in Kopzon, Nazarathy, and Weiss [31],

Nazarathy, and Weiss [33, 34], and Weiss [43]. The nodes with infinite virtual queues have

an infinite supply of work, and are comparable to the unstable nodes in our case. However,

the infinite virtual queues are considered stable, because they are always nonempty with

a finite number of customers. Also, in our case the set of unstable nodes depends on the

selected policy, whereas the infinite virtual queues in [31, 33, 34, 43] are predetermined.
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4 Optimum Server Allocation

In this section, we develop two server allocation algorithms that achieve throughput that

is arbitrarily close to the optimum value of the allocation LP (13) − (17). The analysis is

complicated by the observation in the previous section that for a policy π, the sets of stable

and unstable classes may not correspond to those given by the LP. This makes it difficult to

determine the proportion of time spent by a server at each class under π. To ensure that these

proportions are sufficiently close to the allocations obtained by the solution of the allocation

LP, we propose two approaches. The first, described in Section 4.1, involves admission

control and controlled routing. The second approach, described in Section 4.2, involves

forced idling of servers at certain classes. In Appendix A we prove that the algorithms

provided in Sections 4.1 and 4.2 can be used to obtain throughput that is arbitrarily close

to the maximum output µ∗(λ) given the available demand λ.

4.1 Server Allocation Policy with Admission and Routing Control

In this section, an algorithm for assigning servers to classes is presented based on the alloca-

tion LP introduced in Section 3.1. In particular, suppose that we are given a certain λ (level

of offered demand to the system) and are asked to maximize the throughput without regard

to stability. Let {δ∗j,k} be the optimal assignment fractions given by the solution to the al-

location LP (13)− (17), and let µ∗(λ) =
∑K

k=1 d
∗
kpk,0 be the resulting optimum throughput.

Our aim is to assign servers to classes based on the fractions {δ∗j,k} to achieve throughput

as close to µ∗(λ) as desired. For this, a generalized round robin server assignment policy

is considered, together with admission control and controlled routing. More specifically, we

reject arrivals to the system with a small probability, and also modify the routing proba-

bilities pi,k, for all i, k, so that the arrival rate to the classes k ∈ U is reduced to d∗k and

excess input is rerouted to an imaginary class K + 1 served by an imaginary server M + 1.

In practice, the customers routed to class K + 1 would be scrapped, but the addition of

this imaginary class facilitates differentiation between successful completions and scrapped

customers. This approach not only guarantees a target throughput, but also stabilizes the

classes in the network by scrapping just enough customers at certain classes in the network.

The following result is Proposition 3 of Andradóttir, Ayhan, and Down [6]. We use it to

show that for any allocation of servers to classes, a generalized round robin server assignment

policy exists that gets arbitrarily close to that allocation.

Proposition 4.1. Let κ be a finite set, and for each k ∈ κ, suppose that mk and δk satisfy

0 < mk < ∞, δk ≥ 0, and 0 ≤
∑

k∈κ δk ≤ 1. Suppose furthermore that 0 ≤ s < ∞. Then for

12



any 0 < ϵ ≤ 1, there exists a set of non-negative integers {lk}, where k ∈ κ, such that

lkmk

s+
∑

i∈κ limi

≥ δk(1− ϵ) for all k ∈ κ. (22)

Let 1{·} denote the indicator function. Then one possible choice for lk is

lk =

⌈
(1− ϵ)(s+

∑
i∈κmi1{δi > 0})δk
ϵmk

⌉
. (23)

Consider a specific generalized round robin server assignment policy π that has each

server j serving a fixed list V π
j of classes in a cyclic order. For each class k ∈ V π

j , server j

serves a maximum of lπj,k customers and then moves to the next class on the list for service,

but if the queue for class k empties before lπj,k service completions, the server moves on to

the next class on its list. If there are no more customers in any of the classes on the list,

then the server idles until an arrival to any class on the list. We now state how to choose the

parameters V π
j and lπj,k of our generalized round robin server assignment policy π, assuming

that the offered demand to the system is λ. Note that the choice of lπj,k determines the lot

sizes that server j should process at each visit to class k, and hence impacts the efficiency

of the policy. These values need to be chosen sufficiently large to mitigate the effects of

switching times (see Section 3.2 of Andradóttir, Ayhan, and Down [6] for various strategies

in choosing {lπj,k}). In the following algorithm, we are primarily interested in the behavior

of the network when λ > λ∗ (i.e., when U ̸= ∅), where λ∗ is the maximum offered demand

such that the system can be stabilized for λ < λ∗. The case λ < λ∗ is already covered in [6],

where it is shown that λ∗ can be computed by solving an appropriate LP.

1. Solve the allocation LP (13)− (17).

2. Choose 0 < ϵ < 1.

3. Admission Control: Thin the arrival process by rejecting arrivals with probability ϵ

and accepting them with probability 1 − ϵ, so that the arrival rate reduces to

λ′ = λ(1− ϵ).

Controlled Routing: Introduce an imaginary scrapping class K+1 with an associated

dedicated server M + 1 such that µM+1,K+1 = λ and δ∗M+1,K+1 = 1. Replace the

routing probabilities pi,k, where 0 ≤ i, k ≤ K by the following routing probabilities

p̄i,k, 0 ≤ i, k ≤ K. For 0 ≤ i ≤ K, let p̄i,k = pi,k for k ∈ S; p̄i,k = pi,kϵk for k ∈ U ,

where ϵk = d∗k/a
∗
k; p̄i,K+1 =

∑
k∈U pi,k(1− ϵk); and p̄K+1,0 = 1, p̄K+1,K+1 = 0. For

1 ≤ k ≤ K, p̄k,0 = pk,0 and p̄K+1,k = 0.
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4. For each server j, specify the ordered list V π
j using all of the classes k with µj,kδ

∗
j,k > 0.

Define the ith element of each list V π
j as vj,i and let | · | denote cardinality of a set.

5. For each server j with |V π
j | > 1, let sπj be the expected switching time in a cycle of

visiting the states in V π
j in order, so that

sπj =

|V π
j |−1∑
i=1

sjvj,i,vj,i+1
+ sjvj,|V π

j
|,vj,1

.

6. For each server j with |V π
j | > 1 and each class k ∈ V π

j , calculate parameters lπj,k

satisfying lπj,kmj,k/(s
π
j+
∑

i∈V π
j
lπj,imj,i) ≥ δ∗j,k(1−ϵ′), where ϵ′ = ϵ/(2−ϵ), see Proposition

4.1 and equation (23).

7. For each server j with |V π
j | = 1, set sπj = 0 and lπj,k = 1 for k ∈ V π

j .

8. For each server j and all classes k /∈ V π
j , let l

π
j,k = 0.

As a result of ignoring stability in the allocation LP (13) − (17), it is possible to have

queue lengths {Qk(t)} at certain classes k diverge as t → ∞, without the controlled routing.

The following theorem shows that the above generalized round robin server assignment policy

π with admission control and controlled routing yields throughput µπ that comes arbitrarily

close to achieving the desired throughput level of µ∗(λ), and also stabilizes the original

queueing network. The proof of Theorem 4.1 is postponed until Appendix A.

Theorem 4.1. A policy constructed using the above algorithm achieves throughput µπ =

(1 − ϵ)µ∗(λ). Moreover, the distribution of the queue length process {Q(t)} converges to a

steady state distribution as t → ∞.

It immediately follows from Theorem 4.1 that the choice ϵ = 1−µ/µ∗(λ) will guarantee

that we achieve a target throughput µ < µ∗(λ) (i.e., µπ = µ).

