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Abstract

In this paper we discuss the dynars@rvercontrolin a two-class service system with abandon-
ments. Two models are considered. In the first case, rewegds@eived upon service comple-
tion and there are no abandonment costs (other than theppsttonity to gain rewards). In the
second, holding costs per customer per unit time are acamecach abandonment involves
a fixed cost. Both cases are considered under the discounte@i@age reward/cost criterion.
These are extensions of the classic scheduling questidghqutiabandonments) where it is
well-known that simple priority rules hold.

The contributions in this paper are twofold. First, we shbatthe classie — x rule does
not hold in general. An added condition on the ordering ofdhandonment rates is suffi-
cient to recover the priority rule. Counter-examples shio&t this condition is not necessary,
but when it is violated significant loss can occur. In the nelv@ase, we show that the deci-
sion involves an intuitive tradeoff between getting momgarls and avoiding idling. Second,
we note that traditional solution techniques are not diyempplicable. Since customers may
leave in between services an interchange argument canmapigied. Since the abandonment
rates are unbounded we cannot apply uniformization — angldAnnot use the usual discrete-
time Markov decision process techniques. After formulgtime problem as eontinuous-time
Markov decision proces&CTMDP), we use sample path arguments in the reward case and a
savvy use of truncation in the holding cost case to yield @seilts. As far as we know, this
is the first time that either have been used in conjunctioh Wie CTMDP to show structure
in a queueing control problem. The insights made in each hrevdesupported by a detailed
numerical study.



1 Introduction

In many service systems, a server (or servers) is faced athask of serving impatient cus-
tomers. While one may attempt to implement methods to dsertavels of impatience, at
the end of the day a fundamental decision that must be madey/giant in time is: given a
particular cost/reward structure and any information afio&iimpatience of customers, where
should the server direct its effort? In this paper, we previtbdels that are seemingly simple
extensions of classic scheduling problems to include costampatience. Our results suggest
that the server may need to weigh the relative costs/benéaigiding idleness (by letting too
many customers abandon) against short term revenue maianzZost minimization con-
cerns. The models that we consider consist of independergséh arrival streams for each
class of customer. There is a single server to serve botkedasService times are exponen-
tially distributed with rates that are independent of thetomer’s class. To this basic setup
we add that all customers may abandon after an exponentiatiybuted period of time, with
the abandonment rates allowed to be class dependent. Qus g@arovide an optimal server
assignment policy, which we do under two settings:

1. For each customer successfully completed, a class-depereward is received.

2. Each queue has (linear) holding costs and there is a digssadent penalty for each
customer that abandons.

In each case we consider the problem of maximizing expedsabuinted or average rewards
or minimizing expected discounted or average costs ovenfarte horizon.

It is well-known that for the second case above, if there aralmandonments, then the
c-i rule is optimal (see]). In this paper, we show that this is not always true whemaba
donments are considered. In fact, there is a tension betleserg future workload through
abandonments (and thus creating excessive idling) and iealopreducing costs (through the
c-i rule). For appropriate combinations of parameters, tremitension between these two
factors, in which casan appropriately modified version afc-p rule is optimal. We identify
such combinations. Note that such a tension cannot be eapituiother approaches to server
control. One can think of the problems of server assignmergemerally being handled by
examining three different regimes.

1. Overloaded regime. Here, a fluid model approach is aggécaFor our model, the
work of Atar et al. p] shows that a form ot-; rule is indeed optimal. In a system
with many customer classes and a single server, a simplaéhaferioritizes the class
with the largest value of the product of the holding cost asdise rate divided by the
abandonment rate, is shown to be asymptotically optimal immzing the long-run
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average holding cost. In this case, there is always workhferserver to do, so there is
no need to limit server idleness.

2. Critically loaded regime. A diffusion model approachpphkcable.References for such
an approach are Ghamami and Watd)][ Harrison and Zeevi]3], and Tezcan and
Dai [21]. All of these formulate the solution to a diffusion contgbblem which yield
priority policies under conditions similar to those deyedd in our approach.

3. Underloaded regime. This is the regime of our analysis bt clear thatny asymp-
totic approach is appropriate. As mentioned above, anaiyttiis model brings in the
issue of server idleness and the resulting tension with remitction. Our work is the
first that we are aware of on systems with abandonments imgise.

A combination of the insights developed by these three iiffeapproaches should provide a
clear(er) view on how to control a server faced with abandgeustomers.

In addition to the above references, there are a few othatiegtlvorks. To put into context
the issue of abandonments in call centre models, the rehdafdsconsult the comprehensive
surveys of Aksin et al. 1] and Gans et al.g]. Related work includes that of Argon et ak]|
who show that for a clearing system with abandonments, theypithat minimizes the num-
ber of abandonments is that which serves jobs with the sttditetime and shortest service
time (assuming they can be ordered this way). The performahstrict priority policies is
studied in Iravani and Balciogld §], but no optimality results are obtained. @7 23], Ward
and Glynn study single class systems with abandonmentsy Stimv that under appropriate
distributional assumptions, G/G/1 queues with balking/anceneging can be approximated
(i.e. there is appropriate convergence in heavy traffichwitregulated Ornstein-Uhlenbeck
process. While in our work the only possibilities after afiare that a customer is either
served or abandons, there is a line of work that attemptsrtgpeasate for potential abandon-
ments in other manners. 10|, Kocaga and Ward study an admission control problem for a
multi-server queue with a single class of customers who nbapa@on. In Armony et al.g],
customers are provided with delay estimates to influendetibbaviour, while in Armony and
Maglaras B, 4], a call-back option is proposed to allow potential abamdents to be contacted
at a future point in time (when presumably servers are lesg)biNote that their approaches
and ours can be seen to be complementary.

The methodology that we use is that of Markov Decision PreegsWe see our work as
having two significant contributions in this area.

1. Due to the abandoning customeusjformization(cf. [16]) is not possible (transition
rates are unbounded). Thus we do our analysis in continuaegd allow us to deal with



the unbounded rates (cf17]). In addition to showing how one can handle unbounded
rates, we see novelty in using a continuous time framewosktov structural results.

2. In the course of our analysis, we truncate a multidimeraistate space and let the
truncation level go to infinity. Not only is this limiting appach of interest, we show
that if truncation is done in a smart manner, analysis istiysanplified (or goes from
intractable to tractable). For related work on this, s8e [

In addition to our analytic results, we supplement our woithwseveral numerical studies
that show that the price of not taking into account abandaimages can be significant. These
studies also suggest relative ranges of parameters (iicygdartabandonment rates and either
rewards or costs, according to the model), for which lookiegond ac-u rule can lead to
significant improvements.

The rest of the paper is organized as follows: a completerigtion of the queueing dy-
namics, optimality criterion and a proof that we can resattention to non-idling policies are
shown in Sectior2. The optimal control in both the reward and holding cost ni®decovered
in Section3. A detailed numerical study is provided in Sectibwhile conclusions and some
suggestions for future work are contained in Secfion

2 Model and Preliminaries

In this section, we define the queueing dynamics, then dsstms criteria that we use for
design - the first is one in which a fixed (type-dependent) réusareceived for each customer
successfully completed; we term this tleevard model The second considers a combination
of holding costs and penalties for each customer that alveneoalled théolding cost model

In each case, we show that it is sufficient to restrict atbemito non-idling policies. Finally, we
give the optimality equations for both criteria and showt thaolution exists in each case.

2.1 Queueing Dynamics and Optimality Criteria

Suppose two stations are served by a single server. Customals to stations 1 and 2 occur
according to independent Poisson processes with patesd \,, respectively.We will also
refer to arrivals to statiohas class customersCustomer service requirements are probabilis-
tically the same in the sense that they are exponential \atth . Customers at station 1 (2)
have limited patience and are only willing to wait an expdradly distributed amount of time
with rate 5, > 0 (8, > 0). That is to say that the abandonment rate in stationi%;isvhen
there are customers thereService is preemptive and customers in service may abarilon.



priori (since the transition rates are unbounded) we areasstired that each Markov policy,
say, yields a regular Markov process. For more information glthrese lines, please sedl]

or the comments on p. 187 in%]. Regularityis guaranteed by showing that for the current
models AssumptioA of the Appendix holds.

