
MISTA 2015

Multi-Stage Resource-Aware Scheduling for Data Centers
with Heterogenous Servers

Tony T. Tran+ · Meghana Padmanabhan+ ·
Peter Yun Zhang◦ · Heyse Li+ · Douglas G.

Down∗ · J. Christopher Beck+

Abstract This paper presents an algorithm for resource-aware scheduling of compu-

tational jobs in a large-scale heterogeneous data center. The algorithm aims to allocate

job classes to machine configurations to attain an efficient mapping between job re-

source request profiles and machine resource capacity profiles. We propose a three-stage

algorithm. The first stage uses a queueing model that treats the system in an aggre-

gated manner with pooled machines and jobs represented as a fluid flow. The latter two

stages use combinatorial optimization techniques to solve a shorter-term, more accu-

rate representation of the problem using the first stage, long-term solution for heuristic

guidance. In the second stage, jobs and machines are discretized. A linear programming

model is used to obtain a solution to the discrete problem that maximizes the system

capacity given a restriction on the job class and machine configuration pairings based

on the solution of the first stage. The final stage is a scheduling policy that uses the

solution from the second stage to guide the dispatching of arriving jobs to machines.

We present experimental results of our algorithm on Google workload trace data and

show that it outperforms existing schedulers. These results illustrate the importance

of considering heterogeneity of both job and machine configuration profiles in making

effective scheduling decisions.

1 Introduction

The cloud computing paradigm of providing hardware and software remotely to end

users has become very popular with applications such as e-mail, Google documents,

iCloud, and dropbox. Providers of these services employ large data centers, but as the

+ Department of Mechanical and Industrial Engineering,
University of Toronto
E-mail: {tran, meghanap, hli, jcb}@mie.utoronto.ca

◦ Engineering Systems Division
Massachusetts Institute of Technology
E-mail: pyzhang@mit.edu

∗ Department of Computing and Software
McMaster University
E-mail: downd@mcmaster.ca

demand for these services increase, performance can degrade if the data centers are not

sufficiently large or are being utilized inefficiently. Due to the capital required for the

machines, many data centers are not purchased as a whole at one time, but rather built

incrementally, adding machines in batches as demand increases. Data center managers

may choose machines based on the price-performance trade-off that is economically

viable and favorable at the time [23]. Therefore, it is not uncommon to see data centers

comprised of tens of thousands of machines, which are divided into different machine

configurations, each with a large number of identical machines.

Under heavy loads, submitted jobs may have to wait for machines to become avail-

able before starting processing. These delays can be significant and can become prob-

lematic. Therefore, it is important to provide scheduling support that can directly

handle the varying workloads and differing machine configurations so that efficient

routing of jobs to machines can be made to improve response times to end users. We

study the problem of scheduling jobs onto machines such that the multiple resources

available on a machine (e.g., processing cores and memory) can handle the assigned

workload in a timely manner.

We develop an algorithm to schedule jobs on a set of heterogeneous machines to

minimize mean job response time, the time from when a job enters the system until

it starts processing on a machine. The algorithm consists of three stages. In the first

stage a queueing model is applied to an abstracted representation of the problem

based on pooled resources and jobs. In each successive stage, a finer system model is

used, such that in the third stage we generate explicit schedules for the actual system.

Our experiments are based on job traces from one of Google’s compute clusters [20]

and show that our algorithm outperforms a natural greedy policy that attempts to

minimize the response time of each arrival and the Tetris scheduler [7] a dispatching

policy that adapts heuristics for the multi-dimensional bin packing problem to data

center scheduling.1

The contributions of this paper are:

– The introduction of a hybrid queueing theoretic and combinatorial optimization

scheduling algorithm for a data center.

– An extension to the allocation linear programming (LP) model [2] used for dis-

tributed computing [1] to a data center that has machines with multi-capacity

resources.

– An empirical study of our scheduling algorithm on real workload trace data.

The rest of the paper is organized into a definition of the data center scheduling

problem in Section 2, related work on data center scheduling in Section 3, a presentation

of our proposed algorithm in Section 4, and experimental results in Section 5. Section

6 concludes our paper and suggests directions for future work.

2 Problem Definition

The data center of interest is comprised of on the order of tens of thousands of inde-

pendent servers (also referred to as machines). These machines are not all identical;

1 Earlier work on our algorithm submitted to the Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA) 2015 presented a comparison only to the greedy
policy. We have extended the paper by improving our algorithm and including a comparison
to the Tetris scheduler.

1 2 3 4 5 6 7 8 9

1

2

3

4

Time

P
ro

ce
ss

in
g

C
o

re
s

U
se

d

4 Processing Cores

1

2
3

4

5

6

10

Fig. 1: Processing cores resource con-

sumption profiles

3

1

2

1 2 3 4 5 6 7 8 9

4

5

6

7

8

Time

M
em

o
ry

 U
se

d

8 GBs of Memory

1

2 3

4

5

6

10

Fig. 2: Memory resource consumption

profiles

the entire machine population is divided into different configurations denoted by the

set M . Machines belonging to the same configuration are identical in all aspects.

We classify a machine configuration based on its resources. For example, machine

resources may include the number of processing cores and the amount of memory,

disk-space, and bandwidth. For our study, we generalize the system to have a set of

resources, R, which are limiting resources of the data center. A machine of configuration

j ∈ M has cjl amount of resource l ∈ R, which defines the machine’s resource profile.

Within a configuration j there are nj identical machines.

In our problem, jobs must be assigned to the machines with the goal of minimizing

the mean response time of the system. Jobs arrive to the data center dynamically over

time with the intervals between arrivals being independent and identically distributed

(i.i.d.). Each job belongs to one of a set of K classes where the probability of an arrival

being of class k ∈ K is αk. We denote the expected amount of resource of type l

required by a job of class k as rkl. The resources required by a job define its resource

profile, which can be different from the resource profile of the job class as the job class

profile is only an estimate of a job’s actual profile. The processing times for jobs in

class k on a machine of configuration j are assumed to be i.i.d. with mean 1
µjk

. The

associated processing rate is thus µjk.

