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Abstract—Mean Value Analysis (MVA) has long been a stan-
dard approach for performance analysis of computer systems.
While the exact load-dependent MVA algorithm is an efficient
technique for computer system performance modeling, it fails
to address several features of multi-core platforms. In addition,
the load-dependent MVA algorithm suffers from numerical dif-
ficulties under heavy load conditions. The goal of our paper is
to find an efficient and robust method which is easy to use in
practice and also achieves accuracy for performance prediction
for multi-core platforms. Our contributions are: We present
a flow-equivalent performance model designed specifically to
address multi-core computer systems. We identify the influence
on the CPU demand of the effects of Dynamic Frequency Scaling
(DFS) and Hyper-Threading Technology (HTT). We adopt an
approximation technique to estimate resource demands to param-
eterize the MVA algorithm. We use a modified Conditional MVA
(CMVA) algorithm to address the potential numerical instability.
To validate the application of our method, we investigate a
case study of an e-commerce web server which is equipped
with diverse classes of user requests. We show that our method
achieves better accuracy compared with other commonly used
MVA algorithms.

Keywords—performance evaluation, performance models, mean
value analysis, flow-equivalent aggregation, service demand estima-
tion.

I. INTRODUCTION

The exact Mean Value Analysis algorithm for the analysis
of closed queueing networks with product-form steady-state
distribution was first published by Lavenberg and Reiser in
1980 [21]. Compared with other methods that obtain the
steady-state distribution by solving a (large) number of linear
equations, the exact MVA algorithm is a simple recursion,
which derives mean performance metrics with any number of
jobs from underlying service demands. Besides networks with
constant service rates, the MVA algorithm has been used for
queueing networks containing load-dependent nodes - nodes at
which the service rate varies with the number of jobs present
(the terms node and resource are used interchangeably in this
paper).

The motivation for this paper is derived from our ex-
periences with implementations of MVA-based performance
models. While the MVA algorithm itself is simple, its appli-
cability can be challenged by features introduced in modern

computer systems. Such features can violate product-form
assumptions, e.g., simultaneous resource possession, locking
behaviors in database servers, priority scheduling, high service
demand variability, and process synchronization (see Chapter
15 in [16]). As the steady-state distribution is not product-form,
the MVA algorithm is infeasible in such cases.

Secondly, it is often not straightforward to determine the
required parameters for the MVA algorithm. The Service
Demand Law, in which the resource demand is equal to the
resource utilization divided by the throughput, is one of the
most popular approaches (see Chapter 3 in [16]). Since the
resource utilization and the resource demand are assumed
to have a linear relationship, regression techniques can be
employed when measurements of utilizations or throughput
are not available [3], [17], [18], [24], [25]. In addition, the
response time is related to the resource demand in a nonlinear
manner. As a result, different estimation techniques can be
used to estimate the resource demand from response time
measurements [10], [26].

Thirdly, multi-core processors cause difficulties in estimat-
ing the CPU demand. One challenge comes from systems
employing Dynamic Frequency Scaling (DFS) techniques [12].
With DFS, a CPU/processor can lower its frequency when
lightly loaded, and increase its frequency when highly loaded.
In other words, the CPU demand can be adjusted dynamically
according to the workload. Another challenge that we con-
sider is Intel’s Hyper-Threading Technology (HTT) [14]. With
HTT, one core can run multiple instructions simultaneously
to exploit Instruction Level Parallelism (ILP). With these two
features, the offered CPU demand depends in a nontrivial
way on the load in the system. Finally, when employing
load-dependent closed queueing networks to model systems
with multi-core processors, the load-dependent MVA algorithm
invariably becomes unstable [2]. It could go so far as to
produce negative values of system throughput or response time.

