Energy-efficient data-based zonal control of temperature for data centers
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Abstract—In this work we address the problem of optimal
economic thermal operation of data centers utilizing economic
model predictive control. First, a data driven predictive zonal
model is trained using subspace identification. This model is
utilized in a model predictive controller to predict dynamic
behavior of a data center. An economic model predictive control
is designed to maintain temperature of each zone within an
allowable range while minimizing operational costs of the
cooling system. The effectiveness of the proposed method is
illustrated through simulations on a mechanistic data center
model.

Keywords-Data centers; Thermal management; Zone-model
predictive control; MPC; EMPC; Data driven predictive model.

I. INTRODUCTION

Data centers (DC) are currently drawing up to 5% of the
world’s electricity [1], with this proportion growing because
of increasing demand for cloud computing infrastructures.
About 40% of this energy is usually provided for thermal
management of IT equipment (ITE) [2]. The aim of DC
cooling systems is to maintain server temperatures within
a safe temperature region, where servers can be reliably
operated. The safe temperature ranges for different types
of DC hardware are available in guidelines such as those of
ASHRAE [3]. Conventional cooling architectures for DCs
are either room-based or row-based [4], [5]. Recently a new
cooling unit infrastructure has been developed employing
rack mountable cooling units. The idea in the new design is
to reduce cooling unit power consumption by limiting the
cooling area to the inside of a rack [6].

Violation of safe temperature guidelines, even by 1 or 2
degrees, can result in server failures [7], [8]. It can also result
in poor performance [9]. Therefore a controller is required
that can maintain safe temperatures while minimizing oper-
ating cost. In order to control DC temperature, we find that a
control theoretic viewpoint is applicable. A number of differ-
ent types of controllers can be utilized. The basic controllers,
are ON/OFF [10] and proportional—integral—derivative (PID)
controllers [11]. ON/OFF controllers trigger cooling when
the temperature exceeds a certain threshold, and switch off
when it falls below another threshold. However, this method
cannot adjust the level of cooling and therefore may result
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in excessive power consumption. PID controllers can adjust
cooling power according to errors between the measured
and desired temperatures. However, a PID controller cannot
predict the behavior of the system and the control action can
result in abrupt changes in behavior if controller gains are
poorly tuned. In addition, conventional PID is only appro-
priate for single input and single output systems. Finally, a
PID controller does not directly yield the optimal solution.

A controller that can generate an optimum solution, for
general multi input multi output systems is desired. Model
Predictive Control (MPC) is an approach that can address
all of these issues [12], [13]. MPC solves an optimization
problem at each sampling instant over a finite time horizon,
subject to a dynamic model of the system and general
constraints, in order to calculate the control action. This
objective function can be a combination of the temperature
deviation from the setpoint and the input cost. Recently, a
model predictive controller has been designed to stabilize
DC temperature at a desired ‘fixed’ setpoint while reducing
energy cost [14]. Therefore the objective function of the
MPC should be designed in a manner that resolves the trade-
off between output deviation from a fixed setpoint and input
cost.

The models that are used in MPC to predict dynamic
behavior of DCs are mostly mechanistic models [15], [16].
These models are not easy to simulate and their calculation
is computationally expensive and hence not suitable for
real-time operation. In addition, adopting a model with
dynamic changes in structure may not be straight forward.
Therefore in this work we will utilize a data-driven method
to identify a predictive model. There are different machine
learning modeling methods that can be utilized in an MPC
framework. We will use a state space subspace identification
method to model our system. This modeling technique is
frequently utilized in system and control theory and is
well developed for all aspects of signal processing. We
demonstrate the effectiveness of our approach for a particular
DC architecture, however the approach is given in sufficient
generality to be appropriate for general architectures. With
modern DCs instrumented to provide real-time monitoring
data, our approach is an attractive means to perform thermal
control without requiring an expensive mechanistic modeling
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exercise.