Suppose the state spaceXis= {(i,j) : i,j € Z"}, where: (j) represents the current
number of customers at station 1 (2). L€é{¢) be a counting process that counts the number
of decision epochs by timeando,, represent the time of the epoch. We seek a policy
that describes where to place the server based on the cstegatand potentially the history
of states and actions taken; a non-anticipating policy. firie2 horizon, discounted expected
reward or cost (depending on the model) for a non-antigiggtolicy r is

N(t) ¢
0L0:5) = Efy 3 € k(X an) + / B, Qi (5) + haQals)] | ds,

n=0
where@),,(s) is the number of customers at station m = 1,2 and X,, anda,, represent the
state of the system and the type of event seen at the time of’tlicision, respectively. The
functionk(-, -) denotes the fixed reward or cost depending on which modeldsnuoonsidera-
tion. Thatis to say thatin the rewards modlel= h, = 0 and ifo,, represents a service comple-
tion at statior?, thenk(X,,, a,) = R,. In the holding cost model &, represents an abandon-
ment from statiort, thenk(X,,, a,,) = P, (it is zero otherwise). Faf > 0 the infinite horizon
discounted expected cost under policis v (4, j) := lim; o, v} ,(4, 7). The long-run average
reward (cost) rate ig7 (i, j) := liminf,_ vg’tt(i’j ) Ug’*t(i’j )Y. Under either optimal-
ity criterion in the rewards model we seek a policysuch thatw™ (i, j) = sup,cqw™(i, j)
wherell is the set of all non-anticipating policies and = v, or p. There is the obvious
analogue in the holding cost model.

We end this section with the following preliminary resuttstates the intuitive observation

that it is better to have more customers in the system in tharcemodel and less in the system
in the holding cost model. The proof is simple and is omit@ddrevity.

(lim sup,_,

Proposition 2.1 Lety = v, or v, (With a > 0 or « > 0) depending on the optimality
criterion. For either the reward or holding cost model, tlidldwing inequalities hold.

1oy(i,j+1) > y(i,j)
2. y(i+1,5) > y(3,7),

where in the finite horizon case the result holds forzaH 0.



2.2 Optimality of Non-idling Policies
In this section we show that it suffices to consider only ndiig policies.

Proposition 2.2 In either the reward or holding cost model, and under thedihibrizon dis-
counted cost criterion for any fixed and finite> 0 and« > 0 there exists an optimal policy
that does not idle except when the system is empty.

Proof. We show the result for the reward model by showing how one castcuct a non-
idling policy that dominates one that idles. This is done aiaample path argument. The
holding cost model is analogous (and is in fact simpler). f8gp we start two processes on
the same probability space, each starting in statg) with i > 1. Suppose Process 1 uses a
policy ¢ that initially idles the server. Process 2 uses a palitiiat has the server working at
station 1. If no events occur before the end of the horizaretis no difference in the rewards.
Similarly, if Process 1 begins to work again before Procelsas2a service completion assume
both processes use the same policy thereafter and theraierence in the expected reward
stream.

Suppose now that Process 2 completes a service before teehtinzon ends (at time,
say, r) and before Process 1 begins working again. The differendéa total rewards is
vﬁyt_z(i’, j')— Ry — vit_w(i’ —1, ') for some statéi’, /). Note that this leaves Process 1 with
one more customer that may abandon from station 1 than Rr@césom this point o uses
exactly the same allocation decisiorzasntil one of three events occurs; the end of the horizon,
an extra abandonment in Process 1 (not seen by Process 2pces® 2 empties station 1 and
¢ calls for Process 1 to work there. If either of the first two r@geoccur, the remaining
difference in rewards is zero and Process 2 has receivechartigward than Process 1. That
is, ¢ cannot be optimal. If the third event occursjdles the server until the two processes
couple (by abandonment or service completion)anoves the server to station 2. If there
is an extra service seen by Process 1, it receives an exteadd®;) and the total rewards
coincide (modulo the discounting). Since in each case, éands undep are higher than
that under, the result follows. "

Since Propositior2.2 holds for anyt, the fact that we can restrict attention to non-idling
policies under any of the criteria holds trivially. In themwainder of the paper, we consider
only this class of policies.

Remark 2.3 It should be noted that Propositidh2 presupposes the existence of an optimal
policy for the finite horizon problem. It is a simple task t@ghthat this is the case (for any
fixedt) by applying the results of Theorem 3.1 @8] with w as defined in Lemm@.1 below.



In the interest of brevity, we have omitted the details fer fihite horizon case. The infinite
horizon cases are included in the appendix.

2.3 The Optimality Equations

Letd(i,j) == A\ + Ao + plia 2003 + 151 + j52. The rate at which transitions occur when
the system is in stat@, j) and the server is working on a custometiis, j). Sinced(i, j) is
unbounded in the state space, the decision problem define@th®r the rewards or holding
cost models is nainiformizable In short, this implies that there is not the typical disergte
equivalent to the continuous-time problem posed. For avaaied functionf on X define the
following mappings

Rf(i,5) = Mf(i+1,5) + Aaf (1,5 + 1) + b f(i — 1, j) + jB2f(i,5 — 1)

(imax{R, + f(i — 1,5),Ro + f(i,5 — 1)} i,5>1,
LR G = 15) i>1,j=0,

PRy + f(i, 5 —1)] j>1,i=0,

L0 (4,5) = (0,0).

and

Hf(i,7) =i(hi + BiPy) + j(ho + BoPo) + M f(i +1,7) + Ao f (i, 5 + 1) +if1f(i — 1, 7)

(pmin{f(i —1,5), fi,j — 1)} i,j>1,
il 1) 4 D) i>1,j=0,
’ ufi,j—1) j>1i=0,
L0 (i, 5) = (0,0).

In each case, the—discounted reward (resp. cost) optimality equations afmei® as(« +
d(i, 7))ua(i, ) = Ous(i, j), whereO = R (resp.H). We refer to these equations as the DROE
or the DCOE depending on the problem under considerationil&ly, the average reward or
cost optimality equations (AROE or ACOE) are definedlby j)u(i, j) +g = Ou(i, j), where

O = R (resp.H). The functionu(i, j) is called arelative value functiomndg is the optimal
average cost. The next two results state that in each proatetrunder each criterion the
optimality equations have a solution. The proofs can bedanrthe Appendix.

Theorem 2.4 Supposer > max{/, f2} and letO represent the mapping or # depending
on the reward or holding cost model. The following hold,



1. There exists deterministic polici€g,, » > 0} obtaining the maximum/minimum (o +
d(i, 7)) tnt1.0 = Ouy o (Whereug , = 0).

2. The function:, := lim,,_,~ u, IS @ solution of the discounted reward/cost optimality
equations and.’, = v,.

3. There exist deterministic stationary policigsattaining the maximum/minimum in the
discounted reward/cost optimality equations.

Theorem 2.5 Let O represent the mappin® or H depending on the reward or holding cost
model. The following hold,

1. There exists a solutidg*, «) of the average reward/cost optimality equations. Morepver
g* is equal to the optimal expected average reward,and« is unique up to additive
constants. That ig* = p*(z) for all z € X.

2. Adeterministic stationary policy is average rewardfagstimal if and only if it achieves
the maximum/minimum in the average reward/cost optimedtyations.

The results of Theorem3.4 and 2.5 imply, for example, that in the discounted reward
model it is optimal to serve at station 1if; — Ry + un(i — 1, j) — ua(i,j — 1) > 0, while in
the holding cost model it is optimal to serve station 1 whgfi — 1, j) < u,(i,j — 1). There
is the obvious analogue in the average case. Just as in tretdigime case, a solution to the
average reward/cost optimality equationsy) is such thay is the optimal average reward/cost
andu is called arelative value functionThe difference.(x) — u(y) represents the difference
in total reward earned by an optimal policy that starts itestaandy, respectively. In the next
several sections we discuss when it is optimal to prioritiags 1 or 2 whenever possible.