Each job is processed on a single machine. However, a machine can process many

jobs at once, as long as the total resource usage of all concurrent jobs does not exceed

the capacity of the machine. Figures 1 and 2 depict an example schedule of six jobs on

a machine with two limiting resources: processing cores and memory. Here, the x-axis

represents time and the y-axis is the amount of resource. The machine has 4 processing

cores and 8 GBs of memory. Note that the start and end times of each job are the same

in both figures. This represents the job concurrently consuming resources from both

cores and memory during its processing time.

Any jobs that do not fit within the resource capacity of a machine must wait until

sufficient resources become available. We assume there is a buffer of infinite capacity

where jobs can queue until they begin processing. Figure 3 illustrates the different

states a job can go through in its lifetime. Each job begins outside the system and

joins the data center once submitted. At this point, the job can either be scheduled

Fig. 3: Stages of job lifetime.

onto a machine if there are sufficient resources or it can enter the queue and await

execution. After being processed, the job will exit the data center.

The key challenge in the allocation of jobs to machines is that the resource usage

is unlikely to exactly match the resource capacity. As a consequence, small amounts

of each resource will be unused. We called this phenomenon resource fragmentation

because while there may be enough resources to serve another job, they are spread

across different machines. For example, if a configuration has 30 machines with 8 cores

available on each machine and a set of jobs assigned to the configuration requires exactly

3 cores each, the pooled machine would have 240 processors that can process 80 jobs in

parallel. However, only 2 jobs could be placed on each individual machine and so, only

60 jobs can be processed in parallel. The effect may be further amplified when multiple

resources exist, as fragmentation could occur for each resource. Thus, producing high

quality schedules is a difficult task when faced with resource fragmentation under

dynamic job arrivals.

3 Related Work

Scheduling in data centers has received significant attention in the past decade. Mann

[19] provides a survey on the allocation of virtual machines in data centers. In the sur-

vey paper, many problem contexts and characteristics are presented as the literature

has focused on different aspects of the problem. Unfortunately, as Mann points out,

the approaches found in the literature are mostly incomparable because of subtle dif-

ferences in the problem models. For example, some works consider cost saving through

decreased energy consumption from lowering thermal levels [25,26], powering down

machines [3,5], or geographical load balancing [14,15]. These works often attempt to

minimize costs or energy consumption while maintaining some guarantees on response

time and throughput. Other works are concerned with balancing energy costs, service

level agreement performance, and reliability [8,9,24].

The literature on schedulers for distributed computing clusters has focused heavily

on fairness and locality [11,21,27]. Optimizing these performance metrics leads to

equal access to resources for different users and the improvement of performance by

assigning tasks close to the location of stored data to reduce data transfer traffic.

Locality of data has been found to be crucial for performance in systems such as

MapReduce, Hadoop, and Dryad when bandwidth capacity is limited [27]. Our work

does not consider data transfer or equal access for different users as the problem we

consider focuses on the heterogeneity of machines with regards to resource capacity.

The characteristic of resource heterogeneity and fragmentation that we study is an

already considerable scheduling challenge. We hope to incorporate locality and fairness

into our model as future work.

The literature on resource heterogeneity has some key differences from our model.

One area of research considers heterogeneity in the form of processing time and not re-

source usage and capacity [1,13,22]. Here, the computation time of a job is dependent

on the machine that processes the job. Without a model of resource usage, fragmenta-

tion cannot occur, but efficient allocation of jobs to resources can still be an important

decision. Kim et al. [13] study dynamic mapping of jobs with varying priorities and soft

deadlines to machines in a heterogeneous environment. They find that two scheduling

heuristics stand out as the best performers: Max-Max and Slack Sufferage. In Max-Max,

a job assignment is made by greedily choosing the mapping that has the best fitness

value based on the priority level of a job, its deadline, and the job execution time. Slack

Sufferage chooses job mappings based on which jobs suffer most if not scheduled onto

their “best” machines. Al-Azzoni and Down [1] schedule jobs to machines using a linear

program (LP) to efficiently pair job classes to machines based on their expected run-

times. The solution of the LP problem maximizes the system capacity and guides the

scheduling rules to reduce the long-run average number of jobs in the system. Further,

they are able to show that their heuristic policy is guaranteed to be stable if the system

can be stabilized. Another study that considers processing time as a source of resource

heterogeneity extends the allocation LP model to address a Hadoop framework [22].

The authors compare their work against the default scheduler used in Hadoop and the

Fair-Sharing algorithm and demonstrate that their algorithm greatly reduces the re-

sponse time, while maintaining competitive levels of fairness with Fair-Sharing. These

studies illustrate the importance of scheduling with resource heterogeneity in mind.

Some work that studies resource usage and capacity as the source of heterogeneity

in a system makes use of a limited set of virtual machines with pre-defined resource

requirements to simplify the issue of resource fragmentation. Maguluri et al. [18] exam-

ine a cloud computing cluster where virtual machines are to be scheduled onto servers.

There are three different types of virtual machines: Standard, High-Memory, and High-

CPU, each with specified resource requirements common to all virtual machines of a

single type. Based on these requirements and the capacities of the servers, the au-

thors determine all possible combinations of virtual machines that can concurrently

be placed onto each server. A preemptive algorithm is presented that considers the

pre-defined virtual machine combinations on servers and is shown to be throughput-

optimal. Maguluri et al. later extended their work to a queue-length optimal algorithm

for the same problem in the heavy traffic regime [17]. They propose a routing algorithm

that assigns jobs to servers with the shortest queue (similar to our greedy algorithm

presented in Section 5.2) and a mix of virtual machines to assign to a server based

on the same reasoning proposed for their throughput optimal algorithm. Since the

virtual machines have predetermined resource requirements, it is known exactly how

virtual machine types will fit on a server without having to reason online about each

assignment individually. This subtle difference from our problem means it is possible

to obtain performance guarantees for the scheduling policies as one can accurately

account for the resource utilization. When analysing the effects of fragmentation on

the resource utilization is non-trivial, tight performance guarantees are not as read-

ily available. Furthermore, the performance guarantees made are only with respect to

virtual machines. Fragmentation will still occur within the virtual machine where jobs

may not utilize all the resources, thus leading to loss in performance.

