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Abstract—Energy consumption of today’s datacenters is a
constant concern from the standpoints of monetary and environ-
mental costs. We model a datacenter as a queueing system, where
each server can be switched on or off, with the time to switch
a server on being nonnegligible. Previously derived structural
properties of the optimal policy allow us to intelligently select
policies to analyse further. Using the recursive renewal reward
technique, we offer an exact analysis of these policies alongside
offering insights, observations, and implications for how these
systems behave. In particular, we provide insight into the question
of the number of servers that should remain on at all times under
a general cost function.

I. INTRODUCTION

Immense energy consumption of datacenters has become a
fact of modern life. The United States spends on the order
of billions of dollars powering these systems each year [1],
[2]. Google alone pays an annual energy bill on the order
of hundreds of millions of dollars [3], [4]. While some may
see this as an obligatory cost, the truth is many of these
servers spend a significant amount of time idle. Moreover,
an idling server uses a large percentage of the energy it would
if it were busy [5]. To conserve costs, servers often have a
lower energy state they can be switched to (off, sleep, etc.).
However, the choice of if and when to make such a switch for
each server is far from trivial. That is, while turning a server
off may increase system efficiency, it will decrease system
efficacy. This paper derives exact solutions which provide
several insights into the behaviours of these systems, as well
as answering key questions with regards to how they should
be optimally provisioned and managed.

Due to the nature of these systems, queueing models are
a natural analysis tool (for other, non-queueing theoretic
approaches see [6]–[10]). To the best of our knowledge, Chen
et al. [11] were the first to use queueing theory to tackle the
problem of energy-aware provisioning in server farms. Around
the same time Sledgers et al. [12] studied the problem with
varying traffic rates where servers are allocated dynamically
and presented heuristics to conserve energy. Since then, several
variations on previously studied vacation models [13] have
been developed, where vacations can be viewed as the setup
time for a given server. Gandhi et al. began to study these
systems in [14] and were able to present some interesting
analytical results for the single server case, as well as some

rules of thumb for the multiserver case. They continued their
research in [15] in which they modelled a server farm as a
continuous time Markov chain (CTMC) where servers begin
setup if there is a job waiting to be served, and shut down
as soon as they idle. As will be seen, employing a two
dimensional CTMC model is a common and convenient way to
view these systems. As such, in [16] Gandhi et al. introduced
a method to derive moments of metrics associated with these
CTMCs (such as the expected number of jobs in the system)
called the recursive renewal reward (RRR) technique, where
they also introduced another policy where servers wait some
portion of time idle before being switched off. Phung-Duc
[17] gave a comprehensive side by side comparison of RRR
and other traditional methods for analysing these CTMCs. If
the steady state of these CTMCs is also of interest, methods
introduced by Doroudi et al. in [18] may be employed. Other
authors have studied the same model as Gandhi et al. but
under different policies (when servers turn on and off). Xu
and Tian [19] studied the set of policies where e servers are
turned off when there are d servers idle. Kuehn and Mashaly
[20] analysed policies which wait for a threshold of jobs to
accumulate in the queue before a server starts its setup and
turns servers off when they idle, under the presence of a finite
buffer. Lastly, Ren et al. [21] analysed a finite two-dimensional
CTMC similar to Kuehn and Mashaly in the context of virtual
networks, which allows for a number of servers to always
remain operational, but omits the use of turn on thresholds.

Limiting study to the single server case grants an even
greater understanding of these systems. Artalejo [22] was one
of the first to look at this case under general processing time
distributions. However, his work focused on particular vacation
models which do not fully capture the behaviour of a server
which can be switched on and off. In [23] we adapted these
models to better suit the domain of green computing, and
were able to derive the optimal policy for the single server
case under complete generality with regards to the underlying
distributions and cost function. Gebrehiwot et al. [24] extended
the analysis of the single server case by allowing multiple
sleep states, and more recently looked at the model under
the processor sharing service discipline [25]. Hyytiä et al.
[26], [27] also studied this model under processor sharing
in addition to last come first serve, and different routing



configurations.
While the contributions of the previously mentioned works

are substantial, a gap in knowledge still remains. While
optimal control of the single server case is well understood,
it offers less practical application than corresponding multi-
server models. However, when studying the multiserver case
complexity constrains researchers to focus on specific policies,
which in general may be far from optimal. Therefore, we
studied the structure of the optimal policy in [28] and derived
several structural properties which greatly aid in policy selec-
tion. In this paper we leverage our past work to intelligently
select policies to analyse, as well as drawing key conclusions
regarding the optimal policy. The main contributions of this
work are as follows.

1) The description and exact analysis of two distinct poli-
cies, bulk setup and staggered threshold.

2) A range of numerical experiments which yield exact
values for metrics of interest.

3) An examination and discussion of these numerical re-
sults which lead to several insights into how these
systems behave, specifically with respect to the question
of the number of servers one should always leave on.

