
A Stable Mean Value Analysis Algorithm for Closed
Systems with Load-dependent Queues

Lei Zhang
Department of Computing and Software

McMaster University
1280 Main Street West

Hamilton, ON L8S4K1, Canada
huntchang830@gmail.com

Douglas G. Down
Department of Computing and Software

McMaster University
1280 Main Street West

Hamilton, ON L8S4K1, Canada
downd@mcmaster.ca

ABSTRACT
The load-dependent Mean Value Analysis (MVA) algorithm
suffers from numerical instability. Different techniques have
been adopted to avoid this issue, however, they either have
large complexities or restrictive assumptions. In this paper,
we introduce a numerically Stable MVA (SMVA) algorithm
for product-form networks that allows for load-dependent
queues. The SMVA algorithm offers an efficient and accu-
rate approximate solution. We validate SMVA by compar-
ing it to other MVA algorithms in a concrete example, and
analyze its errors. We also extend SMVA to a multi-class
model.

Keywords
Performance evaluation; mean value analysis; numerical sta-
bility

1. INTRODUCTION
The Mean Value Analysis (MVA) algorithm for closed

queueing networks with product-form steady-state distribu-
tion was introduced by Lavenberg and Reiser [7]. It relies on
product-form assumptions, which can be violated by com-
mon features introduced in modern computer systems, e.g.,
simultaneous resource possession, locking behaviours, prior-
ity scheduling, high service demand variability, and process
synchronization (see Chapter 15 in [5]). An approximate
solution is to reduce a non-product-form network by using
Flow-Equivalent Servers (FES) [3]. An FES is load depen-
dent, whose service rate with n jobs present is equal to the
observed throughput of the original network with n jobs (as
shown in Figure 1). Then, we can solve the performance
model by the load-dependent MVA algorithm [6].

Unfortunately, the load-dependent MVA algorithm suffers
from numerical instability issues [6, 7]. The underlying rea-
son is that the computation of state probabilities can yield
negative results when the utilization is close to one. Conse-
quently, negative values of mean performance measures (i.e.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

D(n)

Figure 1: A generic load-dependent queue

response times and throughputs) can be produced. Static
and dynamic scaling techniques are complex, and Casale
and Serazzi [2] show that they do not work in general, as
the mean queue length computations are not affected. To
the best of our knowledge, the literature is lacking efficient
solutions for the numerical instability of MVA.

To effectively address numerical instability, we propose
the Stable Mean Value Analysis (SMVA) algorithm. The
main contributions of this paper include: (1) The SMVA
algorithm, which is an efficient approximate solution for
closed networks with load-dependent queues. (2) An ex-
tended multi-class model used to determine class-level mean
performance metrics.

2. RELATED WORK
To address numerical issues, Casale [1] introduced the

Conditional Mean Value Analysis (CMVA) algorithm, which
avoids the computations of the state probabilities, and as a
consequence, overcomes the limitation. Although the CMVA
algorithm is an exact solution, its time and space complexi-
ties grow as O(MN2), where M is the number of queues, and
N is the number of jobs. The time and space complexities
for the original MVA algorithm only grow as O(MN).

In the literature, Seidmann’s approximation [8] is also
widely used to address MVA’s numerical issues. However, it
is only applicable for multi-server queues in which all servers
are load independent. This is a special case of generic load-
dependent queues. The basic idea is to replace a queue with
m servers by two tandem servers. The first one is a sin-
gle server queue with service demand D/m, where D is one
server’s service demand. The second one is a pure delay
server with service demand D · (m − 1)/m. In practice,
Seidmann’s approximation can yield noticeable errors un-
der intermediate loads, but it has the same time and space
complexities as the original MVA algorithm.

3. STABLE MEAN VALUE ANALYSIS
We study a generic load-dependent queue (as shown in

Figure 1) with service demand D(n), where n is the num-
ber of jobs in the queue. Here, we assume that the ser-

D/m

D*(m-1)/m

D(N̄)

nD(n)-D(N̄)

Figure 2: Approximate queues in SMVA

vice demand of the load-dependent queue becomes a con-
stant beyond some N̄ , i.e., there exists a finite N̄ such that
D(n) = D(N̄) for all n ≥ N̄ . This assumption is reasonable
for many systems, and it could be an approximation for the
case that D(n) becomes sufficiently close to D(N̄).

