
1

Linear Programming Based Affinity Scheduling of
Independent Tasks on Heterogeneous Computing

Systems
Issam Al-Azzoni and Douglas G. Down, Senior Member, IEEE

Abstract— Resource management systems (RMS) are an impor-
tant component in heterogeneous computing (HC) systems. One
of the jobs of an RMS is the mapping of arriving tasks onto the
machines of the HC system. Many different mapping heuristics
have been proposed in recent years. However, most of these
heuristics suffer from several limitations. One of these limitations
is the performance degradation that results from using outdated
global information about the status of all machines in the HC
system. This paper proposes several heuristics which address
this limitation by only requiring partial information in making
the mapping decisions. These heuristics utilize the solution to a
linear programming (LP) problem which maximizes the system
capacity. Simulation results show that our heuristics perform
very competitively while requiring dramatically less information.

Index Terms— distributed systems, load balancing, heteroge-
neous processors, queueing theory.

I. INTRODUCTION

Widespread availability of low-cost, high performance com-
puting hardware and the rapid expansion of the Internet and
advances in computing networking technology have led to an
increasing use of heterogeneous computing (HC) systems. An
HC system is constructed by networking various machines with
different capabilities and coordinating their use to execute a
set of tasks. Cluster computer systems are an example of HC
systems. These are rapidly gaining acceptance as the preferred
way to construct large computing platforms for applications with
extensive computer needs (see Sterling et al. [1]). Such systems
form the building blocks for grids which are becoming very
successful in managing and organizing an institution’s computing
resources (see Foster et al. [2]).

An important component of an HC system is its resource
management system (RMS) which is responsible for assigning
resources to tasks in order to satisfy certain performance require-
ments. In the HC systems considered here, the RMS consists of a
single mapper dedicated for mapping incoming tasks to machines.
The mapper maps an arriving task as soon it arrives to a machine
in the system. The mapper is assumed to only know the arrival
rates of the task classes and the execution rates for the task classes
on each machine.

The mapper uses mapping heuristics to map the arriving tasks
onto the machines of the system. This paper considers dynamic
mapping heuristics. Dynamic mapping heuristics map tasks as
they arrive, i.e., in an on-line fashion (Kim et al. [3]). On the
other hand, static mapping heuristics map tasks to machines in
an off-line fashion and know in advance which tasks are to be
executed during a given interval of time.

It is necessary for any mapping heuristic to stabilize the system
if the system can be stabilized. Furthermore, the mapping heuristic

should minimize the mean task waiting time. In addition to
guaranteeing stability and improving performance, the mapping
heuristic should minimize the amount of state information re-
quired in mapping. In large systems, mapping heuristics that
require full state information suffer from several limitations. First,
there is a significant communication overhead since the mapper
needs to communicate with a large number of machines. Also,
the synchronization overhead that results from requiring full state
information may degrade performance. Another important prob-
lem is that the supplied information can be out of date resulting
in performance degradation. As observed by Mitzenmacher [4],
this is a major limitation of heuristics which attempt to exploit
global information to balance load too aggressively.

Motivated by these requirements, we propose several mapping
heuristics that perform very competitively and verify their perfor-
mance using simulation. In particular, the Linear Programming
Based Affinity Scheduling (LPAS) heuristic achieves competitive
performance and at the same time requires less state information
than current heuristics. Furthermore, by solving an allocation LP,
the LPAS heuristic provides an explicit method to compute the
maximum capacity and to compute the allocation of machines to
classes. Our initial work on the LPAS heuristic is presented in
Al-Azzoni and Down [5] and He et al. [6]. This paper, aiming
to be a sole reference for the LPAS heuristic, includes that initial
work and extensions to it.

In this paper, we also describe other LPAS-related heuristics
which attempt to reduce further the state information required
in making mapping decisions. We also introduce the Guided-
LPAS heuristic, a modification of the LPAS heuristic which
guarantees stability of a stabilizable system. Although the LPAS
heuristic does not suffer from the root cause for instability of other
heuristics, we are unfortunately not able to prove its stability.

The organization of the paper is as follows. Section II gives
the workload model in detail and describes several mapping
heuristics. Section III introduces the LPAS heuristic and includes
simulation results that compare the performance of various map-
ping heuristics. Other LPAS-related heuristics that attempt to
reduce further the required state information for mapping are
discussed in Section IV. The Guided-LPAS heuristic is introduced
in Section V. The literature related to this work is discussed
in Section VI. Appendix A contains detailed proofs for several
results discussed in the paper.

II. PROBLEM STATEMENT

A. Workload Model

In a general HC system, there is a dedicated mapper for as-
signing incoming tasks to machines. Let the number of machines

2

in the system be M . It is assumed that the tasks are classified
into N classes. Tasks that belong to class i arrive according to
a renewal process with rate αi. Furthermore, the execution time
of a task on a machine depends on the class of the task and the
machine. Let µi,j be the execution rate for tasks of class i at
machine j, hence 1/µi,j is the mean execution time for class i
tasks at machine j. We allow µi,j = 0, which implies machine j
is physically incapable of executing class i tasks. Each task class
can be executed by at least one machine. Let α be the arrival
rate vector, where the ith element of α is αi. Also, let µ be the
execution rate matrix, having (i, j) entry µi,j . We assume that
αi > 0 for all i = 1, . . . , N . Also, given any class i, we assume
that there exists at least one machine j such that µi,j > 0. There
are further conditions on the arrival and execution time processes
that are needed for the analytic results to hold (see Appendix A).
Several techniques for classifying tasks and obtaining the arrival
and execution rates in HC systems exist (see Kontothanassis and
Goddeau [7]).

The mapping heuristics considered in this paper are immediate
mode heuristics [3]. In such heuristics, a mapping decision is
made by the mapper as soon as a task arrives. The tasks are
assumed to be independent and atomic. Each new task arriving
in the system is assigned to one of the machines immediately
upon arrival, and after that, the task can only be executed by the
machine to which it is assigned. It is assumed that there is no
queueing at the mapper and tasks are queued at the machines
to which they are assigned. With respect to local scheduling, we
assume that each machine can use any policy as long as it is
non-idling.

Dynamic mapping heuristics assume that the execution rates are
known. A task’s execution time is not known until its completion,
though the task class and thus its execution rate is known to
the mapper and the machines. Furthermore, in most of these
heuristics, the mapper uses information supplied by the machines
in making mapping decisions. Such information includes, for
instance, the machine’s expected completion time. Thus, when
a task arrives to the system, the mapper contacts the machines
whose information is needed, and subsequently, the machine
supplies the mapper with the requested information.

B. Mapping Heuristics
A mapper using the MET (minimum execution time) heuristic

assigns an incoming task to the machine that has the least
expected execution time for the task (Maheswaran et al. [8]).
Thus, when a new task of class i arrives, the mapper assigns it
to a machine j such that j ∈ arg minj′ 1/µi,j′ . Ties are broken
arbitrarily; for instance, a mapper could pick the machine with
the smallest index j when more than one machine has the least
expected execution time. The MET heuristic does not require the
machines to send their expected completion times back to the
mapper as tasks arrive, thus the MET heuristic has the advantage
of requiring limited communication between the mapper and
machines. However, this heuristic can cause severe load imbalance
to a degree that the system is unstable. For example, consider
a system with one arrival stream with rate α1 = 6, and two
machines with execution rates µ1,1 = 5 and µ1,2 = 3, respectively.
This system will suffer from load imbalance causing instability
if the MET heuristic is used, as no tasks are sent to machine 2.
It is easy to see that the system can be stabilized with the given
value of α1.

The MCT (minimum completion time) heuristic assigns an
arriving task to the machine that has the earliest expected comple-
tion time [8]. Several existing resource management systems, e.g.
NetSolve [9] and SmartNet [10], [11], use the MCT heuristic or
other heuristics that are based on the MCT heuristic. The mapper
examines all machines in the system to determine the machine
with the earliest expected completion time.