Ghodsi et al. [6] examine a system where fragmentation does occur, but they do not

try to optimize job allocation to improve response time or resource utilization. Their

focus is solely on fairness of resource allocation to the users through the use of a greedy

algorithm called Dominant Resource Fairness (DRF). A dominant resource is defined

as the one for which the user has the highest requirement normalized by the maximum

resource capacity over all configurations. For example, if a user requests two cores and

two GB of memory and the maximum number of cores and memory on any system is

four cores and eight GB, the normalized values would be 0.5 cores and 0.25 memory.

The dominant resource for the user would thus be cores. Each user is then given a share

of the resources with the goal that the proportion of dominant resources for each user

is fair following Jain’s Fairness Index [12]. Note that this approach compares resources

of different types as the consideration is based on a user’s dominant resource.

The work closest to ours is the Tetris scheduler [7]. Tetris considers resource frag-

mentation and response time as a performance metric. In addition, fairness is also

integrated into their model. The Tetris scheduler considers a linear combination of two

scoring functions: best fit and least remaining work first. The first score favours large

jobs, while the second favours small jobs. Tetris combines these two scores for each

job and then chooses the next job to process based on the job with the highest score.

Tetris is compared against DRF and it is demonstrated that focusing on fairness alone

can lead to poor performance, while efficient resource allocation can be important. We

directly compare our scheduler algorithm to Tetris in Section 5 as it is the most suitable

model with similar problem characteristics and performance metrics.

4 Data Center Scheduling

The problem we address requires the assignment of dynamically arriving jobs to ma-

chines. Each job has a resource requirement profile and duration that is known once

the job has arrived to the system. Machines in our data center each belong to one of

many machine configurations and each configuration has many identical machines with

the same resource capacities. The performance metric of interest is the minimization

of the system’s average job response time.

We propose Long Term Evaluation Scheduling (LoTES), a three-stage queueing-

theoretic and optimization hybrid approach. Figure 4 illustrates the overall scheduling

algorithm. The first two stages are performed offline and are used to guide the dispatch-

ing algorithm of the third stage. The dispatching algorithm is responsible for assigning

jobs to machines and is performed online. In the first stage, we use techniques from

the queueing theory literature, which uses an allocation LP to represent the queueing

system as a fluid model where incoming jobs can be considered in the aggregate as a

continuous flow [2]. We extend the LP model in the literature to account for multiple

resources that are present in our data center system. The allocation LP is used to

find an efficient pairing of machine resources to job classes. The efficient allocations

are then used to restrict the pairings that are considered in the second stage where a

machine assignment LP model is used to assign specific machines, rather than machine

configurations, to serve job classes. In the final stage, jobs are dispatched to machines

dynamically as they arrive to the system with the goal of mimicking the assignments

from the second stage.

Fig. 4: LoTES Algorithm.

4.1 The Allocation LP

Andradóttir et al.’s [2] allocation LP was created for a similar problem but with a

single unary resource per machine. The allocation LP finds the maximum arrival rate

for a given queueing network such that stability is maintained. Stability is a formal

property of queueing systems [4] that can informally be understood as implying that

the expected queue lengths in the system remain bounded over time.

We modify the allocation LP to accommodate |R| resources. Additionally, the large

number of machines is reduced by combining each machine’s resources to create a single

super-machine for each configuration. Thus, there will be exactly |M | pooled machines

(one for each configuration) with capacity cjl × nj for resource l. The allocation LP

ignores resource fragmentation within the pooled machines assuming that each job can

be split to be processed on different machines. The subsequent stages of the LoTES

algorithm deal with the issue of fragmentation by treating each machine individually

(see Section 4.2).

The extended allocation LP is given by (1)-(5) below.

max λ (1)

s.t.
∑
j∈M

(δjklcjlnj)µjk ≥ λαkrkl k ∈ K, l ∈ R (2)

δjklcjl
rkl

=
δjk1cj1

rk1
j ∈M,k ∈ K, l ∈ R (3)

∑
k∈K

δjkl ≤ 1 j ∈M, l ∈ R (4)

δjkl ≥ 0 j ∈M,k ∈ K, l ∈ R (5)

Decision Variables

λ: Arrival rate of jobs

δjkl: Fractional amount of resource l that machine j devotes to job class k

The LP assigns the proportion of each resource that each machine pool should allot

to each job class in order to maximize the arrival rate of the system, while maintaining

stability. Constraint (2) guarantees that sufficient resources are allocated for the ex-

pected requirements of each class. Constraint (3) ensures that the resource profiles of

the job classes are properly enforced. For example, if the amount of memory required

is twice the number of cores required, the amount of memory assigned to the job class

from a single machine configuration must also be twice the core assignment. The allo-

cation LP does not assign more resources than available due to constraint (4). Finally,

constraint (5) ensures the non-negativity of assignments.

Solving the allocation LP will provide δ∗jkl values which tell us how we can efficiently

allocate jobs to machine configurations. However, due to fragmentation, the allocation

LP solution is only an upper bound on the achievable arrival rate of a system. In

contrast, the bound for the single unary resource problem is tight: Andradóttir et al.

[2] show that utilizations arbitrarily close to one are possible.

4.2 Machine Assignment

In the second stage, we use the job-class-to-machine-configuration results from the

allocation LP to guide the choice of a set of job classes that each machine will serve.

We are concerned with fragmentation and so treat each job class and each machine

discretely, building specific sets of jobs (which we call “bins”) that result in tightly

packed machines and then deciding which bin each machine will emulate. This stage is

still done offline and so rather than using the observed resource requirements of jobs,

we continue to use the expected values.

Fig. 5: Feasible bin configurations.

In more detail, recall that the δ∗jkl values from the allocation LP provide a fractional

mapping of the resource capacity of each machine configuration to each job class. Based

on the δ∗jkl values that are non-zero, the expected resource requests of jobs and the

capacities of the machines, the machine assignment algorithm will first create job bins.

A bin is any set of jobs that together do not exceed the capacity of the machine in

expectation. A non-dominated bin is one that is not a subset of any other bin: if any

additional job is added to it, one of the machine resource constraints will be violated.

Figure 5 presents the feasible region for an example machine. Assume that the machine

has one resource (cores) with capacity 7. There are two job classes, job class 1 requires

2 cores and job class 2 requires 3 cores. The integer solutions represent the feasible bins.