4.2 Server Allocation Policy with Forced Server Idling

In this section, we introduce an alternative generalized round robin policy without admission

control or controlled routing. Since we allow instability, each server j will eventually always

find more than the required number of customers lj,k at unstable classes k, and hence spend

the maximum amount of time allowed during each of its cycles at such classes in its list.

However, this could result in problems, because although the fractions of time servers spend

at unstable classes are guaranteed to achieve certain minimums (see Proposition 4.1), we do

not control how big they can be. Since there are always customers to process at unstable
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classes, it becomes possible for a server assigned to an unstable class to spend more time than

required there, resulting in the flows of customers between stations in the network not being

sufficiently close to the optimal flows identified by the allocation LP (13)− (17). To prevent

this, we force the servers to spend the required amount of time at each of the classes in their

lists, even if it means idling them. Unlike the approach in Section 4.1 where servers complete

a fixed number of customers before switching, we will construct a timed round robin policy

where servers spend fixed amounts of time at the classes on their lists. Consequently, it is

possible that a server will leave a customer whose service is in progress. The residual work

may be completed by another server, and hence we assume that the service time distributions

are independent of the server and that no service effort is lost. We will represent the service

requirement of customer n at class k by vk(n), and server j reduces this requirement at a

rate µj,k when assigned to class k. This model is appropriate when service is preemptive

and/or cooperative.

Consider a specific policy π that has each server j serving a fixed list V π
j of classes in

a cyclic order as in Section 4.1. For each class k ∈ V π
j , server j spends a fixed amount of

time hπ
j,k at class k, even if the queue for class k empties before that time, and then server j

moves to the next class on its list. We make use of Proposition 4.1 to determine hπ
j,k, for all

j, k. Although the following algorithm works for any value of λ, we are primarily interested

in the behavior of the network when λ > λ∗. Next, we state how to choose the parameters

V π
j and hπ

j,k of our generalized round robin server assignment policy π, assuming that the

offered demand to the system is λ. In particular, we will use the eight-step policy of Section

4.1, except that steps 3, 6, and 8 of that policy are replaced by the steps below:

3. For all the servers j = 1, . . . ,M , let

κj = 1−
K∑
k=1

δ∗j,k1{µj,k > 0}.

6. For each server j with |V π
j | > 1 and each class k ∈ V π

j , set δ̄∗j,k = δ∗j,k + κj/|V π
j |,

for all k ∈ V π
j , and calculate parameters lπj,k satisfying lπj,kmj,k/(s

π
j +

∑
i∈V π

j
lπj,imj,i) ≥

δ̄∗j,k(1− ϵ), see Proposition 4.1 and (23).

8. For each server j, set hπ
j,k = lπj,kmj,k, for k ∈ V π

j , and hπ
j,k = 0, for k /∈ V π

j .

Theorem 4.2. A policy constructed using the above algorithm achieves the throughput µπ ≥
(1− ϵ)µ∗(λ).

It immediately follows from Theorem 4.2 that ϵ = 1−µ/µ∗(λ) guarantees that we achieve

a target throughput µ < µ∗(λ).
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5 The Saturation Input and Maximum Output

Even if we allow some classes in the network to be unstable, the output from the network

does not necessarily increase with the demand λ. We refer to the point λ̄ where increasing

the demand has no effect on the best possible output as the “saturation” input to the system,

and we let µ̄ denote the corresponding maximum output. In this section, we discuss how to

identify λ̄ and µ̄. This information determines the limitations for our system. We also show

how to determine the minimum demand required for a target output level of µ ≤ µ̄.

To determine µ̄, we use the allocation LP (13)− (17) with λ = ∞:

max
K∑
k=1

dkpk,0 such that

dk ≤
M∑
j=1

µj,kδj,k, k = 1, . . . , K; (24)

dk ≤
K∑
i=1

dipi,k, ∀k : p0,k = 0; (25)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M ;

dk ≥ 0, δj,k ≥ 0, j = 1, . . . ,M, k = 1, . . . , K. (26)

The following theorem shows that the solution of this LP over δj,k ≥ 0 and dk ≥ 0 for all j, k

allows us to identify the maximum output µ̄ and an upper bound on the saturation input λ̄.

Theorem 5.1. (a) Let µ̄ =
∑K

k=1 d
∗
kpk,0 be the optimal value for the allocation LP (24)−

(26) and

λ̂ = max
k:p0,k>0

{
d∗k −

∑K
i=1 d

∗
i pi,k

p0,k

}
. (27)

Then we have λ̄ ≤ λ̂ and µ∗(λ) = µ̄, for all λ ≥ λ̂. That is, even if the arrival rate

to the original queueing network is increased beyond λ̂, any capacity larger than µ̄ can

not be achieved.

(b) The optimal value µ̄ of the allocation LP (24) − (26) is a tight upper bound on the

maximum achievable throughput. That is, any capacity larger than µ̄ cannot be achieved

in the original queueing network. Moreover, given a demand λ ≥ λ̂, there exists a

specific round robin policy π with parameters given by the solution of the LP (24)−(26)

and constructed as in Section 4.1 or Section 4.2 with µπ ≥ µ̄(1− ϵ), where 0 < ϵ < 1.
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Proof. The optimum value µ̄ of the allocation LP (24)− (26) is finite, since (24) implies that

dk ≤
∑M

j=1 µj,k, k = 1, . . . , K, and
∑K

k=1 dkpk,0 ≤
∑K

k=1 dk. Also note that δ∗j,k, d
∗
k from the

solution of the above LP also satisfy the allocation LP (13) − (17) for any λ ≥ λ̂ with an

optimum value µ∗(λ) = µ̄, since (15) is automatically satisfied by definition of λ̂. Together

with part (b) of Theorem 3.1, this proves part (a) of the theorem.

By Theorem 3.1, we know that µ̄ is a tight upper bound on the achievable throughput.

Moreover, Theorems 4.1 and 4.2 show that a policy π constructed as in Section 4.1 or 4.2

will achieve µπ ≥ µ̄(1− ϵ), and part (b) of the theorem follows.

Next our aim is to show how to determine a policy based on a target throughput and

also to show how to find the saturation input λ̄. Because of the non-uniqueness of optimal

solutions, λ̂ can be different from λ̄. For instance, consider a network with two stations in

tandem, each having exactly one dedicated server with processing rates µ1 and µ2, respec-

tively. Suppose furthermore that λ > µ1 > µ2. Then d∗1 = µ1, d
∗
2 = µ2 is an optimal solution

with λ̂ = µ1, but λ̄ = µ2. We need this tighter saturation input bound to gain insight into

the limitations of our network. For instance, if the actual offered demand to the system is

less than the saturation level (i.e., λ < λ̄), then our capacity is underutilized. On the other

hand, when λ ≥ λ̄, we know that we have excess offered demand. The second benefit is the

fact that for λ ≥ λ̄, optimal allocations become insensitive to the offered demand λ, so that

we do not need to worry about fluctuations in the input process as long as λ ≥ λ̄.

