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Abstract

In this paper we discuss the dynamicservercontrolin a two-class service system with abandon-

ments. Two models are considered. In the first case, rewards are received upon service comple-

tion and there are no abandonment costs (other than the lost opportunity to gain rewards). In the

second, holding costs per customer per unit time are accruedand each abandonment involves

a fixed cost. Both cases are considered under the discounted or average reward/cost criterion.

These are extensions of the classic scheduling question (without abandonments) where it is

well-known that simple priority rules hold.

The contributions in this paper are twofold. First, we show that the classicc− µ rule does

not hold in general. An added condition on the ordering of theabandonment rates is suffi-

cient to recover the priority rule. Counter-examples show that this condition is not necessary,

but when it is violated significant loss can occur. In the reward case, we show that the deci-

sion involves an intuitive tradeoff between getting more rewards and avoiding idling. Second,

we note that traditional solution techniques are not directly applicable. Since customers may

leave in between services an interchange argument cannot beapplied. Since the abandonment

rates are unbounded we cannot apply uniformization – and thus cannot use the usual discrete-

time Markov decision process techniques. After formulating the problem as acontinuous-time

Markov decision process(CTMDP), we use sample path arguments in the reward case and a

savvy use of truncation in the holding cost case to yield the results. As far as we know, this

is the first time that either have been used in conjunction with the CTMDP to show structure

in a queueing control problem. The insights made in each model are supported by a detailed

numerical study.



1 Introduction

In many service systems, a server (or servers) is faced with the task of serving impatient cus-

tomers. While one may attempt to implement methods to decrease levels of impatience, at

the end of the day a fundamental decision that must be made at any point in time is: given a

particular cost/reward structure and any information about the impatience of customers, where

should the server direct its effort? In this paper, we provide models that are seemingly simple

extensions of classic scheduling problems to include customer impatience. Our results suggest

that the server may need to weigh the relative costs/benefitsof avoiding idleness (by letting too

many customers abandon) against short term revenue maximization/cost minimization con-

cerns. The models that we consider consist of independent, Poisson arrival streams for each

class of customer. There is a single server to serve both classes. Service times are exponen-

tially distributed with rates that are independent of the customer’s class. To this basic setup

we add that all customers may abandon after an exponentiallydistributed period of time, with

the abandonment rates allowed to be class dependent. Our goal is to provide an optimal server

assignment policy, which we do under two settings:

1. For each customer successfully completed, a class-dependent reward is received.

2. Each queue has (linear) holding costs and there is a class-dependent penalty for each

customer that abandons.

In each case we consider the problem of maximizing expected discounted or average rewards

or minimizing expected discounted or average costs over an infinite horizon.

It is well-known that for the second case above, if there are no abandonments, then the

c-µ rule is optimal (see [7]). In this paper, we show that this is not always true when aban-

donments are considered. In fact, there is a tension betweenlosing future workload through

abandonments (and thus creating excessive idling) and myopically reducing costs (through the

c-µ rule). For appropriate combinations of parameters, there is no tension between these two

factors, in which casean appropriately modified version ofa c-µ rule is optimal. We identify

such combinations. Note that such a tension cannot be captured in other approaches to server

control. One can think of the problems of server assignment as generally being handled by

examining three different regimes.

1. Overloaded regime. Here, a fluid model approach is applicable. For our model, the

work of Atar et al. [6] shows that a form ofc-µ rule is indeed optimal. In a system

with many customer classes and a single server, a simple rulethat prioritizes the class

with the largest value of the product of the holding cost and service rate divided by the

abandonment rate, is shown to be asymptotically optimal in minimizing the long-run
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average holding cost. In this case, there is always work for the server to do, so there is

no need to limit server idleness.

2. Critically loaded regime. A diffusion model approach is applicable.References for such

an approach are Ghamami and Ward [10], Harrison and Zeevi [13], and Tezcan and

Dai [21]. All of these formulate the solution to a diffusion controlproblem which yield

priority policies under conditions similar to those developed in our approach.

3. Underloaded regime. This is the regime of our analysis. Itis not clear thatany asymp-

totic approach is appropriate. As mentioned above, analyzing this model brings in the

issue of server idleness and the resulting tension with costreduction. Our work is the

first that we are aware of on systems with abandonments in thisregime.

A combination of the insights developed by these three different approaches should provide a

clear(er) view on how to control a server faced with abandoning customers.

In addition to the above references, there are a few other related works. To put into context

the issue of abandonments in call centre models, the reader should consult the comprehensive

surveys of Aksin et al. [1] and Gans et al. [8]. Related work includes that of Argon et al. [2],

who show that for a clearing system with abandonments, the policy that minimizes the num-

ber of abandonments is that which serves jobs with the shortest lifetime and shortest service

time (assuming they can be ordered this way). The performance of strict priority policies is

studied in Iravani and Balcıog̃lu [14], but no optimality results are obtained. In [22, 23], Ward

and Glynn study single class systems with abandonments. They show that under appropriate

distributional assumptions, G/G/1 queues with balking and/or reneging can be approximated

(i.e. there is appropriate convergence in heavy traffic) with a regulated Ornstein-Uhlenbeck

process. While in our work the only possibilities after arrival are that a customer is either

served or abandons, there is a line of work that attempts to compensate for potential abandon-

ments in other manners. In [15], Koçag̃a and Ward study an admission control problem for a

multi-server queue with a single class of customers who may abandon. In Armony et al. [5],

customers are provided with delay estimates to influence their behaviour, while in Armony and

Maglaras [3, 4], a call-back option is proposed to allow potential abandonments to be contacted

at a future point in time (when presumably servers are less busy). Note that their approaches

and ours can be seen to be complementary.

The methodology that we use is that of Markov Decision Processes. We see our work as

having two significant contributions in this area.

1. Due to the abandoning customers,uniformization(cf. [16]) is not possible (transition

rates are unbounded). Thus we do our analysis in continuous time to allow us to deal with
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the unbounded rates (cf. [12]). In addition to showing how one can handle unbounded

rates, we see novelty in using a continuous time framework toshow structural results.

2. In the course of our analysis, we truncate a multidimensional state space and let the

truncation level go to infinity. Not only is this limiting approach of interest, we show

that if truncation is done in a smart manner, analysis is greatly simplified (or goes from

intractable to tractable). For related work on this, see [9].

In addition to our analytic results, we supplement our work with several numerical studies

that show that the price of not taking into account abandonment rates can be significant. These

studies also suggest relative ranges of parameters (in particular abandonment rates and either

rewards or costs, according to the model), for which lookingbeyond ac-µ rule can lead to

significant improvements.

The rest of the paper is organized as follows: a complete description of the queueing dy-

namics, optimality criterion and a proof that we can restrict attention to non-idling policies are

shown in Section2. The optimal control in both the reward and holding cost models is covered

in Section3. A detailed numerical study is provided in Section4 while conclusions and some

suggestions for future work are contained in Section5.

2 Model and Preliminaries

In this section, we define the queueing dynamics, then discuss two criteria that we use for

design - the first is one in which a fixed (type-dependent) reward is received for each customer

successfully completed; we term this thereward model. The second considers a combination

of holding costs and penalties for each customer that abandons – called theholding cost model.

In each case, we show that it is sufficient to restrict attention to non-idling policies. Finally, we

give the optimality equations for both criteria and show that a solution exists in each case.

2.1 Queueing Dynamics and Optimality Criteria

Suppose two stations are served by a single server. Customerarrivals to stations 1 and 2 occur

according to independent Poisson processes with ratesλ1 andλ2, respectively.We will also

refer to arrivals to stationi as classi customers.Customer service requirements are probabilis-

tically the same in the sense that they are exponential with rate 1. Customers at station 1 (2)

have limited patience and are only willing to wait an exponentially distributed amount of time

with rateβ1 > 0 (β2 > 0). That is to say that the abandonment rate in station 1 isiβ1 when

there arei customers there.Service is preemptive and customers in service may abandon.A
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priori (since the transition rates are unbounded) we are notassured that each Markov policy,

sayπ, yields a regular Markov process. For more information along these lines, please see [11]

or the comments on p. 187 in [12]. Regularityis guaranteed by showing that for the current

models AssumptionA of the Appendix holds.