All non-dominated bins exist along the boundary of the polytope since any solution in

the polytope not at the boundary will have a point above or to the right of it that is

feasible.

We exhaustively enumerate all non-dominated bins. The machine assignment model

then decides which bin each machine should emulate. Thus, each machine will be

mapped to a single bin, but multiple machines may emulate the same bin.

Algorithm 1 below generates all non-dominated bins. We define Kj , a set of job

classes for machine configuration j containing each job class with positive δ∗jkl, and a

set bj containing all possible bins. Given κji , a job belonging to the ith class in Kj , and

bjy, the yth bin for machine configuration j, Algorithm 1 is performed for each machine

configuration j. We make use of two functions not defined in the pseudo-code:

– sufficientResource(κji , b
j
y): Returns true if bin bjy has sufficient remaining resources

for job κji .

– mostRecentAdd(bjy): Returns the job class that was most recently added to bjy.

The algorithm starts by greedily filling the bin with jobs from a class. When no

additional jobs from that class can be added, the algorithm will move to the next class

of jobs and attempt to continue filling the bin. Once no more jobs from any class are

able to fit, the bin is non-dominated. The algorithm then backtracks by removing the

last job added and tries to add jobs from other classes to fill the remaining unused

resources. This continues until the algorithm has exhaustively searched for all non-

dominated bins.

Since the algorithm performs an exhaustive search, solving for all non-dominated

bins may take a significant amount of time. If we let Lk represent the maximum number

Algorithm 1 Generation of all non-dominated bins

y ← 1
x← 1
x∗ ← x
nextBin← false
while x ≤ |Kj | do

for i = x∗ → |Kj | do
while sufficientResource(κji , bjy) do

bjy ← bjy + κji
nextBin← true

end while
end for
x∗ ← mostRecentAdd(bjy)
if nextBin then
bjy+1 ← bjy − κjx∗
y ← y + 1

else
bjy ← bjy − κjx∗

end if
if bjy == {} then
x← x+ 1
x∗ ← x

else
x∗ ← x∗ + 1

end if
end while

of jobs of class k we can fit onto the machine of interest, then in the worst case, we must

consider
∏
k∈K Lk bins to account for every potential mix of jobs. We can improve the

performance of the algorithm by ordering the classes in decreasing order of resource

requirement. Of course, this is made difficult as there are multiple resources. One would

have to ascertain the constraining resource on a machine and this may be dependent

on which mix of jobs is used.2

Although the upper bound on the number of bins is very large, we are able to find

all non-dominated bins quickly (i.e., within one second on an Intel Pentium 4 3.00 GHz

CPU) because the algorithm only considers job classes with non-zero δ∗jkl values. We

generally see a small subset of job classes assigned to a machine configuration. Table 1 in

Section 5 illustrates the size of Kj , the number of job classes with non-zero δ∗jkl values

for each configuration. When considering four job classes, all but one configuration has

one or two job classes with non-zero δ∗jkl values. When running Algorithm 1, the number

of bins generated is in the thousands. Without the δ∗jkl values from the allocation LP,

there can be millions of bins.

With the created bins, individual machines are then assigned to emulate one of

the bins. To match the δ∗jkl values for the corresponding machine configuration, we

must find the contribution that each bin makes to the amount of resources allocated

to each job class. We define Nijk as the number of jobs from class k that are present

in bin i of machine configuration j. Using the expected resource requirements, we can

calculate the amount of resource l on machine j that is used for jobs of class k, denoted

εijkl = Nijkrkl. The machine assignment LP is then

2 It may be beneficial to consider the dominant resource classification of Dominant Resource
Fairness when creating such an ordering [6].

max λ (6)

s.t.
∑
j∈M

∆jklµjk ≥ λαkrkl k ∈ K, l ∈ R (7)

∑
i∈Bj

εijklxij = ∆jkl j ∈M,k ∈ K, l ∈ R (8)

∑
i∈Bj

xij = nj j ∈M (9)

xij ≥ 0 j ∈M, i ∈ Bj (10)

Decision Variables

∆jkl: Amount of resource l from machine configuration j that is devoted to job

class k

xij : Total number of machines that are assigned to bins of type i in machine

configuration j

Parameters

εijkl: Amount of resource l of a machine in machine configuration j assigned to

job class k if the machine emulates bin i.

Bj : Set of bins in machine configuration j

The machine assignment LP will map machines to bins with the goal of maximizing

the arrival rate that maintains a stable system. Constraint (7) is the equivalent of con-

straint (2) of the allocation LP while accounting for discrete machines. The constraint

ensures that a sufficient number of resources are available to maintain stability for each

class of jobs. Constraint (8) determines the total amount of resource l from machine

configuration j assigned to job class k to be the sum of each machine’s resource con-

tribution. In order to guarantee that each machine is mapped to a bin type, we use

constraint (9). Finally, constraint (10) forces xij to be non-negative.

Although we wish each machine to be assigned exactly one bin type, such a model

requires xij to be an integer variable and therefore the LP becomes an integer pro-

gram (IP). We found experimentally that solving the IP model for this problem is not

practical given a large set Bj . Therefore, we use an LP that allows the xij variables to

take on fractional values. Upon obtaining a solution to the LP model, we must create

an integer solution. The LP solution will have qj machines of configuration j which are

not properly assigned, where qj can be calculated as

qj =
∑
i∈Bj

xij − bxijc.

We assign these machines by sorting all non-integer xij values by their fractionality

(xij − bxijc) in non-increasing order. Ties are broken arbitrarily if there are multiple

bins with the same fractional contribution. We then begin to round the first qj fractional

xij values up and round all other xij values down for each configuration. This makes

the problem tractable at the cost of optimality. However, given the scale of the problem

that we study where a configuration can contain thousands of machines, the value of

λ∗ produced by the LP solution is typically very close to the value produced by the

IP solution. Experimentally, we found that the difference between the λ∗ from the

LP, which is a valid upper bound, was less than 0.001% better than the λ value that

resulted from our rounding.

4.3 Dispatching Jobs

In the third and final stage of the scheduling algorithm, jobs are dispatched to machines.