Let µ ≤ µ̄ be the target output. We determine the minimum demand λ′ ≥ µ required so

that the target output of µ is feasible. For this, consider the following allocation LP:

min λ such that (28)
K∑
k=1

dkpk,0 ≥ µ; (29)

dk ≤
M∑
j=1

µj,kδj,k, k = 1, . . . , K; (30)

dk ≤ λp0,k +
K∑
i=1

dipi,k, k = 1, . . . , K; (31)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M ; (32)

dk ≥ 0, δj,k ≥ 0, j = 1, . . . ,M, k = 1, . . . , K. (33)

This time our objective is to allocate the servers such that the minimum demand is required

while maintaining the desired output. Our decision variables (that we minimize over) are
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λ, dk ≥ 0, and δj,k ≥ 0 for j = 1, . . . ,M , k = 1, . . . , K. The right-hand side of the first

constraint (29) is the total amount of output required µ and the left-hand side is the long-run

departure rate from the system. So (29) simply means the throughput of the system should

be at least µ. All the other constraints in this LP appear in the previous LP (13)− (17) and

have the same interpretations. Note that there is no nonnegativity constraint for λ, because

in the optimal solution its value will always be nonnegative. To see this, we proceed by

contradiction. Suppose λ < 0 in the optimal solution. Now summing over k in (31) yields∑
k dk ≤ λ

∑
k p0,k +

∑
i di
∑

k pi,k = λ+
∑

i di(1− pi,0), so that
∑

k dk <
∑

k dk(1− pk,0) ≤∑
k dk, a contradiction. Thus the constraints cannot be satisfied for a negative λ. Let

δ∗j,k ≥ 0, d∗k ≥ 0 and λ∗(µ) for all j, k be an optimal solution to the above LP.

Theorem 5.2. (a) A policy π constructed as in Section 4.1 or Section 4.2, based on the

offered demand λ ≥ λ∗(µ) and allocations δ∗j,k, for all j, k, obtained from the solution

of the allocation LP (28)−(33) comes arbitrarily close to the target throughput µ. That

is, the throughput µπ of π satisfies µπ ≥ µ(1− ϵ), where 0 < ϵ < 1.

(b) We have λ̄ = λ∗(µ̄).

Proof. To simplify the notation, let λ̃ = λ∗(µ). Let a policy π be designed as in Section

4.1 or Section 4.2 corresponding to λ̃ and ϵ. Then we have by Theorem 4.1 or 4.2 that

µπ ≥ µ∗(λ̃)(1− ϵ), where µ∗(λ̃) is the solution to the allocation LP (13)− (17). Note that d∗k
and {δ∗j,k} from the LP (28)− (33) also satisfy (13)− (17). The constraint (29) implies that

µ∗(λ̃) ≥ µ, and hence that µπ ≥ µ(1− ϵ) as required. Together with Lemma 3.1, this proves

part (a) of the theorem, and part (b) follows by the definition of λ̄ and Theorem 5.1.

Note that by Lemma 3.1 and the definitions of λ∗ and λ̄, we have dµ∗(λ)/dλ = 1 for

λ < λ∗ and dµ∗(λ)/dλ = 0 for λ > λ̄. Also, our policies depend on the offered demand λ.

An optimal assignment for a given λ may not be the best choice when the actual demand

varies. In Section 6, we look at the sensitivity of the throughput to varying demand.

6 A Numerical Example

In this section, we provide in-depth analysis of an example from Section 3.3. Section 6.1

demonstrates how the optimal allocations vary as the demand to the system changes. Section

6.2 investigates the sensitivity of the optimal allocation for a given offered demand to the

actual demand. Lastly, Section 6.3 simulates the same example for a given demand level.
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6.1 Optimal Server Allocations Under Varying Offered Demand

In this section, we use an example to illustrate the effects on the maximum throughput of

increasing the demand λ to the system. We will investigate the system considered earlier in

Section 3.3 (see Figure 1 and equation (20)). Instead of looking at a single offered demand

λ = 6, we consider λ ∈ [0, 20] by dividing this range into 500 equal intervals and solving

the allocation LP for each value of λ incrementally (i.e., λ = 0.04, 0.08, . . . , 20). Note that

for this system, we have λ∗ ≃ 4.0714, λ̄ = 15, and µ̄ = 7.5. Figure 2(a) gives the optimal

assignments to class 1 for each server corresponding to different λ. Figure 2(b) shows d∗1, d
∗
2,

and µ∗(λ) as a function of the offered demand λ. Note that optimal allocations for a given

λ may not be unique. To avoid fluctuations in the allocations and better see the effects of

instability, we consider two specific basic allocations and use them whenever they are feasible

and optimal. The first specific basic allocation is obtained by solving the allocation LP

given by Andradóttir, Ayhan, and Down [6]. The second specific basic solution is obtained

by solving the allocation LP (13) − (17) for λ = λ̄. Then for λ ≤ λ∗ and λ ≥ λ̄, the

optimal allocations are constant and equal to the first and second specific basic solutions,

respectively. When λ∗ < λ < λ̄, neither of the specific basic solutions is optimal, and the

allocations obtained from the solution of the allocation LP (13)− (17) are used.
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Figure 2: Optimal server assignments at class 1 and corresponding departure rates at each

class as a function of λ

As we can see from Figure 2(a), servers 1 and 2 switch from the second class to the first

class as the demand λ increases. Consequently, the servers prefer class 1 as long as there are

customers there to process (because a customer leaving class 2 requires more service effort

than one leaving class 1). But any excess capacity is devoted to class 2 since it also has
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an effect on the throughput. If all the servers work at class 1, then the total processing

rate is 15. Hence until λ̄ = 15, some excess capacity is available to allocate to class 2

customers. For λ ≤ 8.08, servers 2 and 3 are able to handle all of the input to class 1, with

server 2 helping with class 1, increasingly with λ. After all the efforts of servers 2 and 3 are

devoted to class 1 at λ = 8.08, server 1 starts to help until all of its effort is switched to

class 1 as well. Figure 2(b) also shows that as expected by Lemma 3.1, the throughput is

a piecewise-linear concave function of the offered demand level. Moreover, we observe that

by allowing instability in the queueing network, it is possible for the production output to

increase significantly compared to the stable throughput (in this case by a factor of almost

two) given sufficient input. However, the optimal departure rates from each class d∗1 and d∗2

display different reactions to the increasing demand λ. They both increase until server 2

starts to spend more time on the first class, so that d∗2 starts to decrease.

6.2 System Throughput Under Varying Offered Demand

In this section, we look at the performance of the optimal policy developed for one offered

demand as a function of the actual demand. For this, we develop a policy based on a fixed

λ, and then investigate the system performance when the actual demand λ′ is different from

λ. Figure 3 depicts the cases where the policy π is designed for λ ∈ {3, λ∗, 6, 9, 12, λ̄},
respectively, and provides the optimal throughput µ∗(λ′) and actual throughput µπ

λ(λ
′) for

different λ′. To obtain µπ
λ(λ

′), we use the optimal fractions obtained for λ in the allocation

LP (13) − (17), and solve for d∗k, for all k, see Section 3.2. The actual throughput of the

system differs from the optimal because the policy is designed based on the offered demand

λ, and hence the assignments may no longer be optimal for another demand λ′. Note that in

Figure 3(a), we have used the allocations obtained as a result of solving the LP (13)− (17)

for λ = 3, and not the ones obtained for the point λ∗. As a result, we observe that the

throughput becomes sensitive to the offered demand even for λ ≤ λ′ ≤ λ∗. Substituting the

allocations obtained at λ∗ for λ = 3, Figure 3(a) would be the same as Figure 3(b).

