
January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

APEM - Approximate Performance Evaluation for Multi-core

Computers

Lei Zhang

Department of Computing and Software, McMaster University, 1280 Main Street West,
Hamilton, ON L8S4K1, Canada

Douglas G. Down

Department of Computing and Software, McMaster University, 1280 Main Street West,
Hamilton, ON L8S4K1, Canada

Mean Value Analysis (MVA) has long been a standard approach for performance analy-

sis of computer systems. While the exact load-dependent MVA algorithm is an efficient
technique for computer system performance modelling, it fails to address multi-core com-

puter systems with Dynamic Frequency Scaling (DFS). In addition, the load-dependent

MVA algorithm suffers from numerical difficulties under heavy load conditions. The goal
of our paper is to find an efficient and robust method which is easy to use in practice

and is also accurate for performance prediction for multi-core platforms. The proposed

method, called APEMa, uses a flow-equivalent performance model designed specifically
to address multi-core computer systems and identify the influence on the CPU demand

of the effect of DFS. We adopt an approximation technique to estimate resource de-

mands to parameterize MVA algorithms. To validate the application of our method, we
investigate three case studies with extended TPC-W benchmark kits, showing that our

method achieves better accuracy compared with other commonly used MVA algorithms.

We compare the three different performance models, and we also extend our approach
to multi-class models.

Keywords: performance evaluation; product-form; mean value analysis; dynamic fre-

quency scaling

1. Introduction

The exact Mean Value Analysis algorithm for the analysis of closed queueing net-

works with product-form steady-state distribution was introduced by Lavenberg

and Reiser.1 Compared with other methods that obtain the steady-state distribu-

tion by solving a (large) number of linear equations, the exact MVA algorithm is a

simple recursion, which derives mean performance metrics with any number of jobs

from underlying service demands. Besides networks with constant service rates, the

MVA algorithm has been used for queueing networks containing load-dependent

nodes - nodes at which the service rate varies with the number of jobs present (the

algorithm can be found in Chapter 14 of Menascé et al.’s work).2

aAPEM stands for Approximate Performance Evaluation for Multi-core computers

1

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

2 Lei Zhang, Douglas Down

The motivation for this paper is derived from our experiences with implementa-

tions of MVA-based performance models. While the MVA algorithm itself is simple,

its applicability can be challenged by features introduced in modern computer sys-

tems. Such features can violate product-form assumptions. When the steady-state

distribution is not product-form, the MVA algorithm is infeasible in such cases. An-

other challenge comes from systems employing Dynamic Frequency Scaling (DFS)

techniques.

DFS is a technique employed by operating systems where a processor is running

at a frequency less than its maximum in order to conserve power. In Linux operating

systems, DFS is supported by the “ondemand” policy.3 The “ondemand” governor

sets the CPU frequency depending on the current usage. The operating system

checks the load/utilization regularly (according to a given sampling rate). When the

load rises above a given threshold value, Linux sets the CPU to run at the highest

frequency. On the other hand, when the load falls below the same threshold, Linux

sets the CPU to run at the next lowest frequency that maintains the load below

the threshold. In particular, the CPU frequency is scaled down to its minimum

if the CPU is idle. Subsequently, processors become faster (or the CPU demand

decreases) when the load increases in the system. In addition, each processor’s

frequency is independently controlled by the operating system. Not only does this

make a load-independent performance model inapplicable, but it also makes the

parameterization for a load-dependent performance model more complicated.

DFS is well studied in the literature in terms of its effects on the tradeoff be-

tween power consumption and performance. Recent research has focused on either

determing the minimum frequency (given job deadlines), or the best range of fre-

quencies (given energy budgets), or hybrid models for both. However, to the best

of our knowledge, there is no research that directly examines DFS’s effects on MVA

algorithms. Menascé examined the tradeoffs between CPU clock frequency and sys-

tem performance.4 His paper presented a mechanism to adjust automatically the

minimum CPU frequency according to the workload intensity and the maximum

average response time desired in corresponding Service Level Agreements (SLAs).

Dhiman and Rosing proposed a scaling technique using an online learning algo-

rithm to select the best range of frequencies in accordance with task requirements

in multi-tasking environments.5 Wierman et al. studied two scaling techniques - dy-

namic speed scaling and static processing - to address both worst case and average

case performance with a processor sharing scheduler, and built a bridge between

them.6,7

In this paper, we present a new method for DFS-enabled multi-core platforms

that cannot be modelled as product-form queueing networks. We call this method

APEM - Approximate Performance Evaluation for Multi-core computers. We first

introduced the APEM method for closed queueing networks.8 Here, we extend

its applicability to open and semi-open queueing networks. The APEM method

involves flow-equivalent aggregation to build an approximate product-form network

for a non-product-form system. Then, the APEM method applies an appropriate

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 3

MVA algorithm as the means to determine the performance of the approximating

network. A service demand approximation is embedded in the MVA algorithm in

order to address the effects of DFS.