For further details and discussion on the results presented here,
we direct the reader to the corresponding technical report [29].

II. MODEL

We analyse a system with C homogeneous servers and a
central queue. Jobs arrive to the system following a Poisson
process with rate λ, are processed on a first come first served
basis, and have processing times which are exponentially
distributed with rate µ. Each of the C servers can be in one
of four energy states, off, setup, idle, or busy. For ease of
exposition we often refer to a server being busy, idle, off, or
in setup as shorthand for a server being in the corresponding
energy state. Regarding definitions and transitions, a server
is idle if and only if it is on and not processing a job.
Furthermore, a server can only begin serving a job if it is
currently idle, in which case the server becomes busy. At any
time a server can be instantly switched off. Furthermore, an
off server can transition to setup. This is often referred to as
a server starting to turn on. Once in setup, the server will
remain there for a time exponentially distributed with rate γ,
after which the server will become idle. In other words, each
server has setup times expected to last 1/γ time units, while
turn-offs happen instantaneously.

The nature of the policies considered in this work, alongside
the assumptions on the underlying distributions for the arrival,
processing, and setup times, allow the system to be modelled
as a CTMC. The corresponding state space of the CTMC is
denoted by (i, j), where i is the number of servers currently
on (idle or busy), and j is the number of jobs currently in
the system (including those in service). For such a CTMC,
one can impose a policy which determines the transition rates
between these states. For the policies described in this work,
we separate the C servers into one of two groups, static or
dynamic. That is, C∗ of the C servers will be static (always

remain on) and C − C∗ servers will be dynamic (can be
switched on or off), where 0 ≤ C∗ ≤ C. For our purposes, C∗

is treated as a decision variable for each policy. Furthermore,
a policy is fully described when the setup and turn off criteria
of each of the remaining C −C∗ dynamic servers is given. A
graphical representation of this model can be seen in Figure 1.

It is worth noting that in future sections there is often a
threshold value associated with turning servers on, denoted by
k. This threshold value k is also viewed as a decision variable.
Due to the Markovian nature of the model, optimal choices
for switching servers on/off are always made the moment the
system enters a state (the moment an event occurs). These
decision variables are left abstract, and their allowable range is
determined by the employed policy. For example, for a system
with C = 2, it may be the case that for all states (1, j), where
j > 3, the second server will begin its setup, if it has not
yet done so. Furthermore, for the same system, it may be the
case that for all states (2, j) where j < 3, the second server
is immediately switched off.

Fig. 1: The model under study. Dynamic servers take time
exponentially distributed with rate γ to move from setup to
idle or busy, all other transitions happen instantly if the system
state allows it.

A. Metrics and Notation

In order for one to compare policies there must be some as-
sociated metrics with which to make comparisons. In this work
we focus on the trade-off between two metrics. To measure
efficacy we examine the expected response time, denoted by
E[R]. To measure efficiency, we examine the expected excess
energy cost (subsequently referred to as expected energy cost
or expected rate of energy consumption) denoted by E[E].
Without loss of generality, the expected energy cost is the
sum of the expected number of idle servers and the expected
number of servers in setup, each weighted by some factor
normalized to how much energy they use compared to a busy



Fig. 2: Bulk setup CTMC with C∗ = 0 and k = 2. If C∗ is changed from 0 to 1, the shaded row would be merged into row 1
creating the state (1, 0) as well as adding the dashed red arrow transitions to states (1, 3) and (2, 5). Moreover, the repeating
portion of the CTMC would now start at column five.

server. That is, a server in setup accumulates energy cost at
rate denoted by rsetup = 1, while an idle server accumulates
it at some factor less than rsetup, denoted by ridle, where
0 < ridle < 1. While it may seem odd that we disregard
energy costs associated with processing jobs, there is good
reason to do so. For any stable system, all jobs which enter
will have to be processed eventually. Therefore, in steady state
the energy cost accumulated by processing jobs is completely
insensitive to which policy is chosen.

Due to the structure of these CTMCs, they can be analysed
using the RRR method described in [16], which allows for
the exact analysis of the expected rate of energy consumption,
and the expected response time of the system. The idea of the
method is to build recursions for costs based on how much of
said cost is incurred before transitioning one column left of
a given state. Specifically, if the system currently contains j
jobs, one must keep track of how much of a particular cost
is incurred before the system contains j − 1 jobs. For our
purposes, the costs we derive are the expected amount of time,
the expected holding costs, and the expected total energy costs
incurred before transitioning one column left. For state (i, j)
we denote these values by Ti,j , Hi,j and Ei,j , respectively.
As a visual aid, in Figure 2, T1,3 would denote the expected
amount of time for the system to reach one of the states
(0, 2), (1, 2), or (2, 2), given that it started in state (1, 3). The
value H0,5 would denote the expected amount of holding cost
incurred during the time the system transitions from state (0, 5)
to one of the states (0, 4), (1, 4), (2, 4), or (3, 4). Furthermore,
to build a recursive relationship between all of these values,
one must know the probability of being in a particular state
once a left transition has been made. Therefore, we denote
the probability of being in row i′ after moving one column
left of state (i, j) by Pi′(i, j). In Figure 2, P2(0, 4) would