There are two events that change the system state such that a scheduling decision can

be made. The first event is a job arrival where the scheduler can assign the arriving job

to a machine. However, it may be that machines do not have sufficient resources and

so the job must enter a queue and wait until it can be processed by a machine. The

second event is the completion of a job. Once a job has finished processing, resources

on the machine become available again and if there are jobs in queue that can fit on

the machine, the scheduler can have the machine begin processing the job. However,

it is possible that a machine with sufficient resources for a queued job will not process

the job and stay idle instead. See Section 4.3.2 for further details on when a machine

will choose to idle instead of processing a job.

4.3.1 Job Arrival

A two-level dispatching policy is used to assign arriving jobs to machines so that each

machine emulates the bin it was assigned to in the second stage. In the first level of the

dispatcher, a job is assigned to one of the |M | machine configurations. The decision is

guided by the ∆jkl values to ensure that the correct proportion of jobs is assigned to

each machine configuration. In the second level of the dispatcher, the job is placed on

one of the machines in the configuration to which it was assigned. At the first level,

no state information is required to make decisions. However, in the second level, the

dispatcher will make use of the exact resource requirements of a job as well as the

states of machines to make a decision.

Deciding which machine configuration to assign a job to can be done by revisiting

the total amounts of resources each configuration contributes to a job class. We can

compare the ∆jkl values to create a policy that will closely imitate the machine as-

signment solution. Given that each job class k has been devoted a total of
∑|M |
j=1∆jkl

resources of type l, a machine configuration j should serve a proportion

ρjk =
∆jkl∑|M |

m=1∆mkl

of the total jobs in class k. The value of ρjk can be calculated using the ∆jkl values

from any resource type l. To decide which configuration to assign an arriving job of

class k, we use roulette wheel selection. We generate a uniformly distributed random

variable, u = [0, 1] and if
j−1∑
m=0

ρmk ≤ u <
j∑

m=0

ρmk,

then the job is assigned to machine configuration j. Note that this process can be

improved by looking at the current system state and choosing a configuration that more

accurately follows the prescribed ∆jkl values. However, there is a trade-off between

gathering and maintaining the additional machine state information and the possible

improvement due to reduced variability and randomness. We do not look into this

trade-off and leave it as a potential way to improve the online dispatching component

of LoTES.

The second step will then dispatch the jobs directly onto machines. Given a solution

x∗ij from the machine assignment LP, we create an nj × |K| matrix, Aj , with element

Aj
ik equal to 1 if the ith machine of j emulates a bin with one or more jobs of class k

assigned. Aj indexes which machines can serve a job of class k.

The dispatcher will attempt to dispatch the job to a machine belonging to the con-

figuration that was assigned from the first step. Of the machines in this configuration,

a score of how far the current state of the machine is from the assigned bin is calculated

for the job class of the arriving job. Given the job class k, the machine j, the bin i

that the machine emulates, and the current number of jobs of class k processing on the

machine κjk, a score υjk = Nijk − κjk is calculated. For example, if the bin has three

jobs of class 1 (Nijk = 3), but there is currently one job of class 1 being processed on

the machine (κjk = 1), then υjk = 2. The dispatcher will choose the machine with the

highest υjk value that still has sufficient remaining resources to schedule the arriving

job. In the case where no machines in the configuration are available, the dispatcher

will consider all other machines in the same manner. If there exists no machine that

can immediately process the job, it will enter a queue belonging to the class of the job.

Thus, there are a total of |K| queues, one for each job class. Following such a dispatch

policy attempts to schedule jobs immediately whenever possible to reduce response

times, while biasing towards placing jobs in such a way as to mimic the bins which

have been found to reduce the effects of resource fragmentation.

4.3.2 Job Exit

When a job completes service on a machine, resources are released and there is potential

for new jobs to start service. The jobs that are considered for scheduling are those

waiting in the job class queues. To decide which job to schedule on the machine, the

dispatch policy will calculate the score υjk as discussed above, but for every job class

with ∆jk > 0. We use the calculation of υjk to create a priority list of job classes where

a higher score represents a class that we prefer to schedule first.

The scheduler considers the first class in the ordered list. The jobs in the queue

are considered in order of their arrivals and if any job fit on the machine, the job is

dispatched and υjk is decreased by 1. While the change in score does not alter the

ordering of the priority list sorted using υjk, the search within the queue will continue.

If the top priority class gets demoted due to the scheduling of a job, then the next

class queue is considered. This is continued until all classes with positive ∆jk values

have been considered and all jobs on each of these queues cannot be scheduled onto

of machines Cores Memory |Kj |
6732 0.50 0.50 4
3863 0.50 0.25 2
1001 0.50 0.75 1
795 1.00 1.00 2
126 0.25 0.25 2
52 0.50 0.12 1
5 0.50 0.03 1
5 0.50 0.97 2
3 1.00 0.50 2
1 1.00 0.06 1

Table 1: Machine configuration details.

the machine. LoTES only considers classes with ∆jk > 0 here since the system is

currently in a state of heavy usage (a queue has formed) and pairing efficiency has in-

creased importance to improve system throughput. Therefore, it is possible that LoTEs

will idle a machine’s resources even though a job in a queue with ∆jk = 0 can fit on

the machine because it is likely better to reserve those resources for a better fitting job.

By dispatching jobs using the proposed algorithm, the requirement of system state

information is often reduced to a subset of machines that a job is potentially assigned.

Further, keeping track of the detailed schedule on each machine is not necessary for

scheduling decisions since the only information used is whether a machine currently

has sufficient resources and the job mix of a machine.

5 Experimental Results

We test our algorithm using cluster workload trace data provided by Google.3 This

data represents the workload for one of Google’s compute clusters over the one month

period of May 2011. The data captured in the workload trace provides information

on the machines in the system as well as the jobs that arrive, their submission times,

their resource requests, and their durations, which can be inferred from finding how

long a job is active. However, because we calculate the processing time of a job based

on the actual processing time realized in the workload traces, it is unknown to us

how processing times may have differed if a job was processed on a different machine

or if the load on the machine changes. Therefore, we assume that processing times

are independent of machine configuration and load. We use the data as input for our

scheduling algorithm to simulate its performance over the one month period.