3 Optimal Control

As mentioned in the previous section, the optimality equrati(discounted or average rewards
or costs) can be used to obtain the structure of an optimalyply comparing the values (or
relative values) when the system starts in different stdteproblems that are uniformizable
(whered(i, j) can be replaced with a constant), the usual method for dbilsgcomparison
is to compare these values term by term. Then using indutticugh the recursiofx +
d(i, j))unt1,0 == Ou, o inequalities like those above are proved by taking limitsthle current
study, we would like to compare statés— 1, j) to (i, 7 — 1). In general, sincd(i — 1, ) #
d(i,7 — 1) the induction is much more difficult (and not doable by thesthars); except of



course inthe case thdti — 1, j) = d(i,5 — 1) forall i, j > 1; thatis when3; = /3. This case
is considered in the following proposition for a generalr{fregative) cost rate function.

Proposition 3.1 Supposed = ; = 3, and lete((z, j), k) denote the cost rate in state j)
when serving in statioh = 1,2. Assume(+, a) is such that Assumptios B, C and Lemma
6.2 (in the Appendix) hold (so that the results of Theor@®sand 2.5 hold). If the following
hold

1. ¢((i—1,9),1) <e((i,j—1),k)fori,j > 1,andk = 1,2, and
2. c((0,4),2) < e((1,5 — 1), 1).
then
1.c((i—1,5),1) + pua(i — 1,5) < ¢((i,5 — 1),2) + pua(i,j — 1) forall 4,7 > 1, and

2. under either the infinite horizon discounted cost or agereost criteria, it is optimal to
serve at station 1 except to avoid unforced idling.

Proof. We showu,, (i—1,7) < u,.(i,j—1)foralli,j > 1 andn > 0. This combined with
the assumptionthat(i—1, j), 1) < ¢((¢, j—1), 2) yields the results upon taking limits. Clearly
this inequality holds for = 0. Assume it holds for. (which implies it is optimal to serve at
station 1 at epoch+1). Considen+1. The optimality equation§y-+d(i, j))tuni1.6 := Hipa
take the form (for > 2 andj > 1)

(Oé + d(l - 17j))un+1,a(i - 17]) - Alun a( ) + )\2un a( - 17] + 1) + (Z - 1)5un,a(i - 27])
+ jBuna(i — 1, — 1) +c((i —1,7), 1) + puna(i —2,7)

while fori, 7 > 1,

(a+d(i,j — Dtnt1.a(t,7 — 1) = Mupa(i + 1,7 — 1) + Aotno(i, §) + iBuna(i — 1,7 — 1)
+(J— DPunali,j—2)+c((i,7 —1),1) + puyo(i — 1,5 — 1).

Sinced(i — 1,7) = d(i,j — 1), taking differences and combining like coefficients yietlds
first statement (with,, ., replacingu,) via the inductive hypothesis except possibly when con-
sidering terms associated with abandonments. Considgtlooge terms and note

(i = 1)funa(i = 2,7) + jPunali = 1,5 = 1) = [ifuna(i = 1,7 = 1) + (j = 1) Btna(i,j — 2)]

1)
( ) [un,a(l - 27]) - un,a(i - 17] - 1)] + (] - 1)B[un,a(l - 17] - 1) - un,a(ivj - 2)]
0,
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where the inequality holds by applying the inductive hygsik twice. Now suppose= 1 and
j > 1. The non-idling assumption yields

(a+d(i—1,7))tunt1.0(t —1,7) = Mtnali, 7) + Xotpa(i — 1,5 + 1)
_'_jﬁun,a(i - 1)] - 1) + C((Z - 1aj)a 2) + luun,a(i - 1)] - 1)

The expressions with coefficieptcancel and the induction hypothesis holds for those related
to arrivals. The last assumption on the cost function yi¢t#sresult except possibly with
respect to the expressions related to abandonments. Hgweve

jﬁun,a(i - 17] - 1) - [Bun,a(i - 17] - 1) + (] - 1)6un,a(i7j - 2)]
- (] - 1)6[”71,04(2 - 17] - 1) + un,a(iaj - 2)]
S Oa

where again the inequality holds by the inductive hypothdsi each case the assumptions on
the cost functionyield((:—1, j), 1)+ puna(i—1,j) < c((i,j—1),2)+pu, (i, j—1) foralln
and alli, 7 > 1. Taking limits as» — oo yields the first result. The second result now holds for
the discounted cost case by applying the DCOE. Followingtbef of Theorem 4.1 of12],
there exists a subsequenee(n), n > 0} such thati, (i, j) — ta@m)(0,0) — u(i, j), whereu
satisfies the average cost optimality equations. That iaytdhsat there exists an optimal policy
that prioritizes station 1 under either optimality criterias desired. .

A few notes should be made about the hypotheses of PropoSitioFirst, in the holding
cost model presented, the conditions on the rate functioi®soposition3.1 translate to pre-
cisely what would be expected. Thatii§: — 1,5),1) = (i — 1)(hy + P1) + j(ho + BP>) <
c((iyg —1),k) = i(hy + BP1) + (j — 1)(he + BP,) holds if hy + 5P, > hy + BP,. On
the other hand, in the rewards model the inequdlity> R is implied byc((i — 1,5),1) =
—uRy < ¢((i,j —1),2) = —uR, for i > 2 (remember is for costs), but the inequality is
c((0,7),2) = —uRy < ¢((1,7 — 1),1) = —uR; would meanR, > R;. In short, the results
only hold for the case witlR;, = R,. The R, > R, case is covered in what follows, as is the
more general holding cost model (without the assumptiohgha= 3,). Finally, we note that
symmetric results hold that yield station 2 should be pied. We believe not only are the
next set of results of interest, but also the methodologiag be of use for a wide range of
related problems.

3.1 TheRewardsMode

In this section we provide conditions under whiclprgority rule holds in the reward model.
Originally, one might conjecture thdt, > R, is sufficient to guarantee the optimality of a
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rule that prioritizes station 1. The following (countexd@nple shows that this is not always
the case.

Example 3.2 Suppose we have the following model inputg:= .1; A = 1,0 = 1;6; =

1; 82 = 3; Ry = 2.0; Ry = 1.0;. With these inputs, the average reward of a policy that serve
at station 1 (except to avoid idling) i&, = 0.002809 while the optimal policy has average
reward p* = 0.003185; a 13.4% increase.

Class 2 2

V

Class 1

Figure 1: Graphical depiction of the optimal policy for Exalm3.2.

Figurel depicts the optimal policy for this example. Not only is ittistrictly a priority policy,
but since it is non-idling, it is also non-monotone in the to@mof customers in station 1.

The following provides conditions under which it is optintalalways serve at one station
or the other (except to avoid unforced idling) and is the magult of the section.

Theorem 3.3 Suppose; > 5, andR; > R,. ThenR; — Ro+u(i—1,j) —wu(i,j—1) > 0for
all 7, 5 > 1 and an optimal policy exists that always serves at stati@xtept to avoid unforced
idling. By symmetry, i > 8, and Ry, > R;. ThenR; — Ry +u(i —1,7) —u(i,j —1) <0
for all 4,7 > 1 and an optimal policy exists that always serves at statioex2ept to avoid
unforced idling.

The proof of Theoren3.3is delayed until we have proved the next proposition. Befome
ceeding however, consider again ExampléNote that in the case th&t, > R, andj; > ;
the decision-maker has two competing objectives. Firstetls a desire to maximize rewards
— so station 1 should be prioritized. On the other hangd; i too high all of the station 2 cus-
tomers may abandon while the server is clearing statimedylting in future server idleness
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and corresponding lost rewardSo a balance must be struck between maximizing rewards and
avoiding idleness. Both are achieved by serving at statwhdnj; > fs.