To address these problems, we introduce a new method
named APEM, Approximate Performance Evaluation method
for Multi-core computer systems. In APEM, we propose to use
a performance model based on the flow-equivalent aggregation
method, which is often employed to solve non-product-form
queueing network models. The main goal of APEM is to
build a robust performance model with a limited number of



TABLE I: Notation

M number of resources (devices)
N number of users
Z average think time
Dm resource demand at the mth resource (e.g., CPU and disk)
Km number of servers at the mth resource
R average response time
X throughput
Q average queue length

measurements on the system. To do this, we present an ap-
proximate service rate curve to parameterize the performance
model, addressing the effect of HTT. The impact of DFS, while
also addressed by the service rate curve, requires an additional
approximation to adjust the service rate (or more precisely,
its inverse: service demand). Finally, we embed our approx-
imations into a numerically stable load-dependent algorithm
- Conditional Mean Value Analysis (CMVA) - to solve the
queueing network model [2]. In order to validate our method,
we implement a system using the TPC-W benchmark [6],
and compare experimental results with those generated by our
algorithm. For reference, the notation presented in Table I is
used in the remainder of the paper.

II. BACKGROUND

Estimating resource demands, especially CPU demand,
remains an area of active research [3], [10], [17], [18], [24],
[25], [26]. For load-independent performance models, average
resource demands are constant. For multi-server queueing
networks, the demands of resources that have multiple servers
are load-dependent. However, if we assume that single server
demand is a constant value, we can calculate the corresponding
resource demand as follows,

Dresource(n) =

{
Dserver/n if n ≤ K
Dserver/K if n > K, (1)

where Dresource(n) is the resource demand, Dserver is the
demand of an individual server, K is the number of servers
at the node, and n is the number of jobs at the node. As
can be seen from (1), Dresource is constant when n exceeds
K. However, these assumptions do not hold for modern
computers with multi-cores. There are two key reasons behind
this - Dynamic Frequency Scaling (DFS) and Hyper-Threading
Technology (HTT).

DFS is a technique employed by operating systems where
a processor is running at a frequency less than its maximum
in order to conserve power. In Linux operating systems, DFS
is supported by the “ondemand” policy [20]. The “ondemand”
governor sets the CPU frequency depending on the current
usage. The operating system checks the load/utilization reg-
ularly (according to a given sampling rate). When the load
rises above the value of up threshold, Linux sets the CPU to
run at the highest frequency. When the load falls below the
same threshold, Linux sets the CPU to run at the next lowest
frequency that can still keep the load below the threshold. In
particular, the CPU frequency is scaled down to its minimum
if the CPU is idle. Subsequently, processors become faster (or
the CPU demand decreases) when the load increases in the sys-
tem. In addition, each processor’s frequency is independently
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Fig. 2: CPU demand with both DFS and
HTT enabled

controlled by the operating system. Not only does this make a
load-independent performance model inapplicable, but it also
makes the parameterization for a load-dependent performance
model more complicated.

HTT is used to improve parallelization of computations
performed on multi-core processors. In HTT-enabled systems,
each physical core is addressed by the operating system to
form two logical cores, and workload is shared between
them when possible. Linux-based operating systems treat each
logical core as a physical core, which causes a potential
problem for performance modeling. Since a multi-core CPU
has shared execution resources (e.g., execution engines and
caches), logical cores become slower due to the increasing
contention for internal resources among multiple threads under
high load [13]. In other words, the CPU demand increases
when the load increases in an HTT-enabled system.

We illustrate these issues with an example that employs the
TPC-W benchmark. The testbed has an Intel i7-2600 quad-core
processor (more hardware and software details can be found
in Section IV). The CPU demand is calculated by the Service
Demand Law. The CPU utilization is monitored by the sysstat
utility, and the throughput is obtained from transaction logs. As
can be seen from Figure 1, if both DFS and HTT are disabled,
the CPU demand remains constant when the load increases.
Here, the system could be analyzed with load-independent
techniques. If only DFS is enabled, the CPU demand decreases
in a nonlinear manner with increasing load and differs by



a factor of almost two between light and heavy loads. The
scaling factor corresponds to the CPU frequency ratio (3.4/1.6
GHz). If only HTT is enabled, the CPU demand gradually
increases with the load in a linear fashion and almost doubles
at high load (as compared to light load).