Although the information provided is extensive, we limit what we use for our ex-

periments to only the resource requested and duration for each job. We do not consider

failures of machines or jobs: jobs that fail and are resubmitted are considered to be

new, unrelated jobs. Machine configurations change over time due to failures, the ac-

quisition of new servers, or the decommissioning of old ones, but we will only use the

3 The data can be found at https://code.google.com/p/googleclusterdata/.

Job class 1 2 3 4
Avg. Time (h) 0.03 0.04 0.04 0.03

Avg. Cores 0.02 0.02 0.07 0.20
Avg. Mem. 0.01 0.03 0.03 0.06
Proportion 0.23 0.46 0.30 0.01

of Total Jobs

Table 2: Job class details.

initial set of machines and keep that constant over the whole month. Furthermore,

system micro-architecture is provided for each machine and some jobs are limited in

which types of architecture they can be paired with and how they interact with these

architectures. We ignore this limitation for our scheduling experiments. It is easy to

extend the LoTES algorithm to account for system architecture by setting µjk = 0

whenever a job cannot be processed on a particular architecture.

The cluster of interest has 10 machine configurations as presented in Table 1. Each

configuration is defined strictly by its resource capacities and the number of identical

machines with that resource profile. The resource capacities are normalized relative to

the configuration with the most resources. Therefore, the job resource requests are also

provided after being normalized to the maximum capacity of machines.

5.1 Class Clustering

The Google data does not define job classes and so in order for us to use the data to

test our LoTES algorithm, we must first cluster jobs into classes. We follow Mishra

et al. [20] by using k-means clustering to create job classes and use Lloyd’s algorithm

[16] to create the different clusters. To limit the amount of information that LoTES

is using in comparison to our benchmark algorithms, we only use the jobs from the

first day to define the job classes for the month. These classes are assumed to be fixed

for the entire month. Due to this assumption and because the Greedy policy and the

Tetris scheduler does not use class information, any inaccuracies introduced by making

clusters based on the first day will only make LoTES worse when we compare the two

algorithms.

Clustering showed us that four classes were sufficient for representing most jobs.

Increasing the number of classes led to less than 0.01% of jobs being allocated to the

new classes. The different job classes are presented in Table 2.

5.2 Algorithms for Comparison: A Greedy Dispatch Policy and the Tetris Scheduler

We consider two alternative schedulers: a greedy policy and the Tetris scheduler. We

chose to compare LoTES against the Greedy dispatch policy because it is a natural

heuristic, which aims to quickly process jobs. Like the LoTES algorithm, the Greedy

dispatch policy attempts to schedule jobs onto available machines immediately if a

machine is found that can process a job. This is done in a first-fit manner where the

machines are ordered following the list of machines in Table 1 from top to bottom. In the

case where no machines are available for immediate processing, the job enters a queue.

Unlike the LoTES scheduler that uses a job class queue, since the greedy dispatch

policy does not make use of job class information, jobs enter a machine queue; a queue

that belongs to a single machine. The policy will choose the machine with the shortest

queue of waiting jobs with ties broken randomly. If a queue forms, jobs are processed

in FCFS order.

The Tetris scheduler [7], aims to improve packing efficiency and reduce average

completion time through use of a linear combination of two metrics. The packing

efficiency metric is calculated by taking the dot product of the resource profiles of a

job and the resource availabilities on machines. If we denote r as a vector representing

the resource profile of a job and C as the resource profile for the remaining resources

on a machine, then we can define the packing efficiency score as ω = r ·C. A higher

score represents a better fit of a job on a machine. The second metric, the remaining

amount of work, is calculated as the total resource requirements multiplied by the job

duration. That is, given p the processing time of a job, the remaining work score is

γ = pr · 1, where 1 is a vector of ones. The Tetris scheduler prioritizes jobs with less

work in order to reduce overall completion times of jobs. For our experiments, we give

each of the metrics equal weighting and found that the relative performance of the

Tetris scheduler does not improve with different weightings. The score for each job is

then calculated as ω − γ where a larger score will have higher priority.

The Tetris scheduler tries to handle resource fragmentation through the use of the

packing efficiency score. By placing jobs on machines with higher packing scores, ma-

chines with resource profiles that are similar to the job resource profiles are prioritized.

Tetris benefits from being able to make packing decisions online, unlike LoTES which is

designed to commit to packing decisions offline. However, Tetris makes decisions more

myopically without the foresight that new jobs will be arriving. In contrast, LoTES

considers packing jobs in the long-term by generating bins in advance so that individ-

ual jobs may not share similar resource profiles as a machine, but the combination of

jobs will be able to better make use of the resources of a machine.

5.3 Implementation Challenges

In our experiments, we have not directly considered the time it takes for the scheduler

to make dispatching decisions. As such, as soon as a job arrives to the system, the

scheduler will immediately assign it to a machine. In practice, decisions are not instan-

taneous and depending on the amount of information needed by the scheduler and the

complexity of the scheduling algorithm, the delay may be an issue. For every new job

arrival, the scheduler requires state information of one or more machines. The state of

the machine must provide the currently available resources and the size of the queue.

As the system becomes busier, the scheduler may have to obtain state information for

all machines in the data center. Thus, scaling may be problematic as the algorithms

may have to search over a very large number of machines. However, in heavily loaded

systems where there are delays before a job can start processing, the scheduling over-

head will not adversely affect system performance so long as the overhead is less than

the waiting time delays. An additional issue may be present that could reduce perfor-

mance as the scheduler itself creates additional load on the network connections within

the data center itself. This may need to be accounted for if the network connections

become sufficiently congested.

Note, however, that the dispatching overhead of arriving jobs for LoTES is no

worse than that of the Greedy policy or Tetris. The LoTES algorithm benefits from the

restricted set of machines that it considers based on the ∆jk values. At low loads where

a job can be dispatched immediately as it arrives, the Greedy policy and LoTES will

not have to gather state information for all machines. In contrast, the Tetris scheduler

will always gather information on all machines to decide which has the best score.

However, in the worst case. LoTES may require state information on every machine

when the system is heavily loaded, just as the other algorithms.

A system manager for a very large data center must take into account the overhead

required to obtain machine state information regardless of which algorithm is chosen.