denote the probability of being in state (2, 3) the moment
the system reaches one of the states (0, 3), (1, 3), (2, 3), or
(3, 3), given it started in state (0, 4). The recursions for these
costs and probabilities are “tied off” once the CTMC reaches
the repeating portion. Informally, the repeating portion of the
CTMC is when the states in any column to the right of the
current column are indistinguishable from the corresponding
state in the current column, based on the transition rates alone.
The non-repeating portion of the CTMC consists of the states
belonging to columns in said CTMC before it starts repeating.
Again, using Figure 2 as a visual reference, the repeating
portion starts with column 6, and continues right to infinity.
This is because states (2, i), where i ≥ 6 move to state (3, i)
with rate γ, while state (2, 5) cannot move directly to state
(3, 5).

III. ANALYSIS

Here we analyse two distinct policies, bulk setup and
staggered threshold, with the ultimate goal of deriving the
expected rate of energy consumption (E[E]), and the expected
response time (E[R]). With the notation introduced in the
previous section, these expressions may firstly be written down
independent of which policy is being employed. That is, from
the renewal reward theorem we know that the expected number
of jobs in the system (E[N ]) is the expected holding cost
incurred over a renewal cycle, divided by the expected time to
complete that same renewal cycle. For simplicity we choose
the reference state for this cycle to be the state (C∗, 0), i.e.
when the system is empty. From the renewal reward theorem
and Little’s law we can write:

E[R] =
E[N ]

λ
=

HC∗,1

λ(TC∗,1 + 1/λ)
. (1)



We can write a similar expression for E[E],

E[E] =
EC∗,1 + (ridleC

∗)/λ

TC∗,1 + 1/λ
. (2)

It is also noted that the underlying CTMCs of all threshold
policies, which includes all previously well-studied policies,
have identical repeating portions. Moreover, the optimal pol-
icy is known to be a threshold policy [28]. Therefore, we
can derive all values associated with the repeating portion
independent from the choice of policy. These values are as
follows,

0 =
λ

λ+ iµ+ (C − i)γ
P 2
i (i)− Pi(i) +

iµ

λ+ iµ+ (C − i)γ

Pi′(i) =
(C − i)γPi′(i+ 1) + λ

∑i′−1
m=i+1 Pi′(m)Pm(i)

iµ+ (C − i)γ + λ(1− Pi(i)− Pi′(i′))

Ti =
1 + (C − i)γTi+1 + λ

∑C
m=i+1 TmPm(i)

iµ+ (C − i)γ − λPi(i)

Hi,j =
j + (N − i)γHi+1,j + λ(Ti +

∑C
m=i+1Hm,jPm(i))

iµ+ (N − i)γ − λPi(i)

Ei =
(C − i)rsetup + (N − i)γEi+1 + λ

∑C
m=i+1EmPm(i)

iµ+ (C − i)γ − λPi(i)

where i′ > i, and Pi′(i), Ti, and Ei are used as shorthand for
Pi′(i, j), Ti,j , and Ei,j respectively, due to their independence
from j in the repeating portion of the CTMC. While it is
true that even in the repeating portion of the CTMC Hi,j is
dependent on j, one can still obtain a closed form expression
after the observation that Hi,j+1 = Hi,j + Ti,j .

A. Bulk Setup

With all common derivations out of the way, we proceed
with our examination of specific policies. The first of the
two policies we analyse is the bulk setup policy. Firstly, this
policy has C∗ static servers, where C∗ is treated as the first
of two decision variables. The second decision variable is the
threshold value k. If there are ever C∗ + (d + 1)k or more
jobs in the system (C∗ + (d + 1)k or more jobs waiting in
queue or being served), where d is the number of dynamic
servers currently on, the system will immediately start the
setup process for all remaining dynamic servers, hence the
name. When there are less than C∗ + (d + 1)k jobs in the
system, all servers in setup will be immediately switched off.
Furthermore, a dynamic server which has completed its setup
process and is now on will be switched off the moment it idles
(not when the number of jobs drops below the setup threshold).
While this policy may seem needlessly aggressive and is
admittedly unappealing from an implementation standpoint,
the mass setup nature of the policy has been shown to be
optimal for linear cost functions [28]. Moreover, the analysis
of this policy grants insights into the overall behaviour of these
systems. A graphical representation of an underlying CTMC

employing the bulk setup policy can be seen in Figure 2, as
well as how the Markov chain would be altered by changing
C∗.