Suppose the state space isX = {(i, j) : i, j ∈ Z
+}, wherei (j) represents the current

number of customers at station 1 (2). LetN(t) be a counting process that counts the number

of decision epochs by timet andσn represent the time of thenth epoch. We seek a policy

that describes where to place the server based on the currentstate and potentially the history

of states and actions taken; a non-anticipating policy. Thefinite horizon, discounted expected

reward or cost (depending on the model) for a non-anticipating policyπ is

vπα,t(i, j) = E
π
(i,j)

N(t)
∑

n=0

e−ασnk(Xn, an) +

∫ t

0

[

e−αs
E
π
(i,j)[h1Q1(s) + h2Q2(s)]

]

ds,

whereQm(s) is the number of customers at stationm, m = 1, 2 andXn andan represent the

state of the system and the type of event seen at the time of thenth decision, respectively. The

functionk(·, ·) denotes the fixed reward or cost depending on which model is under considera-

tion. That is to say that in the rewards modelh1 = h2 = 0 and ifσn represents a service comple-

tion at statioǹ , thenk(Xn, an) = R`. In the holding cost model ifσn represents an abandon-

ment from statioǹ , thenk(Xn, an) = P` (it is zero otherwise). Forα > 0 the infinite horizon

discounted expected cost under policyπ is vπα(i, j) := limt→∞ vπα,t(i, j). The long-run average

reward (cost) rate isρπ(i, j) := lim inf t→∞
vπ
0,t(i,j)

t
(lim supt→∞

vπ
0,t(i,j)

t
). Under either optimal-

ity criterion in the rewards model we seek a policyπ∗ such thatwπ∗

(i, j) = supπ∈Π wπ(i, j)

whereΠ is the set of all non-anticipating policies andw = vα or ρ. There is the obvious

analogue in the holding cost model.

We end this section with the following preliminary result. It states the intuitive observation

that it is better to have more customers in the system in the reward model and less in the system

in the holding cost model. The proof is simple and is omitted for brevity.

Proposition 2.1 Let y = vα or vα,t (with α ≥ 0 or α > 0) depending on the optimality

criterion. For either the reward or holding cost model, the following inequalities hold.

1. y(i, j + 1) ≥ y(i, j)

2. y(i+ 1, j) ≥ y(i, j),

where in the finite horizon case the result holds for allt ≥ 0.
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2.2 Optimality of Non-idling Policies

In this section we show that it suffices to consider only non-idling policies.

Proposition 2.2 In either the reward or holding cost model, and under the finite horizon dis-

counted cost criterion for any fixed and finitet ≥ 0 andα ≥ 0 there exists an optimal policy

that does not idle except when the system is empty.

Proof. We show the result for the reward model by showing how one can construct a non-

idling policy that dominates one that idles. This is done viaa sample path argument. The

holding cost model is analogous (and is in fact simpler). Suppose we start two processes on

the same probability space, each starting in state(i, j) with i ≥ 1. Suppose Process 1 uses a

policy φ that initially idles the server. Process 2 uses a policyφ̃ that has the server working at

station 1. If no events occur before the end of the horizon, there is no difference in the rewards.

Similarly, if Process 1 begins to work again before Process 2has a service completion assume

both processes use the same policy thereafter and there is nodifference in the expected reward

stream.

Suppose now that Process 2 completes a service before the time horizon ends (at time,

say,x) and before Process 1 begins working again. The difference in the total rewards is

vφα,t−x(i
′, j′)−R1− vφ̃α,t−x(i

′−1, j′) for some state(i′, j′). Note that this leaves Process 1 with

one more customer that may abandon from station 1 than Process 2. From this point oñφ uses

exactly the same allocation decision asφ until one of three events occurs; the end of the horizon,

an extra abandonment in Process 1 (not seen by Process 2), or Process 2 empties station 1 and

φ calls for Process 1 to work there. If either of the first two events occur, the remaining

difference in rewards is zero and Process 2 has received a higher reward than Process 1. That

is, φ cannot be optimal. If the third event occurs,φ̃ idles the server until the two processes

couple (by abandonment or service completion) orφ moves the server to station 2. If there

is an extra service seen by Process 1, it receives an extra reward (R1) and the total rewards

coincide (modulo the discounting). Since in each case, the rewards under̃φ are higher than

that underφ, the result follows.

Since Proposition2.2 holds for anyt, the fact that we can restrict attention to non-idling

policies under any of the criteria holds trivially. In the remainder of the paper, we consider

only this class of policies.

Remark 2.3 It should be noted that Proposition2.2 presupposes the existence of an optimal

policy for the finite horizon problem. It is a simple task to show that this is the case (for any

fixedt) by applying the results of Theorem 3.1 of [18] with w as defined in Lemma6.1below.
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In the interest of brevity, we have omitted the details for the finite horizon case. The infinite

horizon cases are included in the appendix.

2.3 The Optimality Equations

Let d(i, j) := λ1 + λ2 + µ1{(i,j)6=(0,0)} + iβ1 + jβ2. The rate at which transitions occur when

the system is in state(i, j) and the server is working on a customer isd(i, j). Sinced(i, j) is

unbounded in the state space, the decision problem defined byeither the rewards or holding

cost models is notuniformizable. In short, this implies that there is not the typical discrete-time

equivalent to the continuous-time problem posed. For a real-valued functionf onX define the

following mappings

Rf(i, j) = λ1f(i+ 1, j) + λ2f(i, j + 1) + iβ1f(i− 1, j) + jβ2f(i, j − 1)

+



























µmax{R1 + f(i− 1, j), R2 + f(i, j − 1)} i, j ≥ 1,

µ[R1 + f(i− 1, j)] i ≥ 1, j = 0,

µ[R2 + f(i, j − 1)] j ≥ 1, i = 0,

0 (i, j) = (0, 0).

and

Hf(i, j) = i(h1 + β1P1) + j(h2 + β2P2) + λ1f(i+ 1, j) + λ2f(i, j + 1) + iβ1f(i− 1, j)

+ jβ2f(i, j − 1) +



























µmin{f(i− 1, j), f(i, j − 1)} i, j ≥ 1,

µf(i− 1, j) i ≥ 1, j = 0,

µf(i, j − 1) j ≥ 1, i = 0,

0 (i, j) = (0, 0).

In each case, theα−discounted reward (resp. cost) optimality equations are defined as(α +

d(i, j))uα(i, j) = Ouα(i, j), whereO = R (resp.H). We refer to these equations as the DROE

or the DCOE depending on the problem under consideration. Similarly, the average reward or

cost optimality equations (AROE or ACOE) are defined byd(i, j)u(i, j)+g = Ou(i, j), where

O = R (resp.H). The functionu(i, j) is called arelative value functionandg is the optimal

average cost. The next two results state that in each problemand under each criterion the

optimality equations have a solution. The proofs can be found in the Appendix.

Theorem 2.4 Supposeα > max{β1, β2} and letO represent the mappingR or H depending

on the reward or holding cost model. The following hold,
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1. There exists deterministic policies{fn, n ≥ 0} obtaining the maximum/minimum in(α+

d(i, j))un+1,α := Oun,α (whereu0,α = 0).

2. The functionu∗
α := limn→∞ un,α is a solution of the discounted reward/cost optimality

equations andu∗
α = vα.

3. There exist deterministic stationary policiesf ∗
α attaining the maximum/minimum in the

discounted reward/cost optimality equations.

Theorem 2.5 LetO represent the mappingR or H depending on the reward or holding cost

model. The following hold,

1. There exists a solution(g∗, u) of the average reward/cost optimality equations. Moreover,

g∗ is equal to the optimal expected average reward,ρ∗, andu is unique up to additive

constants. That isg∗ = ρ∗(x) for all x ∈ X.

2. A deterministic stationary policy is average reward/cost optimal if and only if it achieves

the maximum/minimum in the average reward/cost optimalityequations.

The results of Theorems2.4 and 2.5 imply, for example, that in the discounted reward

model it is optimal to serve at station 1 ifR1 −R2 + uα(i− 1, j)− uα(i, j − 1) ≥ 0, while in

the holding cost model it is optimal to serve station 1 whenuα(i− 1, j) ≤ uα(i, j − 1). There

is the obvious analogue in the average case. Just as in the discrete-time case, a solution to the

average reward/cost optimality equations (g, u) is such thatg is the optimal average reward/cost

andu is called arelative value function. The differenceu(x)− u(y) represents the difference

in total reward earned by an optimal policy that starts in statesx andy, respectively. In the next

several sections we discuss when it is optimal to prioritizeclass 1 or 2 whenever possible.