There are several limitations for the MCT heuristic. First, the
mapper requires full state information since it needs to obtain
the queue lengths of all machines in the system. Second, the
MCT heuristic suffers from its lack of any foresight about task
heterogeneity. It might assign an arriving task to a poor machine
which minimizes the task’s completion time, yet causes problems
for future arrivals. Consider the following system with M = 7 and
N = 4. We will refer to this system as System H . The arrival
and execution rates are given by α = [8.5 8.5 9.6 8.5] and

µ =

2

664

5 5.02 4.95 0.001 4.7 5.2 5.25
0.001 5.09 4.9 4.92 5 5.13 5.14
4.45 5 0.001 4.45 4.9 5 5.1
5.02 4.95 5 5.02 5.25 4.75 0.001

3

775 .

The system contains a few machines that have very poor per-
formance when executing tasks that belong to particular classes.
While such values would most likely not arise in practice, we
have chosen these values to emphasize the point that assigning
a task to a machine that is very poor executing its class may
result in significant performance degradation. Since the MCT
heuristic maps each arriving task to the machine that minimizes
its expected completion time, it may assign an arriving task of
class i to a machine j that is very poor executing class i tasks.
Since the MCT heuristic does not prevent this from happening, it
can result in very poor performance. Other heuristics, including
the LPAS heuristic, perform much better than the MCT heuristic
in such cases since they avoid mapping an arriving task to its
minimum expected completion time machine that could do better
for future task arrivals. Simulation results for System H are shown
later.

Furthermore, the tendency of the MCT heuristic to make map-
ping decisions based on the immediate marginal improvement in
completion time for an arriving task may be problematic. In fact,
using the MCT heuristic may result in having an unstable system
even though the system can be stabilized. The instability of the
MCT heuristic is demonstrated in Sharifnia [12] by considering
the following system with M = 2 and N = 4. The arrival and
execution rates are given by α = [10 10 25 40] and

µ =

2

664

0.065 0
0.06 0.06
0 0.02

0.06 0.005

3

775 , respectively.

Simulation experiments show the instability of the MCT heuris-
tic for such a system. Other heuristics, including the LPAS
heuristic, do not suffer from this limitation. In fact, the LPAS
heuristic does stabilize this system.

In order to address the limitations of the MCT heuristic, the k-
percent best (KPB) heuristic [8] identifies for each class a subset
consisting of the (kM/100) best machines based on the execution
times for the class, where 100/M ≤ k ≤ 100. Let Sk

i be the set of
the #kM/100$ machines that have the smallest expected execution
time for class i tasks. The mapper assigns an arriving class i task

3

to the machine in the subset Sk
i that has the earliest expected

completion time. Define k = #kM/100$ to be the number of
machines considered by the KPB heuristic.

The KPB heuristic does not attempt only to assign an arriving
task to a superior machine based on execution times, it also
attempts to avoid assigning an arriving task to a machine that
could do better for tasks that arrive later. As discussed earlier,
this foresight is not present in the MCT heuristic. Another
advantage of the KPB heuristic is that the mapper needs only
to communicate with a subset of the machines for each class,
rather than with all machines in the system. Thus, the mapper
requires less state information than the MCT heuristic.

While the KPB heuristic succeeds in reducing the required
state information for mapping, setting its parameter (k) may be
problematic and can only be done in an ad-hoc manner. Instability
or severe performance degradation can result if inappropriate
values for k are used. Also, the KPB heuristic maps each class
to the same number of machines, which may not be desirable.

As will be discussed in the next section, the LPAS heuristic
builds on the idea of the KPB heuristic. Instead of mapping each
class to a fixed number of machines, the LPAS heuristic maps
each class to a different set of machines based on the solution
of an allocation LP. Furthermore, by solving an allocation LP,
the LPAS heuristic provides an explicit method to compute the
maximum capacity and to compute the allocation of machines
to classes. This has the advantage of requiring dramatically less
state information while at the same time achieving competitive
performance levels. The LPAS heuristic maps each class to a
much smaller number of machines than the MCT heuristic.
Furthermore, the LPAS heuristic provides a systematic way to
choose the machines.

III. THE LPAS HEURISTIC

A. Overview
Our proposed heuristic is similar to the KPB heuristic in that

the mapper needs only to consider a subset of the machines for
each class, however, the determination of this subset requires solv-
ing a linear programming (LP) problem (Andradóttir et al. [13]).
Then, the mapper assigns the task to the machine that has the
earliest expected completion time in the subset.

The LPAS heuristic requires solving the following allocation
LP, where the decision variables are λ and δi,j for i = 1, . . . , N ,
j = 1, . . . , M (recall that µi,j and αi are the execution rates and
arrival rates for the system, respectively). The variables δi,j are
to be interpreted as the proportional allocation of machine j to
class i.

max λ

s.t.
MX

j=1

δi,jµi,j ≥ λαi, for all i = 1, . . . , N, (1)

NX

i=1

δi,j ≤ 1, for all j = 1, . . . , M, (2)

δi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . , M. (3)

The left-hand side of (1) represents the total execution capacity
assigned to class i by all machines in the system. The right-hand
side represents the arrival rate of tasks that belong to class i scaled
by a factor of λ. Thus, (1) enforces that the total capacity allocated
for a class should be at least as large as the scaled arrival rate for

that class. This constraint is needed to have a stable system. The
constraint (2) prevents overallocating a machine and (3) states
that negative allocations are not allowed.

Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . , M , be an optimal
solution to the allocation LP. The allocation LP always has a
solution, since no lower bound constraint is put on λ. However,
the physical meaning of λ∗ requires that its value be at least one.
In this case, 1/λ∗ is interpreted as the long-run utilization of the
busiest machine.

The value λ∗ can also be interpreted as the maximum capacity
of the system. We define the maximum capacity as follows.
Consider a system with given values for αi (i = 1, . . . , N) and λ∗.
If λ∗ ≤ 1, then the system is unstable. Thus, the system will be
overloaded and tasks queue indefinitely. If, however, λ∗ > 1, then
the system can be stabilized even if each arrival rate is increased
by a factor less than or equal to λ∗ (i.e., the same system with
arrival rates α′i ≤ λ∗αi, for all i = 1, . . . , N , can be stabilized).
In this case, the values {δ∗i,j}, i = 1, . . . , N , j = 1, . . . , M , can
be interpreted as the long-run fraction of time that machine j
should spend on class i in order to stabilize the system under
maximum capacity conditions. Let δ∗ be the machine allocation
matrix where the (i, j) entry is δ∗i,j .

The following theorems summarize these stability results (the
proofs are provided in Appendix A):

Theorem 1: If λ∗ > 1, then the system can be stabilized.
More specifically, the workload process converges to a steady-
state distribution as t →∞.

Theorem 2: If λ∗ < 1, then the system can not be stabilized.

The LPAS heuristic can be stated as follows. Given a system,
solve the allocation LP to find {δ∗i,j} , i = 1, . . . , N , j = 1, . . . , M .
When a new task of class i arrives, let Si denote the set of
machines whose δ∗i,j is not zero (Si = {j : δ∗i,j (= 0}). The
mapper assigns the task to the machine j ∈ Si that has the
earliest expected completion time among the subset of machines
Si. Again, ties are broken arbitrarily. Note that the LPAS heuristic
does not use the actual values for {δ∗i,j}, beyond differentiating
between the zero and nonzero elements. We must solve the
allocation LP to know where the zeros are.

The LPAS heuristic considers both the arrival rates and exe-
cution rates and their relative values in deciding the allocation
of machines to tasks. Furthermore, by solving the allocation LP,
the LPAS heuristic provides a systematic approach for setting
parameters that guarantee the stability of a stabilizable system.
This is an advantage over the KPB heuristic where figuring the
correct value for k may not be a trivial task. The KPB heuristic
maps each class to k machines independent of the class, whereas
the LPAS heuristic maps each class to a different subset of the
machines based on the solution of the allocation LP. The following
example clarifies this point and provides some intuition for the
LPAS heuristic.

Consider a system with two machines and two classes of tasks
(M = 2, N = 2). The arrival and execution rates are as follows:

α =
ˆ

2.45 2.45
˜

and µ =

»
9 5
2 1

–
.

Solving the allocation LP gives λ∗ = 1.0204 and

δ∗ =

»
0 0.5
1 0.5

–
.