Proposition 3.4 The following hold for any fixetl

1. Suppos@, > By and Ry > Ry. ThenR; — Ry + ua (i — 1,7) — ua(i,7 — 1) > 0 for
alli,j > 1.

2. Suppos@, > [y and Ry > Ry. ThenRy — Ry + ug (i — 1,5) — uay(i,j — 1) < 0 for
all 7,7 > 1.

Proof. To prove the first result, fix and consideti, (i — 1, j) — uq.+(4,j — 1). Define two
processes on the same probability space. Process 1 statége(y — 1, j) and serves in the
same station as process 2, whenever possible. ProcesssZiststate(i, j — 1) and uses an
optimal policy. Since both processes are defined on the spate swe assume that they see
the same arrivals and potential services. If an arrivaleditist event at time, say, the relative
position of the two processes remains the same, they eaeh mew states. There are now
t — to time units remainingWe relabel the new states as the initial states and continthe g
same argument that follows.

As for the abandonments, assume we generate the firdtand the firstj — 1 customers
in each queue so that both processes see the same abandonframt of these events occur
first, again, the relative positions of each process rentsrsame and we continue as before.
For the remaining customer (an extra at station 1 in processlan extra at station 2 in process
1) we generate a single exponential with rateIf this event occurs first, then both processes
see an extra abandonment with probabigfy This implies the difference in the remaining
rewards iS¢, (i — 1,7 — 1) — ta 1, (i — 1,5 — 1) = 0. With probability 2222 it generates
an abandonment in station 1 for process 2 (not seen by prage¥he remaining rewards are
Unt—to(1 — 1,7) — Uar—t,(i — 1,7 — 1) > 0, where the inequality is due to the first result of
Proposition2.1. The assumption thdt,; > R, yields the first inequality in this case.

Consider now the services. Recall that process 2 uses timadgiolicy. Assume that
process 1 serves in the same station as process 2, whenegérl@o Since each service can
be constructed so that both processes see the same sanese tte relative position of each
process remains the same except in the cage-of = 0 and process 2 serves at station 1.
Suppose that this is the case. At this time the potentialbrautimal policy for process 1
serves at station 2. If the service is the next event, thamaneous rewards are different and
thedifference in theemaining rewardss

e O Ry = Ru) + aito(0,§ = 1) = tap4(0,5 — 1) = e U7 (Ry — Ry).
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Adding R, — R, yields(R, — Ry)(1 — e*(—%)) > 0 as desired.

Consider agaim, (i — 1, ) — ua(i,7 — 1) for generici, 7 > 1. Letp be the probability
that the processes enter states/’) and(1, ;' — 1) for somej’. The previous arguments imply
Ua (1 — 1,7) —uay(i,j — 1) > p(Ry — Ry) > Ry — Ry, where the inequality follows since
Ry > R,. Theresultis proven. The remaining result holds by symynetr n

Sincet was arbitrary, by taking limits as— oo Theorem3.3is immediate.

One might note that the proof of Propositinl relies on two important facts. First that no
reward or costs are accrued between events and seconddhastidmtaneous rewards or costs
are not state dependent. Neither of these hold for the hpltist model which is considered
in the next section.

3.2 Holding Costs

As an alternative to the methods of the previous sectionghssic ‘« — 1” result was shown
using aninterchangeargument (cf. Varaiya and Buyokko@][or Nain [17]). In essence, an
index for each station is created (the holding cost timess#gice rate). The station with
the highest index receives the highest priority. The arquneethat any policy that violates
this priority rule can be improved by rearranging the oraewhich customers are served in
accordance with the index. Two processes are defined on ithe S@ace that use the various
policies. Since all customers that arrive to a particulatieh will be served and served in
the order in which they arrived, the two processes can be ntadeuple. The process that
follows the index rule drains cost earlier and thereforeimires the total cost. The difficulty
in the current study is in the assumption that the two prasesan be made to couple. Indeed,
some customers may abandon awaiting service in one prodeksthey have their service
completed in the other. If this happens there is no way toaniee the processes will couple.
In what follows, we discuss the holding cost model and what loa done to alleviate this
difficulty. The main results of this section are capturedna following theorem. Its proof is
divided into several steps.

Theorem 3.5 Suppose the following hold.
1. h+ BiPr > (<) ho + Bo P
2. By > () B

Then under either the infinite horizon discounted cost oraye cost criteria there exists an
optimal policy that prioritizes station 1 (2) except to adainforced idling.

12



Our original intuition was thak, + 5, P, > hs + (2P, should be sufficient to prioritize station
1. After all, this would be in line with classic results. Thexthexample addresses the question
of necessity and sufficiency of the added inequatity> ;.

Example 3.6 Suppose\; = 2; 0, = 2.5;u = 3;61 = .9;0, = 1;hy = 1.5;hy = 1, P, =

Note thath, + g1 P, = 2.4 > 1.5 = hy + 55 P. The optimal policy (computed vislatlab) is

to work at station 1 unless there are no customers at statidinis same policy is optimal if

we lets; = 1.1 > p,. That is, the hypotheses of Theor@® are sufficient, but not necessary.
If we let 5, = 2, thenh; + 5, P, = 3.5 > 1.5 = hy + (B2 P,. However, the optimal policy is to

serve at station 2; following our intuition could lead tongsia priority rule that is exactly the

opposite of what is optimal!

As has been alluded to the classic methods of a sample patimarg or interchange argu-
ment cannot be applied directly. We have also mentionedhilegiroblem is not uniformizable
so that there is not a discrete-time equivalent Markov @@tiprocess. One might suggest
that we could truncate the state space, making it uniforioiézgrove the results on the trun-
cated space and take limits as the truncation level appesadifinity. This approach is also
suggested by the Assumptidnin the Appendix. The next example shows that care must be
taken when choosing the truncation. Suppose each queuacated when they readh= 20;
excess customers are lost.

Note that Exampl&.7 does not include abandonments. The optimal policy for tlzerte is
depicted in Figure. Close to the boundary, it may not be optimal to prioritizgisin 1 in spite
of the fact thati; > h,. In the original untruncated model each customer thatesiig station
k increases the cost per unit time by, £ = 1,2. In the truncated system, when the number
of customers in station 1 is 20 a customer arriving to statidoes not increase the cost, while
a station 2 arrival (as long as station 2 has less than 20moes$) increases the cost hy; it
may be advantageous to keep station 1 full.

To this end, we consider the followiregjuivalentformulation. Suppose the state space is
Y ={(,7):0<1i<]I < oo}, wherel represents the current number of customers in the
system and is the number at station 1. Replacingvith (I — ) we note thati(i, I — i) =
m(I,i) == M\ + X+ p+ 16 + (I —i)B,. The DCOE are now (there is also the obvious
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Class 2

Class 1

Figure 2: Graphical depiction of the optimal policy for Exalm3.7.

analogue for the ACOE)

(Oé + m(I, Z))Ua([,l) = Z(hl + ﬁlpl) -+ (I — Z)(h,g -+ 52P2) + Alua(I + 1,2 + 1)
+ Xoto (I 4+ 1,4) + pmin{us (I — 1, — 1), ua(I —1,4)}
tiBiua(l — 1,0 — 1) + (I — i) Baual(l — 1,4). (3.1)

3.2.1 Finite State Approximation

Recall that a uniformizable continuous-time MDP hasgnivalendiscrete-time formulation
where the optimal policies coincide, and the optimal valreswithin a multiplicative constant

of each other (seelp] or [20]). Suppose that the maximum number of customers allowed in
the system at any time i, wherelL is finite. Let3 = max{/3,, 3,}. Thus, the abandonment
rate from the system is bounded aboveby. Since under these assumptions the Markov
decision process is uniformizable ¥, := \; + A\ + 1 + LS = 1, where the last equality is
without loss of generality. Since in this sectidrwill be fixed, we suppress dependencelon
For example, the uniformized discount facter= af\gL will simply be denoted.