Observation 1. If both DFS and HTT are enabled, the demand
scaling has both increasing and decreasing factors and the
final shape of the demand curve depends on which effect is
dominant.

Figure 2 shows the CPU demand with both DFS and HTT
enabled. As can be seen, the effect of DFS dominates when
the CPU is lightly loaded, while the effect of HTT becomes
prominent when the CPU is highly loaded. As mentioned be-
fore, we cannot use a queueing network with load-independent
servers to model such a system. In addition, the shape of the
curve does not match a typical multi-server MVA algorithm
(see Chapter 15 in [23]), which is parameterized using (1). As
a result, a general load-dependent MVA algorithm is called for
in this case (details of the algorithm can be found in Chapter
14 in [16]).

However, the load-dependent MVA algorithm has issues
with numerical stability. It may exhibit numerical difficulties
under heavy load conditions which eventually result in unrea-
sonable results, such as negative throughputs, response times
and queue lengths. The problem is that the probability of a
resource being idle is calculated in every iteration of the load-
dependent MVA algorithm. The calculation is as follows:

Pm(0|n) = 1−
n∑
i=1

Pm(i|n), (2)

where Pm(i|n) is the probability that i jobs are at the mth
resource when a total of n jobs are in the system. When the
utilization is close to one, (2) can yield negative values due to
round-off errors. Those errors propagate as the MVA algorithm
iterates. Subsequently, other calculations which have direct or
indirect dependence on (2) may result in negative values, such
as response times, throughputs and queue lengths. Additional
scaling techniques are required to prevent floating-point range
exceptions, and it is not clear that such techniques can always
be effective [4].

In order to address the numerical instability of the load-
dependent MVA algorithm, we adopt the Conditional MVA
(CMVA) algorithm, presented by Casale [2], which relates
the average queue length of a load-dependent server to the
conditional queue length as seen by a job during its residence
time at that server. This queue length formula avoids the
computations of the state probabilities at each node, and as a
consequence, overcomes the limitation. The case study in our
paper can be considered as a demonstration of the applicability
of Casale’s work. In Section IV, we will present a concrete
example in which the CMVA algorithm is implemented with
our service demand approximations.

III. THE APEM METHOD

In this section, we present the APEM method - a load-
dependent performance model for multi-core platforms solved
by the CMVA algorithm. With the load-dependent feature of
our model, we address the effects of HTT and DFS. For
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the effects of DFS, we must additionally adjust the service
demand. Finally, we present a CMVA algorithm with service
demand adjustment for DFS - the CMVA-DFS algorithm.

A. Performance Model

We choose an approximate solution for non-product-form
queueing networks, the flow-equivalent aggregation technique.
The system under study is approximated by a load-dependent
resource, called a Flow-Equivalent Server (FES) (see Chapter
36 in [7]). The service rate of the FES with n jobs present
is equal to the observed throughput of the system with n
jobs. Finally, we can solve the equivalent network model
using a product-form solution, i.e., the load-dependent MVA
algorithm. For instance, a multi-core computer system can be
modeled as a queueing network with two resources - CPU and
disk (see Figure 3) - which for us does not have a product-form
solution. However, we can use the flow-equivalent aggregation
approach to replace the system by a load-dependent queue (see
Figure 4).

B. Service Demand Adjustment

The effect of DFS needs to be taken into account in the
parameterization. Consider a scenario where a core is idle for
quite a while and its frequency has been scaled down to the
minimum to save energy. Upon a job arrival, the core is still
at this power-saving stage and needs some time to “warm up”.
Consequently, the service time of the job is increased due to
the scaled frequency during this interval. The parameterization
of the MVA algorithm can be effectively enhanced with a
corresponding service demand adjustment.

Observation 2. There exists a probability that an upcoming
job will be (partially) processed at a slow rate, because the
core where it is allocated has been idle for a sufficient interval
and its frequency has thus been scaled down to the lowest
value.