4

A mapper using the LPAS heuristic maps all arriving tasks that
belong to class 1 to machine 2. At the times of their arrivals,
tasks that belong to class 2 are mapped to the machine, either
machine 1 or 2, that has the earliest expected completion time.

Even though machine 1 has the fastest rate for class 1, the
mapper does not assign any class 1 tasks to it. Since the system
is highly loaded, and since µ1,1

µ2,1
<

µ1,2
µ2,2

and α1 = α2, the
performance is improved significantly if machine 1 only executes
class 2 tasks. In fact, the performance of the LPAS heuristic is
better than that of the MCT heuristic. For this particular system,
both the MET heuristic and the KPB heuristic (with k = 1) result
in unstable systems. This is because both heuristics map class 2
tasks to machine 1 only, and the system will be unstable since
α2 > µ2,1.

In the LPAS heuristic, the mapper considers a subset of the
machines for each class. Ideally, the size of each subset should
be much smaller than M . Similar to the KPB heuristic, this has the
advantage of requiring less communication between the mapper
and the machines. Furthermore, degradation in performance due
to outdated information should be minimized. To achieve this,
the δ∗ matrix should contain a large number of elements that are
equal to zero. In fact, there could be many optimal solutions to
an allocation LP, and an optimal solution with a larger number
of zeros in the δ∗ matrix is preferred. The following proposition
gives the number of zero elements in the δ∗ matrix that could be
achieved (the proof can be found in [13]):

Proposition 1: There exists an optimal solution to the alloca-
tion LP with at least NM +1−N −M elements in the δ∗ matrix
equal to zero.

Ideally, the number of zero elements in the δ∗ matrix should
be NM + 1 − N − M . If the number of zero elements is
greater, the LPAS heuristic would be significantly restricted in
shifting workload between machines resulting in performance
degradation. Also, solutions that result in degenerate cases should
be avoided. For example, if the δ∗ matrix contains no zeros at all,
then the LPAS heuristic reduces to the MCT heuristic. Throughout
the paper, we use the unique optimal solution in which the δ∗

matrix contains exactly NM + 1−N −M zeros.
The LPAS heuristic can be considered as a dynamic mapping

heuristic. As the heuristic only involves solving an LP, it is suited
for scenarios when machines are added and/or deleted from the
system. On each of these events, one needs to simply solve a new
LP and continue with the new values.

B. Simulation Results
1) Overview: We use simulation to compare the performance

of the mapping heuristics. The task arrivals are modeled by
independent Poisson processes, each with rate αi, i = 1, . . . , N .
Several distributions are used for execution times. Unless other-
wise stated, the execution times are exponentially distributed with
rates µi,j , where 1/µi,j represents the mean execution time of a
task of class i at machine j, i = 1, . . . , N , j = 1, . . . , M .

Each simulation experiment models a particular system, char-
acterized by the values of M , N , αi, and µi,j , i = 1, . . . , N ,
j = 1, . . . , M . Each experiment simulates the execution of the
corresponding system for 20,000 time-units. Each experiment
is repeated 30 times. All confidence intervals are at the 95%-
confidence level.

There are several performance metrics that could be used to
compare the performance of the mapping heuristics [8]. We have

chosen the long-run average number of tasks in the system, Q̄,
as a metric for performance comparison. This includes the tasks
that are waiting for execution at a particular machine and tasks
that are executing.

Table 1 lists simulation results for different systems (these
results appear in [5]). These systems are discussed in Sections III-
B.2 to III-B.6. For each system, the table shows the 95%-
confidence interval for Q̄ when the corresponding mapping heuris-
tic is used. If a system becomes unstable due to the mapping
heuristic used by its mapper, the table just indicates that the
system is unstable. Since the MET heuristic results in unstable
systems in most of the systems in Table 1, we do not include it
here. The table also shows the results of using the KPB heuristic
with different values for k.

In these simulation experiments, we assume that a First-Come-
First-Serve (FCFS) scheduling policy is used by the machines.
Thus, in this case, the expected completion time of a class i
arrival at machine j is given by

1
µi,j

+
NX

i′=1

Qi′,j

µi′,j
,

where Qi′,j is the number of tasks of class i that are waiting or
executing at machine j, at the time of the task arrival.

2) Small Systems: System A in Table 1 is the system discussed
in Section III-A. This is a highly loaded system as shown by the
large values for Q̄. As shown in the table, the MCT heuristic
performs poorly with respect to the LPAS heuristic. This is
because the MCT heuristic assigns some class 1 tasks to machine
1, although it is more advantageous to dedicate machine 1 for
class 2 tasks.

System B is another small system, where M = 2 and N = 2.
The arrival and execution rates are as follows:

α =
ˆ

5 8
˜

and µ =

»
8 3
4 10

–
.

Solving the allocation LP gives λ∗ = 1.3333 and

δ∗ =

»
0.8333 0
0.1667 1

–
.

As indicated by the nonzero elements of the δ∗ matrix, the
LPAS heuristic assigns all class 1 tasks to machine 1. Thus,
machine 2 becomes dedicated to execute class 2 tasks. This results
in improved performance since, in this case, class 2 tasks have a
higher arrival rate and they run much faster on machine 2 than
on machine 1.

3) Large Systems: System C1 is a large system with M = 30
and N = 3. The machines are grouped into four groups, and each
group consists of machines with identical performance. Thus, if
two machines are in the same group, then they have the same
execution rates. Table 2 shows the execution rates of the groups.

Table 2. Execution rates for System C1

Group
Task P Q R S

1 8 4 4 4
2 1 4 1 2
3 4 2 8 4

Groups P , Q, R, and S, consist of 10 machines, 9 machines,
6 machines, and 5 machines, respectively. As Table 2 shows, the
groups vary in performance. For instance, a machine in group

5

Table 1. Comparison of the Mapping Heuristics

System MCT KPB LPAS
k = 1

A (85.68, 110.23) Unstable (62.56, 82.01)
k = 1

B (20.05, 21.10) (5.65, 5.73) (5.21, 5.26)
k = 14

C1 (53.99, 54.98) (75.26, 79.13) (47.39, 47.72)
k = 2

(14.75, 14.89)
k = 3

D (22.68, 23.21) (11.00, 11.04) (10.55, 10.59)
k = 5

E (27.71, 28.20) (51.65, 55.60) (36.54, 37.07)
k = 4

F1 (19.09, 19.44) (20.77, 21.07) (28.71, 29.05)
k = 4

F2 (46.36, 49.49) (73.44, 81.75) (34.27, 34.89)
k = 4

G (37.91, 40.43) (42.21, 43.54) (42.05, 43.09)
k = 5

H (3648.48, 4086.54) (888.62, 1319.97) (131.08, 150.15)
k = 14

I1 (64.20, 66.32) (86.65, 94.15) (50.83, 38)
k = 14

I2 (41.56, 41.82) (53.69, 55.19) (40.57, 40.69)

P is twice as fast as a machine in group S on tasks of class 1,
however, for tasks of class 2, the opposite is true. The arrival rates
are given by α = [45 45 40].

Since System C1 consists of some identical machines, there are
an infinite number of optimal solutions to the allocation LP. To
better capture machine homogeneity of the system, it is desirable
to use the unique optimal solution in which machines that belong
to the same group have identical values for δ∗i,j . To do this, we
solve the allocation LP corresponding to the following system:

N = 3, M = 4, α = [45 45 40], and µ =

2

4
80 36 24 20
10 36 6 10
40 18 48 20

3

5 .

Solving the modified allocation LP gives λ∗ = 1.1146 and

δ∗ =

2

4
0.6270 0 0 0
0.3730 1 0.0712 1

0 0 0.9288 0

3

5 .

Thus, for System C1, we use the δ∗ matrix represented in Table 3.
In this particular solution, machines that belong to the same
group have identical values for δ∗i,j . Note that the δ∗ matrix has
44 elements that are equal to zero. However, note that based
on Proposition 1, there exists another optimal solution to the
allocation LP with 58 elements in the δ∗ matrix that are equal to
zero.

Table 3. The machine allocation matrix for System C1

Group
Task P Q R S

1 0.6270 0 0 0
2 0.3730 1 0.0712 1
3 0 0 0.9288 0

As shown in Table 1, the LPAS heuristic achieves the best
results. Note that the KPB heuristic is unstable for k < 14.