3 Optimal Control

As mentioned in the previous section, the optimality equations (discounted or average rewards

or costs) can be used to obtain the structure of an optimal policy by comparing the values (or

relative values) when the system starts in different states. In problems that are uniformizable

(whered(i, j) can be replaced with a constant), the usual method for doing this comparison

is to compare these values term by term. Then using inductionthrough the recursion(α +

d(i, j))un+1,α := Oun,α inequalities like those above are proved by taking limits. In the current

study, we would like to compare states(i − 1, j) to (i, j − 1). In general, sinced(i − 1, j) 6=

d(i, j − 1) the induction is much more difficult (and not doable by these authors); except of
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course in the case thatd(i− 1, j) = d(i, j − 1) for all i, j ≥ 1; that is whenβ1 = β2. This case

is considered in the following proposition for a general (non-negative) cost rate function.

Proposition 3.1 Supposeβ = β1 = β2 and letc((i, j), k) denote the cost rate in state(i, j)

when serving in stationk = 1, 2. Assumec(·, a) is such that AssumptionsA, B, C and Lemma

6.2 (in the Appendix) hold (so that the results of Theorems2.4and2.5hold). If the following

hold

1. c((i− 1, j), 1) ≤ c((i, j − 1), k) for i, j ≥ 1, andk = 1, 2, and

2. c((0, j), 2) ≤ c((1, j − 1), 1).

then

1. c((i− 1, j), 1) + µuα(i− 1, j) ≤ c((i, j − 1), 2) + µuα(i, j − 1) for all i, j ≥ 1, and

2. under either the infinite horizon discounted cost or average cost criteria, it is optimal to

serve at station 1 except to avoid unforced idling.

Proof. We showun,α(i−1, j) ≤ un,α(i, j−1) for all i, j ≥ 1 andn ≥ 0. This combined with

the assumption thatc((i−1, j), 1) ≤ c((i, j−1), 2) yields the results upon taking limits. Clearly

this inequality holds forn = 0. Assume it holds forn (which implies it is optimal to serve at

station 1 at epochn+1). Considern+1. The optimality equations(α+d(i, j))un+1,α := Hun,α

take the form (fori ≥ 2 andj ≥ 1)

(α + d(i− 1, j))un+1,α(i− 1, j) = λ1un,α(i, j) + λ2un,α(i− 1, j + 1) + (i− 1)βun,α(i− 2, j)

+ jβun,α(i− 1, j − 1) + c((i− 1, j), 1) + µun,α(i− 2, j)

while for i, j ≥ 1,

(α + d(i, j − 1)un+1,α(i, j − 1) = λ1un,α(i+ 1, j − 1) + λ2un,α(i, j) + iβun,α(i− 1, j − 1)

+ (j − 1)βun,α(i, j − 2) + c((i, j − 1), 1) + µun,α(i− 1, j − 1).

Sinced(i − 1, j) = d(i, j − 1), taking differences and combining like coefficients yieldsthe

first statement (withun,α replacinguα) via the inductive hypothesis except possibly when con-

sidering terms associated with abandonments. Consider only those terms and note

(i− 1)βun,α(i− 2, j) + jβun,α(i− 1, j − 1)− [iβun,α(i− 1, j − 1) + (j − 1)βun,α(i, j − 2)]

= (i− 1)β[un,α(i− 2, j)− un,α(i− 1, j − 1)] + (j − 1)β[un,α(i− 1, j − 1)− un,α(i, j − 2)]

≤ 0,
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where the inequality holds by applying the inductive hypothesis twice. Now supposei = 1 and

j ≥ 1. The non-idling assumption yields

(α + d(i− 1, j))un+1,α(i− 1, j) = λ1un,α(i, j) + λ2un,α(i− 1, j + 1)

+ jβun,α(i− 1, j − 1) + c((i− 1, j), 2) + µun,α(i− 1, j − 1).

The expressions with coefficientµ cancel and the induction hypothesis holds for those related

to arrivals. The last assumption on the cost function yieldsthe result except possibly with

respect to the expressions related to abandonments. However,

jβun,α(i− 1, j − 1)− [βun,α(i− 1, j − 1) + (j − 1)βun,α(i, j − 2)]

= (j − 1)β[un,α(i− 1, j − 1) + un,α(i, j − 2)]

≤ 0,

where again the inequality holds by the inductive hypothesis. In each case the assumptions on

the cost function yieldc((i−1, j), 1)+µun,α(i−1, j) ≤ c((i, j−1), 2)+µun,α(i, j−1) for all n

and alli, j ≥ 1. Taking limits asn → ∞ yields the first result. The second result now holds for

the discounted cost case by applying the DCOE. Following theproof of Theorem 4.1 of [12],

there exists a subsequence{α(n), n ≥ 0} such thatuα(n)(i, j)−uα(n)(0, 0) → u(i, j), whereu

satisfies the average cost optimality equations. That is to say that there exists an optimal policy

that prioritizes station 1 under either optimality criterion as desired.

A few notes should be made about the hypotheses of Proposition 3.1. First, in the holding

cost model presented, the conditions on the rate functions in Proposition3.1 translate to pre-

cisely what would be expected. That isc((i− 1, j), 1) = (i− 1)(h1 + βP1) + j(h2 + βP2) ≤

c((i, j − 1), k) = i(h1 + βP1) + (j − 1)(h2 + βP2) holds if h1 + βP1 ≥ h2 + βP2. On

the other hand, in the rewards model the inequalityR1 ≥ R2 is implied byc((i − 1, j), 1) =

−µR1 ≤ c((i, j − 1), 2) = −µR2 for i ≥ 2 (rememberc is for costs), but the inequality is

c((0, j), 2) = −µR2 ≤ c((1, j − 1), 1) = −µR1 would meanR2 ≥ R1. In short, the results

only hold for the case withR1 = R2. TheR1 > R2 case is covered in what follows, as is the

more general holding cost model (without the assumption that β1 = β2). Finally, we note that

symmetric results hold that yield station 2 should be prioritized. We believe not only are the

next set of results of interest, but also the methodologies may be of use for a wide range of

related problems.

3.1 The Rewards Model

In this section we provide conditions under which apriority rule holds in the reward model.

Originally, one might conjecture thatR1 ≥ R2 is sufficient to guarantee the optimality of a
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rule that prioritizes station 1. The following (counter-)example shows that this is not always

the case.

Example 3.2 Suppose we have the following model inputs:λ1 = .1;λ2 = .1;µ = 1; β1 =

.1; β2 = 3;R1 = 2.0;R2 = 1.0;. With these inputs, the average reward of a policy that serves

at station 1 (except to avoid idling) isρ1 = 0.002809 while the optimal policy has average

rewardρ∗ = 0.003185; a 13.4% increase.

Figure 1: Graphical depiction of the optimal policy for Example3.2.

Figure1 depicts the optimal policy for this example. Not only is it not strictly a priority policy,

but since it is non-idling, it is also non-monotone in the number of customers in station 1.

The following provides conditions under which it is optimalto always serve at one station

or the other (except to avoid unforced idling) and is the mainresult of the section.

Theorem 3.3 Supposeβ1 ≥ β2 andR1 ≥ R2. ThenR1−R2+u(i−1, j)−u(i, j−1) ≥ 0 for

all i, j ≥ 1 and an optimal policy exists that always serves at station 1,except to avoid unforced

idling. By symmetry, ifβ2 ≥ β1 andR2 ≥ R1. ThenR1 − R2 + u(i− 1, j)− u(i, j − 1) ≤ 0

for all i, j ≥ 1 and an optimal policy exists that always serves at station 2,except to avoid

unforced idling.

The proof of Theorem3.3 is delayed until we have proved the next proposition. Beforepro-

ceeding however, consider again Example1. Note that in the case thatR1 ≥ R2 andβ2 > β1

the decision-maker has two competing objectives. First, there is a desire to maximize rewards

– so station 1 should be prioritized. On the other hand, ifβ2 is too high all of the station 2 cus-

tomers may abandon while the server is clearing station 1;resulting in future server idleness
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and corresponding lost rewards. So a balance must be struck between maximizing rewards and

avoiding idleness. Both are achieved by serving at station 1whenβ1 ≥ β2.

Proposition 3.4 The following hold for any fixedt:

1. Supposeβ1 ≥ β2 andR1 ≥ R2. ThenR1 − R2 + uα,t(i− 1, j)− uα,t(i, j − 1) ≥ 0 for

all i, j ≥ 1.

2. Supposeβ2 ≥ β1 andR2 ≥ R1. ThenR1 − R2 + uα,t(i− 1, j)− uα,t(i, j − 1) ≤ 0 for

all i, j ≥ 1.