On a DFS-enabled platform, the Linux operating system
takes workload (utilization) samples every 10 milliseconds
under the “ondemand” policy, and then decides whether to
scale the core frequency up or down. We define this 10
milliseconds as the sampling interval. Then the probability
that an arriving job will enter a server working at the slowest
possible rate is identical to the probability that the time interval
between an arriving job to an idle server and the last departure
is larger than the sampling interval. The probability is given
by P (X > s), where X is an interarrival time and s is the
sampling interval. In the queueing model, we assume that jobs
arrive with the interarrival time (or think time) following an
exponential distribution with mean Z. We let Pslow(n) be the
probability that a job arrives to a slow server given that there
are n jobs in the system. By the memoryless property, we can
write

Pslow(n) = P (X > s|n) ≈ e− sn
ZK , (3)

where n is the number of jobs in the system, and K is the
number of cores in the CPU. Here we assume that each core
has the same arrival rate. Note that the approximation in (3)
is due to the fact that this expression is an equality only if all
of the users are “thinking”. This approximation should work
well for sufficiently large think times.

After this, we have the adjustment of the CPU service
demand as follows,

D′(i) = D(i)× (1− Pslow(n)) +Dslow(i)× Pslow(n), (4)

where D(i) is the CPU demand with n jobs at the CPU, and
Dslow(i) is the service demand of the CPU with one core
running at the minimum frequency.

Formally, we make the following assumptions on the
estimate:

1) The arrivals follow an exponential distribution.
2) If an arrival enters a “slow” server, then the entire

job will be processed at the slowest possible rate.
3) Each logical core works independently.
4) The average think time is sufficiently large.

Thus, the proposed technique is a somewhat crude means to
adjust the service demand due to the effects of DFS. The
real “ondemand” DFS and multi-core CPU scheduling policies
within Linux are much more complicated. In reality, if the job’s
processing time is longer than the sampling interval, only part
of the job will be processed at the slowest possible rate, while
others may not, because the core’s frequency will be scaled
up at the next sampling point. As a result, this approximation
will be more effective when the CPU demand is small. In
addition, in a multi-core processor, one job running on a core
may be impacted by another job running on a different core
due to shared memory interference. Although our technique is
a coarse approximation, it is to the best of our knowledge the
first attempt to account for the effects of DFS in determining
demands. Finding ways to refine the approximation is of future
research interest.

C. Conditional MVA

Algorithm 1 presents the CMVA algorithm with the service
demand adjustment for DFS. We call this algorithm CMVA-
DFS. In the application of CMVA-DFS, we assume that all the
resources are load-dependent.

Algorithm 1 The CMVA-DFS algorithm
Input:
Z,M,N,Dm(n), Dm,slow(n), s,Km

Output:
Q,X,R
Initialization:

if m is a DFS-enabled resource then
for n = 1→ N do

Pslow(n) = Exp(−s× n/(Z ×Km))
Dm(n) = Dm(n)× (1−Pslow(n))+Dm,slow(n)×

Pslow(n)
end for

end if
Iteration:
for n = 1→ N do

for t = 1→ N − n+ 1 do
for m = 1→M do

if n == 1 then Dm(n, t) = D(t)
else Dm(n, t) = Dm(n − 1, t) × X(n −

1, t)/X(n− 1, t+ 1)
end if

end for
for m = 1→M do

Rm(n, t) = Dm(n, t)× (1 +Qm(n− 1, t+ 1))
end for
X(n, t) = n/(Z +

∑M
m=1Rm(n, t))

for m = 1→M do
Qm(n, t) = Dm(n, t)×X(n, t)× (1 +Qm(n−

1, t+ 1))
end for

end for
end for

IV. TPC-W CASE STUDY

The TPC-W benchmark models an online bookstore [6].
It assesses the performance of Online Transaction Processing
(OLTP) systems. Every client of the system is an Emulated
Browser (EB) that issues HTTP requests (in total 14 different
web interactions) to the web server. Between two consecutive
web interactions, there is a “thinktime” which is defined by an
exponential distribution. TPC-W defines three different work-
load mixes - browsing, shopping, and ordering - to simulate
different user behaviors.