4) Task and Machine Heterogeneity: Systems D through G
model different kinds of system heterogeneity. Machine het-
erogeneity refers to the average variation along the rows, and
similarly task heterogeneity refers to the average variation along
the columns (see Armstrong [14]). Heterogeneity can be classified
into high heterogeneity and low heterogeneity. Based on this,
we simulate the following four categories for heterogeneity [14],
[8]: (a) high task heterogeneity and high machine heterogeneity
(HiHi), (b) high task heterogeneity and low machine heterogeneity
(HiLo), (c) low task heterogeneity and high machine hetero-
geneity (LoHi), and (d) low task heterogeneity and low machine
heterogeneity (LoLo).

System D models a HiHi system with M = 7 and N = 4. The
arrival and execution rates are given by α = [12.5 12 12.5 12]
and

µ =

2

664

4.5 2 9.5 6.2 10.25 2.25 3.95
6.2 4.5 6 2 4.2 5.9 10.25
9.5 6.5 4 10 5.9 2.25 3.95
2.25 10 2 3.95 1.75 10 1.75

3

775 .

Solving the allocation LP gives λ∗ = 1.3449 and

δ∗ =

2

664

0 0 0.6907 0 1 0 0
0.2830 0 0.3093 0 0 0.3861 1
0.7170 0 0 1 0 0 0

0 1 0 0 0 0.6139 0

3

775 .

For System D, the LPAS heuristic outperforms the other
heuristics. It maps the tasks of each class to at most two machines,
except for class 2 tasks that are mapped to four machines. The
LPAS heuristic exhibits better performance than the KPB heuristic
with k = 3.

System E is a LoHi system. The system contains 7 machines
and 4 classes. The arrival and execution rates are given by α =

6

[10 10 8 8] and

µ =

2

664

2.2 7 10.25 1 5.7 0.5 12
1.95 7.05 9.78 0.95 5.65 0.56 11.85
2 7.25 10.02 0.98 5.75 0.67 11.8

2.05 6.75 9.99 1.02 5.82 0.49 12.05

3

775 .

Solving the allocation LP gives λ∗ = 1.0844 and

δ∗ =

2

664

1 0 0.8433 0 0 0 0
0 0 0 0 0 0 0.9151
0 1 0.0754 0 0 1 0
0 0 0.0813 1 1 0 0.0849

3

775 .

The MCT heuristic has the best performance for System E.
This is not an unexpected result as suggested by the following
argument. Due to the very low task heterogeneity of system E,
one can think of it as a system with one class of arriving tasks
(α = [36]) and the execution rate of each machine is the average
of the execution rates of the four classes in System E on the
machine, µ = [2.05 7.0125 10.01 0.9875 5.73 0.555 11.925]. In
this case, assigning an arriving task to the machine that has the
minimum expected completion time (the MCT heuristic) is the
best strategy. In fact, solving the allocation LP corresponding to
the modified system above results in the following value for δ∗:
[1 1 1 1 1 1 1]. Thus, in this case, the LPAS heuristic reduces to
the MCT heuristic.

Even though the MCT heuristic is the best heuristic for System
E, the LPAS heuristic has the advantage of mapping each class
to a smaller number of machines. The LPAS heuristic performs
much better than the KPB heuristic even for k = 5. The KPB
heuristic is unstable for k < 5.

Systems F1 and F2 are HiLo systems (M = 7, N = 4). Both
have the same execution rates and only differ in the arrival rate
vector α. The arrival rate vector for System F1 is α = [4 8 10 10],
and for System F2 it is given by α = [7 7 7 7]. For both systems,
the execution rate matrix is given by

µ =

2

664

2 2.5 2.25 2 2.2 1.75 2.25
4.5 4 4.2 4 3.8 3.9 3.95
6 6.2 6.25 6 5.75 5.9 6.05
10 10.25 10.5 9.5 10.25 10.25 10

3

775 .

For System F1, solving the allocation LP gives λ∗ = 1.1331 and

δ∗ =

2

664

0 1 0 0 0.8946 0 0.0285
1 0 1 0.0911 0 0 0
0 0 0 0.9089 0 0 0.9715
0 0 0 0 0.1054 1 0

3

775 .

For System F2, solving the allocation LP gives λ∗ = 1.0798 and

δ∗ =

2

664

0 1 0.2704 0 1 0 1
1 0 0.7282 0 0 0 0
0 0 0.0014 1 0 0.2626 0
0 0 0 0 0 0.7374 0

3

775 .

Due to the very low machine heterogeneity of both systems,
one can think of them as consisting of identical machines. The
LPAS heuristic achieves the best performance in many such
systems as in F2.

System G is a LoLo system with M = 7 and N = 4. The

arrival and execution rates are given by α = [8 9 7 10] and

µ =

2

664

5 5.05 4.95 4.98 4.7 5.2 5.25
5.25 5.09 4.9 4.92 5 5.13 5.14
4.45 5 4.9 4.45 4.9 5 5.1
5.02 4.95 5 5.02 5.25 4.75 5

3

775 .

Solving the allocation LP gives λ∗ = 1.0557 and

δ∗ =

2

664

0 0 0 0 0 1 0.6182
1 0.8352 0 0 0 0 0
0 0.1648 0.9426 0 0 0 0.3818
0 0 0.0574 1 1 0 0

3

775 .

For System G, the MCT heuristic has slightly better perfor-
mance than the other heuristics. The KPB heuristic (k = 4) has
performance close to that of the LPAS heuristic, however, the
mapper is required to obtain the expected completion times from
four machines at each task arrival as compared to at most three
machines in the case of the LPAS heuristic.

5) Special Systems: Consider System H defined in Section II-
B. As explained earlier, since the MCT heuristic does not have any
foresight on task heterogeneity, it may assign an arriving task to a
machine that minimizes the task’s expected completion time, yet
it is very poor executing the task’s class. This results in significant
performance degradation as shown in Table 1. The LPAS heuristic
is the best heuristic for System H . The KPB heuristic performs
poorly and is only stable for k ≥ 5. For k < 5, instability results.
For k ≥ 5, the system becomes stable, however the performance
is poor.

6) Other Execution Time Distributions: To test the effect of
execution time distribution on the performance of the mapping
heuristics, all of the previous experiments were re-run with
non-exponential execution time distributions. In particular, two
distributions were used to study lower and higher variances than
the exponential case: the first is a constant execution time of size

1
µi,j

for machine j executing class i tasks, and the second is a
hyper-exponential distribution with mean 1

µi,j
for the execution

times and twice the variance as the exponential case.
Our results indicate that the relative performance of the heuris-

tics is not affected by the execution time distribution. System
I1 has the same configuration as system C1, but with a hyper-
exponential execution time distribution. System I2 also has the
same configuration as system C1, but with constant execution
times. Table 1 shows the performance of the different mapping
heuristics for Systems I1 and I2. For the KPB heuristic, both
systems are unstable for k < 14.

IV. OTHER LPAS-RELATED HEURISTICS

A. Overview

In this section, we describe other LPAS-related heuristics which
attempt to reduce further the state information required in making
mapping decisions.

To compare mapping heuristics in terms of state information
required for mapping, we use the discount metric defined in [6].
Let Ns be the average number of machines from which a heuristic
acquires information for each arrival. The discount of the average
required state information (over full information) for a mapping
decision is then defined by

Discnt =

„
1− Ns

M

«
× 100%. (4)

7

Now, consider the heuristics introduced in Section II-B. For
the MET heuristic, the mapper need not contact any machine
in making mapping decisions and thus Ns = 0. For the MCT
heuristic, assuming that all µi,j are positive, the mapper needs
to acquire state information from all of the machines and thus
Ns = M . For the KPB heuristic, the mapper needs to acquire
state information from k machines (assuming that all µi,j are
positive). For the LPAS heuristic, the average number of machines
from which the mapper acquires information for each arrival is

Ns =
NX

i=1

αi

α̃
|Si|, (5)

where α̃ =
PN

i=1 αi.
1) The LPAS−2/k Heuristic: One way to reduce further the

state information required in making mapping decisions is to
choose for each arrival of class i just two machines from the
set Si and then compare that pair in terms of the expected
completion times. The LPAS−2/k heuristic is stated as follows:
A class i arrival is mapped to one of the two machines (j1, j2)
chosen from Si which has shorter expected completion time. If
|Si| > 2, the two machines j1 and j2 are chosen with probabilities
pj1 =

δ∗i,j1
µi,j1

λ∗αi
and pj2 =

δ∗i,j2
µi,j2

λ∗αi−δ∗i,j1
µi,j1

, respectively.
The average number of machines from which the LPAS−2/k

heuristic acquires state information for each arrival is given by

Ns = 2
X

i:|Si|>1

αi

α̃
+

X

i:|Si|=1

αi

α̃
.