Motivated by the above considerations, in this work we
address the problem of designing a model predictive control
scheme to minimize the operating cost of a data center while
ensuring that temperature is within a safe range. The rest of
the manuscript is organized as follows: First, the general
description for the data center considered in this work, a
mechanistic model for DCs as a test bed, a subspace identi-
fication approach and a representative formulation for MPC
are reviewed. Then the proposed zonal model predictive
control approach is presented. The efficiency of the proposed
zonal control is illustrated by simulating a DC with two
rack mounted cooling units. The results are compared with
a nominal MPC. Finally, concluding remarks are presented.

II. PRELIMINARIES

A description of the data center with rack mounted
cooling units is provided in this section, followed by the
description of the test-bed model, and the relevant aspects
of the system simulation employed to study practical ap-
plication issues. A review of a subspace data-driven model
approach for dynamic systems is then presented.

A. Data Center

As a test bed, a parameter-free transient zonal model
to obtain the dynamic temperature profile inside a data
center (DC) with rack mounted cooling unit (RMCU) with
separated cold and hot chambers is reviewed. The schematic
and zones for a DC IT rack within an enclosure that is cooled
by two RMCUs are presented in Figure 1. This method of
modeling was recently proposed in [6]. The model is based
on mass and energy conservation rules for each zone within
the DC.

A detailed explanation of the modeling details and for-
mulations can be found in [6], and are omitted here for
brevity. The system considered in this work consists of a
single rack DC containing 20 servers with known power
consumption, and two rack-mounted cooling units located at
the top and bottom of the rack. The cooling unit consists of a
heat exchanger and a set of five identical compact industrial
fans.

1) Mechanistic Thermal Model of Data Center with Rack
Mounted Cooling Unit: The mechanistic model for the
test bed is adopted from a recently developed mechanistic
model proposed in [6]. In this section we briefly present
the mathematical formulation. The dynamic equation for the
temperature is driven from the energy balance equation for
an active server as follows:

% ( dz;;,’b dg;l ) = pacp,aQs,i (Tc,i
where, M is the thermal mass of the server, T, ; and T ;
are the temperatures at the server outlet and cold chamber
zone, p, is air density, ¢, , is the specific heat of air, and P
is the power consumption of the server. (), ; is the airflow

~T.;)+ P, (1)

through each active server and is calculated in m?3/s using
the following equation:

Qv = 0.01415 if T.; <25
71 0.01415 4+ 0.00142(T,. ; — 25)
2
The energy balance for air and chilled water within the

cooling unit can be written in the form of the following
equations:

dT, dI},
pacpaVal gy + ) =
UA
pacp,aQR(Th - Tc) - T(Th + Tc - Ti7w - To,w);
(3)
dT’i,w dTo,w
Ppr,wVw( dt + dt ) =
UA
pwcpﬂqu(Ti,w - To,w) + T(Th + Tc - Tli,w - To,w)7
4)

where T, and T}, denote the air temperatures at the cooling
unit outlet and inlet, T} ,, and 75, ,, the chilled water inlet
and outlet temperatures, @),, the water flow rate, and ¢,
and p,, are the specific heat and the density of water. U and
A denote the overall heat transfer coefficient and surface
area inside the RMCU. In order to calculate the value of
U A in the heat exchanger between two fluids, see [6]. Qg
in the equations in Table I is cold airflow and for each server
17 in a rack with n servers is calculated using the following
equation:

n—1 0.5
Qr,i = (n(n—i—l) + n) Qr(1—)
for i =2,3,...n, 4)

where ¢ is the portion of the cold airflow that exits the
RMCU and enters the cold chamber zone in front of the
first server.

For each chamber zone (cold and hot), using energy
balance results in the following equations:

dT,;

pacp,avc’}/dit’ = QR+ ¢; + ¢o + &1 + Ps, (6)
dTy,.