We built our testbed on a Dell desktop computer equipped
with an Intel i7-2600 quad-core processor (octo-core logically
with HTT), 8GB RAM, and a 1TB disk (7200 RPM). For the
operating system, we use Ubuntu Server 12.04.3 LTS (kernel
version 3.5.0-44). The testbed carries a web application server
and a database. The web server accepts the clients’ requests
and issues queries to the database in order to retrieve the
requested data. For the web server and the database server,
we use JBoss 3.2.7 [8] and MySQL 5.1 [19], respectively.

We choose average response time as our performance
metric of interest. The number of EBs varies from 10 to 1000,
and we set the average “thinktime” (Z) to 3.5 seconds, in order
to validate APEM under different workloads. In our tests, the
CPU utilization varies from 1.09% to 61.59%, and the average
CPU frequency varies from 1.61 GHz to 2.61 GHz.



TABLE II: Load-dependent MVA numerical instability exam-
ple

Shopping mix with Z = 3.5 sec.
N 500 600
X (/sec.) 142.168 -107.969
R (sec.) 0.017 -9.057

We apply APEM in the following manner:

1) Model the non-product-form system as a closed
queueing network with an FES (as seen in Figure 4).

2) Calculate the service demands of the FES under
different workload mixes. This step involves measure-
ments of the throughputs (service rates) with various
number of users in the FES.

3) Calculate the service demands of the FES with slow
cores under different workload mixes. This step in-
volves measurements of the throughputs with one
user in the FES while the CPU is running at its
minimal frequency.

4) Use the CMVA-DFS algorithm to predict average re-
sponse times for the system under different workload
mixes.

5) Measure the average response times of the system
under different workload mixes. This step involves
measurements of the average response times with the
corresponding number of users in the previous step.

6) Validate predicted results with corresponding mea-
surements under different workload mixes.

7) Predict system performance with desired parameters
under different workload mixes.

For the second step, we need to generate a set of service
demands with varying numbers of users, from one user to a
potentially very large number of users. To accomplish this,
we select several values for the numbers of users, calculate
the service rates from measurements (measured throughputs),
then interpolate between these points to generate a service rate
curve as shown in Figure 5. The points on the original service
rate curve are calculated from measurements (the service rate
is equal to the measured throughput). Other points on the curve
are approximated by performing linear interpolation between
the measured points. For instance, the measured service rates
correspond to the number of users - 1, 2, 4, 6, 8 and 16
in Figure 5. Note that this approximation may affect the
accuracy of the performance model, but we can increase
its accuracy by increasing the number of points which are
calculated from measurements. The balance between the time
consumed in measurements/parameterizing the model and the
model accuracy can be adjusted as necessary. For the third
step, we calculate the adjusted service demands using (4). The
service rate of cores running at the minimum frequency can be
measured by fixing the CPU frequency at its minimum, or the
arrival rate at a small value (to ensure the CPU has sufficient
idle time to scale down its frequency to the minimum). These
curves are also shown in Figure 5.

Before presenting results from the CMVA-DFS algorithm,
we would like to illustrate the numerical instability of the
generic load-dependent MVA algorithm by a concrete example.
The MVA algorithm is parameterized using the service rate

TABLE III: Outliers in browsing mix (Z = 3.5 sec.)

N = 1000
class average (ms.) std (ms.) outlier (ms.)
admin 20.019 102.341 x > 188.370
search 24.503 116.907 x > 216.815

TABLE IV: Outliers in browsing mix (Z = 3.5 sec.)

N R (ms.) total trans. outlier% R without outliers (ms.)
500 27.593 255940 1.65% 20.663

1000 47.028 506543 2.70% 23.224

curve in Figure 5b. As can be seen in Table II, the load-
dependent MVA algorithm works fine when N = 500, but
produces negative results (for X and R) when N = 600. As
mentioned in Section II, this example illustrates the algorithm
yielding unreasonable outputs due to iterative error propaga-
tion.