It is noted that, in the worst case, the LPAS−2/k heuristic
acquires state information from two machines for each arrival,
and thus the discount of the average required state information
is (M − 2)/M × 100%. This implies that the discount increases
as the number of machines grows, independently of the structure
of δ∗. Note, however, that even though the LPAS−2/k heuristic
requires less state information than the LPAS heuristic, one needs
to know the values for δ∗i,j (rather than just whether they are zero
or not).

Consider a system with N = 1 and M arbitrary. Assume that
the execution times are exponentially distributed and µ1,j = 1
for all j = 1, . . . , M . Also, assume that the arrival process is
Poisson with rate Mα1, where α1 < 1. In this case, δ∗1,j = 1 for
all j = 1, . . . , M . Thus, using the LPAS−2/k heuristic, an arrival
randomly (with equal probabilities) chooses two of the machines
and joins the queue of the machine with the shorter queue length.
Mitzenmacher [15] analyzed such a system and found that when
α1 approaches 1, there is an exponential improvement in the
mean waiting time (over choosing only one machine randomly),
while increasing the number of choices for an arrival results in
only a constant improvement over two choices. This suggests
that a similar degree of improvement might be expected for the
LPAS−2/k heuristic over a static mapping heuristic, although
the “power of two choices” has not been analyzed rigorously for
heterogeneous systems [6].

2) The LP–Static Heuristic: The LP–Static heuristic requires
no state information in making mapping decisions. We define it
here to compare against other heuristics which take into account
state information. The heuristic is stated as follows. Class i tasks
are mapped to machine j with probability

pi,j =
δ∗i,jµi,j

λ∗αi
. (6)

The LP–Static heuristic maximizes system capacity in the long
term, but may suffer from poor performance since it does not
do any short-term shifting of workload among the machines. In
Appendix A, it is proven that the LP–Static heuristic is guaranteed
to stabilize a stabilizable system. However, the heuristic generally
achieves poor performance. In Section V, we introduce the
Guided-LPAS heuristic and prove that it is guaranteed to sta-
bilize a stabilizable system. The Guided-LPAS heuristic achieves
competitive performance levels with the LPAS heuristic.

B. Simulation Results
We use System C2 which models a real cluster system [7]

(for details, see He [16]) to compare the LPAS-related heuris-
tics. System C2 is a medium size system with 5 task classes
and 30 machines. The machines are partitioned into 6 groups,
machines within a group are identical. Groups T, U, V, W,
X, and Y, consist of 2 machines, 6 machines, 7 machines, 7
machines, 4 machines, and 4 machines, respectively. The ex-
ecution rates are shown in Table 4. The arrival rate vector is
α = [204.10 68.87 77.63 5.01 10.43].

Table 4. Execution rates for System C2

Group
Task T U V W X Y

1 16.7 24.8 24.2 29 25.6 48.3
2 30.4 48.3 77.7 83.6 135.9 144.9
3 18.9 24.2 48.3 45.8 72.5 72.5
4 3 3 7.6 7.6 8.3 8.7
5 1 1.1 3 2.9 3 3

As done for System C1 (Section III-B.3), we solve the alloca-
tion LP corresponding to the following system:

N = 5, M = 6, α = [204.10 68.87 77.63 5.01 10.43], and

µ =

2

66664

33.4 148.8 169.4 203 102.4 193.2
60.8 289.8 543.9 585.2 543.6 579.6
37.8 145.2 338.1 320.6 290 290
6 18 53.2 53.2 33.2 34.8
2 6.6 21 20.3 12 12

3

77775
.

Solving the modified allocation LP gives λ∗ = 2.4242 and

δ∗ =

2

66664

1 1 0 0.5881 0 1
0 0 0 0 0.3071 0
0 0 0 0 0.6489 0
0 0 0 0.2009 0.0439 0
0 0 1 0.2111 0 0

3

77775
.

Thus, for System C2, we use the δ∗ matrix in Table 5. In this
particular solution, machines that belong to the same group have
identical values for δ∗i,j . Note that the number of nonzero elements
in the δ∗ matrix is 52. Using the LPAS heuristic, the discount of
the average required state information for a mapping decision
is 58%. On the other hand, using the LPAS–2/k heuristic the
discount is 94%.

Table 5. The machine allocation matrix for System C2

Group
Task T U V W X Y

1 1 1 0 0.5881 0 1
2 0 0 0 0 0.3071 0
3 0 0 0 0 0.6489 0
4 0 0 0 0.2009 0.0439 0
5 0 0 1 0.2111 0 0

8

Table 6 shows the simulation results for System C2. As the
table shows, the LPAS heuristic achieves the best results. The
LPAS−2/k heuristic has worse performance than that achieved
by the LPAS heuristic, yet it uses less state information. The
performance degradation is not large (significantly better than the
LP–Static heuristic).

Table 6. Simulation Results for System C2

LP–Static (24.25, 24.29)
MCT (11.45, 11.46)
LPAS (11.32, 11.33)

LPAS−2/k (14.01, 14.02)

V. THE GUIDED-LPAS HEURISTIC

Consider the MCT heuristic. Stolyar [17] showed that it does
not minimize system workload in heavy traffic. Sharifnia [12]
showed that it may not stabilize the system even if the system can
be stabilized. He attributed this to its greedy use of information
resulting in assigning tasks to the “wrong” machines persistently
and thus causing instability. An important question is: with the
restrictions of the LPAS heuristic, is it true that the LPAS heuristic
is guaranteed to stabilize a stabilizable system (i.e., a system
where the solution to the allocation LP is λ∗ > 1)?

Even though our simulation experiments have failed to find a
stabilizable system that is not stabilized by the LPAS heuristic,
we are not able to prove the stability of the LPAS heuristic. This
is because of the difficulty of finding an expression for the actual
machine allocations achieved by the LPAS heuristic. However,
we are confident of its stability as it avoids assigning tasks to
the “wrong” machines by using task heterogeneity to provide
foresight. Thus, it does not suffer from the root cause for the
instability of the MCT heuristic. If one is still concerned about
stability, we give the Guided-LPAS heuristic and give a proof for
its stability.

The Guided-LPAS heuristic is guaranteed to stabilize a stabi-
lizable system. It is a modification of the LPAS heuristic such
that, over time, target (reference) execution capacities allocated
for individual task classes on each machine are achieved. These
targets are found from the solution of the allocation LP. In
particular, the target execution capacity allocated by machine j

for class i is δ∗i,jµi,j

λ∗ .
Let πi,j be the target mapping ratio of class i tasks to machine

j such that the target execution capacity reference levels are
achieved (i.e., πi,j =

δ∗i,jµi,j

λ∗αi
). The Guided-LPAS heuristic uses

the LPAS heuristic as long as the actual rate at which class i tasks
are mapped to machine j is not too far from its target level πi,j ,
or equivalently, the actual execution capacity levels are not far
from their targets.

The Guided-LPAS heuristic can be stated as follows. Let αi,j(t)
denote the number of class i tasks assigned to machine j in [0, t].
Let αi(t) denote the number of class i tasks that arrived during
[0, t]. An arrival of a class i task at time t is mapped to a machine
j for which: (i) the task’s expected completion time is minimized,
(ii) δ∗i,j (= 0, and (iii) αi,j(t

−) < πi,jαi(t) + Ci,j
√

t, where Ci,j

is a nonnegative but otherwise arbitrary constant. Note that since
at any class i arrival time t, αi,j(t

−) < αi(t) and Ci,j ≥ 0,
j = 1, . . . , M , there is always at least one machine satisfying
condition (iii), and therefore the heuristic is well defined.