As can be seen in Figure 3, the system performance is sensitive to the actual demand

level. Note that λ∗ is a critical point in all of the figures. Moreover, we notice that µπ
λ(λ

′)

equals µ∗(λ′) until some point t1, then deviates from µ∗(λ′), intersecting it only at a second

point t2 (if λ ̸= λ∗), and finally becoming constant after the second intersection. For those

two points t1 and t2, we have 0 ≤ t1 ≤ min{λ, λ∗} and λ∗ ≤ t2 ≤ λ̄. Also, µπ
λ(λ) is always

equal to µ∗(λ), and in particular t1 = λ when λ ≤ λ∗, and t2 = min{λ, λ̄} when λ ≥ λ∗. We

have two special cases, namely when λ = λ∗, where t1 = t2 = λ, and when λ ≥ λ̄, where

t1 = 0 and t2 = λ̄. Also, a comparison of parts (a) and (b) of Figure 3 shows that solving
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Figure 3: Sensitivity analysis when actual offered demand differs from the one designed for.
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the allocation LP for λ = 3, rather than λ = λ∗, achieves higher output for large λ′. This

is because the optimal solution for λ = 3 turns out to be similar to the optimal solution

for λ ≃ 8. Finally, note that the assignments are constant for λ ≥ λ̄ (see Figure 2(a)), and

hence sensitivity analysis for λ ≥ λ̄ will be exactly the same as for λ = λ̄.

If the offered demand to the system is not known beforehand, then there is no single

best λ to design for, since solving for λ is not necessarily good for other λ′ regardless of

whether λ′ < λ or λ′ > λ. However, we can still make some generalizations, since system

capacity is not lost when λ′ < λ ≤ λ∗ and when λ, λ′ ≥ λ̄. In particular, if the expected

offered demand is less than λ∗, then it is best to design for λ∗ so that no throughput is lost

(see Theorem 1 in [6]). Similarly, if the expected offered demand is greater than λ̄, then

we design for λ̄ without any loss of throughput. However, we cannot say the same when

λ∗ < λ < λ̄. So, if the expected offered demand is between λ∗ and λ̄, and we design for λ,

then the actual throughput cannot exceed µπ(λ). However, we could find a value of λ that

minimizes our maximum loss, which in our case corresponds to some λ ∈ [9, 12], where the

losses at λ∗ and λ̄ are equal. We could find this point using the Bisection-Extreme Point

Search Algorithm (BEPSA), starting with (λ∗+ λ̄)/2, then moving towards the middle point

between the current solution and the extreme point (i.e., λ∗ or λ̄) where the difference is

greater. For our case, it turns out that designing a policy for λ = 11 minimizes our loss at

the extreme points. Another approach to deal with the sensitivity of the given policies to

the offered demand level is to consider state-dependent policies, as in [20, 29].

6.3 Simulation Results

In this section, we give simulation results for the system analyzed in the previous subsections

under Poisson arrivals with rate λ = 6. We assume the service requirements are exponen-

tially distributed with mean 1 and that servers switch instantaneously, so that no switching

times occur. Then, from the allocation LP (13) − (17), we have µ∗(6) ≃ 4.7727 and the

optimum assignments are given in (21). Our aim is to observe how our allocation policy

with admission and routing control (see Section 4.1) performs in terms of achieving the the-

oretical throughput value, and also to see if the sets S and U predicted by the allocation LP

coincide with the ones actually observed without admission control or controlled routing.

Next we choose ϵ =2/11 in the server assignment algorithm of Section 4.1, so that ϵ′ = 0.1.

Then server 1(3) is dedicated to class 2(1), see (21). Moreover, we have that l2,1 = 35 and

l2,2 = 4, obtained from (23), satisfy step 6 of the assignment algorithm. We simulate this

system for one million time units with a warm-up period of length 50,000. We divide the

runtime into 40 batches for constructing a 95 percent confidence interval on the throughput.
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We expect the throughput to approach µ∗(6)(1 − ϵ) ≃ 3.9049 (see Theorem 4.1) and all

nodes to be stable. Figure 4 shows the throughput rate Dπ(t)/t as a function of time. We

observe that the throughput approaches its limiting value from above. The resulting 95

percent confidence interval for the throughput is (3.9007, 3.9101) with an average of 3.9054.

We have also prepared plots of the queue lengths over time at classes 1 and 2. These plots

are omitted here to conserve space, but can be found in Tekin [41]. As expected given the

results of Section 4.1, the queue length at both classes displays stable behavior.
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Figure 4: Average throughput with admission and routing control.

Finally, we observe the system under the policy of Section 4.1 without admission and

routing controls. For this, we follow the same steps as in Section 4.1, but omit steps 2 and

3 and choose ϵ′ = 0.1 in step 6. Then we expect the throughput to be no smaller than

µ∗(6)(1− ϵ′) ≃ 4.2954. As before, we have l2,1 = 35 and l2,2 = 4, obtained from (23), satisfy

step 6 of the assignment algorithm. We simulate this system for eight million time units

with a warm-up period of length 300,000, and divide the run time into 40 batches. A longer

run length is chosen for this version of the system to observe the queue length process of

class 1 (which is expected to be stable, see Section 3.3) for a longer period of time. Figure

5 shows the throughput as a function of time. The resulting 95 percent confidence interval

for the throughput is (4.7708, 4.7736) with an average of 4.7722. We have also plotted the

queue lengths over time at classes 1 and 2 (see Tekin [41]). In accordance with the results of

Section 3.3, the queue length at class 1 displays stable behavior, whereas the queue length

at class 2 increases over time. Thus the stable and unstable sets in the original queueing

system operating under this policy appear to coincide with the stable and unstable sets S

and U defined in (18) and (19) for the allocation LP (13) − (17). As we observe, dropping

steps 2 and 3 of the policy of Section 4.1 results in significantly increased throughput at a

cost of having an unstable system. This is the case because we do not reject any incoming
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demand (i.e., no admission control) and keep the second class busy at all times (i.e., no

routing control).
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Figure 5: Average throughput without admission or routing control.

7 Conclusions

We have developed generalized round robin server assignment policies for a possibly unstable

queueing network with flexible servers, i.i.d. interarrival, service, and switching times, and

probabilistic routing. These policies are shown to achieve any throughput less than the

maximum value computed using a simple LP. In fact, allowing instability can increase the

production throughput significantly given sufficient demand, resulting in higher revenues. In

another paper [42], we demonstrate that this is indeed the case for a serial manufacturing

process with inspection and repair stations. We have also shown how to determine the

saturation input and the corresponding maximum output, and provided means to check the

feasibility of a desired output given the available offered demand.

One drawback for a fixed server assignment policy is the sensitivity of the throughput to

fluctuations in the offered demand. We have shown that this sensitivity is eliminated and

our policies are robust when the system is stable or the demand is above the saturation level.

We have also discussed how to choose what demand level a policy should be designed for

to minimize the maximum loss in the presence of demand uncertainty. In actual production

systems, demand often changes over time. In that case, we can simply modify our policies

by letting the server allocations adjust with time according to the forecasted demand.

Another performance measure of interest is the total number of items processed during

each server visit to a given class (i.e., the lot sizes). In general low switching rates are effective
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with respect to throughput, but they can result in the production of large lots, which in turn

implies longer lead times and higher inventories. Hence, in future work it would be interesting

to design policies that simultaneously consider throughput and lot sizes.
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A Proofs of Theorems 3.1, 4.1, and 4.2

In this section we give formal proofs to Theorems 3.1, 4.1, and 4.2. We start by constructing

the underlying fluid model for the original queueing network described in Section 2, and then

describe a Markov process model for the same queueing network. Using these results we

prove that the algorithms provided in Sections 4.1 and 4.2 can be used to obtain throughput

that is arbitrarily close to the maximum output µ∗(λ) given the available demand λ. More

specifically, we start with part (b) of Theorem 3.1. Next, we prove Theorem 4.1, then part

(a) of Theorem 3.1 follows. Finally we show that the algorithm provided in Section 4.2 also

achieves the target throughput, as stated in Theorem 4.2.