Proof. To prove the first result, fixt and consideruα,t(i − 1, j)− uα,t(i, j − 1). Define two

processes on the same probability space. Process 1 starts instate(i − 1, j) and serves in the

same station as process 2, whenever possible. Process 2 starts in state(i, j − 1) and uses an

optimal policy. Since both processes are defined on the same space, we assume that they see

the same arrivals and potential services. If an arrival is the first event at timet0 say, the relative

position of the two processes remains the same, they each enter new states. There are now

t− t0 time units remaining. We relabel the new states as the initial states and continue with the

same argument that follows.

As for the abandonments, assume we generate the firsti − 1 and the firstj − 1 customers

in each queue so that both processes see the same abandonments. If any of these events occur

first, again, the relative positions of each process remain the same and we continue as before.

For the remaining customer (an extra at station 1 in process 2and an extra at station 2 in process

1) we generate a single exponential with rateβ1. If this event occurs first, then both processes

see an extra abandonment with probabilityβ2

β1

. This implies the difference in the remaining

rewards isuα,t−t0(i− 1, j − 1)− uα,t−t0(i− 1, j − 1) = 0. With probability β1−β2

β1

it generates

an abandonment in station 1 for process 2 (not seen by process1). The remaining rewards are

uα,t−t0(i − 1, j) − uα,t−t0(i − 1, j − 1) ≥ 0, where the inequality is due to the first result of

Proposition2.1. The assumption thatR1 ≥ R2 yields the first inequality in this case.

Consider now the services. Recall that process 2 uses the optimal policy. Assume that

process 1 serves in the same station as process 2, whenever possible. Since each service can

be constructed so that both processes see the same service times, the relative position of each

process remains the same except in the case ofi − 1 = 0 and process 2 serves at station 1.

Suppose that this is the case. At this time the potentially sub-optimal policy for process 1

serves at station 2. If the service is the next event, the instantaneous rewards are different and

thedifference in theremaining rewardsis

e−α(t−t0)(R2 −R1) + uα,t−t0(0, j − 1)− uα,t−t0(0, j − 1) = e−α(t−t0)(R2 −R1).

11



AddingR1 −R2 yields(R1 − R2)(1− e−α(t−t0)) ≥ 0 as desired.

Consider againuα,t(i − 1, j)− uα,t(i, j − 1) for generici, j ≥ 1. Let p be the probability

that the processes enter states(0, j′) and(1, j′ − 1) for somej′. The previous arguments imply

uα,t(i − 1, j) − uα,t(i, j − 1) ≥ p(R2 − R1) ≥ R2 − R1, where the inequality follows since

R1 ≥ R2. The result is proven. The remaining result holds by symmetry.

Sincet was arbitrary, by taking limits ast → ∞ Theorem3.3is immediate.

One might note that the proof of Proposition3.4relies on two important facts. First that no

reward or costs are accrued between events and second that the instantaneous rewards or costs

are not state dependent. Neither of these hold for the holding cost model which is considered

in the next section.

3.2 Holding Costs

As an alternative to the methods of the previous section, theclassic “c − µ” result was shown

using aninterchangeargument (cf. Varaiya and Buyokkoc [7] or Nain [17]). In essence, an

index for each station is created (the holding cost times theservice rate). The station with

the highest index receives the highest priority. The argument is that any policy that violates

this priority rule can be improved by rearranging the order in which customers are served in

accordance with the index. Two processes are defined on the same space that use the various

policies. Since all customers that arrive to a particular station will be served and served in

the order in which they arrived, the two processes can be madeto couple. The process that

follows the index rule drains cost earlier and therefore minimizes the total cost. The difficulty

in the current study is in the assumption that the two processes can be made to couple. Indeed,

some customers may abandon awaiting service in one process while they have their service

completed in the other. If this happens there is no way to guarantee the processes will couple.

In what follows, we discuss the holding cost model and what can be done to alleviate this

difficulty. The main results of this section are captured in the following theorem. Its proof is

divided into several steps.

Theorem 3.5 Suppose the following hold.

1. h1 + β1P1 ≥ (≤) h2 + β2P2

2. β2 ≥ (≤) β1.

Then under either the infinite horizon discounted cost or average cost criteria there exists an

optimal policy that prioritizes station 1 (2) except to avoid unforced idling.

12



Our original intuition was thath1 + β1P1 ≥ h2 + β2P2 should be sufficient to prioritize station

1. After all, this would be in line with classic results. The next example addresses the question

of necessity and sufficiency of the added inequalityβ2 ≥ β1.

Example 3.6 Supposeλ1 = 2;λ2 = 2.5;µ = 3; β1 = .9; β2 = 1; h1 = 1.5; h2 = 1;P1 =

1;P2 = .5.

Note thath1 + β1P1 = 2.4 ≥ 1.5 = h2 + β2P2. The optimal policy (computed viaMatlab) is

to work at station 1 unless there are no customers at station 1. This same policy is optimal if

we letβ1 = 1.1 > β2. That is, the hypotheses of Theorem3.5are sufficient, but not necessary.

If we let β1 = 2, thenh1 + β1P1 = 3.5 ≥ 1.5 = h2 + β2P2. However, the optimal policy is to

serve at station 2; following our intuition could lead to using a priority rule that is exactly the

opposite of what is optimal!

As has been alluded to the classic methods of a sample path argument or interchange argu-

ment cannot be applied directly. We have also mentioned thatthe problem is not uniformizable

so that there is not a discrete-time equivalent Markov decision process. One might suggest

that we could truncate the state space, making it uniformizable, prove the results on the trun-

cated space and take limits as the truncation level approaches infinity. This approach is also

suggested by the AssumptionA in the Appendix. The next example shows that care must be

taken when choosing the truncation. Suppose each queue is truncated when they reachL = 20;

excess customers are lost.

Example 3.7 Letλ1 = 2;λ2 = 2.5; h1 = 1.01, h2 = 1.0;µ1 = µ2 = 4.6; β1 = β2 = 0.

Note that Example3.7does not include abandonments. The optimal policy for the example is

depicted in Figure2. Close to the boundary, it may not be optimal to prioritize station 1 in spite

of the fact thath1 ≥ h2. In the original untruncated model each customer that arrives to station

k increases the cost per unit time byhk, k = 1, 2. In the truncated system, when the number

of customers in station 1 is 20 a customer arriving to station1 does not increase the cost, while

a station 2 arrival (as long as station 2 has less than 20 customers) increases the cost byh2; it

may be advantageous to keep station 1 full.

To this end, we consider the followingequivalentformulation. Suppose the state space is

Y = {(I, i) : 0 ≤ i ≤ I < ∞}, whereI represents the current number of customers in the

system andi is the number at station 1. Replacingj with (I − i) we note thatd(i, I − i) =

m(I, i) := λ1 + λ2 + µ + iβ1 + (I − i)β2. The DCOE are now (there is also the obvious
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Figure 2: Graphical depiction of the optimal policy for Example3.7.

analogue for the ACOE)

(α+m(I, i))uα(I, i) = i(h1 + β1P1) + (I − i)(h2 + β2P2) + λ1uα(I + 1, i+ 1)

+ λ2uα(I + 1, i) + µmin{uα(I − 1, i− 1), uα(I − 1, i)}

+ iβ1uα(I − 1, i− 1) + (I − i)β2uα(I − 1, i). (3.1)

3.2.1 Finite State Approximation

Recall that a uniformizable continuous-time MDP has anequivalentdiscrete-time formulation

where the optimal policies coincide, and the optimal valuesare within a multiplicative constant

of each other (see [16] or [20]). Suppose that the maximum number of customers allowed in

the system at any time isL, whereL is finite. Letβ = max{β1, β2}. Thus, the abandonment

rate from the system is bounded above byLβ. Since under these assumptions the Markov

decision process is uniformizable letΨL := λ1 + λ2 + µ + Lβ = 1, where the last equality is

without loss of generality. Since in this sectionL will be fixed, we suppress dependence onL.

For example, the uniformized discount factorδL = ΨL

α+ΨL
will simply be denotedδ.

It remains to describe what happens when a customer arrives to a station when there are

alreadyL total customers in the system. WhenI = L a customer arriving to station 2 is

lost forever. WhenI = L, i < L and a customer arrives to station 1 a customer isremoved

from station 2 (without penalty) and the arriving customer joins the queue at station 1. When

i = L any arriving customer is lost. That is, when an arrival occurs to station 1 in state(L, i),

the next state is(L, (i + 1) ∧ L). We have already discussed after Example3.7 the difficulty

in truncating the queue lengths at each station. The dynamics on the boundary alleviate that
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concern by making station 1 arrivals increase the cost whileactually decreasing the cost at

station 2. Since this is only a change on the boundary, when wetake limits (as the boundary

moves off to infinity) we still approach the original problem. The discrete-time optimality

criteria are defined for a fixed policyπ by

vπN,δ(x) := E
π
x

N−1
∑

n=0

[δnC(Xn, dn(Xn))], (3.2)

vπδ := lim
N→∞

vπN,δ(x), (3.3)

where{Xn, n ≥ 0} denotes the stochastic process representing the state at decision epochn.