The Guided-LPAS heuristic attempts to achieve the short-term
advantages attained by the LPAS heuristic. However, it employs

an oversight control that achieves target execution capacity ref-
erence levels in the long run. This ensures the stability of the
heuristic while achieving good performance levels. The stability
result for the Guided-LPAS heuristic is stated in the following
theorem (the proof is provided in Appendix A):

Theorem 3: The Guided-LPAS heuristic stabilizes a stabiliz-
able system. More specifically, if the system is stabilizable and
the mapper uses the Guided-LPAS heuristic, then the workload
process converges to a steady-state distribution as t →∞.

Our simulation experiments indicate that the oversight control
mechanism is seldom used. For instance, consider the system
defined in Section II-B to show the instability of the MCT
heuristic. Setting Ci,j = 1, i = 1, . . . , N , j = 1, . . . , M , and
simulating the system under the Guided-LPAS heuristic, we
observe that the number of times condition (iii) is violated is
zero.

In Section IV, we introduced a variant of the LPAS heuris-
tic which results in a further reduction of the state informa-
tion required for mapping. We referred to this heuristic as the
LPAS−2/k heuristic. Here, we modify the LPAS−2/k heuris-
tic such that stability is guaranteed for stabilizable systems.
The resulting heuristic is referred to as the Guided-LPAS−2/k
heuristic and is defined as follows. Let Ti(t) = {j| δ∗i,j (= 0
and αi,j(t

−) < πi,jαi(t) + Ci,j
√

t}. A class i arrival at time
t is mapped to one of the two machines (j1, j2) chosen from
Ti(t) such that the arrival joins the machine with the minimum
expected completion time. If |Ti(t)| > 2, the two machines j1

and j2 are chosen with probabilities pj1 =
δ∗i,j1

µi,j1P
j∈Ti(t) δ∗i,jµi,j

and

pj2 =
δ∗i,j2

µi,j2
(
P

j∈Ti(t) δ∗i,jµi,j)−δ∗i,j1
µi,j1

, respectively.
The following theorem states the stability result for the Guided-

LPAS−2/k heuristic (the proof is provided in Appendix A):

Theorem 4: The Guided-LPAS−2/k heuristic stabilizes a sta-
bilizable system. More specifically, if the system is stabilizable
and the mapper uses the Guided-LPAS−2/k heuristic, then the
workload process converges to a steady-state distribution as t →
∞.

VI. RELATED WORK

The problem of mapping tasks onto machines in HC systems
is an extremely active field (for example, see Braun et al. [18]
and [3]). In the literature, several authors refer to the mapping of
tasks onto machines as scheduling.

Several mapping heuristics are described and compared in [8].
The model assumptions in [8] and our assumptions for the HC
system are identical. However, the authors in [8] do not group
tasks into classes and they assume that the expected execution
time of every arriving task is known on each machine. This can be
unrealistic in typical HC systems. On the other hand, we assume
that the tasks are grouped into classes and only the arrival rates of
each class’s tasks and the execution rates of each machine for each
class are known. This assumption is made in several models of
cluster and grid environments (such as Franke et al. [19] and [7]).

In [7], the performance of several scheduling algorithms is
examined on a real-world workload. One of these algorithms is
similar to the MCT (Minimum Completion Time) algorithm [8].
Another algorithm is a variation on the MCT algorithm that
attempts to minimize completion time while taking affinity effects

9

into account. Experimental results show that varying the MCT
algorithm to take affinity effects into account exhibits improved
performance over the MCT algorithm [7].

Several dynamic mapping heuristics are proposed and com-
pared in [3] for HC systems in which tasks have priorities and
multiple soft deadlines. These heuristics are batch mode heuris-
tics, as opposed to the immediate mode heuristics considered
here. Immediate mode heuristics map an arriving task as soon
as it arrives, whereas batch mode heuristics consider a subset
of tasks for mapping. The workload model in [3] is identical to
our workload model with the addition of priorities and deadlines
associated with tasks.

Ansell et al. [20] develop a class of policies for systems
having the same workload model. Such policies are based on
the application of a policy improvement step to an optimal static
policy. However, these policies are computationally intensive and
may not scale well. In fact, only a small system with N = 2
and M = 2 is considered in their numerical study. Another
limitation is that there is no attempt to reduce the amount of
state information required in mapping. Thus, the mapper needs
to obtain full state information at every mapping event.

Another heuristic is suggested in Glazebrook et al. [21]. The
heuristic is applicable to systems having an identical workload
model to the model considered here. However, the mean execution
time of a task depends only on the machine (i.e., for a machine
j, µi,j = µj , ∀i ∈ I). Furthermore, machines may not be
permanently available for service. Similar to [20], such a heuristic
computes an index for each machine at every state of the system
and thus may not scale to large systems.

Our model for an HC system has been studied in the context
of queueing analysis. The MCT heuristic is a variation on the
MinDrift rule which is shown to perform well in heavy traffic
scenarios (see [17]). Wasserman et al. [22] introduce a processor
allocation policy which corresponds to the MCT heuristic.

VII. CONCLUSION

The main contribution of the paper is the proposal of the
LPAS mapping heuristic for heterogeneous computing systems.
The LPAS heuristic utilizes the solution to an allocation LP
in making mapping decisions. By solving an allocation LP, the
LPAS heuristic provides an explicit method to compute the
maximum capacity and to compute the allocation of machines
to classes. This has the advantage of requiring dramatically less
state information while at the same time achieving competitive
performance levels. It does not suffer from the limitations of other
mapping heuristics, namely the limited use of information about
task heterogeneity (as in the case of the MCT heuristic) and the
ad-hoc manner for setting parameters (as in the KPB heuristic).
Furthermore, we have introduced two modifications to the LPAS
heuristic. First, the LPAS−2/k heuristic significantly reduces the
state information required in mapping. Second, the Guided-LPAS
heuristic is guaranteed to stabilize a stabilizable system.

We note that there has been little work done in characterizing
actual HC system workloads. Hence, we believe that there is
a need to develop a benchmark framework which characterizes
actual workloads and can be used to compare the different
heuristics in terms of several performance metrics (for example,
see the work of Li et al. [23]). Also, the main issue addressed
in the paper is dealing with heterogeneity of HC systems within
the context of resource management. This work does not include

other factors such as communication delay, data transfer costs,
heterogeneous network bandwidths, and network topologies. We
plan to incorporate some of these as part of our future work,
however we believe that the basic framework presented here can
be adapted to such settings.

A related open question is to analyze the robustness of the
LPAS heuristic. Often, HC systems operate in an environment
with a large degree of uncertainty (see Smith et al. [24]). In
this context, robustness can be defined as the degree to which a
system can function correctly in the presence of parameter values
different from those assumed (Ali et al. [25]). A number of papers
have studied robustness in HC systems, including [25], Mehta et
al. [26], Shestak et al. [27], and [24]. We believe that the solution
to the allocation LP is inherently robust and thus we expect the
LPAS heuristic to have robustness advantages over other existing
heuristics for HC systems.

APPENDIX A
Here, we apply the fluid limit methodology in proving several

stability results. Our analysis will involve a formal limiting fluid
model for the system. This is done by describing the system as
a Markov process and performing a scaling in time and space
that allows the use of law of large numbers results, leading
to a deterministic model where the flow through the system is
continuous (fluid) rather than discrete (tasks). The use of fluid
model techniques for characterizing stability is a well established
methodology: see, for example, the work of Chen [28], Chen and
Yao [29], Dai [30], [31], and Dai and Meyn [32].