For the sake of clarification, we give a detailed derivation of
the term Ti,j under this policy. While the derivation of other
terms is not exactly the same, it should be similar enough for
the reader to see the general form and technique. However, if
more detail is required, we direct the reader to [29] where all
derivations are given in full. Firstly consider the case where
j < (i − C∗ + 1), i.e. when there are no servers currently in
setup. The expected amount of time to transition one column
left of state (i, j) is broken down into a sum of the expected
amount of time for the next event to occur, and the probability
of each event occurring next multiplied with the expected
amount of time to reach column j − 1 from the new system
state. This point is more easily described through the use of
Figure 2. Consider the case of T2,3 corresponding to state
(2, 3) in Figure 2. This is in fact a simple case since due
to the direction of the arrows it is known that when arriving
at column 2 for the first time after leaving state (2, 3), the
system must be in state (2, 2). Therefore, we can view T2,3
as the expected amount of time until the system reaches state
(2, 2) from state (2, 3). This is the expected amount of time
to leave state (2, 3) plus some other term(s). Concerning the
next event witnessed, the only two possibilities are an arrival
or a departure. After a quick observation however, one will
note that if the next event is a departure, then the system is
in state (2, 2) and no more time will be added. Therefore,
this case may be excluded from the expression. This leaves
the case of an arrival. When a arrival is the next event, the
system moves to state (2, 4). Therefore, we must now derive
the expected amount of time to move from state (2, 4) to state
(2, 2). At first glance this may appear to be daunting as there
are an infinite number of paths the system may take before
transitioning to state (2, 2), but this value may be abstracted
and expressed using our previously defined notation. That is,
now we are interested in the expected amount of time it takes
to move two columns left of state (2, 4). With this observation
we can now write the following expression,

T2,3 =
1

λ+ 2µ
+
λ(T2,4 + P2(2, 4)T2,3 + P3(2, 4)T3,3)

λ+ 2µ
,

and after some algebra,

T2,3 =
1 + λT2,4 + P3(2, 4)T3,3
2µ+ λ(1− P2(2, 4))

.

This line of thinking can naturally be extended to the general
case to write an expression for Ti,j , recall we are currently
assuming j < (i− C∗ + 1):

Ti,j =
1 + λ(Ti,j+1 +

∑C
m=i Tm,jPm(i, j + 1))

λ+min(i, j)µ
.

All that is required to derive an expression for the case where
j ≥ (i−C∗+1) is to account for the possibility that the next



event to occur could now be a setup completion. Again, this
can naturally be extended to the following expression,

Ti,j =
1 + (C − i)γTi+1,j + λTi,j+1

λ+ (C − i)γ +min(i, j)µ

+
λ
∑C

m=i Tm,jPm(i, j + 1)

λ+ (C − i)γ +min(i, j)µ
.

Rearranged versions of the expressions for Ti,j , where Ti,j
is isolated, are given later in this section. For now we focus
on how one would arrive at a value for these time values.
At first look, it seems at best one would have to solve a
system of equations, where there is an equation for each
state in the non-repeating portion. This is actually not the
case as the CTMC has structure which can be exploited. For
example, inspecting T2,5 and expanding the expression, one
can note it is only dependent on the other expected transition
time values T2,6, T3,6, and T3,5. This is due to the fact that
T2,6 and T3,6 lie in the repeating portion of the CTMC,
and therefore have associated closed form expressions, and
furthermore T3,5 is only itself dependent on T3,6. In fact, if
the order in which the expected transition times are solved is
chosen intelligently, the complexity of solving these values can
be drastically reduced from solving each value simultaneously
as a system of linear equations. This is done by visually
noting that the transition times are dependent only on the
corresponding transition times to the states below, and to the
right of them. Mathematically, if i′ < i or j′ < j, then Ti,j
is not dependent on Ti′,j′ . That is, the correct order to solve
these values is to start with the state in the bottom right corner
of the non-repeating portion, state (3, 5) in Figure 2, state
(C, (C − C∗ + 1)k + C∗ − 1) in the general case (assuming
C∗ < C), and then begin moving to the left, solving the
corresponding values for each state until the end of the row
(state (C,C)) is reached. At this point, the procedure would
move one row down, and again begin moving left until the end
of the row is reached, solving the corresponding values along
the way. The non-repeating portion of the chain is iteratively
traversed in this way until all states are exhausted. Noting that
there are approximately (C−C∗)C∗(k+1) states in the non-
repeating portion, such a recursion solves all Ti,j values with
complexity O((C −C∗)2C∗k), as opposed to the complexity
of simultaneously solving the system of equations, which is
O(((C − C∗)C∗k)3).