The equations (3.2) and (3.3) define theN−stage expected discounted cost and the infinite

horizon expected discounted cost, respectively. Again, ineach case we define the optimal

valuesy(i, j) := infπ∈Π yπ(i, j), wherey = vN,δ or vδ depending on the optimality criterion.

The (discrete-time) finite horizon optimality equations for 1 ≤ i < I < L are (v0,δ = 0)

vn+1,δ(I, i) = i(h1 + β1P1) + (I − i)(h2 + β2P2) + δ
(

λ1vn,δ(I + 1, i+ 1) + λ2vn,δ(I + 1, i)

+ µmin{vn,δ(I − 1, i− 1), vn,δ(I − 1, i)}+ [Lβ − iβ1 − (I − i)β2]vn,δ(I, i)

+ iβ1vn,δ(I − 1, i− 1) + (I − i)β2vn,δ(I − 1, i)
)

. (3.4)

When1 ≤ i = I < L

vn+1,δ(I, I) = I(h1 + β1P1) + δ
(

λ1vn,δ(I + 1, I + 1) + λ2vn,δ(I + 1, I)

+ (µ+ Iβ1)vn,δ(I − 1, I − 1) + [Lβ − Iβ1]vn,δ(I, I)
)

.

For i = 0 andI < L,

vn+1,δ(I, 0) = I(h2 + β2P2) + δ
(

λ1vn,δ(I + 1, 1) + λ2vn,δ(I + 1, 0) + µvn,δ(I − 1, 0)

+ [Lβ − Iβ2]vn,δ(I, 0) + Iβ2vn,δ(I − 1, 0)
)

.

WhenI = L andi ≥ 1,

vn+1,δ(L, i) = i(h1 + β1P1) + (L− i)(h2 + β2P2) + δ
(

λ1vn,δ(L, (i+ 1) ∧ L) + λ2vn,δ(L, i)

+ µmin{vn,δ(L− 1, i− 1), vn,δ(L− 1, i)}+ [Lβ − iβ1 − (L− i)β2]vn,δ(L, i)

+ iβ1vn,δ(L− 1, i− 1) + (L− i)β2vn,δ(L− 1, i)
)

,

and fori = 0 andI = L,

vn+1,δ(L, 0) = L(h2 + β2P2) + δ
(

λ1vn,δ(L, 1) + λ2vn,δ(L, 0) + µvn,δ(L− 1, 0)

+ [Lβ − Lβ2]vn,δ(L, 0) + Lβ2vn,δ(L− 1, 0)
)

.
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Note that it is optimal to serve customers at station 1 in state (I, i) whenvn,δ(I − 1, i − 1) ≤

vn,δ(I − 1, i). The discrete-time discounted cost optimality equations are precisely the same

with vn+1,δ and vn,δ replaced withvδ. In each case it is well-known that the optimal val-

ues satisfy the optimality equations (cf. Chapter 6 of [19]). For fixed I, let ∆2vn,δ(I, i) =

vn,δ(I, i + 1) − vn,δ(I, i). Thus, in state(I + 1, i + 1) it is optimal to serve at station 1 if

∆2vn,δ(I, i) ≥ 0. ForI < L, let∆1vn,δ(I, i) = vn,δ(I + 1, i)− vn,δ(I, i).

Proposition 3.8 Suppose the following hold.

1. h1 + β1P1 ≥ (≤) h2 + β2P2

2. β2 ≥ (≤) β1.

Then

1. ∆1vn,δ(I, i) ≥ (≤) 0 for all i ≤ I < L andn ≥ 0.

2. ∆2vn,δ(I, i) ≥ (≤) 0 for all i ≤ I ≤ L and for alln ≥ 0.

3. The previous inequalities hold whenvn,δ is replaced byvδ.

Proof. We prove the result in the “≥” direction, the opposite direction holds by symmetry.

To ease notation, assume thatδ = 1, the case forδ < 1 is analogous. The fact that both

inequalities hold whenn = 0 is trivial. Assume that they hold forn and considern + 1. The

second inductive hypothesis implies that it is optimal to serve at station 1 at timen+ 1 except

to avoid idling. SupposeI = L− 1. If i = L− 1, then note that an arrival to station 1 in states

(L, L− 1) or (L− 1, L− 1) leads to the next state being(L, L). Similarly, an arrival to station

2 in either of those same states leads to(L, L− 1). Thus,

∆1vn+1,δ(L− 1, L− 1) = h2 + β2P2 + µ∆1vn,δ(L− 2, L− 2)

+ [Lβ − (L− 1)β1 − β2]∆1vn,δ(L− 1, L− 1)

+ (L− 1)β1∆1vn,δ(L− 2, L− 2).

The inductive hypothesis yields the result in each case. Similarly, if i = 0 (station 2 arrivals in

(L, 0) or (L− 1, 0) both lead to(L, 0)),

∆1vn+1,δ(L− 1, 0) = h2 + β2P2 + λ1∆1vn,δ(L, 1) + (µ+ (L− 1)β2)∆1vn,δ(L− 2, 0)

+ [Lβ − Lβ2]∆1vn,δ(L− 1, 0).
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For0 < i < L− 1,

∆1vn+1,δ(L− 1, i) = h2 + β2P2 + λ1∆1vn,δ(L− 1, i+ 1) + µ∆1vn,δ(L− 2, i− 1)

+ [Lβ − iβ1 − (L− i)β2]∆1vn,δ(L− 1, i)

+ iβ1∆1vn,δ(L− 2, i− 1) + (L− 1− i)β2∆1vn,δ(L− 2, i),

and the inductive hypothesis yields the result. Next, considerI < L− 1 andi = I. We have

∆1vn+1,δ(I, I) = h2 + β2P2 + λ1∆1vn,δ(I + 1, I + 1) + λ2∆1vn,δ(I + 1, I)

+ (µ+ Iβ1)∆1vn,δ(I − 1, I − 1) + [Lβ − Iβ1 − β2]∆1vn,δ(I, I).

The inductive hypotheses yield the result. Fori = 0,

∆1vn+1,δ(I, 0) = h2 + β2P2 + λ1∆1vn,δ(I + 1, 1) + λ2∆1vn,δ(I + 1, 0)

+ µ∆1vn,δ(I − 1, 0) + [Lβ − (I + 1)β2]∆1vn,δ(I, 0)

+ Iβ2∆1vn,δ(I − 1, 0).

Suppose0 < i < I,

∆1vn+1,δ(I, i) = h2 + β2P2 + λ1∆1vn,δ(I + 1, i+ 1) + λ2∆1vn,δ(I + 1, i)

+ µ∆1vn,δ(I − 1, i− 1) + [Lβ − iβ1 − (I + 1− i)β2]∆1vn,δ(I, i)

+ iβ1∆1vn,δ(I − 1, i− 1) + (I − i)β2∆1vn,δ(I − 1, i).

In each case the inductive hypothesis yields the result. ForI = 0 (so thati = 0) we have

∆1vn+1,δ(0, 0) = h2 + β2P2 + λ1∆1vn,δ(1, 1) + λ2∆1vn,δ(1, 0)

+ [Lβ − β2]∆1vn,δ(0, 0).

This completes the proof of the first inequality. To prove thesecond inequality consider first

I = L and0 < i < L. If i = L− 1,

∆2vn+1,δ(L, L− 1) = h1 + β1P1 − [h2 + β2P2] + λ1[vn,δ(L, L)− vn,δ(L, L)] + λ2[∆2vn,δ(L, L− 1)]

+ µ[∆2vn,δ(L− 1, L− 2)] + [Lβ − Lβ1]vn,δ(L, L)

− [Lβ − (L− 1)β1 − β2]vn,δ(L, L− 1) + Lβ1vn,δ(L− 1, L− 1)

− (L− 1)β1vn,δ(L− 1, L− 2)− β2vn,δ(L− 1, L− 1)

= h1 + β1P1 − [h2 + β2P2] + λ2[∆2vn,δ(L, L− 1)]

+ µ[∆2vn,δ(L− 1, L− 2)] + [Lβ − Lβ1]∆2vn,δ(L, L− 1)

+ (L− 1)β1∆2vn,δ(L− 1, L− 2) + (β2 − β1)∆1vn,δ(L− 1, L− 1).
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The second inductive hypothesis holds in each case involving vn,δ, save the last one, where the

first inductive hypothesis yields the result. Consider now the case wherei = 0. Then

∆2vn+1,δ(L, 0) = h1 + β1P1 − [h2 + β2P2] + λ1∆2vn,δ(L, 1) + λ2∆2vn,δ(L, 0)

+ [Lβ − β1 − (L− 1)β2]∆2vn,δ(L, 0)

+ (β2 − β1)∆1vn,δ(L− 1, 0) + (L− 1)β2∆2vn,δ(L− 1, 0).