It remains to describe what happens when a customer arovastation when there are
already L total customers in the system. Whén= L a customer arriving to station 2 is
lost forever. When = L, i < L and a customer arrives to station 1 a customeemsoved
from station 2 (without penalty) and the arriving custon@n$ the queue at station 1. When
i = L any arriving customer is lost. That is, when an arrival osdorstation 1 in statel, i),
the next state i$L, (i + 1) A L). We have already discussed after Exantpléthe difficulty
in truncating the queue lengths at each station. The dyrsaomahe boundary alleviate that
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concern by making station 1 arrivals increase the cost wdateally decreasing the cost at
station 2. Since this is only a change on the boundary, whetakeslimits (as the boundary
moves off to infinity) we still approach the original problenthe discrete-time optimality

criteria are defined for a fixed poliey by

N-1

vis(2) == EL ) [0"C(Xn, du(X0))]; (3.2)
n=0

vy = A}lﬁmoo vy (), (3.3)

where{X,,,n > 0} denotes the stochastic process representing the stateisipdeepoch..

The equations3.2) and (3.3 define the/N—stage expected discounted cost and the infinite

horizon expected discounted cost, respectively. Agaireach case we define the optimal

valuesy(i, j) := inf e y™ (4, j), wherey = vy s Or vs depending on the optimality criterion.
The (discrete-time) finite horizon optimality equations fo< i < I < L are (s = 0)

O (L 3) = ilha + ByPY) + (I = D) (ha + BaPy) + 8 (A s+ 1,3+ 1) + Aw oI + 1,3)
+ pmin{v, s(I — 1,7 — 1), v,5(I —1,4)} + [LB — iB1 — (I — 1) B2)vns(I,7)
+iBrons (I — 1,0 — 1) + (I — ) Bavns(I — 1, 7;)). (3.4)

Whenl <i=1< L

O (L 1) = I+ BiP) + 8 (Mo + 1,1+ 1) + dv o1+ 1,1)
b (I8 vops(I — 1,1 — 1) + [LB — I81]ons(1, J)).
Fori =0andl < L,
Unt1,6(1,0) = I(hy + BoPs) + 5()\1@”75(] +1,1) + XAvps(I +1,0) + pv,5(1 — 1,0)
+[LB — 1Ba]ons(1,0) + I Byvns(I — 1, 0)).

When! = L andi > 1,

Vairs(Ly1) = i(hy + B1Py) + (L — ) (ha + BoPo) + 5(Awn,5(L, (i + 1) A L) + Agvns(L, i)
+ pmin{v, (L — 1,7 — 1), v,5(L — 1,4)} + [LB — iBy — (L — i)Ba)vn.s(L, 1)
4 ins(L—1,i— 1) + (L — i) Bavns(L — 1, 7;)),

and fori =0 and/ = L,

Ui 5(L,0) = L(hy + BaPy) + 5<A1vn,5(L, 1) + Agvns(L, 0) + prvns(L — 1,0)

+ (LB = LiaJvns(L, 0) + LBavns(L —1,0)).
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Note that it is optimal to serve customers at station 1 irestati) whenv, s(I —1,i — 1) <
vns(I — 1,4). The discrete-time discounted cost optimality equatiaespaecisely the same
with v, s and v, s replaced withv;. In each case it is well-known that the optimal val-
ues satisfy the optimality equations (cf. Chapter 6 4]). For fixed I, let Ayv, 5(1,7) =
vns(L,i+ 1) — v,s(L,7). Thus, in statg/ + 1,7 + 1) it is optimal to serve at station 1 if
Aov, 5(1,1) > 0. Forl < L, let Ayv, 5(1,i) = v, 6(1 + 1,1) — vn5(1, 7).

Proposition 3.8 Suppose the following hold.
1. hi+ 5P > (L) hy + BaPs
2. By > (<) b
Then
1. Ay, s(1,i) > (<)0foralli < I < Landn > 0.
2. Agvn5(1,1) > (<)0foralli <I < Landforalln > 0.

3. The previous inequalities hold whep; is replaced by;.

Proof. We prove the result in thex*” direction, the opposite direction holds by symmetry.
To ease notation, assume that= 1, the case fov < 1 is analogous. The fact that both
inequalities hold whem = 0 is trivial. Assume that they hold for and consider. + 1. The
second inductive hypothesis implies that it is optimal towseat station 1 at time + 1 except

to avoid idling. Supposé = L — 1. If i = L — 1, then note that an arrival to station 1 in states
(L,L—1)or(L—1,L—1)leads to the next state beiqg, L). Similarly, an arrival to station

2 in either of those same states leadsitpl — 1). Thus,

A1Un+175(L — 1, L — 1) = hg + ﬁgpg + /LAlvmg(L — 2, L — 2)
+ [LB — (L — ].)Bl — BQ]Alvnyg(L — ]_, L — 1)
+ (L — 1)51A1’U"75(L - 2, L— 2)

The inductive hypothesis yields the result in each caseil&iy if : = 0 (station 2 arrivals in
(L,0)or (L —1,0) both lead ta L, 0)),

A1Un+1,5(L — 1, 0) == hg + ﬁgpg + AlAlvnyg(L, 1) + (,u + (L - 1)62)A1Un75([/ - 2, 0)
+ [LB — LBQ]A1Un75(L — 1, 0)
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ForO0<i< L —1,

Apy15(L —1,4) = ho + BoPo + MA 10, 5(L — 1,0 + 1) + pAyvy, s(L — 2,0 — 1)
+[LB —iBy — (L — 1) Ba] Ayvns(L — 1,4)
+ i61A1Un75(L - 2,Z - ].) + (L —1- i)ﬁgAﬂ)n,g(L — 2, Z),

and the inductive hypothesis yields the result. Next, aerdi < L — 1 andi = I. We have

A1py15(L, 1) = ho + BoPo + MA 10, 5(1 + 1,1 + 1) + MoAjv,5(1 +1,1)
+ (u+ I81) Ao s(I — 1,1 — 1) + [LB — I8y — Ba]Avv,5(1,1).

The inductive hypotheses yield the result. Fer 0,

A1@n+175(1, O) = h2 + 52]32 + )\1A1/Un75(1 + 1, 1) + )\QAl’Un,g(I + 1, 0)
+ puAyv, 5(I —1,0) + [LB — (I 4+ 1)B2] Ayv, 5(1,0)
+ ]BgAﬂ)n,(g(I — 1, 0)

Suppose) < ¢ < 1,

Al?}nJrL(;(I, Z) = hg + 62]32 + )\1A11}n75(1 + 1,2 + 1) + )\QAl’Un’(;(I + 1, Z)
+ A s (I — 1,3 — 1) + [LB —iB1 — (I + 1 —14) o) Ayvn 5(1,4)
+ iﬂ1A1Un75(] — 1,Z - ].) + (I - i)ﬁgAﬂ)n,g(I — ]_,Z)

In each case the inductive hypothesis yields the result! Fep (so thati = 0) we have

A1 41,5(0,0) = ho + BoPo + M A10,5(1,1) + AaAqv,5(1,0)
+ [LB - 62]A1Un,5(07 O)

This completes the proof of the first inequality. To prove skeond inequality consider first
I=Land0<i< L. Ifi=L—1,

ANovpi15(L, L —1) = hy + 1Py — [ha + B2 Po] + M[vns(L, L) — v, 5(L, L)] + Aa[Aov,s(L, L — 1)]
+ p[Aqvps(L —1,L — 2)] + [LB — LBi|vas(L, L)
— LB — (L —1)B1 — Bo|vns(L, L — 1) + LBivns(L —1,L — 1)
— (L= 1)prvgs(L —1,L = 2) = Bovys(L —1,L — 1)
=hy + 1P — [he + o] + Ao[Agvy s(L, L — 1)]
+ pu[Agvy 5(L — 1, L — 2)] + [LB — LB Agv, 5(L, L — 1)
+ (L = 1)1 8000 6(L — 1, L —2) + (Bo — B1)Arvns(L — 1, L —1).
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The second inductive hypothesis holds in each case inlyig, save the last one, where the
first inductive hypothesis yields the result. Consider nlogi¢ase where= 0. Then

Aovyi1,5(L,0) = hy + B1 Py — [ha + BoPo] + MAsvy, 6(L, 1) + AaAgv, 5(L, 0)
+[LB = 1 — (L = 1)B2] Agvy, (L, 0)
+ (B2 — B1)Arvns(L —1,0) + (L — 1) 2800, 5(L — 1,0).