With the typical approach and procedure explained, we
give all recursions and information needed to evaluate equa-
tions (1) and (2). Firstly, due to the servers turning off
when idle, the following boundary conditions are known:
(∀i > C∗ : Pi−1(i, i) = Pi−1(i − 1, i) = 1) and (∀j ≤
C∗ : PC∗(C

∗, j) = 1). Secondly, we present all expressions
pertaining to the non-repeating portion of the chain where no
servers are in setup, i.e. when j < (i − C∗ + 1)k + C∗,
C∗ ≤ i ≤ C, and i ≤ i′. They are as follows:

Pi(i, j) =
min(i, j)µ

min(i, j)µ+ λ(1− Pi(i, j + 1))

Pi′(i, j) =
λ
∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ λ(1− Pi(i, j + 1))

Ti,j =
1 + λ(Ti,j+1 +

∑C
m=i+1 Tm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))

Hi,j =
j + λ(Hi,j+1 +

∑C
m=i+1Hm,jPm(i, j + 1))

min(i, j)µ+ λ(1− Pi(i, j + 1))

Ei,j =
max(i− j, 0)ridle + λEi,j+1

min(i, j)µ+ λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1Em,jPm(i, j + 1)

min(i, j)µ+ λ(1− Pi(i, j + 1))
.

Lastly, the expressions for the non-repeating portion of the
chain where servers are in setup, i.e. when j ≥ (i − C∗ +
1)k + C∗, C∗ ≤ i ≤ C, and i ≤ i′, are as follows:

Pi(i, j) =
min(i, j)µ

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

Pi′(i, j) =
(C − i)γPi′(i+ 1, j)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

+
λ
∑i′

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

Ti,j =
1 + (C − i)γTi+1,j + λTi,j+1

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1 Tm,jPm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

Hi,j =
j + (C − i)γHi+1,j + λHi,j+1

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1Hm,jPm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

Ei,j =
(C − i)rsetup + (C − i)γEi+1,j + λEi,j+1

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1Em,jPm(i, j + 1)

min(i, j)µ+ (C − i)γ + λ(1− Pi(i, j + 1))
.

B. Staggered Threshold

The second policy analysed in this paper is the staggered
threshold policy. While it shares some qualities with the
bulk setup policy, it aims to have a more reasonable setup
behaviour. That is, dynamic servers are gradually turned on as
more jobs accumulate in the queue. As before, the number of
static servers (C∗) is left as a decision variable. However, when
there are nk jobs in the queue (waiting to be served), at least
n of the dynamic servers will be busy or in setup. Formally,
the number of servers in setup while in state (i, j), where
i = C∗ + i′, equals f(C∗ + i′, j) = {b{j −C∗}+/kc − i′}+.
Moreover, as before, a dynamic server will be switched off
the moment it idles. It is worth noting that other than the lack
of turning servers on in bulk, this policy does not violate any
structural properties presented in [28].



To evaluate (1) and (2), all boundary condition equalities
given in the bulk setup case also apply here. Furthermore, the
recursive expressions for the non-repeating states, i.e. when
j < (i− C∗ + 1)k + C∗, C∗ ≤ i ≤ C, and i ≤ i′ are,

Pi(i, j) =
min(i, j)µ

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Pi′(i, j) =
f(i, j)γPi′(i+ 1, j)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1 Pi′(m, j)Pm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Ti,j =
1 + f(i, j)γTi+1,j + λTi,j+1

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1 Tm,jPm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Hi,j =
i+ f(i, j)γHi+1,j + λHi,j+1

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ
∑C

m=i+1Hm,jPm(i, j + 1)

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

Ei,j =
max(0, i− j)ridle + f(i, j)rsetup + f(i, j)γEi+1,j

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))

+
λ(Ei,j+1 +

∑C
m=i+1Em,jPm(i, j + 1))

min(i, j)µ+ f(i, j)γ + λ(1− Pi(i, j + 1))
.

The order in which the recursion is solved is the same as that
described in the bulk setup section. That is, start with the lower
right hand corner of the non-repeating portion of the CTMC,
i.e. state (C, (C−C∗+1)k+C∗−1), then proceed left along
that row solving the values for each state, then move down one
row to the right most state, i.e. (C−1, (C−C∗+1)k+C∗−1),
and repeat.

IV. NUMERICAL RESULTS AND OBSERVATIONS

With the analysis complete, we proceed with our numerical
experiments. Using the results from the previous section,
we compute exact values for E[R] and E[E]. In particular,
there is no need to use simulations or approximations. All
experiments were run using standard Matlab libraries, of which
the source code can be found at [30]. Furthermore, each
experiment evaluates the system for every valid value of C∗

(0 ≤ C∗ ≤ C), while each curve represents a different
choice of the threshold value k. For all configurations we fix
µ = 1 and λ = C/2. Fixing λ does not limit the overall
system behaviours, since we are interested in how the system
will provision itself under a given policy and configuration
(determining the expected cost metrics), and such provisioning
can dynamically change the short term system load. Moreover,
in [29] we found the relative load on the system to be more
descriptive than the total number of servers available, therefore
we also fix C = 100. An extensive suite of experiments can
be found in [29] where some of these conditions are relaxed.