The same argument as above yields the result. SupposeI = L and0 < i < L − 1. A little

algebra yields

∆2vn+1,δ(L, i) = h1 + β1P1 − [h2 + β2P2] + λ1∆2vn,δ(L, i+ 1) + λ2∆2vn,δ(L, i)

+ µ∆2vn,δ(L− 1, i− 1) + [Lβ − (i+ 1)β1 − (L− i− 1)β2]∆2vn,δ(L, i)

+ iβ1∆2vn,δ(L− 1, i− 1) + (L− i− 1)β2∆2vn,δ(L− 1, i)

+ (β2 − β1)∆1vn,δ(L− 1, i).

The same argument as in the previous cases holds. WhenI < L there are also several cases to

consider. However, fori = I − 1, note

∆2vn+1,δ(I, I − 1) = h1 + β1P1 − [h2 + β2P2] + λ1∆2vn,δ(I + 1, I) + λ2∆2vn,δ(I + 1, I − 1)

+ µ∆2vn,δ(I − 1, I − 2) + [Lβ − Iβ1]∆2vn,δ(I, I − 1)

+ (I − 1)β1∆2vn,δ(I − 1, I − 2) + (β2 − β1)∆1vn,δ(I − 1, I − 1).

The result follows. Fori = 0,

∆2vn+1,δ(I, 0) = h1 + β1P1 − [h2 + β2P2] + λ1∆2vn,δ(I + 1, 1) + λ2∆2vn,δ(I + 1, 0)

+ [Lβ − β1 − (I − 1)β2]∆2vn,δ(I, 0) + (β2 − β1)∆1vn,δ(I, 0)

+ (I − 1)∆2β2vn,δ(I − 1, 0).

Suppose0 < i < I − 1,

∆2vn+1,δ(I, i) = h1 + β1P1 − [h2 + β2P2] + λ1∆2vn,δ(I + 1, i+ 1) + λ2∆2vn,δ(I + 1, i)

+ µ∆2vn,δ(I − 1, i− 1) + [Lβ − (i+ 1)β1 − (I − i− 1)β2]∆2vn,δ(I, i)

+ (β2 − β1)∆1vn,δ(I, i− 1) + iβ1∆2vn,δ(I − 1, i− 1)

+ (I − i− 1)β2∆2vn,δ(I − 1, i),

which is non-negative as desired. The third result follows by noting thatvn,δ → vδ.
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3.2.2 Convergence to the Countable State Model

In this section we show that the infinite horizon discounted cost value function for the truncated

system,vα,L, converges to that in the original system. We have dispensedwith the assumptions

that δL = ΨL = 1 and added back in the dependence onL. Note thatvα,L is the unique

(bounded) vector satisfying the discrete-time infinite horizon δL−discounted cost optimality

equations (for0 < i < I < L). So,

(α +ΨL)vα,L(I, i) = ih1 + (I − i)h2 + iβ1P1 + (I − i)β2P2

+ λ1vα,L(I + 1, i+ 1) + λ2vα,L(I + 1, i)

+ µmin{vα,L(I − 1, i− 1), vα,L(I − 1, i)}

+ [Lβ − iβ1 − (I − i)β2]vα,L(I, i) + iβ1vα,L(I − 1, i− 1)

+ (I − i)β2vα,L(I − 1, i), (3.5)

where the above expression can be obtained by replacingvn,δ in (3.4) with vα,L and using a

little algebra. For completeness, we assume thatvα,L(I, i) = 0 for I > L. The next result

shows that the limit ofvα,L exists.

Lemma 3.9 vα,L is (pointwise) monotone inL.

Proof. We need to provevα,L+1(I, i) ≥ vα,L(I, i) for all 0 ≤ i ≤ I and allL ≥ 0. First note

that for I ≥ L + 1 the result holds trivially (by assumption). To complete theproof, follow

the sample paths of two processes defined on the same probability space, and starting in the

same state whereI ≤ L. Supposeπ∗
L+1 is an optimal policy for the state space bounded by

L+ 1. LetπL be a policy that serves at exactly the same station asπ∗
L+1. Process 1 uses policy

π∗
L+1 and operates on the states such thatI ≤ L + 1. Process 2 uses policyπL and operates

on the states such thatI ≤ L. Now since both processes use the same policy whenI < L, as

long as the total number of customers is less thanL, they see the same arrivals, services and

abandonments and, therefore the same costs. Consider the first time the processes enter a state

with the number of customers equal toL, say(L, i′). If a service or abandonment is the next

event, both processes remain coupled until the next time they haveL customers in the system.

If a class 1 arrival occurs, andi′ 6= L, both processes see an increase in the number of class

1 customers. Process 1 is in state(L + 1, i′ + 1) while Process 2 is in state(L, i′ + 1). After

this time, Process 2 does not serve at station 2, until there is either an extra abandonment or an

extra service at station 2. In particular, if the optimal policy tells Process 1 to serve at station

1, so does Process 2. If it says to work at station 2, Process 2 idles until the service is complete

(or an extra abandonment occurs). Thus, since Process 1 accrues costs at a higher rate, and is
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always in a lower state (according to the cost function), we have

vα,L+1(I, i) ≥ vπL

α,L(I, i) ≥ vα,L(I, i).

Since the initial state was arbitrary, the result follows.

Lemma3.9 implies thatvα,L converges asL increases. Letvα,∞ denote this (possibly

infinite) limit. A little algebra in (3.5) yields forI < L

(α +m(I, i))vα,L(I, i) = ih1 + (I − i)h2 + iβ1P1 + (I − i)β2P2

+ λ1vα,L(I + 1, i+ 1) + λ2vα,L(I + 1, i)

+ µmin{vα,L(I − 1, i− 1), vα,L(I − 1, i)}

+ iβ1vα,L(I − 1, i− 1) + (I − i)β2vα,L(I − 1, i),

which for I < L is precisely the same as (3.1). Thus, asL → ∞, vα,L → vα,∞ = vα. This

leads to the proof of Theorem3.5.

Proof of Theorem 3.5: Since∆1vα,L ≥ 0 for all L the first inequality follows from the fact

vα,L → vα. Similarly, defineuα(I, i) = vα(I, i) − vα(0, 0). Sinceuα (andαvα) converges

along a subsequence to a solution of the CTDCOE (see the proofof Theorem 4.1 of [12]);

(ρ∗, u(I, i)) the inequality holds in the average case as well. The result follows.

4 Numerical Results

In this section, we discuss the improvements that may be possible when the abandonment rates

are such that the intuitive index policy (either give priority to the largestRi or to the largest

hi + βiPi) is not guaranteed to be optimal. In both the rewards and holding cost models, we

discern under what conditions one should be careful in the choice of policy, and also try to

show how much system performance may be impacted.

4.1 The Rewards Model

We provide results for a system withλ1 = 1 andλ2 = µ = 4. We initially setR1 = 10

andR2 = 5, to model a system where in the overall offered demand, thereis a small propor-

tion of high revenue customers. Giving priority to the high reward customers maximizes short

term rewards, and if the abandonment rates are ordered such that β1 ≥ β2, then according

to Theorem3.3, this policy is also optimal in the long-run. We are interested in seeing what
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happens whenβ2 > β1. In this case, one can think that there may be a trade-off between max-

imizing short term reward and minimizing the amount of offered demand that is lost through

abandonments.

We studied a truncated system with buffer size 20 for both classes. In all of the results that

follow, we useρ1 to denote the average reward for a policy that gives priorityto queue 1, while

ρ∗ is the average reward for the optimal policy.

First, we fixβ2 = 2.0 and observe the effect of varyingβ1. The results in Table1 demon-

strate that the improvement in using the optimal policy increases asβ1 decreases, as one would

expect. (In Tables1, 2 and3, the last column indicates the form of the optimal policy. P1

denotes priority to class 1, P2 denotes priority to class 2, and T1 gives priority to class 1 if the

number of class 1 customers is greater than a (state-dependent) threshold.)As β1 decreases,

it becomes advantageous to devote more effort to queue 2, to avoid excessive lost demand, as

customers are less likely to be lost from queue 1. Forβ1 small, the optimal policy actually

gives priority to queue 2. Atβ1 = 0.5, even thoughβ1 is still less thanβ2, giving priority to

queue 1 becomes optimal.