The same argument as above yields the result. Suppesd. and0 < i < L — 1. A little
algebra yields

Aovyi16(L,1) = hy + B1 Py — [ha + BoPo] + M Aov,s(Ly i+ 1) + Aoy, 5(L,7)
+ pAovys(L—1,i = 1) + [LB — (i + 1)) — (L — i — 1) 8] Agv, (L, 4)
+ i1 A s (L — 1,3 — 1) + (L — i — 1)BoApvy, 5(L — 1,4)
+ (B — 1) Aqvns(L — 1,14).

The same argument as in the previous cases holds. \Wkeh there are also several cases to
consider. However, for= I — 1, note

Agvn+1,5(1, ] — 1) = h1 + BIPI — [hg + /BQPQ] + )\1A2Un75(f + 1, ]) + )\gAgvn,(g(I + 1, I — 1)
+ uAovy (I — 1,1 = 2) + [LB — 18] Agvy, 5(1, 1 — 1)
+ (I - 1)51A2/Un75(1 - 1, I — 2) + (52 - 51)A10n75([ - 1, I — 1)

The result follows. Foi = 0,

Aovpy1,5(L,0) = hy + 1Py — [ha + BoPo] + M Agv, s(1 +1,1) + AaAgvy, 5(1 4+ 1,0)
+ [LB = By — (I = 1)Ba) Agqun5(1,0) + (B2 — B1)Asv,5(1,0)
+ (I — ].)Agﬁgl)n,(;(l — ]_,0)

Suppose) < < [ —1,

ANovpi16(1,3) = hy + B1P1 — [he + BoaPo] + M Dov, s(1 + 1,0+ 1) + XaAovy, 5(1 + 1,1)
+ v (I = 1,0 = 1) + [LB — (i + 1)B1 — (I — i — 1)Ba] Doy 6(1,0)
+ (B2 = B1)Avns(L,i— 1) + i1 Dgvp6(I — 1,0 — 1)
(I —i—1)Balovy 5(I — 1,4),

which is non-negative as desired. The third result folloywsbting thatv,, s — vs. u
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3.2.2 Convergencetothe Countable State M odel

In this section we show that the infinite horizon discountest @alue function for the truncated
systemy,, 1, converges to that in the original system. We have dispewgbdhe assumptions
thatd, = ¥, = 1 and added back in the dependencelonNote thatv, ; is the unique
(bounded) vector satisfying the discrete-time infiniteiam §;, —discounted cost optimality
equations (fob < i < I < L). So,

(a+Wp)var(l,4) = thy + (I —i)ha + i1 P + (I — i) ol
+ MU L({+ 1,04+ 1) + Xve (I + 1,7)
+ pmin{va (I — 1,0 — 1), 0, (I —1,i)}
+ [LB —ify — (I —i)Balva,n(l,i) + ifrva, (I — 1,0 —1)
+ (I =) Pava (I — 1,17), (3.5)

where the above expression can be obtained by replagindn (3.4) with v, ;, and using a
little algebra. For completeness, we assume that(/,i) = 0 for / > L. The next result
shows that the limit of,, ;, exists.

Lemma3.9 v, is (pointwise) monotone ih.

Proof. We need to prove, 1,1(1,i) > v, (/,7) forall0 <i < I andallL > 0. First note
that for/ > L + 1 the result holds trivially (by assumption). To complete gteof, follow

the sample paths of two processes defined on the same prgbspédce, and starting in the
same state wheré < L. Supposer; ,, is an optimal policy for the state space bounded by
L+ 1. Letr, be a policy that serves at exactly the same statior} as. Process 1 uses policy
77,1 and operates on the states such that L + 1. Process 2 uses poliey;, and operates
on the states such that< L. Now since both processes use the same policy whenl, as
long as the total number of customers is less thathey see the same arrivals, services and
abandonments and, therefore the same costs. Considesthafi the processes enter a state
with the number of customers equaltpsay(L, ). If a service or abandonment is the next
event, both processes remain coupled until the next timeltaee . customers in the system.

If a class 1 arrival occurs, and # L, both processes see an increase in the number of class
1 customers. Process 1 is in stafe+ 1,7 + 1) while Process 2 is in statd., 7 + 1). After

this time, Process 2 does not serve at station 2, until tisexgthier an extra abandonment or an
extra service at station 2. In particular, if the optimalippkells Process 1 to serve at station
1, so does Process 2. If it says to work at station 2, Procelieuntil the service is complete
(or an extra abandonment occurs). Thus, since Processdeaaoosts at a higher rate, and is
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always in a lower state (according to the cost function), axeh
Uoz,L-i—l(]a Z) Z U;r,LL(-[a Z) Z Ua,L(IJ Z)

Since the initial state was arbitrary, the result follows. u

Lemma3.9 implies thatv, ; converges ad increases. Let, ., denote this (possibly
infinite) limit. A little algebra in 3.5) yields for/ < L

(a+m(1,9)var(L,i) =ihy + (I —0)ho + i1 Py + (I — i) 5o Ps
+ Mo, p (I + 1,0+ 1) + Xgva, (I + 1,1)
+ pmin{v, (I —1,i — 1), 0, (I —1,4)}
+iBvar(I — 1,0 — 1) + (I — i)Bovar(I — 1,4),

which for I < L is precisely the same a8.(). Thus, asL — o0, Vo1, — Va.co = Us. ThIS
leads to the proof of Theorefb5.

Proof of Theorem 3.5: SinceA,v, ;, > 0 for all L the first inequality follows from the fact
Vo, — Vo Similarly, defineu,(1,i) = v, (1,7) — v,(0,0). Sinceu, (andav,) converges
along a subsequence to a solution of the CTDCOE (see the pfodieorem 4.1 of 12));
(p*,u(I,7)) the inequality holds in the average case as well. The resildifs. n

4 Numerical Results

In this section, we discuss the improvements that may belgesshen the abandonment rates
are such that the intuitive index policy (either give priptio the largesiR; or to the largest
h; + B;P;) is not guaranteed to be optimal. In both the rewards andigplcbst models, we
discern under what conditions one should be careful in tlwécehof policy, and also try to
show how much system performance may be impacted.

4.1 TheRewards Model

We provide results for a system with = 1 and X\, = ¢ = 4. We initially setR; = 10
and R, = 5, to model a system where in the overall offered demand, tiseaesmall propor-
tion of high revenue customers. Giving priority to the higlwvard customers maximizes short
term rewards, and if the abandonment rates are ordered Bath;t > (., then according
to Theorem3.3, this policy is also optimal in the long-run. We are inteegsin seeing what
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happens when, > ;. In this case, one can think that there may be a trade-offdmtwnax-
imizing short term reward and minimizing the amount of affédemand that is lost through
abandonments.

We studied a truncated system with buffer size 20 for botbsaa. In all of the results that
follow, we usep, to denote the average reward for a policy that gives pridoityueue 1, while
p* is the average reward for the optimal policy.

First, we fix 5, = 2.0 and observe the effect of varyirij. The results in Tablé demon-
strate that the improvement in using the optimal policyéases as; decreases, as one would
expect. (In Tables1, 2 and 3, the last column indicates the form of the optimal policy. P1
denotes priority to class 1, P2 denotes priority to clas$@,Tdl gives priority to class 1 if the
number of class 1 customers is greater than a (state-deperleeshold.)As 5, decreases,
it becomes advantageous to devote more effort to queue 2pid excessive lost demand, as
customers are less likely to be lost from queue 1. Fosmall, the optimal policy actually
gives priority to queue 2. At; = 0.5, even thoughp, is still less thans,, giving priority to
gueue 1 becomes optimal.