Before we proceed with our results and discussion, it
is worth commenting on cost functions which are usually
associated with these models. In the literature, different authors
use different cost functions. As an example, the authors of
[14] focus on the energy response product, i.e. E[E]E[R],
while others [9], [11] use a linear sum of the metrics, i.e.
E[R] + βE[E] for some β > 0. Moreover, one can define
an infinite set of legitimate cost functions dependent on these
metrics [23]. The problem lies in the fact that a policy or
configuration which minimizes one cost function could po-
tentially be disastrous for another. Furthermore, cost function
parameters, such as the aforementioned β can often be tweaked
to produce overall desired effects. One assumption which we
feel justified in making however, is that all reasonable cost
functions are non-decreasing in the costs. Therefore, instead
of applying our numerical results to a specific cost function,
we instead evaluate E[R] and E[E] separately and identify
configurations which are close to simultaneously minimizing
both metrics. If such win-win scenarios exist, they would
minimize a large set of, if not all, well-formed cost functions.

A. Bulk Setup

We firstly inspect the behaviour of E[R] under the bulk setup
policy. This behaviour can be seen in Figures 3 (a)-(d). As
expected, E[R] is monotonically decreasing in C∗. However,
E[R] has a more interesting relationship with regards to the
choice of k. One would perhaps expect that the lower the value
of k, the lower the expected response time would be. This is
a reasonable thought since a lower value of k means a more
proactive system, where servers are more inclined to turn on
if there are jobs waiting. However, this is not always the case.
Figures 3(a) and (c) are examples of this. Here for some lower
values of C∗ the expected response time for k = 1 is actually
the largest among all curves shown. While at first perplexing,
there is an intuitive explanation. While it is true that for a
larger value of k the first few jobs to arrive will wait in the
queue and have longer response times, this is overcome by the
fact that when the server turns on, there are now more jobs to
process. Because there are more jobs to process, it will take
longer for the server to become idle. Due to there being a
larger window for a job to arrive when the server is already
on, a larger value of k can actually result in a lower expected
response time.

Observation 1. There exist system configurations where in-
creasing the value of k decreases E[R].

Looking at some curves with larger values of k, i.e. Fig-
ures 3 (d) and (h), shows another interesting behaviour. It
seems that when k is sufficiently large, the expected response
time decreases linearly with C∗ until a point where it practi-
cally equals 1/µ. The point at which this changes in relation
to C∗ happens around C/2. The reason for E[R] converging
to 1/µ is clear. As the number of servers which are always on
increases, the probability that the job has to wait in queue
decreases, and its response time becomes its service time.
On the other hand, if C∗ is lower, the probability of a job



(a) γ = 0.01 (b) γ = 0.1 (c) γ = 0.001, with larger k (d) γ = 0.01, with larger k

(e) γ = 0.01 (f) γ = 0.1 (g) γ = 0.001, with larger k (h) γ = 0.01, with larger k

Fig. 3: Bulk setup E[R] vs C∗ for (a)-(d) and corresponding E[E] vs C∗ for (e)-(h), C = 100, λ = 50, µ = 1

having to wait in the queue increases. While it is not entirely
clear why this increase in expected response time is linear,
the following is noted. When a job arrives to the system and
has to wait in queue, it can be served in one of two ways.
Firstly, a fresh server can turn on and begin to process the
job. Secondly, a server which is currently processing a job
can complete and begin to process the job which is waiting.
The expected amount of time to turn on a new server increases
with C∗. However, the expected time for a server to become
available decreases with C∗. These two conflicting effects
may counteract each other to produce a linear decrease in the
expected response time of the system, in relation to C∗.

Observation 2. For a large enough k, E[R] and E[E] can
be approximated by a piecewise linear function. However, the
value of k required to invoke this behaviour in the E[R] curve
is less than the corresponding value of k for the E[E] curve.

We shift our discussion to focus on the expected energy cost
shown in Figures 3 (e)-(h). As a reminder, E[E] is the expected
excess energy consumed by the system, due to servers idling
and in setup. These figures show the sum of those two separate
effects. Unlike the expected response time, the expected energy
rate is not monotonically decreasing (nor increasing) in C∗.
This leads to local maxima and minima within the curve.
Firstly, it is noted that around ρ = λ/µ = C/2 there is a
local maximum. Our conjectured reason for this is the system
is in a lose-lose scenario. That is, the system has a relatively
high chance of being in a state where there are servers in
setup, which once turned on, will clear jobs out of the system
causing the relativley large set of static servers to regularily
idle. Therefore, a significant amount of both setup and idling
costs are contributing to the overall expected energy cost. This
is in contrast to the curve around ρ +

√
ρ, where there is

a local minimum, or in the case where γ or k is small, a
global minimum. Here the system finds itself in a win-win

configuration. That is, the chance of a job arriving to the
system where there are no idle servers is low (consistent with
the square root staffing rule [31]), and therefore the chance
of servers being in setup is also low. On the other hand,
the static servers are highly utilized, keeping the idling costs
low. These two observations together make C∗ = ρ+

√
ρ an

appealing choice, especially for systems with longer expected
setup times.