β1 ρ1 ρ∗ % from optimal Policy

0 0.353 0.394 10.4 P2

0.1 0.336 0.358 6.1 T1

0.2 0.320 0.332 3.6 T1

0.5 0.281 0.281 0 P1

1.0 0.233 0.233 0 P1

2.0 0.172 0.172 0 P1

Table 1: Rewards Model, varyingβ1

Equivalently, we would expect the trade-off described above to become more significant as

β2 grows andR2 approachesR1. Both of these expectations are confirmed in Tables2 and3.

Table2 hasβ1 fixed at 0.1 and variesβ2, while Table3 fixesβ1 = 0.1, β2 = 2.0, and variesR2

(hereR1 remains 10).

In summary, in general, oneshouldsee the the most improvement in using the optimal

policy over simply giving priority to queue 1 ifβ2 is large relative toβ1, andR2 is close to

R1. To get an idea of the order of the maximum possible improvement (at least in this system),

setβ1 = 0, β2 = 10, andR2 = 9.99. Here,ρ1 = 0.0832, while ρ∗ (the optimal policy gives

priority to queue 2) is equal to 0.0945, an improvement of 13.6 percent. In the next section, we

will see that the improvements may be even more dramatic in the holding cost model.
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β2 ρ1 ρ∗ % from optimal Policy

1.0 0.585 0.605 3.3 T1

2.0 0.336 0.358 6.1 T1

5.0 0.135 0.147 8.2 T1

10.0 0.632 0.678 6.8 T1

Table 2: Rewards Model, varyingβ2

R2 ρ1 ρ∗ % from optimal Policy

1 0.208 0.208 0 P1

2 0.240 0.242 0.8 T1

5 0.336 0.358 6.1 T1

9 0.464 0.516 10.1 T1

Table 3: Rewards Model, varyingR2

4.2 The Holding Costs Model

Here, we would like to again demonstrate the importance of taking abandonments into account,

beyond through the indexhi + βiPi. We begin with a system that is almost symmetric. Let

λ1 = λ2 = 2, µ = 4, h1 = 1, h2 = 0.99, andP1 = P2 = 1. Note the loss of a customer in either

queue is equally costly and the holding costs are close. Queue 1 will get priority according to

our index, and Theorem3.5 tells us that this policy is optimal ifβ2 ≥ β1. If this condition

is violated, then giving priority to queue 1 may yield poor performance. The intuition behind

this is that ifβ1 > β2, then the higher rate of abandonments at queue 1 may mean thatgiving

priority to queue 1 is simply too greedy.

To see this, we setβ2 = 0 and variedβ1, with the results in Table4. (In Tables4, 5

and6, the final column gives the form of the optimal policy. The priority policies are is in

the previous subsection, with the addition that DT denotes that the optimal policy is to give

priority to class 2 if either the total number of customers inthe system is above a threshold,

or the number of class 1 customers is below a threshold).Even withβ1 very small, there is a

dramatic improvement by using the optimal policy (which gives priority to queue 2). The effect

appears to be most prominent for moderate values ofβ1 (relative to the service rate). At higher

values ofβ1, the improvement becomes less significant. The last row,β1 = 100.0, suggests

that a customer arriving to queue 1 either is serviced immediately or abandons, so there is little

hope for the scheduling policy to have much impact.

As expected, this improvement is increasing withh2 (Table5 has results for varyingh2
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β1 ρ1 ρ∗ % increase Policy

0.1 9.09 5.28 72.2 P2

0.2 8.38 3.94 112.7 P2

0.5 6.72 2.69 149.8 P2

1.0 5.00 2.08 140.4 P2

2.0 3.40 1.66 104.8 P2

4.0 2.32 1.38 68.1 P2

10.0 1.56 1.17 33.3 P2

100.0 1.05 1.01 4.0 P2

Table 4: Holding Costs Model, varyingβ1

with β1 = 0.5 andβ2 = 0.) Finally, to see thatβ2 = 0 is not special, we fixβ1 = 0.5 and

vary β2 (Table6), and we see that the improvement, which is still significant, decreases with

increasingβ2 (as expected).

h2 ρ1 ρ∗ % increase Policy

0.9 6.17 2.60 137.3 P2

0.8 5.56 2.50 122.4 P2

0.7 4.95 2.40 106.3 P2

0.6 4.34 2.30 88.7 P2

0.5 3.73 2.20 69.5 P2

0.4 3.12 2.08 50.0 DT

0.3 2.50 1.92 30.2 DT

0.2 1.89 1.69 11.8 DT

0.1 1.28 1.28 0 P1

Table 5: Holding Costs Model, varyingh2

5 Conclusions/Future Work

In this paper we add abandonments to the classic (stochastic) scheduling model in a two-class

service system. We do so under the two most common cost/reward structures; maximize re-

wards per service or minimize holding costs per customer perunit time. In each case the opti-

mal scheduling rule that holds without abandonments, no longer holds in general. Conditions
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β2 ρ1 ρ∗ % increase Policy

0.1 3.69 2.49 48.2 P2

0.2 2.89 2.35 23.0 P2

0.3 2.49 2.24 11.2 P2

0.4 2.24 2.15 4.2 P2

Table 6: Holding Costs Model, varyingβ2

for this simple priority rule to hold are provided. We also point to the fact that adding abandon-

ments (in either case) causes several technical challenges. In particular, since the abandonment

rate is not bounded, uniformization is not possible and we must appeal to a continuous-time

formulation of a Markov decision process instead of the discrete-time equivalent. Initially, this

means the standard induction arguments cannot be applied. In the reward model, we use the

continuous-time optimality equations, and a sample path argument to show the result. How-

ever, even this method does not extend to the holding cost model. Only after a savvy use of

truncation can the result be shown. As far as we know, this is the first time the continuous-time

MDP formulation has been used to show structure in a queueingcontrol problem.

Our numerical results highlight the point that a decision-maker that ignores the abandon-

ments can significantly decrease the reward earned or increase the cost accrued. In the reward

model, the added condition on the abandonment rates has an intuitive explanation and leads

to a trade-off. The decision-maker needs to maximize rewards while minimizing the server

idleness. When the rates are ordered in the same way as the rewards, both considerations can

be handled simultaneously by prioritizing that class.

Characterizing the optimal policy in general (when our policies do not hold) is of clear

interest. We have attempted to prove structural results in this case (in particular monotonicity),

but to this point, such results have been elusive. Even if onecould not characterize the policy

over the entire parameter space, it would be of interest to provide a sharp condition under which

the modifiedc − µ rule is optimal. Our conjecture is that this sharp conditionwould not be a

simple expression.

There are several extensions that could be handled in futurework. Perhaps the most ob-

vious one is to consider more than 2 customer classes. The difficulty with multiple classes

(even 3) is that the MDP formulation becomes more difficult tohandle. For example, in the

rewards model with 3 classes, we conjecture that it is optimal to prioritize station 1 when

R1 = max{R1, R2, R3} andβ1 = max{β1, β2, β3}. To show this we would need to show that

R1−R2+uα(i−1, j, k)−uα(i, j−1, k) ≥ 0 andR1−R3+uα(i−1, j, k)−uα(i, j, k−1) ≥ 0.

A sample path argument might do it, but would be more tedious.In the holding cost case, we
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believe an analogous result holds, but since even the two-class case requires some adjustment

to the truncation, the multiple class case seems unlikely tobe a simple extension.

A second direction for examination is that of multiple servers. In the case of collaboration

(when several servers can be assigned to the same customer) it seems that the current analysis

holds. When servers cannot collaborate and there are but twoclasses, we believe the servers

should avoid idling when the system state is close to the boundary, but again, the current

insights hint toward what is optimal. The case of multiple servers and multiple customer classes

is beyond the scope of this study and is still open.

Finally, we would like to point out that there are several other minor extensions. We have

assumed that the service rates of each class are the same; that is, jobs assigned to the server in

question are somewhat similar. We have also assumed that customers that are in service can

abandon. This is akin to order cancelations or hang-ups after service has begun. It is our belief

that in each case each of these extensions make the problems far more tedious, but do not add

significantly to the insights provided here. We leave them for future research.
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6 Appendix

In this section we show that the optimality equations have a solution. Defineq(y|x, a) to be the

rate at which a process leaves statex and goes toy given that actiona is chosen. Recall for a

continuous time Markov chain,−q(x|x, a) is the rate at which a Markov process leaves state

x given that actiona is chosen. Denote the reward/cost rate in statex when using actiona by

c(x, a). Let q(x) := sup{−q(x|x, a) : a ∈ A(i)}. The following set of assumptions appear as

AssumptionsA, B andC in [12]. Note that we are not making these assumptions in our work,

rather we show that they all hold under our previously statedassumptions on the system.