The SMVA algorithm can be seen as a generalized Seid-
mann’s approximation, replacing the load-dependent queue
with two tandem servers (as shown in Figure 2). The first
one is a load-independent queue with service demand Dq(n) =
D(N̄). The second one is a load-dependent delay centre with
service demand

Dd(n) =

{
nD(n)−D(N̄), if n < N̄

N̄ ·D(N̄)−D(N̄), if n ≥ N̄ .

To make sure the service demands of the delay centre are
positive, we assume that nD(n) ≥ D(N̄), for n < N̄ . In
multi-core systems, it is a common assumption that D(n)
decreases as n increases. In other words, we have D(n) >
D(N̄) when n < N̄ . Naturally, the assumption of nD(n) ≥
D(N̄) holds. Although the delay centre is load dependent,
there is no need to calculate its state probabilities because
it does not have a queue. As a result, the SMVA algorithm
is numerically stable.

Algorithm 1 The SMVA algorithm

Input:
Z,M,N,Dm, N̄m

Output:
Qm, X,R
Condition:
∀n, nDm(n) ≥ Dm(N̄m)
Initialization:
Qm(0) = 0, for all m = 1, . . . ,M
Iteration:

for m = 1→M do
for n = 1→ N do

Dq
m(n) = Dm(N̄m)

Dd
m(n) =

{
nDm(n)−Dm(N̄m), if n < N̄m

N̄m ·Dm(N̄m)−Dm(N̄m), if n ≥ N̄m

end for
end for
for n = 1→ N do

for m = 1→M do
Rq

m(n) = Dq
m(n)[1 + Qm(n− 1)]

Rd
m(n) = Dd

m(n)
end for
X(n) = n/{Z +

∑M
m=1[Rq

m(n) + Rd
m(n)]}

for m = 1→M do
Qm(n) = X(n) ·Rq

m(n)
end for

end for
R =

∑M
m=1[Rq

m(N) + Rd
m(N)]

Under light load, the two tandem servers behave as a

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400
Service Rate Comparison

Number of Users

S
er

vi
ce

 R
at

e
in

 p
er

 s
ec

.

CMVA/SMVA
Seidmann‘s Approx.

Figure 3: Service rate curves

server which has service demand D(n). If n jobs are be-
ing served and no jobs are waiting in the queue, the time
spent by a job in the approximating node is D(N̄)+nD(n)−
D(N̄) = nD(n). If there are jobs waiting in the first queue,
the time spent by a job in the approximating node is dom-
inated by the time spent at the first queue. The node be-
haves as a server which has service demand D(N̄). As a
result, this approximation should perform well when the
original server is under light or heavy loads. Note that
SMVA is exactly the same as Seidmann’s approximation
when nD(n) = D(1), for n ≤ N̄ .

Algorithm 1 illustrates the SMVA algorithm. Z is the
mean think time, Dm is the service demand at the mth
queue, Dq

m is the service demand at the queueing resource,
Dd

m is the service demand at the delay centre, R is the mean
response time, Rq

m is the mean response time at the queueing
resource, Rd

m is the mean response time at the delay centre,
X is the system throughput, and Qm is the mean queue
length at the mth queue. As can be seen in Algorithm 1,
the time and space complexities of SMVA are both O(MN).
Here, we assume that all queues are load dependent. If the
mth queue is load independent, we can simply set Dq

m = Dm

and Dd
m = 0, and Algorithm 1 still holds.

4. EXPERIMENTAL RESULTS
In this section, we compare the results of the CMVA al-

gorithm, Seidmann’s approximation, and the SMVA algo-
rithm. We set up a testbed as shown in in Table 1, and
employ TPC-W [4] to generate the workload. We aggregate
and model the system by an FES. We then obtain service
rates (the inverse of service demands) of the FES to param-
eterize MVA algorithms (as shown in Figure 3). As can be
seen in the figure, the service rate curve adopted by Seid-
mann’s approximation can only address the ideal case of a
load-dependent server, where D(n) = D(1)/n for n ≤ 8.