B P1 p* | % from optimal| Policy
0 | 0.353]0.394 10.4 P2
0.1 0.336 | 0.358 6.1 T1
0.2 0.320 | 0.332 3.6 T1
0.5 1] 0.281 | 0.281 0 P1
1.0 || 0.233 | 0.233 0 P1
2.0 0.172 ] 0.172 0 P1

Table 1: Rewards Model, varying

Equivalently, we would expect the trade-off described &tovwecome more significant as
B2 grows andR, approacheg$?;. Both of these expectations are confirmed in Taklesds3.
Table2 hasp, fixed at 0.1 and varies,, while Table3 fixes3; = 0.1, 5, = 2.0, and variesk,
(hereR; remains 10)

In summary, in general, onghouldsee the the most improvement in using the optimal
policy over simply giving priority to queue 1 if, is large relative tg3;, and R is close to
R;. To get an idea of the order of the maximum possible improveifa least in this system),
setf; = 0, B = 10, and R, = 9.99. Here,p; = 0.0832, while p* (the optimal policy gives
priority to queue 2) is equal to 0.0945, an improvement o6 i&rcent. In the next section, we
will see that the improvements may be even more dramaticimthding cost model.
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B p1 p* | % from optimal| Policy
1.0 || 0.585 | 0.605 3.3 T1
2.0 || 0.336 | 0.358 6.1 T1
5.0 || 0.135|0.147 8.2 T1
10.0 || 0.632 | 0.678 6.8 T1

Table 2: Rewards Model, varying

Ryl m p* | % from optimal| Policy
1 ] 0.208 | 0.208 0 P1
2 1 0.240 | 0.242 0.8 T1
5 11 0.336 | 0.358 6.1 T1
9 110.464 | 0.516 10.1 T1

Table 3: Rewards Model, varying,

4.2 TheHolding Costs Model

Here, we would like to again demonstrate the importancekfigegabandonments into account,
beyond through the indek; + 3;P;. We begin with a system that is almost symmetric. Let
M =X =2,u=4,h; =1,hy =0.99, andP, = P, = 1. Note the loss of a customer in either
gueue is equally costly and the holding costs are close. ueuill get priority according to
our index, and Theorer.5 tells us that this policy is optimal if, > ;. If this condition

is violated, then giving priority to queue 1 may yield poorfpemance. The intuition behind
this is that if 3, > [, then the higher rate of abandonments at queue 1 may meagivthmey
priority to queue 1 is simply too greedy.

To see this, we sef, = 0 and variedg;, with the results in Tablg. (In Tables4, 5
and6, the final column gives the form of the optimal policy. Theqpity policies are is in
the previous subsection, with the addition that DT dendtes the optimal policy is to give
priority to class 2 if either the total number of customersgha system is above a threshold,
or the number of class 1 customers is below a thresh&dgn with 5, very small, there is a
dramatic improvement by using the optimal policy (whichegiyriority to queue 2). The effect
appears to be most prominent for moderate values @felative to the service rate). At higher
values off;, the improvement becomes less significant. The last flow- 100.0, suggests
that a customer arriving to queue 1 either is serviced imatelyi or abandons, so there is little
hope for the scheduling policy to have much impact.

As expected, this improvement is increasing with(Table 5 has results for varying,
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B p1 | p* | Yincrease Policy
0.1 {9.09|5.28 72.2 P2
0.2 || 8.38]3.94 112.7 P2
0.5 ||6.722.69 149.8 P2
1.0 | 5.00 | 2.08 140.4 P2
2.0 | 3.40|1.66 104.8 P2
4.0 | 2.32|1.38 68.1 P2
10.0 || 1.56 | 1.17 33.3 P2
100.0 | 1.05 | 1.01 4.0 P2

Table 4: Holding Costs Model, varying

with g; = 0.5 and 3, = 0.) Finally, to see that, = 0 is not special, we fix3; = 0.5 and
vary 3, (Table6), and we see that the improvement, which is still significdetreases with

increasingl; (as expected).

ha || p1 | p* | Y increase Policy
0.9 6.17| 2.60 137.3 P2
0.8 || 5.56 | 2.50 122.4 P2
0.7 4.95| 2.40 106.3 P2
0.6 || 4.34|2.30 88.7 P2
0.5 3.73 | 2.20 69.5 P2
041 3.12|2.08 50.0 DT
0.3 ]| 2.50 | 1.92 30.2 DT
0.2 1.89 | 1.69 11.8 DT
0.11.28]1.28 0 P1

Table 5: Holding Costs Model, varyintg,

5 ConclusiongFuture Work

In this paper we add abandonments to the classic (stochsstieduling model in a two-class
service system. We do so under the two most common costhlestrarctures; maximize re-
wards per service or minimize holding costs per customeupgitime. In each case the opti-
mal scheduling rule that holds without abandonments, ngdoholds in general. Conditions
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Ba |l p1 | p* | % increase Policy
0.1 3.69|2.49 48.2 P2
0.2 2.89|2.35 23.0 P2
0.3 249|224 11.2 P2
0.4 2.24]2.15 4.2 P2

Table 6: Holding Costs Model, varying

for this simple priority rule to hold are provided. We alsorgdo the fact that adding abandon-
ments (in either case) causes several technical challehgearticular, since the abandonment
rate is not bounded, uniformization is not possible and westrappeal to a continuous-time
formulation of a Markov decision process instead of theréitgetime equivalent. Initially, this
means the standard induction arguments cannot be appfidtie reward model, we use the
continuous-time optimality equations, and a sample pajhraent to show the result. How-
ever, even this method does not extend to the holding cosein@hly after a savvy use of
truncation can the result be shown. As far as we know, thisditst time the continuous-time
MDP formulation has been used to show structure in a quewangol problem.

Our numerical results highlight the point that a decisioaker that ignores the abandon-
ments can significantly decrease the reward earned or B&tha cost accrued. In the reward
model, the added condition on the abandonment rates hagduativenexplanation and leads
to a trade-off. The decision-maker needs to maximize resvartile minimizing the server
idleness. When the rates are ordered in the same way as taslsggwoth considerations can
be handled simultaneously by prioritizing that class.

Characterizing the optimal policy in general (when our @ek do not hold) is of clear
interest. We have attempted to prove structural resultsiscase (in particular monotonicity),
but to this point, such results have been elusive. Even ifomugd not characterize the policy
over the entire parameter space, it would be of interesttaige a sharp condition under which
the modifiedc — p rule is optimal. Our conjecture is that this sharp conditiuld not be a
simple expression.

There are several extensions that could be handled in futark. Perhaps the most ob-
vious one is to consider more than 2 customer classes. Theuttif with multiple classes
(even 3) is that the MDP formulation becomes more difficulbémdle. For example, in the
rewards model with 3 classes, we conjecture that it is optimarioritize station 1 when
Ry = max{ Ry, Ry, Rs} and; = max{f, 52, #3}. To show this we would need to show that
Ri—Ro+un(i—1,7,k)—ua(i,j—1,k) > 0andR) — Ry +ua(i—1, j, k) —uq(i, j,k—1) > 0.

A sample path argument might do it, but would be more teditushe holding cost case, we
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believe an analogous result holds, but since even the tassdase requires some adjustment
to the truncation, the multiple class case seems unlikdebeta simple extension.

A second direction for examination is that of multiple sesven the case of collaboration
(when several servers can be assigned to the same custosesiris that the current analysis
holds. When servers cannot collaborate and there are butlasses, we believe the servers
should avoid idling when the system state is close to the thayn but again, the current
insights hint toward what is optimal. The case of multiplesees and multiple customer classes
is beyond the scope of this study and is still open.