Assumption A. There exists a sequence{Xm, m ≥ 1} of subsets ofX, a non-decreasing

functionw ≥ 1 onX, constants,b ≥ 0 andc 6= 0 such that

1. Xm ↑ X andsup{q(x) : x ∈ Xm} < ∞ for eachm ≥ 1;

2. inf{w(x) : x /∈ Xm} → ∞ asm → ∞; and

3.
∑

y∈X w(y)q(y|x, a) ≤ cw(x) + b.

Assumption B.

1. For every(x, a) ∈ {(y, a) : y ∈ X anda ∈ A(x)} and some constantM > 0,

|c(x, a)| ≤ Mw(x), whereA(x) is the set of available actions in statex andw comes

from AssumptionA.
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2. The discount factorα > 0 is such thatα > c, wherec is defined in AssumptionA(3).

Assumption C.

1. The action setA(x) is compact for eachx ∈ X.

2. The functionsc(x, a), q(y|x, a), and
∑

y∈X w(y)q(y|x, a) are all continuous ina ∈ A(x)

for each fixedx, y ∈ X.

3. There exists a non-negative functionw′ onX and constantsc′ > 0, b′ ≥ 0 andM ′ > 0

such that

(a) q(x)w(x) ≤ M ′w′(x) and

(b) for all (x, a)

∑

y∈X

w′(y)q(y|x, a) ≤ c′w′(x) + b′.

Lemma 6.1 Supposeα > min{β1, β2} and let

D :=







µmax{R1, R2} for the reward model,

max{h1 + β1P1, h2 + β2P2} for the holding cost model.

In either the reward or holding cost models, AssumptionsA, B andC are satisfied withXm =

{(i, j)|0 ≤ i, j ≤ m}, b = (λ1 + λ2)D + (min{β1, β2})(max{D, 1}), c = min{β1, β2} and

w(i, j) := (i+ j)D +max{D, 1}.

Proof. We prove the result in the holding cost model. The reward model is analogous. To
ease notation letβ := min{β1, β2}. Trivially, Xm ↑ Z

+×Z
+ asm ↑ ∞; AssumptionA(1)

holds. Note thatw(i, j) ≥ c((i, j), a). Of course the fact thatw(i, j) is lower-bounded by
2mD + 1 for (i, j) /∈ Xm implies AssumptionA(2) holds. Note fora = 1, 2 (where the server
will serve)

λ1w(i+ 1, j) + λ2w(i, j + 1) + µw(i− (2− a), j + (1− a)) + iβ1w(i− 1, j)

+ jβ2w(i, j − 1)− (λ1 + λ2 + µ+ iβ1 + jβ2)w(i, j)

= [λ1 + λ2 − µ− iβ1 − jβ2]D ≤ −βw(i, j) + b,

and AssumptionA(3) is satisfied as desired. AssumptionB(1) is satisfied trivially and Assump-

tion B(2) holds by assumption. Since the action set is finite, the compactness and continuity
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conditions of AssumptionsC(1) andC(2) are also trivial. It remains to consider Assumption

C(3). Let

q(i, j) := λ1 + λ2 + µ+ iβ1 + jβ2

≤ λ1 + λ2 + µ+ (i+ j)max{β1, β2}.

Define

w′(i, j) := ((i+ j)D +max{D, 1})[λ1 + λ2 + µ+ (i+ j)max{β1, β2}]

= ((i+ j)D +max{D, 1})[λ1 + λ2 + µ+ (i+ j)β],

whereβ is the maximal abandonment rate. We haveq(i, j)w(i, j) ≤ M ′w′(i, j) (M ′ = 1).
Moreover,

B(i, j) := λ1w
′(i+ 1, j) + λ2w

′(i, j + 1) + µw′(i− (2− a), j + 1− a) + iβ1w
′(i− 1, j)

+ jβ2w
′(i, j − 1)− (λ1 + λ2 + µ+ iβ1 + jβ2)w

′(i, j)

= (λ1 + λ2)
(

[λ1 + λ2 + µ+ 2(i+ j)β]D + βD + β(max{D, 1})
)

− [µ+ iβ1 + jβ2]
(

[λ1 + λ2 + µ+ 2(i + j)β]D + βD − β(max{D, 1})
)

.

Without loss of generality assume thatD ≥ 1 (otherwise the constantb′ becomes slightly more

complicated). A little algebra yields

B(i, j) ≤ (λ1 + λ2)
(

[λ1 + λ2 + µ+ 2(i+ j)β]D + 2βD
)

= (λ1 + λ2)
(

w′(i, j)− [λ1 + λ2 + µ+ (i+ j)β](i+ j)D + 2βD
)

+ (λ1 + λ2)[(i+ j)β]D

≤ (λ1 + λ2)
(

w′(i, j) + 2βD
)

.

Thus, AssumptionC(3) holds withc′ = λ1 + λ2 andb′ = (λ1 + λ2)2βD and the proof is

complete.

Proof of Theorem 2.4. Given Lemma6.1, the result is an immediate consequence of Theorem

3.2 of [12].

To prove Theorem2.5 we proceed in much the same as in the discounted cost case. The

following appears as AssumptionA∗ in [12].

Assumption A
∗. AssumptionsA(1) andA(2) hold and there exists a finite setG⊂X, b ≥ 0

andc > 0 such that
∑

y∈X

w(y)q(y|x, a) ≤ −cw(x) + 1{x∈G}b. (6.1)

Lemma 6.2 AssumptionA∗ holds forw andw2.
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Proof. Let I ′ be the smallestintegersuch that for all(i + j) ≥ I ′ we have(β/2)w(i, j) ≥

(λ1+λ2−µ)D+βmax{D, 1} and defineϕ = w(i, j) wheni+ j = I ′. Recall from the proof

of Lemma6.1that the left hand side of (6.1) is bounded by

[λ1 + λ2 − µ− iβ1 − jβ2]D

≤ (λ1 + λ2 − µ)D − β(i+ j)D = (λ1 + λ2 − µ)D + βmax{D, 1} − β[(i+ j)D +max{D, 1}]

= (λ1 + λ2 − µ)D + βmax{D, 1} − βw(i, j)

= (λ1 + λ2 − µ)D + βmax{D, 1} − (β/2)w(i, j)− (β/2)w(i, j)

≤ −(β/2)w(i, j) + ϕ1{(i+j)≤I′},

where the last inequality holds by assumption and completesthe proof.

Consider noww2. The left hand side of (6.1), with the addition ofcw(i, j) for somec > 0

(to be defined later) can be written (for(i+ j) ≥ 1)

(λ1 + λ2)[(i+ j + 1)D + 1]2 + (µ+ iβ1 + jβ2)[(i+ j − 1)D + 1]2

+ [c− (λ1 + λ2 + µ+ iβ1 + jβ2)][(i+ j)D + 1]2

= (λ1 + λ2)[((i+ j)D + 1) +D]2 + (µ+ iβ1 + jβ2)[((i+ j)D + 1)−D]2

+ [c− (λ1 + λ2 + µ+ iβ1 + jβ2)][(i+ j)D + 1]2

= (λ1 + λ2)[2D((i+ j)D + 1) +D2] + (µ+ iβ1 + jβ2)[−2D((i+ j)D + 1) +D2]

+ c[(i+ j)D + 1]2

≤ (λ1 + λ2)[2D((i+ j)D + 1) +D2] + (µ+ (i+ j)β)[−2D((i+ j)D + 1) +D2]

+ c[(i+ j)D + 1]2. (6.2)

Consider the quadratic term;(i+ j)2D2(c−2β). Thus forc < 2β and(i+ j) sufficiently large,

the expression in (6.2) is non-positive. The quadratic term dominates. LetI ′ be such that the

expression in (6.2) is non-positive for(i+ j) ≥ I ′ and denote the maximum of this expression

for (i+ j) ≤ I ′ by ϕ. The result follows.

Proof of Theorem 2.5: The fact thatw2 satisfies (6.1) along with the irreducibility implies

that Assumption D of [12] holds (see the comments following Proposition 4.2 of [12]). The

theorem is now a direct application of Theorem 4.1 of [12].
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