The fluid models involve smoothing out discrete processes, using the SLLN. We now

develop a fluid model for the original queueing network described in Section 2 under a server

assignment policy π. Let q =
∑K

k=1 Qk(0). Suppose that the function (Q̄k(·), T̄j,k(·),∀j, k) is
a limit point of (Qk(qt)/q, Tj,k(qt)/q, ∀j, k) when q → ∞. Then (Q̄k(·), T̄j,k(·) : k = 1, . . . , K)

is a fluid limit of the system. Each component of a fluid limit is absolutely continuous (and

thus differentiable almost everywhere in [0,∞) with respect to the Lebesgue measure, see

Dai [17], page 20). If we require the derivative of a quantity, we will assume it is taken at

a time point t such that the derivative exists (such a point is known as a regular point); we

will not require derivatives involving class k at a moment when Q̄k(t) hits zero for any k.

For each class k, let Āk(t) = limq→∞Ak(qt)/q and D̄k(t) = limq→∞ Dk(qt)/q (almost surely

uniformly on compact intervals) be the fluid limits for the arrival and departure processes

Ak(t) and Dk(t), respectively. Then the deterministic analogs Ā, D̄, and Q̄ of the queueing
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network processes A, D, and Q satisfy the following equations (see Theorem 4.1 of Dai [15]):

Āk(t) = λp0,kt+
K∑
i=1

M∑
j=1

pi,kµj,iT̄j,i(t), k = 1, . . . , K; (34)

D̄k(t) =
M∑
j=1

µj,kT̄j,k(t), k = 1, . . . , K; (35)

Q̄k(t) = Q̄k(0) + λp0,kt+
K∑
i=1

M∑
j=1

pi,kµj,iT̄j,i(t)−
M∑
j=1

µj,kT̄j,k(t), k = 1, . . . , K. (36)

Equations (34) − (36) are obtained from (8) − (10) by replacing Sj,k(t), Ek(t), and Φi,k(n)

by their asymptotic means. The dependence of (34)− (36) on π is determined through the

functions {T̄j,k(t)} and Theorem 4.1 of [15] applies because there are only a finite number of

servers, each working on at most one customer (see the remark on page 58 of [15]).

The next step is to define a Markov process X = {X(t), t > 0} which describes the

dynamics of the queueing network described in Section 2 with K classes and M servers

operating under a generalized round robin server assignment policy π, where each server j

cycles among all the classes k on its list V π
j , serving a maximum of lπj,k customers at class

k before moving to the next class. Let U(t) and Vj,k(t), j = 1, . . . ,M , k = 1, . . . , K, be

the residual interarrival and service times defined in Section 2 and Wj(t) be the residual

switching time at time t for server j. Also, let Lj(t) be the location of server j at time t (set

to the destination class if the server is switching at time t and to the current class when the

server idles), Ij(t) be the status of server j (0 if the server is idle or switching, 1 if busy), and

Nj(t) be the number of customers finished by server j at the current location (reset to zero

each time server j idles or makes a switch). Note that since we have non-preemptive service,

the residual service time can be only at the current location Lj(t) at time t, so let Vj(t) be

the residual service time for server j. The piecewise-continuous variables {U(t), Vj(t),Wj(t)}
are taken to be right continuous. Then the process X(t) defined by

X(t) = (U(t), Vj(t),Wj(t), Qk(t), Lj(t), Ij(t), Nj(t); j = 1, . . . ,M, k = 1, . . . , K)

can be shown to have the strong Markov property as in Section 4 of Davis [19], with elements

x ∈ R+ × RM
+ × RM

+ × ZK
+ × {1, . . . , K}M × {0, 1}M × {0, 1, . . . ,max lj,k − 1}M .

Next, we need to make minor modifications for the allocation policy described in Section

4.1 as it results in a slightly modified network. A similar Markov process exists for the

modified network under admission control and controlled routing as for the original network,
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with the only difference that the dimension of the state is increased by the additional class

and server, so that the Markov process evolves on

x ∈ R+ × RM+1
+ × RM

+ × ZK+1
+ × {1, . . . , K}M × {0, 1}M × {0, 1, . . . ,max

j,k
lj,k − 1}M .

Note that VM+1(t) is the only information needed for the (M + 1)th server, because it is

dedicated to class K + 1. In the case of the allocation policy of Section 4.2, the residual

service time Vj(t) for each server j needs to be replaced by the residual service time Vk(t)

at each class k. However, since we will not be proving the stability of the queueing network

under the policy of Section 4.2, we do not describe the resulting Markov process in detail.

Proof of Theorem 3.1(b). To prove the theorem we proceed by contradiction. Assume that

there exists a policy π and a subset A of the sample space Ω with P (A) > 0, such that

lim sup
t→∞

Dπ(t, ω)

t
> µ∗(λ), ∀ω ∈ A, (37)

where Dπ(t, ω) is the total number of departures from the system under the policy π in (0, t]

for the sample path ω. By the i.i.d. assumption on the primitive processes, there exists a

set A′ with P (A′) = P (A) such that for all ω ∈ A′, and any ϵ, ϵ1 > 0, there exists T1(ω) and

N(ω) such that for all t ≥ T1(ω), n ≥ N(ω), i = 0, . . . , K, k = 1, . . . , K, and j = 1, . . . ,M,∣∣∣∣Ek(t, ω)

t
− λp0,k

∣∣∣∣ ≤ ϵ1,

∣∣∣∣Φk,i(n, ω)

n
− pk,i

∣∣∣∣ ≤ ϵ1,

∣∣∣∣Sj,k(t, ω)

t
− µj,k

∣∣∣∣ ≤ ϵ.

Next we obtain bounds on the cumulative processes, starting with the departure pro-

cesses. We have Dk(t) =
∑M

j=1 Sj,k(Tj,k(t)), k = 1, . . . , K. On the sample path ω ∈ A, some

servers may spend a finite amount of time at given classes, resulting in two cases:

• For pairs j, k such that limt→∞ Tj,k(t, ω) < ∞, we have Sj,k(Tj,k(t), ω)/t → 0, since

Sj,k(t, ω) < ∞, for all t, by assumption (5).

• For pairs j, k such that limt→∞ Tj,k(t, ω) = ∞, we can find T2(ω) such that for all

t ≥ T2(ω), we have Tj,k(t, ω) ≥ T1(ω) implying∣∣∣∣Sj,k(Tj,k(t, ω))

Tj,k(t, ω)
− µj,k

∣∣∣∣ ≤ ϵ.

Let Mk(ω) = {j : µj,k > 0 and limt→∞ Tj,k(t, ω) = ∞}. We have

Dk(t, ω)

t
=

∑
j∈Mk(ω)

Sj,k(Tj,k(t, ω))

Tj,k(t, ω)
× Tj,k(t, ω)

t
+

∑
j /∈Mk(ω)

Sj,k(Tj,k(t, ω))

t
, k = 1, . . . , K.
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Let δj,k(t, ω) = Tj,k(t, ω)/t. For any ϵ2 > 0, there exists T3(ω) such that for all t ≥ T3(ω), we

have
∑

j /∈Mk(ω)
Sj,k(Tj,k(t, ω))/t ≤ ϵ2, for k = 1, . . . , K. Then for t ≥ max{T2(ω), T3(ω)},

Dk(t, ω)

t
≤

∑
j∈Mk(ω)

(µj,k + ϵ)δj,k(t, ω) + ϵ2, k = 1, . . . , K.