To test the accuracy of SMVA under different loads, we
vary the number of users and the mean think times in the
system. Both the mean response time and the through-
put are compared for the three candidate MVA algorithms.
Three sets of results are presented. The results of the first
set are presented in Figure 4, where N ranges from 1 to 20,
and Z=0. The results of the second set are presented in Fig-
ure 5, where N ranges from 1 to 300, and Z=0.7 seconds.
The results of the third set are presented in Figure 6, where

CPU Memory Disk OS Web Server Database
Intel i7-2600 quad-core 8 GB 1 TB (7200 RPM) Ubuntu 12.04.3 LTS JBoss 3.2.7 MySQL 5.1.70

Table 1: Testbed settings

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60
Response Time (N=1~20, Z=0)

Number of Users

R
es

po
ns

e
T

im
e

in
 m

s.

CMVA
Seidmann‘s Approx.
SMVA

(a) Response time

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400
Throughput (N=1~20, Z=0)

Number of Users

T
hr

ou
gh

pu
t i

n
pe

r
se

c.

CMVA
Seidmann‘s Approx.
SMVA

(b) Throughput

Figure 4: Comparison with Z=0

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180
Response Time (N=1~300, Z=0.7 sec.)

Number of Users

R
es

po
ns

e
T

im
e

in
 m

s.

CMVA
Seidmann‘s Approx.
SMVA

(a) Response time

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400
Throughput (N=1~300, Z=0.7 sec.)

Number of Users

T
hr

ou
gh

pu
t i

n
pe

r
se

c.

CMVA
Seidmann‘s Approx.
SMVA

(b) Throughput

Figure 5: Comparison with Z=0.7 seconds

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300
Response Time (N=1~1300, Z=3.5 sec.)

Number of Users

R
es

po
ns

e
T

im
e

in
 m

s.

CMVA
Seidmann‘s Approx.
SMVA

(a) Response time

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400
Throughput (N=1~1300, Z=3.5 sec.)

Number of Users

T
hr

ou
gh

pu
t i

n
pe

r
se

c.

CMVA
Seidmann‘s Approx.
SMVA

(b) Throughput

Figure 6: Comparison with Z=3.5 seconds

N ranges from 1 to 1300, and Z=3.5 seconds.
Compared to CMVA, which is an exact solution, it is ob-

vious to see that SMVA works better than Seidmann’s ap-
proximation in all three cases. However, we also observe
some errors for both of the approximate MVA algorithms
from those figures, except for Figures 5b and 6b. The rea-
son is that for those figures, the throughput is given by
X(n) = n/[Z + R(n)]. As Z increases, the error in R(n)
has a smaller effect on the accuracy of X(n).

We would like to quantify the errors from SMVA and Seid-
mann’s approximation. In Figure 4, the largest error for the
mean response time of SMVA is 27.16%, and the largest er-
ror for the throughput of SMVA is −21.36% (negative means
underestimate) when N = 8. In contrast, the error for the
mean response time of Seidmann’s approximation goes to
46.78% when N = 4. At the same time, the error for the
throughput is also the largest, which is −31.87%. We have
similar observations from Figures 5 and 6. In Figure 5,
the largest error for the mean response time of SMVA is
33.15% when N = 200. At the same time, the errors for the
throughput are quite small, the largest error is only −1.05%
(N = 200). In Figure 6, the largest error for the mean re-
sponse time of SMVA is 35.73% when N = 800. The errors
for the throughput are negligible. In the same figure, Seid-
mann’s approximation has its worst case when N = 1300,
the error for the mean response time is 71.91%.

5. DISCUSSION
Compared to the CMVA algorithm and Seidmann’s ap-

proximation, the SMVA algorithm has two advantages. First,
the time and space complexities of SMVA are a significant
improvement over CMVA. Second, the SMVA algorithm is
better able to handle cases when the service demands of a
load-dependent node do not have a linear relationship.