First, we define the system dynamics of the queueing network
corresponding to our workload model. Class i tasks arrive via
an arrival process with independent and identically distributed
(i.i.d.) interarrival times {ξi(n)} where αi = 1/E[ξi(1)]. Also, let
ηi,j(n) denote the execution time for the nth class i task executed
at machine j, where µi,j = 1/E[ηi,j(1)] if machine j can execute
class i tasks, and µi,j = 0 otherwise. We assume that the sequence
{ηi,j(n)} is i.i.d. for each i and j. Let Ai(t) be the residual
interarrival time for class i tasks at time t. Then, the variable
Ei(t) is the number of class i tasks that arrive in (0, t] and

Ei(t) = max{n ≥ 0 : Ai(0) + ξi(1) + · · · + ξi(n− 1) ≤ t},

where the maximum of the empty set is defined to be zero.
Let Ti,j(t) be the fraction of time that machine j spends

executing class i tasks in (0, t]. Note that the functions Ti,j(t) are
determined by the mapping heuristic and the scheduling policy of
machine j. Let Tj(t) =

PN
i=1 Ti,j(t) represent the total allocation

of machine j (i.e., the fraction of time it is busy).
Define Wi,j(t) as the cumulative amount of time that it takes

machine j to execute class i tasks present in its queue at time t.
Thus, Wi,j(t) represents the class i workload of machine j at time
t. We also define Qi,j(t) as the total queue length of class i tasks
at machine j at time t. Let αi,j(t) be the total number of class
i tasks assigned by the mapping heuristic to machine j in (0, t].
With the definitions above, we are now able to give an expression
for the evolution of Wi,j(t), i = 1, . . . , N, j = 1, . . . , M ,

Wi,j(t) =

Qi,j(0)+αi,j(t)X

n=1

ηi,j(n)− Ti,j(t)

Second, we construct a Markov process X for the system. For
any of the mapping heuristics discussed in this paper,

X(t) := (Wi,j(t), Ai(t), Yj(t) : i = 1, . . . , N, j = 1, . . . , M)

10

is a Markovian state evolving on

RN×M
+ × RN

+ × RN×M
+ .

The process X may be shown to have the strong Markov property.
Let w = Wi,j(0). Suppose that the function (W i,j(t), T i,j(t) :

i = 1, . . . , N, j = 1, . . . , M) is a limit point of the functions
(w−1Wi,j(wt), w−1Ti,j(wt) : i = 1, . . . , N, j = 1, . . . , M) when
w → ∞. We call (W i,j(t), T i,j(t) : i = 1, . . . , N, j = 1, . . . , M)
a fluid limit of the system.

We are now ready to describe the fluid model corresponding
to our workload model. Let (W i,j(t), T i,j(t) : i = 1, . . . , N and
j = 1, . . . , M) be a fluid limit for the system. Define αi,j as
limt→∞

αi,j(t)
t , i = 1, . . . , N, j = 1, . . . , M , assuming the limit

exists (for the mapping heuristics we are concerned with, αi,j

does exist). For any mapping heuristic, every fluid limit satisfies
the following set of conditions (for all i = 1, . . . , N and j =
1, . . . , M):

W i,j(t) = W i,j(0) +
αi,jt

µi,j
− T i,j(t); (7)

W i,j(t) ≥ 0; (8)

T i,j(0) = 0 and T i,j(·) is nondecreasing; (9)

0 ≤
NX

i=1

d
dt

T i,j(t) ≤ 1. (10)

The derivatives above exist almost everywhere, as T i,j(t) is
Lipschitz for all i, j. From this point on, derivatives will be
understood to be taken on the condition that they exist.

The conditions (7)-(10) do not completely specify the fluid
limits, and there are other conditions on T i,j(t). The complete
set of conditions is known as the fluid model (see Theorem 2.3.2
of [30]). A fluid solution refers to any solution to the fluid model
equations.

The fluid model is said to be stable if there exists a fixed
time t′ > 0 such that W i,j(t) = 0, t > t′, i = 1, . . . , N, j =
1, . . . , M , for any fluid solution. The fluid model is said to
be (weakly) unstable if there exists a t′ > 0 such that for
every solution of the fluid model with

PN
i=1

PM
j=1 W i,j(0) = 0,

PN
i=1

PM
j=1 W i,j(t

′) (= 0. Analyzing the stability region of the
deterministic fluid model defined above allows us to characterize
the maximum capacity of the actual system.

Proof: [Theorem 1]
Consider the LP–Static heuristic. If λ∗ > 1, we show that the
LP–Static heuristic is guaranteed to stabilize the system. The LP–
Static heuristic randomly maps tasks to machines according to
probabilities pi,j =

δ∗i,jµi,j

λ∗αi
, i = 1, . . . , N, j = 1, . . . , M .

Let Wj(t) denote the total workload at machine j at time t.
Define W j(t) as a limit point of the function w−1Wj(wt) as
w →∞, j = 1, . . . , M . Then,

W j(t) =
NX

i=1

W i,j(t).

Note that if W j(t) > 0, then it must be true that d
dtT j(t) = 1.

Hence, if W j(t) > 0, then

d
dt

W j(t) =
α1,j

µ1,j
+ · · · +

αN,j

µN,j
− d

dt
T 1,j(t)− · · ·− d

dt
TN,j(t)

=
α1,j

µ1,j
+ · · · +

αN,j

µN,j
− 1.

Since using the LP–Static heuristic as a mapping heuristic results
in αi,j = αipi,j =

δ∗i,jµi,j

λ∗ , i = 1, . . . , N, j = 1, . . . , M , it must
be true that

d
dt

W j(t) =
δ∗1,j

λ∗
+ · · · +

δ∗N,j

λ∗
− 1

=

PM
j=1 δ∗i,j
λ∗

− 1

< 0 since
MX

j=1

δ∗i,j ≤ 1 and λ∗ > 1.

Thus, if W j(t) > 0, then d
dtW j(t) < 0 which implies that there

exists a fixed time t′ > 0 such that W j(t) = 0, and hence
W i,j(t) = 0, i = 1, . . . , N, j = 1, . . . , M , for all t > t′. Hence,
the fluid model is stable and the result follows from Theorem 4.2
in [31].

Proof: [Theorem 2]
Assume that the system can be stabilized. Hence, the correspond-
ing fluid model is stable i.e., there exists a fixed time t′ > 0 such
that W i,j(t) = 0, t > t′, i = 1, . . . , N, j = 1, . . . , M , for any fluid
solution. Choose s > t′. Then, d

dtW i,j(s) = 0, i = 1, . . . , N, j =
1, . . . , M . Also, let d

dtT i,j(s) = δi,j , i = 1, . . . , N, j = 1, . . . , M .
Condition (7) implies (after taking the derivative of both terms
and substituting s for t),

αi,j

µi,j
− δi,j = 0, for all i = 1, . . . , N, j = 1, . . . , M.

Thus,

0 = αi,j − δi,jµi,j , for all i = 1, . . . , N, j = 1, . . . , M.

Summing over j,

0 = αi −
MX

j=1

δi,jµi,j , for all i = 1, . . . , N.

Thus, the following constraints hold ((12) and (13) follow from
(10)):

MX

j=1

δi,jµi,j ≥ αi, for all i = 1, . . . , N, (11)

NX

i=1

δi,j ≤ 1, for all j = 1, . . . , M, (12)

δi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . , M.
(13)

Thus, (11)-(13) provide a feasible solution for the allocation LP
(1)-(3) with λ∗ = 1 contradicting the assumption that λ∗ < 1.
Hence, the fluid model is weakly unstable and by Theorem 2.5.1
of [30], the system can not be stabilized.

Proof: [Theorem 3]
Using the Guided-LPAS heuristic (introduced in Section V), we
can show that

πi,jαi(t)−M+1−
X

j′ '=j

Ci,j′
√

t ≤ αi,j(t) < πi,jαi(t)+Ci,j
√

t+1.

(14)

11

First, let us show that

αi,j(t) < πi,jαi(t) + Ci,j
√

t + 1. (15)

Assume that the Guided-LPAS heuristic maps an arrival of class
i at time t to machine j. Since the arriving task was mapped onto
machine j, it must be true from the definition of the Guided-LPAS
heuristic that αi,j(t

−) < πi,jαi(t) + Ci,j
√

t. It then follows that
αi,j(t) = αi,j(t

−) + 1 < πi,jαi(t) + Ci,j
√

t + 1, proving (15).
Second, we show

πi,jαi(t)−M + 1−
X

j′ '=j

Ci,j′
√

t ≤ αi,j(t). (16)

Consider a machine j. Clearly it is assigned the following number
of class i tasks:

αi,j(t) = αi(t)−
X

j′ '=j

αi,j′(t).

where j′ ∈ {1, . . . , M}. Using the Guided-LPAS heuristic, (15)
holds and it follows that

αi,j(t) = αi(t)−
X

j′ '=j

αi,j′(t)

≥ αi(t)−
X

j′ '=j

(πi,j′αi(t) + Ci,j′
√

t + 1)

= αi(t)−
X

j′ '=j

πi,j′αi(t)−
X

j′ '=j

Ci,j′
√

t− (M − 1)

= πi,jαi(t)−M + 1−
X

j′ '=j

Ci,j′
√

t.