Let ϵ3 = ϵM + ϵ2, which implies that ϵ3 ≥ maxk{ϵ
∑

j∈Mk(ω)
δj,k(t, ω) + ϵ2}, and thus for

t ≥ max{T2(ω), T3(ω)}, we obtain

Dk(t, ω)

t
− ϵ3 ≤

∑
j∈Mk(ω)

µj,kδj,k(t, ω), k = 1, . . . , K. (38)

Next, we bound the arrival process to each class. Let K = {1, . . . , K} denote the set of

all classes in the network, and define

K \ K̄(ω) = {k : lim
t→∞

Tj,k(t, ω) < ∞, ∀j with µj,k > 0} = {k : Mk(ω) = ∅}.

Note that all servers capable of working at the classes in K\K̄(ω) spend only a finite amount

of time at those classes, so that the number of departures is bounded. We have

Ak(t, ω) = Ek(t, ω) +
K∑
i=1

Φi,k(Di(t, ω)), k = 1, . . . , K.

For i ∈ K̄(ω), limt→∞ Di(t, ω) = ∞, and hence there exists T4(ω) such that for all t ≥ T4(ω),

we have Di(t, ω) > N(ω), implying∣∣∣∣Φi,k(Di(t, ω))

Di(t, ω)
− pi,k

∣∣∣∣ ≤ ϵ1, k = 0, 1, . . . , K.

For i ∈ K \ K̄(ω), limt→∞Di(t, ω) < ∞, and limt→∞ Φi,k(Di(t, ω))/t = 0. Hence, for any

ϵ4 > 0, there exists T5(ω) such that for all t ≥ T5(ω), we have∑
i∈K\K̄(ω)

Φi,k(Di(t, ω))

t
≤ ϵ4, k = 0, 1, . . . , K.

Then, for the arrival process, we have for t ≥ max{T1(ω), T4(ω), T5(ω)},

Ak(t, ω)

t
≤ λp0,k + ϵ1 +

∑
i∈K̄(ω)

(pi,k + ϵ1)
Di(t, ω)

t
+ ϵ4, k = 1, . . . , K.

Substituting in (38), we get, for t ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω)},

Ak(t, ω)

t
≤ λp0,k +

∑
i∈K̄(ω)

pi,k
Di(t, ω)

t
+ ϵ1

∑
i∈K̄(ω)

∑
j∈Mi(ω)

δj,i(t, ω)µj,i

+ϵ1
∑

i∈K̄(ω)

ϵ3 + ϵ4 + ϵ1, k = 1, . . . , K.

28



We also have Dk(t, ω) ≤ Ak(t, ω)+Qk(0) for all t ≥ 0. Let ϵ5 = ϵ1KMµ+Kϵ1ϵ3+ϵ4+2ϵ1,

where µ = max{µj,i, j = 1, . . . ,M, i = 1, . . . , K}, so that

ϵ5 ≥ max
k

{
ϵ1
∑

i∈K̄(ω)

∑
j∈Mi(ω)

δj,i(t, ω)µj,i + ϵ1
∑

i∈K̄(ω)

ϵ3 + ϵ4 + 2ϵ1

}
.

Then for t ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω), Qk(0)/ϵ1} we have

Dk(t, ω)

t
− ϵ5 ≤ λp0,k +

∑
i∈K̄(ω)

pi,k
Di(t, ω)

t
, k = 1, . . . , K. (39)

Finally, we bound the departure process from the system, D(t, ω) =
∑K

i=1Φi,0(Di(t, ω)).

For t ≥ max{T4(ω), T5(ω)}, we have

D(t, ω)

t
≤
∑

i∈K̄(ω)

(pi,0 + ϵ1)×
Di(t, ω)

t
+ ϵ4.

Let ϵ6 = ϵ1K(ϵ3 +Mµ) + ϵ4, so that (38) implies that ϵ6 ≥ ϵ1
∑

i∈K̄(ω) Di(t, ω)/t+ ϵ4. Then

we get for t ≥ max{T4(ω), T5(ω)}

D(t, ω)

t
− ϵ6 ≤

∑
i∈K̄(ω)

pi,0
Di(t, ω)

t
. (40)

By assumption, under policy π, the departure process satisfies (37). Let lim supt→∞ Dπ(t, ω)/t =

l > µ∗(λ). Then for any ϵ7 > 0, Dπ(t, ω)/t ≥ l − ϵ7 infinitely often. Then we can choose a

time t0 ≥ max{T1(ω), T2(ω), T3(ω), T4(ω), T5(ω), Qk(0)/ϵ1} with an ϵ7 small enough so that

Dπ(t0, ω)/t0 > µ∗(λ) and also the bounds in (38), (39) and (40) are satisfied at t0. Rewriting

(38)− (40) for the cumulative processes at time t0, we get

Dk(t0, ω)

t0
− ϵ3 ≤

∑
j∈Mk(ω)

µj,kδj,k(t0, ω), k = 1, . . . , K, (41)

Dk(t0, ω)

t0
− ϵ5 ≤ λp0,k +

∑
i∈K̄(ω)

pi,k
Di(t0, ω)

t0
, k = 1, . . . , K, (42)

D(t0, ω)

t0
− ϵ6 ≤

∑
i∈K̄(ω)

pi,0
Di(t0, ω)

t0
. (43)

Next, our aim is to show that given the above bounds on the cumulative processes, there

exists a solution to the LP (13)− (17) with an objective value greater than µ∗(λ), which will

yield the desired contradiction. To see this, define

dk =

{
0 if k ∈ K \ K̄(ω),
Dk(t0,ω)

t0
if k ∈ K̄(ω);
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δj,k =

{
0 if j /∈ Mk(ω),

δj,k(t0, ω) if j ∈ Mk(ω).

Substituting these in (41), (42) and (43) and noting that the bounds in (41)− (43) hold for

arbitrarily small ϵ3, ϵ5, and ϵ6, respectively, we get after a little manipulation

K∑
i=1

pi,0di > µ∗(λ), (44)

dk ≤
M∑
j=1

µj,kδj,k, k = 1, . . . , K, (45)

dk ≤ λp0,k +
K∑
i=1

pi,kdi, k = 1, . . . , K. (46)

By definition, we have dk ≥ 0 and δj,k ≥ 0. Moreover,
∑K

k=1 Tj,k(t0, ω) ≤ t0 implies that∑K
k=1 δj,k ≤ 1 for j = 1, . . . ,M . Then we see that along this sample path ω under the policy

π, we can construct a solution to the LP (13) − (17) with an objective value greater than

µ∗(λ), a contradiction.

Remark A.1. The proof of Theorem 3.1(b) is complicated by the fact that the instantaneous

output rate from the system is not bounded above by µ∗(λ), since we are not placing any

restrictions on the stability of the system. The size of the fluid queues must be taken into

account, so we cannot discount the situation where the instantaneous throughput may rise

above µ∗(λ) infinitely often, due to positive queue lengths (in the fluid limit) at appropriate

queues. Thus traditional techniques can be used to show that lim inft→∞ D(t)/t ≤ µ∗(λ); the

challange is to show that lim supt→∞ D(t)/t ≤ µ∗(λ).

Proof of Theorem 4.1 and Theorem 3.1(a). We will refer to the network obtained as a result

of the controlled routing in step 3 of the policy described in Section 4.1 as the “modified”

queueing network. Hence step 3 of this policy results in a modified network under admission

control. Let P̄ be the routing matrix for the modified network (so that P̄ has (i, k) entry

p̄i,k for i, k = 1, . . . , K + 1). Then we have that (I − P̄ ) is invertible and P̄ n → 0 since the

modified network is open (see, e.g., Lawler [32], page 27).