We have two additional observations about SMVA. Firstly,
the SMVA algorithm works as well as the CMVA algorithm
when the system is under light or heavy loads. However, the
errors of SMVA increase when the system is under interme-
diate loads (but still performs better than Seidmann’s ap-
proximation). Secondly, when the mean think time increases
with respect to the service demands, the SMVA algorithm
might produce less accurate estimates of the mean response
times under intermediate load. In contrast, the estimated
throughput becomes more accurate.

We conjecture that there are two reasons leading to the
more significant error of SMVA under intermediate loads.
Firstly, it assumes that all the jobs are being processed at the
server when n jobs are in the system. In the load-dependent
MVA algorithm, j jobs could be processed with probability
P (j|n), and j varies from 1 to n. Secondly, the delay centre
can “delay” a job too long. When the time that a job spends
at the first queue does not dominate the total time, the time
spent at the delay centre can dramatically delay the finish
of the job. To improve the accuracy of SMVA, a better
estimate of the service demands of the delay centre would
be a good starting point for future research.

6. MULTI-CLASS EXTENSION
For completeness, we extend the SMVA algorithm to the

case of multi-class closed networks. Consider that there are
C classes of transactions, where the job population vector
is given by ~N = (n1, n2, . . . , nC), and the service demand of

class c (1 ≤ c ≤ C) at the mth queueing resource is given by
Dq

m,c(n) = Dm,c(N̄m), ∀n. The service demand at the delay
centre becomes

Dd
m,c(n) =

{
nDm,c(n)−Dm,c(N̄m), n < N̄m

(N̄m − 1)Dm,c(N̄m), n ≥ N̄m.

Then, the multi-class SMVA iterates over all of the classes
to compute the mean response times:

Rq
m,c(~N) = Dq

m,c(nc)[1 + Qm(~N − 1c)],

and Rd
m,c(~N) = Dd

m,c(nc). Here ~N−1c is the job population
vector with one class c job less in the system. The system
throughput of class c is calculated by

Xc(~N) = nc/{Z +

M∑
m=1

[Rq
m,c(~N) + Rd

m,c(~N)]},

where 0 ≤ nc ≤ Nc. The mean queue length at the mth
queue is

Qm(~N) =

C∑
c=1

Xc(~N) ·Rq
m,c(~N).

7. CONCLUSIONS
In this paper, we presented the SMVA algorithm, an effi-

cient approximation to address the numerical instability of
the load-dependent MVA algorithm for closed queueing net-
works. The SMVA algorithm generalizes the applicability of
Seidmann’s approximation, and achieves better complexities
compared to the CMVA algorithm. The SMVA algorithm
can be seen as a first step to effectively address the numerical
instability of MVA algorithms.

8. ACKNOWLEDGMENTS
The work reported in this paper was supported by the

Ontario Research Fund and the Natural Sciences and Engi-
neering Research Council of Canada.

9. REFERENCES
[1] G. Casale. A note on stable flow-equivalent aggregation in

closed networks. Queueing Systems, 60(3-4):193–202, 2008.

[2] G. Casale and G. Serazzi. Stabilization techniques for
load-dependent queueing networks algorithms. In J. A.
Barria, editor, Communication Networks and Computer
Systems: A Tribute to Professor Erol Gelenbe, chapter 8,
pages 127–141. Imperial College Press, 2006.

[3] K. M. Chandy, U. Herzog, and L. Woo. Parametric analysis
of queuing networks. IBM Journal of Research and
Development, 19(1):36–42, 1975.

[4] T. Horvath. TPC-W J2EE implementation, 2008.
http://www.cs.virginia.edu/∼th8k/downloads, last accessed
24 Feburary 2016.

[5] D. A. Menascé, V. A. Almeida, L. W. Dowdy, and
L. Dowdy. Performance by Design: Computer Capacity
Planning by Example. Prentice Hall PTR, 2004.

[6] M. Reiser. Mean-value analysis and convolution method for
queue-dependent servers in closed queueing networks.
Performance Evaluation, 1(1):7–18, 1981.

[7] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed
multichain queuing networks. Journal of the ACM (JACM),
27(2):313–322, 1980.

[8] A. Seidmann, J. Paul, and S. Shalev-Oren. Computerized
closed queueing network models of flexible manufacturing
systems: A comparative evaluation. Large Scale Systems,
12:91–107, 1987.