There is work showing the benefits of only sampling state information from a limited

set of machines to make a scheduling decision [10]. If the overhead of obtaining too

much state information is problematic, one can further limit the number of machines

to be considered once a configuration has already been chosen. Such a scheduler could

decide which configuration to send an arriving job to and then sample N machines

randomly from the chosen configuration, where N ∈ [1, nj]. Restricting the scheduler

to only these N sampled machines, the scheduler can dispatch jobs following the same

rules as LoTES allowing the mappings from the offline stages of LoTES to still be used,

but with substantially less overhead for the online decisions.

5.4 Simulation Results: Workload Trace Data

We simulate the three schedulers using the workload traces from Google. We created

an event-based simulator in C++ to emulate a data center with the workload data

used as input to our system. The LP models are solved using IBM ILOG CPLEX

12.6.2. We run our tests on an Intel Pentium 4 CPU 3.00 GHz, 1 GB of main memory,

running Red Hat 3.4-6-3. Because the LP models are solved offline prior to the arrival

of jobs, the solutions to the first two stages are not time-sensitive. Regardless, the total

time to obtain solutions to both LP models and generate bins is less than one minute

of computation time. This level of computational effort means that it is realistic to

re-solve these two stages periodically, perhaps multiple times a day, if the job classes

or machine configurations change due, for example, to non-stationary workload. We

leave this for future work.

Figure 6 presents the performance of the system over the one month period. The

graph provides the mean response time of jobs over every 24-hour long interval. We

include an individual job’s response time in the mean response time calculation for the

interval in which the job begins processing. We see that the LoTES algorithm greatly

outperforms the Greedy policy and generally has lower response times than Tetris.

On average, the Greedy policy has response times that are orders of magnitude longer

(15-20 minutes) than the response times of the LoTES algorithm. The Tetris scheduler

performs much better than the Greedy policy, but still has about an order of magnitude

longer response times than LoTES.

The overall performance shows the benefits of LoTES, however, a more interesting

result is the performance difference when there is a larger performance gap between the

scheduling algorithms. In general, LoTES is as good as Tetris or better. However, when

the two algorithms deviate in performance, LoTES can perform significantly better.

For example, around the 200 hour time point in Figure 6, the average response time of

Fig. 6: Response Time Comparison.

jobs is minutes with the Greedy policy, seconds under Tetris, and micro-seconds with

LoTES.

The Greedy policy performs worst as it is the most myopic scheduler. However, the

one time period that it does exhibit better behaviour than any other scheduler is the

first period when the system is in a highly transient state and is heavily loaded. We

suspect this is also due to the scheduler being myopic and optimizing for the immediate

time period which leads to better short-term results, but the performance degrades over

a longer time horizon.

Although it is shown in Figure 6 that LoTES can reduce response times of jobs, the

large scale of the system obscures the significance of even these seemingly small time

improvements between LoTES and Tetris. Often, the average difference in time for

these two schedulers is shown to be tenths of seconds or even smaller. When examining

the distribution of response times from Figure 7, we see that Tetris has a much larger

tail where more jobs have a significantly slower response time. For the LoTES scheduler,

less than 1% of jobs have a waiting time greater than one hour. In comparison, the

Tetris scheduler has just as many jobs that have a waiting time greater than 7 hours

and the Greedy policy has 1% of jobs waiting longer than 17 hours. These values show

how poor performance can become during peak times, even though on average, the

response times are very short because the remaining tasks are mostly immediately

processed.

Finally, Figure 8 presents the number of jobs in queue over time. We see that for

most of the month, the queue size does not grow to any significant amount for LoTES.

Tetris does have a queue form at some points in the month, but even then, the queue

length is relatively small. Other than at the beginning of the schedule, throughput of

jobs for Tetris and LoTES is generally maintained at a rate such that arriving jobs

Fig. 7: Cumulative graph of the proportion of jobs with a response time less than some

value.

are processed immediately. The large burst of jobs early on in the schedule is due to

the way in which the trace data was captured: that all these jobs enter the system at

time 0 as a large batch to be scheduled. However, as time goes on, these initial jobs are

processed and the system enters into a more regular state. Greedy on the other hand

has increased queue lengths at all points during the month.

Given that for the majority of the scheduling horizon, LoTES is able to maintain

empty queues and schedule jobs immediately, we found that a scheduling decision can

often be made by considering only a subset of machine configurations rather than all

machines in the system. In contrast, the Tetris scheduler, regardless of how uncongested

the system is, will always consider all machines to find the best score. We do not

present the scheduling overhead of LoTES directly, but it is apparent from the graph

that without a queue build up, the overhead will be no worse, and more likely better,

than Tetris.

6 Conclusion and Future Work

In this work, we developed a scheduling algorithm that improves response times by

creating a mapping between jobs and machines based on their resource profiles. The

algorithm consists of three stages where a fluid representation and queueing model are

used at the first stage to fractionally allocate job classes to machine configurations. The

second stage then solves a combinatorial problem to generate possible assignments of

jobs to machines. An LP model is developed to maximize system capacity by choosing

the generated sets of jobs that each machine should aim to emulate. The final stage

Fig. 8: Number of jobs queued.

is an online dispatching policy that uses the solution from the second stage to assign

each incoming job. Our algorithm was tested on Google workload trace data and was

found to reduce response times by orders of magnitude when compared to a benchmark

greedy dispatch policy and an order of magnitude when compared against the Tetris

scheduler. We believe that the main advantage of LoTES over Tetris is that LoTES

considers future job arrivals by generating efficient bins in advance, which can then be

followed by the machines online. By doing this, LoTES behaves less myopically and can

reason about good packing efficiency based on combinations of jobs rather than a single

job at a time like Tetris. This improvement in performance is also often computationally

cheaper during the online scheduling phase since the proposed algorithm often requires

state information for fewer machines when making assignment decisions.