Pacpa VWY =3 = &+ & + 0 + &, (M)

where V. and V} are the volumes of the cold and hot
chambers. The parameter v is a correction factor for the
masses of the chamber zones. The quantities ¢ and ¢’ are the
energy exchanges for the cold and hot chamber zones. The
expressions for each energy exchange term in Equations 6
and 7 are presented in Tablel, in terms of the temperature
of the corresponding chamber zone.

if 25 < T,; < 35



Table T
DEFINITIONS FOR THE TERMS IN EQUATIONS 6 AND (7)

Equation.(6)

bi = Pacp,aQin,ilci—1 Qing >0
‘ Pacp,aQin,iTei-1 Qin,i <0
bo = _pan,aQo,iTc,i Qin,i >0
° —pacp,aQo,ilcit1  Qin,i <0
& = pacp,an,iTh,i AP >0
! Pacp,aQriTei AP <0

or = pacp,aQR,iTc

Equation.(7)
& = { pacp,aQ;n’iTh,i-&-l Q;n,l >0
i pacp,aQényiTh,i Qi?’l <0
¢/o _ { *Pacp,aQ?YiTh,i Q;),i >0
7pacp,qu’iTc,i71 Qo,i <0
¢/ — { pan,an,iTh,i AP >0
l pacp,an,iTc,i AP <0
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Figure 1. Schematic of the IT enclosure integrated with a single rack and
two RMCUs with separated cold and hot chambers. The zones (control
volumes) in the front and back chambers are shown.

III. DATA-DRIVEN ZONAL CONTROL IMPLEMENTATION

A. State-Space Based Subspace Identification

In this section we review the conventional subspace-based
identification method which we will utilize to train a discrete
state space model. The goal in model identification is to
compute the linear time invariant (LTI) model parameters
with the following form:

Ti+1 = Az + Bug + wy (®
yr = Cxg + Dug + vg ©)]

where z € R™ and y € R™ denote the vectors of state
variables and measured outputs, w € R™ and v € R™v are
zero mean, white vectors of process noise and measurement
noise with the following covariance matrices:

E[(:ﬁ?) (Wi vj)]= (5% }2) 8ij

where Q € R"%*"= G ¢ R">*" and R € R"™*"™v are
covariance matrices, and, d;; is the Kronecker delta function.
In order to compute the LTI model matrices, Hankel matrices

are constructed by stacking the system variables as follows:

U7 u N Uj
U us . Uj41
Up = U1|z =1 . . . . (10)
Ui Uit1 Uitj—1
Wit1 Uit Wit
Ui+2  Ui43 oo Witj41
U =Uit112: = | . . . . (11)
U5  U2i41 U245 —1

where U, and U; denote the past and future input Hankel
matrices. The value ¢ is a user-specified parameter that limits
the order of the system (n) and ¢ should be larger than n.
Block-Hankel matrices are defined in a similar manner for v,
vand w as Y, Yy, Vp, Vy € R >J and W, Wy € Rin=>J,
The state sequences are defined as follows:

Xp = [.Tl o $j] 5 (12)
Xp=[2iy1 Tigo Tits) - (13)
We also define:
_ Y
wli]
Y.
U, = f] (15)
d [Uf

The orthogonal projection of the row space of matrix A onto
the row space of matrix B, (A/B) is defined as:

A/B = AB'B, (16)

where the superscript T denotes pseudo-inverse. By recursive
substitution into the state space model, Equations (8) and (9),
it is straightforward to show:

Yy =T:X; + QIU; + ®W, + V (17)
Y, =X, + ®/U, + W, + V,, (18)
Xp=A'X, + AU, + A5W, (19)



where:

C
CA

r, = | CA? (20)

Cz‘l'i_l
D 0 0 ... 0

CB D 0

o

(CA"2B CA"™3B CA™B ... D
[0 0 0
c 0 0

Qo ooco
co ocooo

(a2 A ca
Al =[A"'B A?B AB B] (23)
Af = [ATTT 42 A ] 24

Equation (17) can be rewritten in the following form to have
the input and output data on the LHS [17]:

1 o [gﬂ =T, X+ W+ V(25

By orthogonal projection of Equation (25) onto W,,:

[I _(I);ﬂ \I/f/‘I’p = Pin/\IJP + (I)fo/\I’p + Vf/‘I’p
(26)

The last two terms in Equation (26) are the orthogonal
projection of the future noise onto the row space of ¥,,, and
since the noise terms are independent, these two terms are
equal to zero. Thus Equation (26) is simplified as follows:

(I —®¢] /¥, =T:X;/9, @7

Equation (27) indicates that the column space of I is equal to
the column space of [I —<I>fi1] Vs /¥,, and the row space of
Xy /¥, is the same as the row space of [I —®F| U;/T,.
This equation can be solved using singular value decom-
position (SVD), and the system matrices can be calculated
from the results. In existing results, the innovation form of
the LTI model is used, as follows:

Tp1 = Axy, + Bug + Key, (28)
yr = Cxg + Dug + e, (29)

where ey, is the innovation term, and, K is the filter gain.
In these methods, after determining the A matrix, B and
K are estimated using least squares. In contrast to the
existing results, in this work we first estimate the noise
terms, then calculate noise covariance matrices and based on
these covariances the observer gain is calculated. The system

identification procedures require the input signal to be quasi-
stationary and persistently exciting of order 2:. In the system
identification step, only the observable part of a system is
identified therefore the LTI model is always observable. Also
note that, the order of the LTI system n is selected in a
manner such that the identified system is controllable and
the prediction of validation data is acceptable.
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Figure 2. Model validation results (outputs)
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Figure 3. Model validation results (inputs and disturbances)

Remark 1: The order of the model or the number of states
to be used for the model (the only model parameter choice)
is decided from the training data fitting properties. This is
done, at the singular value decomposition step, the choice
of the number of states is equal to the number of dominant
singular values. Note also that for the case that data are col-
lected in closed-loop with noise or disturbance in the plant,
open-loop identification methods are theoretically biased for
data driven modeling, and closed-loop identification must
be used, for example the closed-loop identification method
utilized in [18].

B. Model Predictive control

In this section a conventional model predictive controller
based on the identified model is designed. The goal of this
controller is to keep the hottest point at the front of the
servers at a desired temperature. The proposed controller is



found as a solution of the following optimization problem:

computed by solving the following optimization problem:

.
P

i S G0) ~ 0a) Q) i) + HDTRAG) o My 25 - ) e ) i) 6D

a (30) subject to: (38)

subject to: (31) i(k+1) = Az(k) + Bau(k) + Bad(k) (39)
#(k+1) = Ai(k) + Ba(k) + Bad(k)  (32) d(k +1) = d(k) (40)

d(k +1) = d(k) (33) j(k) = CE(k) + Di(k) + Dad(k) ~ (41)

§(k) = Ci(k) + Da(k) + Dqd(k) (34) weU, e >0, e >0 (42)

ieu (35) B(k) =y, d(k) = dy (43)

i(k) = &g, d(k)=dy, (36) Ymin = €~ <Y < Ymaz — €4, (44)

where ¢ and 4y, are the predicted output trajectory and input
at the kth sampling instant. £ and & are the predicted value
and the estimate of the subspace state, obtained utilizing
a state estimator. d and d are the predicted value and the
estimate of the measured disturbances, equal to the latest
measurement. The matrices @), and R,, are output and input
penalty matrices which are positive definite and pseudo-
positive matrices. These are the means with which to tune
the controller. The scalar y,, is the desired output value for
the system.

In order to compute the control action, the MPC opti-
mization problem is solved at each sampling instant. The
first input in the computed sequence is implemented on the
system.

A Kalman filter is employed for state estimation in this
study. The state estimator has the following form:

.’)AL']: = AZp_1 + Buyg,

Py = AP, 1 AT +Q,

K, =P CT(CP;C" +R),
T = f,: + Ky (yk — CQA?,;) ,

P, = (I - KxC) Py,

where %, and P, denote state and covariance matrix
predictions at the kth sampling instant. () and R are state
and output covariance matrices, Ky, is the Kalman filter gain
at the kth sampling instant and I denotes the identity matrix.

C. Zonal model predictive control

The primary objective of zonal control in a data center
is to maintain the temperature at the front of servers within
a desired range to ensure for safe operation. There is also
a secondary control goal which is to reduce the operational
cost of the cooling system. The manipulated values are the
chilled water flow rate (or valve opening percentage) and
air flow (or fan speed) at each sampling instant %, and are

where c._ and c., denote penalties associated with slack
variables. The vector ¢, denotes the cost of the manipulated
input variables. The slack variables e_ and e, are added
to the lower and upper bounds on the outputs to ensure the
feasibility of the optimization problem. The values y,,;, and
Ymaz are lower and upper bounds on the output (tempera-
tures). The schematic presentation of EMPC is presented in
Figure (4).
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Figure 4. Schematic presentation of EMPC

Remark 2: The objective function serves two purposes.
Firstly, it ensures that controlled outputs are within the
defined range. Also, it minimizes operational costs based
on the provided input costs (c,). The main purpose is to
ensure that temperatures are in the safe region, therefore e_
and e are chosen in a way to ensure that the slack variables
in the objective function are dominant.