Finally, we would like to point out that there are severalestminor extensions. We have
assumed that the service rates of each class are the satris; jblas assigned to the server in
guestion are somewhat similar. We have also assumed thanoets that are in service can
abandon. This is akin to order cancelations or hang-upssdteice has begun. It is our belief
that in each case each of these extensions make the proldemsife tedious, but do not add
significantly to the insights provided here. We leave thenfuditure research.
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6 Appendix

In this section we show that the optimality equations havauati®n. Defineg(y|z, a) to be the
rate at which a process leaves stat@nd goes tg given that actior: is chosen. Recall for a
continuous time Markov chain;q(z|z, a) is the rate at which a Markov process leaves state
x given that actioru is chosen. Denote the reward/cost rate in staihen using actiom by
c(x,a). Letq(x) := sup{—q(z|x,a) : a € A(:)}. The following set of assumptions appear as
AssumptiondA, B andC in [12]. Note that we are not making these assumptions in our work,
rather we show that they all hold under our previously stagslimptions on the system.

Assumption A. There exists a sequend&,,,m > 1} of subsets ofX, a non-decreasing
functionw > 1 onX, constantsh > 0 andc # 0 such that

1. X,,, T Xandsup{q(z) : z € X,,,} < oo for eachm > 1,
2. inf{w(z) : = ¢ X,,} — oo asm — oo; and
3. X yex wy)a(ylzr, a) < cw(zx) + 0.

Assumption B.

1. For every(z,a) € {(y,a) : y € Xanda € A(z)} and some constant/ > 0,
le(x,a)] < Mw(x), whereA(z) is the set of available actions in stateandw comes
from AssumptionA.
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2. The discount factat > 0 is such thatx > ¢, wherec is defined in AssumptioA(3).
Assumption C.
1. The action seti(x) is compact for each € X.

2. The functions(z, a), q(y|z, a), and}_, . w(y)q(y|z, a) are all continuous ia € A(x)
for each fixedr, y € X.

3. There exists a non-negative functishon X and constants' > 0, > 0 andM’' > 0
such that

(@) g(z)w(x) < M'w'(x) and
(b) for all (x,a)

Zw q(ylz,a) < dw'(x) + 0.

yeX

Lemma6.1 Supposer > min{f, f2} and let

Do pmax{ Ry, Ry} for the reward model
' max{hy, + 01 P, hs + B2 P} for the holding cost model

In either the reward or holding cost models, AssumptidnB and C are satisfied withX,, =
{(6;)I0 < i,j < m}, b= (A + A2)D + (min{ Sy, f2}) (max{D, 1}), ¢ = min{f1, -} and
w(i,j) == (i+7)D +max{D, 1}.

Proof. We prove the result in the holding cost model. The reward rhisd@nalogous. To
ease notation lef := min{3, f>}. Trivially, X,,, T Z* XZ* asm 1 oo; AssumptionA(1)
holds. Note thatv(i,j) > ¢((i,7),a). Of course the fact thav(i, j) is lower-bounded by
2mD + 1 for (i, 7) ¢ X, implies AssumptiorA(2) holds. Note fow = 1,2 (where the server
will serve)

Mw(i +1,7) + Aw(i, j + 1) + pw(i — (2 —a),j + (1 —a)) +ifrw(i — 1,5)
+ jPow(i,j — 1) — (M + Ao + p+if1 + jB2)w(i, j)
=AM+ X —p—if1 — jB2]|D < —pw(i, j) + 0,

and Assumptio\(3) is satisfied as desired. Assumpt®fl) is satisfied trivially and Assump-
tion B(2) holds by assumption. Since the action set is finite, tepaxtness and continuity
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conditions of Assumption€(1) andC(2) are also trivial. It remains to consider Assumption
C(3). Let
q(i,7) =M+ Xo+p+iB1 + jBo
<A1+ Ag + p+ (i + j) max{Sy, B2}

Define

w'(i,7) := ((i + 7)D + max{D, 1})[A\1 + Ao + p + (i + j) max{ Sy, B }]

= ((i +7)D +max{D,1})[A\1 + Ao + p+ (i + j)f],

wherej is the maximal abandonment rate. We haye j)w(i,j) < M'w'(i,j) (M' = 1).
Moreover,

B(i,j) == Mw' (i +1,7) + Mow'(i,j + 1) + pw'(i — (2 —a),j + 1 — a) + if1w' (i — 1, )
+Baw’ (4,5 — 1) = (A1 + Ao+ o+ i1 + jB2)w' (i, )
= (A1 +X\2) ([/\1 + X2+ 1+ 2(i + §)B]D + BD + B(max{D, 1}))
— [+ B+ jBo] ([/\1 + A2 + p+2(i + 5)B]D + BD — B(max{D, 1})).

Without loss of generality assume that> 1 (otherwise the constahtbecomes slightly more
complicated). A little algebra yields

B(i,5) < O + Aa) ([ + A + o+ 26+ j)BID + 28D)
= (A1 + A2) <w’(i,j) — M+ X +p+GE+9)BGE+5)D + 231))
+ (A + A)[(i + 5)BID
< (M + o) (w’(z’, J)+ 2BD).
Thus, AssumptiorC(3) holds with¢ = \; + X\, andd’ = (\; + A\2)26D and he proof is
complete. .

Proof of Theorem 2.4. Given Lemma5.1, the result is an immediate consequence of Theorem
3.2 0f [12. .

To prove Theoren2.5we proceed in much the same as in the discounted cost case. The
following appears as Assumpticx* in [12].

Assumption A*. AssumptionsA(1) andA(2) hold and there exists a finite S8CX, b > 0
andc > 0 such that

Zw(y)q(y\x, a) < —cw(x) + Lzeayb. (6.1)

yeX

Lemma 6.2 Assumptiom* holds forw andw?.
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Proof. Let I’ be the smallesntegersuch that for alli + j) > I' we have(s/2)w(i, j) >
(A1 + X2 —p)D + fmax{D, 1} and definep = w(i, j) wheni + j = I'. Recall from the proof
of Lemma6.1that the left hand side o6(1) is bounded by

A1+ Ay — pp—ify — jBa| D
<M+ A= p)D =B+ 5)D = (A + Ay — p)D + Bmax{D, 1} — B[(i + j) D + max{D, 1}]
= (A + Ay — pu)D + Bmax{D, 1} — Bw(i, j)
= (M + e = p) D+ fmax{D, 1} — (8/2)w(i, j) — (B/2)w(i, )
—(B/2)w(i,j) + 1y
where the last inequality holds by assumption and comptheeproof.

Consider noww?. The left hand side off( 1), with the addition of-w(i, j) for somec > 0
(to be defined later) can be written (for+ j) > 1)

MAX)E+ 7+ D)D+ 1P+ (p+iBi + jBo)[(i +j — 1)D + 1]?

+le— A+ A+ p+ 0B + 5B+ 5)D + 1]

= (M +2)[((A +7)D +1) + D + (u+ by + jB2)[((i + j)D + 1) — DJ?
+le— M+ X+ p+if+ 5B +4)D+ 1)

= (M + X)[2D((i + ) D + 1) + D*) + (u+ iy + j62)[-2D((i + j)D + 1) + D?]
+c[(i+j)D + 1]

< (M +X)2D((i+5)D + 1) + D + (u+ (i + 5)B8)[-2D((i + j)D + 1) + D]
+ (i +5)D + 1%, (6.2)

Consider the quadratic terrf;+ j)* D*(c —2[3). Thus fore < 2 and(i + j) sufficiently large,
the expression ing(2) is non-positive. The quadratic term dominates. L'dbe such that the
expression in§.2) is non-positive for(i + j) > I’ and denote the maximum of this expression
for (i + j) < I' by . The result follows. .

Proof of Theorem 2.5: The fact thatw? satisfies §.1) along with the irreducibility implies
that Assumption D of 2] holds (see the comments following Proposition 4.2 0f]]. The
theorem is now a direct application of Theorem 4.1164 [ u
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