Observation 3. For lower values of γ (longer setup times),
E[E] has a local maximum around C∗ = ρ.

Looking back at the expected response time, the observation
of C∗ = ρ+

√
ρ being a good choice for C∗ also holds from

the performance standpoint. The previous point that a job will
rarely wait implies that the expected response time is close
to its lower bound of 1/µ. This can be seen in Figures 3 (a)-
(d). Furthermore, while the expected energy rate is sensitive to
some configurations around C∗ = ρ+

√
ρ, it is less sensitive

when C∗ is overestimated. Or in other words, around C∗ =
ρ +
√
ρ, E[E] increases at a lower rate when C∗ increases,

than if C∗ were to decrease. This is also good news for system
efficacy, as E[R] is monotonically decreasing in C∗. Therefore,
if one wished to err on the side of caution one could set their
choice of C∗ to be greater than the minimum value without
being punished too harshly.

Observation 4. For low values of γ (longer setup times), the
value of C∗ which minimizes E[E], and the value of C∗ which
minimizes E[R], are approximately equal.

B. Staggered threshold

We complete our numerical results with the staggered
threshold policy. As discussed previously, this policy aims
to capture the predictability of the bulk setup policy, while
having a more appealing implementation. The first thing of
note is that in general these graphs look similar to those seen



(a) γ = 0.01 (b) γ = 0.1 (c) γ = 0.001, with larger k (d) γ = 0.01, with larger k

(e) γ = 0.01 (f) γ = 0.1 (g) γ = 0.001, with larger k (h) γ = 0.01, with larger k

Fig. 4: Staggered threshold E[R] vs C∗ for (a)-(d) and corresponding E[E] vs C∗ for (e)-(h), C = 100, λ = 50, µ = 1

in Section IV-A. While it is true that both policies turn servers
off when they idle, it should be obvious that the staggered
nature of turning servers on makes the system slower to adapt
to waiting jobs or bursts of traffic. However, the majority of
the observations made for the bulk setup policy hold here as
well. One notable difference between these policies is that the
response time does not decrease as close to linearly here as it
did in the bulk setup results. Figure 4 (d) is a good example
of this, in contrast to Figure 3 (d).

Observation 5. The overall shape of the E[R] and E[E]
curves is relatively insensitive to the decision of employing
the bulk setup or staggered threshold policy.

Arguably the most important similarity to that of the bulk
setup policy is the presence of the aforementioned “sweet
spot” in the energy curves. That is, the expected rate of energy
consumption often has a minimum relatively close to ρ+

√
ρ,

where ρ = λ/µ, for many of the energy curves. It should
be noted that for some of the energy curves for larger values
of k, such as Figure 4 (f), while the minimum is actually at
C∗ = 0, the value at ρ +

√
ρ is still only a slight increase

from the minimum value. Therefore, for all the experiments
we ran, it holds that ρ +

√
ρ is a reasonable choice for C∗

with regards to energy costs as well as system performance,
for reasons argued previously. Moreover, inspecting the choice
of k for this value of C∗ leads to an interesting implication.

Observation 6. The expected energy costs for the bulk setup
and staggered threshold policies are decreasing in k.

Reviewing Figures 4 (e)-(h) one will note that for all
fixed values of C∗ the expected energy cost is decreasing in
k. That is, the longer the system is willing to wait before
turning servers on, the lower the energy costs will be. This
is an intuitive result, but perhaps not obvious. Consider the
following fallacious argument. If k is large, the system could

be put in a situation where there are a lot of excess jobs in
the system by the time the next server completes its setup,
this will cause a greater number of servers to be turned on
in the short run. Due to this large number of servers now
on, the system will quickly clear out all of the current jobs.
Jobs departing from the system due to dynamic servers being
turned on will now cause static servers to become idle where
they otherwise may have been busy, thus incurring a higher
expected energy cost. However, from our numerical results we
can see that this is not the case (at least for the parameters we
examined). The reason the energy costs are lower for higher
values of k is that dynamic servers are less likely to “thrash”.
For example, if a server begins its setup when there is one job
waiting (k = 1), it will incur an initial setup cost in the short
run that it may otherwise not for a larger value of k, but it may
also quickly clear the job out, switch off, and then find itself
in the same situation of one job waiting to be served in the
near future. This causes multiple setup cycles to occur to deal
with a set of jobs which a higher value of k may deal with
using only a single setup, or potentially without any setups at
all. Due to a lower number of server setups for a higher value
of k, the expected energy cost is strictly lower. Therefore,
if energy costs are the only concern, one should choose the
highest possible value of k. One needs to be careful however,
since higher values of k could have a (potentially disastrous)
negative impact on performance. After further though, this
may not be the case pertaining to the choice of C∗ = ρ+

√
ρ.