This proves (16).
From (14), it follows that αi,j = αiπi,j =

δ∗i,jµi,j

λ∗ , i =
1, . . . , N, j = 1, . . . , M . Thus, the results follow as before (see
the proof of Theorem 1).

Proof: [Theorem 4]
The proof that the Guided-LPAS−2/k stabilizes a stabilizable
system is similar to the proof given above for the Guided-LPAS
heuristic. The Guided-LPAS−2/k satisfies (14) and the results
follow.

ACKNOWLEDGMENT

The first author is supported by an Ontario Graduate Scholar-
ship in Science and Technology. This research is also supported
by the Natural Sciences and Engineering Research Council of
Canada. The authors wish to thank the anonymous reviewers for
their helpful comments.

PLACE
PHOTO
HERE

Issam Al-Azzoni received his M. A. Sc. in Soft-
ware Engineering from McMaster University. He
is currently pursuing his Ph.D. degree in Software
Engineering at McMaster University. His research
interests include queueing networks, scheduling of
parallel and distributed systems, and heterogeneous
computing environments. His email address is alaz-
zoi@mcmaster.ca.

PLACE
PHOTO
HERE

Douglas G. Down is an Associate Professor
in the Department of Computing and Software
at McMaster University. His email address is
downd@mcmaster.ca.

REFERENCES

[1] T. Sterling, E. Lusk, and W. Gropp, Eds., Beowulf Cluster Computing
with Linux. Cambridge, MA, USA: MIT Press, 2003.

[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid:
Enabling scalable virtual organizations,” International Journal of High
Performance Computing Applications, vol. 15, no. 3, pp. 200–222, 2001.

[3] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi,
A. Kaul, A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli,
“Dynamically mapping tasks with priorities and multiple deadlines
in a heterogeneous environment,” Journal of Parallel and Distributed
Computing, vol. 67, no. 2, pp. 154–169, 2007.

[4] M. Mitzenmacher, “How useful is old information?” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 1, pp. 6–20, 2000.

[5] I. Al-Azzoni and D. Down, “Linear programming based affinity schedul-
ing for heterogeneous computing systems,” in Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications, 2007, pp. 105–111.

[6] Y.-T. He, I. Al-Azzoni, and D. Down, “MARO - MinDrift affinity
routing for resource management in heterogeneous computing systems,”
in Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research, 2007, pp. 71–85.

[7] L. Kontothanassis and D. Goddeau, “Profile driven scheduling for a
heterogeneous server cluster,” in Proceedings of the 34th International
Conference on Parallel Processing Workshops, 2005, pp. 336–345.

[8] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems,” in Proceedings of the 8th
Heterogeneous Computing Workshop, 1999, pp. 30–44.

[9] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sey-
mour, K. Sagi, Z. Shi, and S. Vadhiyar, “Users’ Guide to NetSolve
V1.4.1,” University of Tennessee, Knoxville, TN, Innovative Computing
Dept. Technical Report ICL-UT-02-05, June 2002.

[10] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,
D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile,
L. Moore, B. Rust, and H. J. Siegel, “Scheduling resources in multi-user,
heterogeneous, computing environments with SmartNet,” in Proceedings
of the 7th Heterogeneous Computing Workshop, 1998, pp. 184–199.

[11] R. Freund, T. Kidd, and L. Moore, “SmartNet: a scheduling framework
for heterogeneous computing,” in Proceedings of the 2nd International
Symposium on Parallel Architectures, Algorithms and Networks, 1996,
pp. 514–521.

[12] A. Sharifnia, “Instability of the join-the-shortest-queue and FCFS poli-
cies in queuing systems and their stabilization,” Operations Research,
vol. 45, no. 2, pp. 309–314, 1997.

[13] S. Andradóttir, H. Ayhan, and D. G. Down, “Dynamic server allocation
for queueing networks with flexible servers,” Operations Research,
vol. 51, no. 6, pp. 952–968, 2003.

[14] R. Armstrong, “Investigation of effect of different run-time distributions
on SmartNet performance,” Master’s thesis, Naval Postgraduate School,
1997.

[15] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[16] Y.-T. He, “Exploiting limited customer choice and server flexibility,”
Ph.D. dissertation, McMaster University, 2007.

[17] A. Stolyar, “Optimal routing in output-queued flexible server systems,”
Probability in the Engineering and Information Sciences, vol. 19, no. 2,
pp. 141–189, 2005.

[18] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Heterogeneous
computing: Goals, methods, and open problems,” in Proceedings of the
8th International Conference on High Performance Computing, 2001,
pp. 307–320.

12

[19] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and M. A. Jette, “An eval-
uation of parallel job scheduling for ASCI Blue-Pacific,” in Proceedings
of the ACM/IEEE Conference on Supercomputing, 1999, pp. 11–18.

[20] P. S. Ansell, K. D. Glazebrook, and C. Kirkbride, “Generalised ‘join the
shortest queue’ policies for the dynamic routing of jobs to multiclass
queues,” Journal of the Operational Research Society, vol. 54, pp. 379–
389, 2003.

[21] K. D. Glazebrook and C. Kirkbride, “Dynamic routing to heterogeneous
collections of unreliable servers,” Queueing Systems: Theory and Appli-
cations, vol. 55, no. 1, pp. 9–25, 2007.

[22] K. Wasserman, G. Michailidis, and N. Bambos, “Optimal processor
allocation to differentiated job flows,” Performance Evaluation, vol. 63,
no. 1, pp. 1–14, 2006.

[23] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a
multi-cluster supercomputer,” in Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Springer Verlag, 2004, pp. 176–193, lect. Notes Comput. Sci. vol. 3277.

[24] J. Smith, L. Briceno, A. A. Maciejewski, H. J. Siegel, T. Renner,
V. Shestak, J. Ladd, A. Sutton, D. Janovy, S. Govindasamy, A. Alqudah,
R. Dewri, and P. Prakash, “Measuring the robustness of resource
allocations in a stochastic dynamic environment,” in Proceedings of the
International Parallel and Distributed Processing Symposium, 2007.

[25] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim, “Measuring the
robustness of a resource allocation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 7, pp. 630–641, 2004.

[26] A. M. Mehta, J. Smith, H. J. Siegel, A. A. Maciejewski, A. Jayaseelan,
and B. Ye, “Dynamic resource allocation heuristics that manage tradeoff
between makespan and robustness,” The Journal of Supercomputing,
vol. 42, no. 1, pp. 33–58, 2007.

[27] V. Shestak, J. Smith, H. J. Siegel, and A. A. Maciejewski, “A stochastic
approach to measuring the robustness of resource allocations in dis-
tributed systems,” in Proceedings of the International Conference on
Parallel Processing, 2006, pp. 459–470.

[28] H. Chen, “Fluid approximations and stability of multiclass queueing
networks: Work-conserving disciplines,” Annals of Applied Probability,
vol. 5, pp. 637–655, 1995.

[29] H. Chen and D. Yao, Fundamentals of Queueing Networks: Perfor-
mance, Asymptotics and Optimization. Springer-Verlag, 2001.

[30] J. G. Dai, Stability of Fluid and Stochastic Processing Networks, pub-
lication No. 9, 1999. Centre for Mathematical Physics and Stochastics.
http://www.maphysto.dk/.

[31] ——, “On positive Harris recurrence of multiclass queueing networks: a
unified approach via fluid limit models,” Annals of Applied Probability,
vol. 5, pp. 49–77, 1995.

[32] J. G. Dai and S. Meyn, “Stability and convergence of moments for
multiclass queueing networks via fluid limit models,” IEEE Transactions
on Automatic Control, vol. 40, pp. 1889–1904, 1995.