The data center scheduling problem is very rich from the scheduling perspective and

can be expanded in many different ways. Our algorithm assumes stationary arrivals

over the entire duration of the scheduling horizon. However, the real system is not

stationary and the arrival rate of each job class may vary over time. Furthermore, the

actual job classes themselves may change over time as resource requirements may not

always be clustered in the same manner. As noted above, the offline phase is sufficiently

fast (about one minute of CPU time) that it could be run multiple times per day as

the system and load characteristics change. Beyond this we plan to extend the LoTES

algorithm to more accurately represent dynamic job classes. This would allow the

LoTES algorithm to learn to predict the expected mix of jobs that will arrive to the

system and make scheduling decisions with these predictions in mind. Not only do we

wish to be able to adjust our algorithm to a changing environment, but we also wish

to extend our algorithm to be able to more intelligently handle situations when the

mix of jobs varies greatly from expectation. Large deviations from the expectation will

lead to system realizations that differ significantly from the bins created in the second

stage of the LoTES algorithm and make the offline decisions irrelevant to the realized

system.

We also plan to study the effects of errors in job resource requests. We used the

amount of requested resources of a job as the amount of resource used over the entire

duration of the job. In reality, users may under or overestimate their resource require-

ments and the utilization of a resource may change over the duration of the job itself.

The incorporation of uncertainties in resource usage adds difficulty to the problem

because instead of knowing the exact amount of requested resources once a job ar-

rives, we only have an estimate and must ensure that a machine is not underutilized

or oversubscribed.

Acknowledgment

This work was made possible in part due to a Google Research Award and the Natural

Sciences and Engineering Research Council of Canada (NSERC).

References

1. Al-Azzoni, I., Down, D.G.: Linear programming-based affinity scheduling of independent
tasks on heterogeneous computing systems. IEEE Transactions on Parallel and Distributed
Systems 19(12), 1671–1682 (2008)

2. Andradóttir, S., Ayhan, H., Down, D.G.: Dynamic server allocation for queueing networks
with flexible servers. Operations Research 51(6), 952–968 (2003)

3. Berral, J.L., Goiri, Í., Nou, R., Julià, F., Guitart, J., Gavaldà, R., Torres, J.: Towards
energy-aware scheduling in data centers using machine learning. In: Proceedings of the
1st International Conference on energy-Efficient Computing and Networking, pp. 215–224.
ACM (2010)

4. Dai, J.G., Meyn, S.P.: Stability and convergence of moments for multiclass queueing net-
works via fluid limit models. IEEE Transactions on Automatic Control 40(11), 1889–1904
(1995)

5. Gandhi, A., Harchol-Balter, M., Kozuch, M.A.: Are sleep states effective in data centers?
In: International Green Computing Conference (IGCC), pp. 1–10. IEEE (2012)

6. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant
resource fairness: Fair allocation of multiple resource types. In: Proceedings of the 8th
USENIX conference on Networked systems design and implementation, vol. 11, pp. 323–
336 (2011)

7. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource pack-
ing for cluster schedulers. In: Proceedings of the 2014 ACM conference on SIGCOMM,
pp. 455–466. ACM (2014)

8. Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated
power and performance management of green cloud computing systems. In: Energy Effi-
cient Data Centers, vol. 7396, pp. 81–92. Springer (2012)

9. Guenter, B., Jain, N., Williams, C.: Managing cost, performance, and reliability tradeoffs
for energy-aware server provisioning. In: INFOCOM, 2011 Proceedings IEEE, pp. 1332–
1340. IEEE (2011)

10. He, Y.T., Down, D.G.: Limited choice and locality considerations for load balancing. Per-
formance Evaluation 65(9), 670–687 (2008)

11. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair
scheduling for distributed computing clusters. In: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 261–276. ACM (2009)

12. Jain, R., Chiu, D.M., Hawe, W.: A quantitative measure of fairness and discrimination for
resource allocation in shared computer systems. Digital Equipment Corporation Research
Technical Report TR-301 pp. 1–37 (1984)

13. Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider, M., Tide-
man, S., Chitta, R., Dilmaghani, R.B., Joshi, R., et al.: Dynamically mapping tasks with
priorities and multiple deadlines in a heterogeneous environment. Journal of Parallel and
Distributed Computing 67(2), 154–169 (2007)

14. Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.D.: Reducing electricity
cost through virtual machine placement in high performance computing clouds. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 22. ACM (2011)

15. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.: Greening geographical load bal-
ancing. In: Proceedings of the ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 233–244. ACM (2011)

16. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory
28(2), 129–137 (1982)

17. Maguluri, S.T., Srikant, R., Ying, L.: Heavy traffic optimal resource allocation algorithms
for cloud computing clusters. In: Proceedings of the 24th International Teletraffic Congress,
p. 25. International Teletraffic Congress (2012)

18. Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling
in cloud computing clusters. In: Proceedings IEEE INFOCOM, pp. 702–710. IEEE (2012)

19. Mann, Z.Á.: Allocation of virtual machines in cloud data centers–a survey of problem
models and optimization algorithms. ACM Computing Surveys 48(1), 1–31 (2015)

20. Mishra, A., Hellerstein, J., Cirne, W., Das, C.: Towards characterizing cloud backend work-
loads: insights from Google compute clusters. ACM SIGMETRICS Performance Evalua-
tion Review 37(4), 34–41 (2010)

21. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low latency
scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pp. 69–84. ACM (2013)

22. Rasooli, A., Down, D.G.: COSHH: A classification and optimization based scheduler for
heterogeneous hadoop systems. Future Generation Computer Systems 36, 1–15 (2014)

23. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM
Symposium on Cloud Computing, pp. 1–13. ACM (2012)

24. Salehi, M.A., Krishna, P.R., Deepak, K.S., Buyya, R.: Preemption-aware energy man-
agement in virtualized data centers. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pp. 844–851. IEEE (2012)

25. Tang, Q., Gupta, S.K., Varsamopoulos, G.: Thermal-aware task scheduling for data centers
through minimizing heat recirculation. In: IEEE International Conference on Cluster
Computing, pp. 129–138. IEEE (2007)

26. Wang, L., Von Laszewski, G., Dayal, J., He, X., Younge, A.J., Furlani, T.R.: Towards
thermal aware workload scheduling in a data center. In: Pervasive Systems, Algorithms,
and Networks (ISPAN), 2009 10th International Symposium on, pp. 116–122. IEEE (2009)

27. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: A simple technique for achieving locality and fairness in cluster scheduling.
In: Proceedings of the 5th European conference on Computer systems, pp. 265–278. ACM
(2010)