Finally, the experimental results are shown in Figure 6. The
results from APEM are compared with the results from mea-
surements, the multi-server MVA algorithm parameterized by
the Service Demand Law, and the original CMVA algorithm. A
Java implementation of the multi-server MVA algorithm used
here can be found in Chapter 15 in [23].

A small number of abnormally large response times are ob-
served during our experiments - these values have a significant
effect on the resulting average. To try to determine the cause of
these very slow response times, we have monitored cache miss
rates, memory utilizations, locking times, and also profiled the
database server. We finally determined the root cause to be
JBoss logging. One simple solution is to disable the logging.
Another solution is to apply outlier detection techniques on
our data, because one may prefer to keep the JBoss logging
for administrative purpose. We decide to use the latter in this
paper. The former produces similar results, they are omitted
due to space considerations.

We choose a univariate method for outlier detection as
presented by Ben-Gal in [1]. The method takes three input
parameters - the average µ, the variance σ2, and the confidence
level 1− α. The outlier region is defined by

out(α, µ, σ2) = {x : |x− µ| > z1−α/2σ}, (5)

where z1−α/2 is the (1−α/2)-quantile of a unit normal variate
(see Chapter 13 in [7]). In our tests, we choose α = 0.1 (90%
confidence interval), which is a typical value.

We now provide a couple of examples that demonstrate the
degree to which these outliers can affect the average response
time (see Table III). We calculate the average and the standard
deviation for two classes (other classes also have similar
results). As can be seen from the table, the standard deviations
are relatively large compared with the corresponding averages.
In other words, dispersion from the average is relatively large.
The outlier region per class can be seen in the last columns in
Table III. Similar results are also observed for other classes in
TPC-W. In Table IV, we see that the 2.70% of response times
that are outliers result in an increase of the average response
time by 102.50% with N = 1000. In our experiments, we
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Fig. 5: Service rate of FES with different mixes
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Fig. 6: Predicted and measured R with different mixes and Z = 3.5 seconds (outlier detection enabled)

also found that the outlier phenomenon became worse as the
workload increased.

V. DISCUSSION

As can be seen in Figure 6, both the CMVA and the
CMVA-DFS algorithms perform better than the multi-server
MVA algorithm, especially under relatively light workload. In
most cases, the multi-server MVA algorithm fails to predict
the performance of the system, and it has 251.50% error
in the worst case (in Figure 6c). The multi-server MVA
algorithm is used for the queueing network model shown in
Figure 3. We have suggested that this queueing model may be
inapplicable due to violations of the product-form assumptions,
and we verify this suggestion here. Therefore, the multi-server
performance model is not validated for the systems considered
in this paper.

Compared with the CMVA algorithm, which constantly
underestimates the average response time (by as much as
21.89% for the shopping mix), the CMVA-DFS algorithm
produces better predictions. However, we observe that the
CMVA-DFS algorithm overestimates the average response
times under light load in Figures 6b and 6c. The underlying
reason is the different proportions of requests in the different

workload mixes. Compared to the browsing mix, the shopping
and the ordering mixes both have a larger proportion of
user interactions which require more operations at the I/O
device, consequently, the disk demand is a greater component
of the overall service demand. However, our approximation
may overestimate the impact of DFS in the CPU under the
assumptions in Section III-B. This can result in overestimat-
ing service demands under light load, and consequently the
response times.

APEM has several limitations. First, APEM relies on the
service rate curve. As a result, any systems which are not
operational (to obtain measurements) are not suitable for our
method. Second, the service rate curve is an approximation
based on a limited number of measured points. To illustrate
the effects of generating the service rate curve from a limited
number of measurements, we present three additional curves
in Figure 7. These curves have more measured service rates
compared with those in Figure 5 - the original service rates
from one to eight are all obtained from measurements. In
addition, we use these new curves to parameterize the CMVA
and the CMVA-DFS algorithms - experimental results can
be seen in Figure 8. Compared to the results in Figure 6,
we do not observe any significant difference. The accuracy
of our performance model is not affected by the relatively
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Fig. 7: Service rate with more data from measurements
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Fig. 8: Predicted and measured R with different mixes and Z = 3.5 seconds