To prove Theorem 4.1, we need to develop the queueing network equations and the

corresponding fluid model for the modified network. We can obtain these in the same way
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as we did in Section 2 and above for the original network. So we have

Ak(t) = Ek(t) +
K+1∑
i=1

Φ̄i,k(Di(t)), k = 1, . . . , K + 1;

Dk(t) =
M+1∑
j=1

Sj,k(Tj,k(t)), k = 1, . . . , K + 1;

Qk(t) = Qk(0) + Ak(t)−Dk(t), k = 1, . . . , K + 1;

and 0 ≤
∑K+1

k=1 Tj,k(t) ≤ t, j = 1, . . . ,M + 1, where Φ̄i,k(n) =
∑n

l=1 ϕ̄i,k(l) and the random

variables ϕ̄i,k(l) are independent and multi-Bernoulli, so that for each i, l, exactly one ϕ̄i,k(l)

is equal to 1 with probability p̄i,k, for k = 0, . . . , K+1, and the remainder are zero (meaning

that the lth customer from class i is routed to class k). Similarly, fluid limits Āk(t), D̄k(t),

and Q̄k(t) for the modified network under admission control are defined in the same manner

as for the original network, for k = 1, . . . , K + 1, and satisfy the equations

Āk(t) = λ′p̄0,kt+
K+1∑
i=1

M+1∑
j=1

p̄i,kµj,iT̄j,i(t), k = 1, . . . , K + 1;

D̄k(t) =
M+1∑
j=1

µj,kT̄j,k(t), k = 1, . . . , K + 1;

Q̄k(t) = Q̄k(0) + λ′p̄0,kt+
K+1∑
i=1

M+1∑
j=1

p̄i,kµj,iT̄j,i(t)−
M+1∑
j=1

µj,kT̄j,k(t),

k = 1, . . . , K + 1; (47)

subject to the conditions

0 ≤
K+1∑
k=1

T̄j,k(t) ≤ t, j = 1, . . . ,M + 1;

T̄j,k(0) = 0 and T̄j,k(·) is non-decreasing for j = 1, . . . ,M + 1, k = 1, . . . , K + 1;

Q̄k(t) ≥ 0, k = 1, . . . , K + 1;

lπj,kmj,k

sπj +
∑

i∈V π
j
lπj,imj,i

≤ dT̄j,k(t)

dt
≤ 1, j = 1, . . . ,M + 1,

k = 1, . . . , K + 1, whenever Q̄k(t) > 0. (48)

The lower bound in (48) can be derived as in Andradóttir, Ayhan, and Down [6].

Let rk = d∗k, for k = 1, . . . , K, and rK+1 = λp̄0,K+1 +
∑K

i=1 d
∗
i p̄i,K+1. Then r1, . . . , rK+1

satisfy the traffic equations for the modified queueing network under the demand λ, so that

rk = λp̄0,k +
K+1∑
i=1

rip̄i,k, k = 1, . . . , K + 1. (49)

31



To see this, recall that a∗k = λp0,k +
∑K

i=1 d
∗
i pi,k, for all k. First consider k ∈ U . Then,

λp̄0,k +
K+1∑
i=1

rip̄i,k = λp0,kϵk +
K∑
i=1

d∗i pi,kϵk

= ϵk(λp0,k +
K∑
i=1

d∗i pi,k) =
d∗k
a∗k

a∗k = d∗k = rk, k ∈ U,

as required. Next consider the classes k ∈ S. Then d∗k = a∗k, and we get

λp̄0,k +
K+1∑
i=1

rip̄i,k = λp0,k +
K∑
i=1

d∗i pi,k = a∗k = d∗k = rk, k ∈ S.

Finally, rK+1 = λp̄0,K+1+
∑K+1

i=1 rip̄i,K+1 follows from the definition of rK+1 and the fact that

p̄K+1,K+1 = 0. We have shown that r1, . . . , rK+1 satisfy (49), and since I − P̄ is invertible,

the solution is unique.

Let αk, k = 1, . . . , K + 1, be the unique solution of the system of equations (49) when

λ = 1. Then we have αk = d∗k/λ, k = 1, . . . , K, and αK+1 = p̄0,K+1 + (
∑K

i=1 d
∗
i p̄i,K+1)/λ.

Moreover, by constraint (14) in the allocation LP, we have

rk = d∗k ≤
M∑
j=1

µj,kδ
∗
j,k =

M+1∑
j=1

µj,kδ
∗
j,k, k = 1, . . . , K; (50)

and

rK+1 ≤ λ =
M+1∑
j=1

µj,K+1δ
∗
j,K+1 (51)

follows from the facts that pK+1,0 = 1, rK+1 is the flow through node K + 1 in a stable

queueing network with offered demand λ and routing matrix P̄ , and if rK+1 > λ, the system

would have more output than input. Then, by the server allocation policy π, and (50)−(51),

we have, for all k = 1, . . . , K + 1,

M+1∑
j=1

lπj,k
sπj +

∑
i∈V π

j
lπj,imj,i

≥
M+1∑
j=1

µj,kδ
∗
j,k(1− ϵ′) ≥ rk(1− ϵ′). (52)

Let λ′ = λ(1 − ϵ) be the thinned offered demand, and r′k = λ′αk, k = 1, . . . , K + 1, be

the solution to the traffic equations for the modified network corresponding to the offered

demand λ′. Since (1− ϵ′)/(1− ϵ) = 1 + ϵ′, we have

rk(1− ϵ′) = λαk(1− ϵ′) = λ′αk
1− ϵ′

1− ϵ
= r′k(1 + ϵ′), k = 1, . . . , K + 1. (53)
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Substituting (53) in (52), we get

M+1∑
j=1

lπj,k
sπj +

∑
i∈V π

j
lπj,imj,i

≥ r′k(1 + ϵ′), k = 1, . . . , K + 1. (54)

Equations (48) and (54) for the modified network imply that when Q̄k(t) > 0,
∑M+1

j=1
dT̄j,k(t)

dt
≥

r′k(1 + ϵ′). By Theorem 2.4.9 of Dai [17], this means that there is a finite time t0 such that

the system is empty and the fluid model for the modified network is stable under the offered

demand λ′. Then by Theorem 4.2 of Dai [15], the Markov chain describing the dynamics of

the modified network is positive Harris recurrent. Hence, the modified queueing network is

stable for the offered demand λ′, and the distribution of the queue length process {Qk(t)},
k = 1, . . . , K + 1, converges to a steady state limit as t → ∞.