Remark 3: The optimization problem defined is a lin-
ear programming (LP) problem. Therefore, using available
solvers, the global optimum (if constraints are consistent)
can be calculated. In order to implement it this formulation
can be written in the standard form of an LP, which requires
the addition of states and output variables to the decision



variables, which is a straightforward procedure. We shall
not discuss this issue further in this paper.

Remark 4: Although a DC with rack mounted cooling
unit is utilized as a testbed, the proposed framework can be
used for other types of cooling unit and for any size of DC.
We have not used any assumptions for the structure of the
system and the model used in the predictive controller is
data-driven.

Remark 5: There are two main differences in the two
proposed frameworks. First, the optimization problem for
MPC is a quadratic program, therefore it requires more
computational effort than an LP. Secondly, in the MPC
we have a setpoint for temperature inside a DC instead
of a range for temperature. The problem of choosing the
correct spots in a DC for being controlled may not be
straightforward, as, the server workload distribution may
change the location of hottest point(s). But, with EMPC we
can monitor all the locations.

IV. ILLUSTRATIVE SIMULATION RESULTS
A. Data Driven Modeling

The model is computed using the proposed identification
method. The manipulated variables are two air flow rates in
front of the fans and overall chilled water flow rate. The
measured disturbances are the server utilizations (assumed
to be uniform among servers) and chilled water temperature.
The controlled outputs are the six temperatures in front of
the servers.

In order to identify a model, inputs and utilizations are
perturbed in a pseudo-random binary sequence fashion, ex-
cept chilled water temperature. The chilled water is typically
taken from a utility service, and its temperature is subject
to changes due to the time varying load. Here, we assume a
sinusoidal signal. The identified model consists of twenty
states, three manipulated input variables, two measured
disturbances and six measured outputs.

The identified model has the following form:

ZTi+1 = Az + Buy + Bady + wy, 45)
yr = Cxp + Duy + Dady, + vy, (46)

E[(i‘]’j) (Wl 7)) = <5§2T ;) 8§, @D

where d is vector of measured variables. The matrices By
and D, are measured disturbances gains in the state and
output equations. In order to use our identification approach,
d is augmented with u to create the overall input, while the
rest of the steps are as illustrated.

For model validation, a different training data batch was
used. The model validation results are presented in Figures 2
and 3. Since the initial state of the state space model
cannot be determined from the training data, a Kalman filter
(a state estimator) is utilized in order to achieve output
convergence, then open-loop prediction is used for model

validation in order to evaluate model prediction performance.
At time 300 seconds into the data batch, the output of
the predictive model has converged to the plant output,
and the identified LTI model in open-loop (without state
update), along with the known input trajectory, is utilized
for output prediction with the remainder of the data. The
results show that after the convergence of the model states,
the prediction performance of the model for simulating the
process behavior is reasonable, and is appropriate for a
predictive control implementation.

B. Economic Zone Model Predictive Control

The data center temperature is maintained in the desired
range utilizing the controller presented in Equation 44. Since
the test bed does not include a heating system we do not
have a lower limit for temperature (or 7,,;, = —o0). The
controller parameters are reported in Table II. Figure 7 shows
the comparison of the zonal EMPC and conventional MPC.
The simulation results are presented in Figures 5, 6. As
expected, the EMPC achieves improved economic returns
compared to the conventional MPC.

Table 11
CONTROLLER PARAMETERS

Variable Value
ce_ [105 108 106]"
ce, [105 106 108]"
cu [10-2 1072 1]"
P 8
Ymazx 16

16 16
14
- w18
ST =
14
10
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16 ‘V lsjl
15 15
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Figure 5. Closed-loop profile (output)

Remark 6: The issue of data center problems are
amenable to control-theoretic techniques that are well es-
tablished in other areas. We provide a convincing case that
such techniques should be considered in this space.