coarse service rate curves. It is not clear that this is true
in general, it may be that if the curve is generated more
coarsely, the accuracy of APEM is affected. Thus, we suggest
that the number of points should stay at a reasonable level to
at least represent the shape of the curve, i.e., choosing some
key points on the curve. For instance, our testbed has eight
cores, so that we assume that the service rate with eight users
in the system is the peak point on the curve. Then we can
choose some key points (e.g., 1, 2, 4, 6, 8, 10, 12...) to verify
this assumption, and generate the curve. Last but not least,
we adopt an approximation to take DFS into account in the
proposed CMVA algorithm, and it may not work well in some
cases when the assumptions discussed in Section III-B are
violated.

VI. RELATED WORK

Workload characterization and parameterization is one of
the most challenging aspects in employing a multi-class MVA
algorithm. Linear regression is one of the most widely used ap-
proaches to estimate resource demands. Zhang et al. [24], [25]
applied a regression-based approximation of the CPU demands
of online web transactions. To minimize the absolute error,
they adopted the non-negative LSR provided by MATLAB to
obtain resource demands. They then used the approximation

results in a multi-tier queueing model. Kraft et al. [10] also
applied linear regression and a maximum likelihood technique
to parameterize a performance model for an industrial ERP
system. However, regression techniques suffer from the well-
studied problem of multicollinearity (see Chapter 15 in [7]),
which can lead to unreliable predictions for demands and very
wide confidence intervals for predicted demands. Kalbasi et
al. [9] and Mi et al. [18] have shown that the accuracy of
regression-based techniques critically depends on the quality
of monitoring data used in the regression analysis.

Zhang et al. [26] showed that it is not true that the
service demand is load-independent for modern processors
with DFS and HTT features. Their study demonstrated that
the CPU demand can be modeled as a polynomial function of
the CPU utilization. The polynomial coefficients are inferred
from measured CPU utilizations and response times. They
built their experimental environment based on a server with
a multi-core processor, and then compared the accuracy of
their proposed estimation method with a load-independent
regression method and a load-dependent estimation method
proposed by Kumar et al. [11]. Using various workloads,
they showed that their estimation method is more accurate.
It is an interesting approach to explore the load-dependent
behaviors in a multi-core processor. However, it requires a very



large number of measurements to parameterize the polynomial
function, because the estimate is based on measurements of not
only the CPU utilization but also response time. In addition,
they did not adjust the CPU demand to take into account the
effects of DFS.

Seidmann et al. [22] presented an approximation approach
to avoid convergence problems of the load-dependent MVA
algorithm with multi-server nodes. Chen et al. [5] applied
this approach to a modified multi-class MVA algorithm to
analyze a performance model for a multiprocessor system. In
the approximation, a queueing node (with service demand D)
which has K servers is replaced by two tandem queues. The
first queue is a single-server node with service demand D/K,
and the second one is a delay centre with delay D(K−1)/K.
Experiments have shown that this approximation produces
small errors under intermediary workloads [15]. However,
it only works well for queueing models where the service
demand of one server is constant.

VII. CONCLUSION

To address performance modeling for a multi-core com-
puter system which cannot be modeled as a product-form
queueing network, we proposed to solve a flow-equivalent
aggregated model using a CMVA-DFS algorithm, where ser-
vice demands are adjusted to compensate for the effects of
DFS. In order to illustrate the applicability of our performance
model, we applied it together with the CMVA-DFS algorithm
in a TPC-W case study. The performance metrics (average
response times) are validated with the experimental results.
We have shown that the CMVA-DFS algorithm outperforms
the CMVA algorithm and the multi-server MVA algorithm in
the case study. We also discussed the errors generated by our
performance model and its limitations.

There are several potential directions for future work.
Firstly, we would like to adapt APEM for open or mixed
(a mixture of open and closed) queueing network models.
Secondly, to date we have only used benchmarks to generate
artificial workloads for performance evaluation. It is an inter-
esting research direction to validate APEM in real software
systems.
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