Finally, it remains to find the throughput µπ for the modified network with offered

demand λ′ under the server assignment policy π with admission control and controlled rout-

ing, i.e., without the customers serviced at class K + 1. For this, consider the fluid scale

queue length differential equation obtained from (47) for the modified network under ad-

mission control. Given the queueing network is stable, there exists some time t0 such that∑K+1
k=1 Q̄k(t) = 0 for t ≥ t0. Then, for any t > t0, we have

0 = λ′p̄0,k +
K+1∑
i=1

p̄i,k

M+1∑
j=1

µj,i
dT̄j,i(t)

dt
−

M+1∑
j=1

µj,k
dT̄j,k(t)

dt
, k = 1, . . . , K + 1. (55)

Let d̄k(t) = dD̄k(t)/dt =
∑M+1

j=1 µj,kdT̄j,k(t)/dt be the fluid level departure rate from class

k, for k = 1, . . . , K + 1, in the above equation (55). Then we see that solving the set of

equations (55) for d̄k(t), k = 1, . . . , K+1, gives the same solution as for the traffic equations

in (49) when the offered demand is λ′. Hence, d̄k(t), k = 1, . . . , K +1, are uniquely given by

d̄k(t) = r′k, k = 1, . . . , K + 1, and the fluid level total throughput rate d̄(t) = dD̄(t)/dt from

classes k = 1, . . . , K is

d̄(t) =
K∑
k=1

p̄k,0

M+1∑
j=1

µj,k
dT̄j,k(t)

dt
=

K∑
k=1

r′kp̄k,0 =
K∑
k=1

(1− ϵ)d∗kpk,0 = µ∗(λ)(1− ϵ),

and hence

D̄(t)− D̄(t0) = µ∗(λ)(1− ϵ)(t− t0). (56)

Connecting back to the queueing network, recall that D̄(t) is a limit point of Dπ(qt)/q

as q → ∞, where Dπ(t) =
∑K

k=1 Φ̄k,0(Dk(t)) is the total number of departures from the

modified network until time t from classes k = 1, . . . , K with offered demand λ′ under the
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policy π. Assume l = lim supt→∞ Dπ(t)/t ̸= µ∗(λ)(1 − ϵ). Then, there exists a sequence

{tk} such that limk→∞ Dπ(tk)/tk = l. Hence, there exists a fluid limit D̄(·) such that

D̄(t) = limq→∞ tDπ(qt)/qt = tl, contradicting (56). So we have

lim sup
t→∞

Dπ(t)

t
= µ∗(λ)(1− ϵ).

This completes the proof for Theorem 4.1, and part (a) of Theorem 3.1 follows.

Proof of Theorem 4.2. By Steps 3 and 6 of the generalized round robin policy π in Section

4.2, we obtain an alternative optimal solution to the LP (13)− (17). By inflating some δ∗j,k,

we are relaxing some of the bounds in (14) and (15) and also making each of the constraints

in (16) tight. Let d̄∗k be the corresponding departure rates with allocation δ̄∗j,k, see (12). Then

we see that d̄∗k ≥ d∗k, hence this feasible solution also achieves the optimal. From now on, we

will refer to the alternative LP solution d̄∗k, δ̄
∗
j,k as d∗k, δ

∗
j,k.

As a result of the policy π, each server spends exactly the same amount of time at any

class during each cycle of visiting the classes in its list. Let Ij,k(t) be the cumulative idle

time for server j at class k, and Īj,k(t) the corresponding fluid limit. Then the fluid model for

the queueing network under the server allocation policy of Section 4.2 satisfies the equations

(34)− (36) subject to the conditions

0 ≤
K∑
k=1

T̄j,k(t) ≤ t, j = 1, . . . ,M,

K∑
k=1

T̄j,k(t) + Īj,k(t) = t, j = 1, . . . ,M,

T̄j,k(0) = 0, Īj,k(0) = 0, and T̄j,k(·) and Īj,k(·) are non-decreasing for j = 1, . . . ,M, k = 1, . . . , K,

Q̄k(t) ≥ 0, and Q̄k(t)
dĪj,k(t)

dt
= 0, k = 1, . . . , K, (57)

dT̄j,k(t)

dt
+

dĪj,k(t)

dt
=

hπ
j,k

sπj +
∑

i∈V π
j
hπ
j,i

, j = 1, . . . ,M, k = 1, . . . , K, and

dT̄j,k(t)

dt
=

hπ
j,k

sπj +
∑

i∈V π
j
hπ
j,i

, j = 1, . . . ,M, k = 1, . . . , K, whenever Q̄k(t) > 0.

The second constraint in (57) means that Īj,k(t) can only increase when Q̄k(t) is zero. When

the amount of fluid at a given class k is positive, the fluid level is decreased at a constant

rate by each server j such that hπ
j,k > 0. Then

∑
j:k∈V π

j
(hπ

j,kµj,k)/(s
π
j +
∑

i∈V π
j
hπ
j,i) is the total

rate at which the fluid level at class k is decreased whenever Q̄k(t) > 0 for k = 1, . . . , K.
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Next consider a fixed server system with K servers operating under the non-idling FCFS

service discipline, external arrival rate λ, and routing probabilities given in the matrix P .

Assume that server k is assigned to class k, and set the service rates µπ
k of the servers as

µπ
k =

∑
j:k∈V π

j

hπ
j,kµj,k

sπj +
∑

i∈V π
j
hπ
j,i

, k = 1, . . . , K.

This fixed server system has fluid limits {Āk(t), D̄k(t), Q̄k(t),∀k} satisfying the same proper-

ties as the multi-class system with M servers operating under the policy of Section 4.2. Since

we have the same routing matrix P for both systems, the fluid limits for the throughput

D̄(t) =
∑K

k=1 D̄k(t)pk,0, and hence the throughput of the original system, are equal.

To analyze the throughput in the fixed server system, we proceed as in Chen and Man-

delbaum [13]. Let ak and dk be the arrival and departure rates (defined as the inflow and

outflow capacities in [13]) at server k, with the corresponding vectors A and D. Let µ be the

K-dimensional processing capacity, with kth element µπ
k . Then A, D, µ, and the external

arrival rate vector E with Ek = λp0,k, k = 1, . . . , K, satisfy the traffic equations

A = E + P ′D, (58)

D = A ∧ µ, (59)

where ∧ denotes the componentwise minimum. We know from Section 3.2 that (58)− (59)

has a unique solution for A and D, when µ is given. The throughput of the fixed server

system τ(µ) as a function of the processing capacity µ is given by

τ(µ) =
K∑
i=1

dipi,0 = e′(I − P ′)(A ∧ µ),

where e is the K-dimensional unit vector, see page 426 of Chen and Mandelbaum [13].

Now, τ(µ) is a nondecreasing function of the processing capacity µ (see page 427 of Chen

and Mandelbaum [13]). Let µ∗ be the vector of processing capacities corresponding to the

optimal allocations, so that the kth entry of µ∗ is µ∗
k =

∑M
j=1 µj,kδ

∗
j,k, k = 1, . . . , K. Then we

see that (58)−(59) are satisfied for ak = a∗k and dk = d∗k. Hence the maximum throughput for

the fixed server system with processing capacity µ∗ is given by τ(µ∗) =
∑K

i=1 d
∗
i pi,0 = µ∗(λ).

By Proposition 4.1, we have µ ≥ µ∗(1 − ϵ) so that τ(µ) ≥ τ(µ∗(1 − ϵ)). We claim that for

the fixed server system with processing capacity µ∗(1− ϵ), the throughput τ(µ∗(1− ϵ)) is at

least µ∗(λ)(1− ϵ). This follows because we have

d∗k(1− ϵ) ≤ µ∗
k(1− ϵ), (60)

d∗k(1− ϵ) ≤ λ(1− ϵ)p0,k + (1− ϵ)
K∑
i=1

d∗i pi,k ≤ λp0,k +
K∑
i=1

d∗i (1− ϵ)pi,k. (61)
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Inequality (60) follows from (14) and (61) follows from (15). But then d′k = d∗k(1 − ϵ) is

a feasible solution for the allocation LP (13) − (17) with fixed servers having processing

capacity µ∗(1 − ϵ), and dk is the optimal solution. Hence, we have τ(µ) ≥ τ(µ∗(1 − ϵ)) =∑K
k=1 dkpk,0 ≥

∑K
k=1 d

′
kpk,0 = µ∗(λ)(1− ϵ) as required.
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