V. CONCLUSIONS

In this study, a novel EMPC with a zonal control approach
is developed that enables maintaining temperatures in a data
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Figure 7.
and MPC.

A comparison of the economic cost between the zone EMPC

center within a safe region with cost efficient operation.
The proposed approach is described and compared against a
representative nominal MPC and shown to be able to provide
improved closed-loop behavior through implementation on
an example of a data center model.

VI. ACKNOWLEDGMENT

This research was supported grant CRDPI506142-16 and
the Discovery grant program of the Natural Science and
Engineering Research Council of Canada.

REFERENCES

[1] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Tor-
cellini, B. Liu, M. Halverson, D. Winiarski, M. Rosenberg
et al., “Us department of energy commercial reference build-
ing models of the national building stock,” 2011.

[2] J. Dai, M. M. Ohadi, D. Das, and M. G. Pecht, Optimum
cooling of data centers. Springer, 2016.

[3] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and
J. S. Chase, “Balance of power: Dynamic thermal manage-
ment for internet data centers,” IEEE Internet Computing,
vol. 9, no. 1, pp. 42-49, 2005.

(4]

(51

(6]

(71

[8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

K. Dunlap and N. Rasmussen, “Choosing between room, row,
and rack-based cooling for data centers,” APC White Paper,
vol. 130, 2012.

G. Slessman, W. Slessman, K. Malik, J. Steffensen, and
K. Holmgren, “Data center intelligent control and optimiza-
tion,” Apr. 9 2019, uS Patent App. 10/254,720.

H. Moazamigoodarzi, S. Pal, S. Ghosh, and I. K. Puri,
“Real-time temperature predictions in it server enclosures,”
International Journal of Heat and Mass Transfer, vol. 127,
pp- 890-900, 2018.

N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang,
and B. Schroeder, “Temperature management in data centers:
why some (might) like it hot,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 40, no. 1, pp. 163-174, 2012.

M. K. Patterson, “The effect of data center temperature on
energy efficiency,” in 2008 11th Intersociety Conference on
Thermal and Thermomechanical Phenomena in Electronic
Systems. 1EEE, 2008, pp. 1167-1174.

W. Torell, K. Brown, and V. Avelar, “The unexpected im-
pact of raising data center temperatures,” Write paper 221,
Revision, 2015.

D. H. Zervos, “On-off thermostat based modulating air flow
controller,” Dec. 3 1985, uS Patent 4,556,169.

B. Durand-Estebe, C. Le Bot, J. N. Mancos, and E. Arquis,
“Data center optimization using pid regulation in cfd simula-
tions,” Energy and Buildings, vol. 66, pp. 154-164, 2013.

M. Kheradmandi and P. Mhaskar, “Prescribing closed-loop
behavior using nonlinear model predictive control,” Industrial
& Engineering Chemistry Research, vol. 56, no. 51, pp.
15083-15093, 2017.

B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovi¢, and
F. J. Doyle III, “Zone model predictive control: a strategy
to minimize hyper-and hypoglycemic events,” Journal of
diabetes science and technology, vol. 4, no. 4, pp. 961-975,
2010.

X. Zhao, Z. Xiong, L. Ding, X. Zhang, and F. Xu, “A
smart coordinated temperature feedback controller for energy-
efficient data centers,” Future Generation Computer Systems,
vol. 93, pp. 506-514, 2019.

L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A
cyber—physical systems approach to data center modeling and
control for energy efficiency,” Proceedings of the IEEE, vol.
100, no. 1, pp. 254-268, 2012.

C. J. Dawson, V. V. DiLuoffo, A. H. I. Rick, and M. D.
Kendzierski, “System and method to control data center air
handling systems,” Jan. 3 2012, uS Patent 8,090,476.

J. Wang and S. J. Qin, “A new subspace identification
approach based on principal component analysis,” Journal of
process control, vol. 12, no. 8, pp. 841-855, 2002.

M. Kheradmandi and P. Mhaskar, “Data driven economic
model predictive control,” Mathematics, vol. 6, no. 4, p. 51,
2018.