Viewing Figures 3 and Figures 4 (a)-(d), one notes that around
C∗ = ρ+

√
ρ the expected response time is quite insensitive

to the choice of k. Therefore, the largest possible value of k
should be chosen. Since there is no restriction on the ceiling
of k, one should let k → ∞. If that is the case however, the
system degenerates to the well known M/M/C∗ queueing
system where C∗ = ρ+

√
ρ.



Observation 7. For all parameter configurations examined
here, for both the expected response time and expected energy
costs, the degenerate solution of using an M/M/C∗ queue is
near-optimal for some C∗ around ρ+

√
ρ.

While perhaps at first this is a disappointing result, since it
implies energy costs cannot be saved, it gives an elegant and
simple solution to what on the surface, appears to be a complex
problem. We argue that for linear cost functions the bulk setup
policy is a reasonable approximation of the optimal policy,
see [28]. However, the bulk setup turn on criteria hinges on
interruptible setups and exponentially distributed setup times.
We therefore in turn analyse the staggered threshold policy.
We find that an M/M/C∗ queue is close to optimal for
both of these policies. Thus, we argue that an M/M/C∗

queue is close to optimal across all potential policies for
some C∗. Furthermore, this observation is consistent with the
contributions of [14] where they present a similar square root
provisioning result for the particular case of the staggered
setup policy (staggered threshold with k = 1 and C∗ = 0)
under the cost function E[E]E[R].

These results would suggest that near optimal control of
these multiserver systems can be achieved with a single
decision variable, C∗. Moreover, the choice of C∗ is solely
dependent on ρ. In other words, to have a near optimal system,
one need only concern themselves with accurately determining
λ and µ (and not potentially complicated and convoluted setup
and turn off criteria). Such a solution offers another benefit as
well. Researchers often choose to incorporate the expected rate
of switching (how often servers turn on/off) to capture the wear
and tear cost of the hardware [11], [23], [32]. It immediately
follows that this cost metric is trivially minimized when only
a static allocation of servers is employed. Therefore, any well-
formed cost function including the expected rate of switching
also agrees with the degenerate solution.

The argument of an M/M/C∗ queue being a near optimal
solution is further enforced by revisiting Observation 6 in more
detail. Observation 6 tells us that to minimize the expected
energy cost, the best choice of k is the largest value of
k, or k = 30 if limited to the choice of our experimental
parameters. But if the system is stable, specifically if the
system has approximately ρ +

√
ρ static servers, what is the

physical interpretation of such a large value for k? Clearly, the
probability that there are greater than n jobs in the system for
our model, is less than or equal to the probability that there
are greater than n jobs in a classic M/M/C∗ queue. That
is, P (N > n) < P (NM/M/C∗ > n), where NM/M/C∗ is a
random variable denoting the number of jobs in an M/M/C∗

queue, and C∗ < C. But using C∗ = dρ +
√
ρe = 58

and C = 100, one can do a quick calculation to find that
P (N > 87) < 0.0023. In other words, if k = 30, at least
434 jobs out of 435 will not cause the first dynamic server
to begin its setup process when they arrive. Furthermore,
approximately only 1 job out of every 44,000 has a chance of
initiating the setup process of the second dynamic server when
it arrives. Therefore, the physical interpretation that larger

values are a good choice for k corresponds to saying the
system should not utilize its dynamic servers, but instead be
statically provisioned. Again, this gives rise to a simple and
easy to implement solution.

V. CONCLUSION

Provisioning server farms and datacenters is an actively
studied and open problem in the intersection of green com-
puting and queueing theory. We presented a well-established
model which views these server farms as a multiserver queue-
ing system with setup times. From this model we studied two
specific policies, bulk setup, and staggered threshold. Using
the recursive renewal reward technique, we performed an exact
analysis for each of these policies. That is, we were able to
arrive at exact expressions for the expected response time and
expected energy costs for the two aforementioned policies.
Using these expressions, we performed an extensive numerical
analysis examining how these metrics behave with respect to
system parameters, and underlying decision variables. From
this numerical analysis we discovered and commented on
several interesting observations which grant insight into how
these systems behave. This includes, but is not limited to,
our argued degenerative solution that an M/M/C∗ queue is
reasonably close to optimal across all potential policies for
some choice of C∗ around ρ+

√
ρ.

Moving forward with our research we wish to formally
show the asymptotic equivalence of the bulk setup, staggered
threshold, and all other threshold policies which allow for
a static number of servers to be provisioned. This would
give an analytical result which would bridge the gap from
the known optimal bulk setup policy to the observed near
optimal results of staggered threshold policy (among others).
Furthermore, we would like to inspect the sensitivity of these
results to estimating a time varying arrival rate (λ(t)) where
static servers are provisioned on a macro scale dependent on
the setup rate γ.
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