The main contributions of APEM are as follows:

(i) The APEM method focuses on non-product-form queueing networks that are

applicable for analytical performance modelling for modern computer systems.

(ii) The APEM method is the first performance solution which addresses service

demand estimation for DFS.

(iii) The APEM method is applicable for closed, open, and semi-open queueing net-

works.

(iv) The APEM method deploys new MVA algorithms with DFS adjustments in both

single-class and multi-class models for different types of queueing networks.

Table 1: Notation

M number of resources (devices)

N number of users

λ arrival rate

Z average think time

Dm resource demand at the mth resource (e.g., CPU and disk)

µm service rate at the mth resource

Km number of servers at the mth resource

R average response time

X throughput

Q average queue length

Pm(j) the probability that j users are present at the mth resource

The remainder of the paper is organized as follows. Section 2 provides the details

of APEM. Section 3 presents three case studies to verify the accuracy of APEM.

Section 4 compares and discusses the differences among the three queueing models

in those case studies. We extend our proposed algorithms to multi-class systems

in Section 5. Section 6 reviews related work. Finally, a summary is provided in

Section 7. For reference, the notation presented in Table 1 is used in the remainder

of the paper.

2. APEM

In this section, the APEM method is discussed. Firstly, we introduce the possible

queueing networks that can be used. Secondly, we describe the impact of DFS-

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

4 Lei Zhang, Douglas Down

enabled multi-core systems, and then propose our solution. Thirdly, three approx-

imate MVA algorithms with DFS adjustment are introduced. Finally, we present

the APEM method in detail.

2.1. Queueing Networks

Employing queueing models for modern computer systems can lead to non-product-

form network models. For example, simultaneous resource possession, locking be-

haviours in database servers, priority scheduling, high service demand variability,

and process synchronization, all common on modern computers, violate conditions

for product-form solutions.2 Thus, approximate techniques, such as flow-equivalent

aggregation,9 have been developed. Generally speaking, flow-equivalent aggrega-

tion reduces a non-product-form queueing network to an approximate product-

form queueing network with a Flow-Equivalent Server (FES). The FES is a load-

dependent node. The service rates of the FES are equal to the throughputs of the

original network with n jobs present (n ranges from 1 to N). The throughputs can

be calculated from transaction logs.

��������	

�����

(a) Closed system

�������������	

(b) Open system

�������������	�
��

�	���	��

(c) Semi-open system

Fig. 1: Closed, open, and semi-open queueing networks

The flow-equivalent aggregation method can be used for closed, open, and semi-

open system models. Figures 1a, 1b and 1c illustrate three examples of those sys-

tems, respectively.

A closed queueing system with a load-dependent server is shown in Figure 1a. It

is assumed that the number of users is fixed in a closed system. In the system, a user

triggers requests to the server. After one request is completed, the user then waits for

a think time, with mean Z. Another request is then submitted to the server. This

cycle is repeated indefinitely. Generally speaking, closed systems have fixed user

population and load-dependent arrival rate. In real systems, the user population

is rarely constant. However, closed models are commonly deployed when system

designers want to evaluate the performance for a system under stressful workloads.

Figure 1b shows an open queueing system with a load-dependent server. Open

systems do not model the size of the user population, but focus on request level

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 5

performance. New requests arrive with rate λ. That means new arrivals do not rely

on the completions of previous requests. Generally, open systems have fixed arrival

rate and thus the number of requests in the system varies over time. In real systems,

the arrival rate is frequently time sensitive, for example, an e-commerce website

may expect more customers during weekends than during weekdays. However, open

queueing networks can be used to evaluate the performance for systems if one can

consider the arrival rate to be fixed over particular time intervals.

Semi-open systems have the features of both open and closed systems. Figure 1c

depicts a semi-open queueing system with a load-dependent queue. In semi-open

systems, users arrive according to an arrival rate λ. Once a user enters the system,

it will send a sequence of requests. After the completion of a request, a user waits

for a think time that has mean Z, and then sends the next request. The expected

number of requests per user is T . A user leaves the system once all of its requests

are completed. In a semi-open system, users arrive to the system as an open system;

once in the system, users send requests as in a closed system. Semi-open systems

can be considered as generalizations of both open and closed systems. When λ = 0

and T =∞ (no jobs arrive from outside or depart from the system), the resulting

system is a closed system. When the number of requests associated with each user

is exactly one, the result is an open system. While a semi-open queueing network

gives more flexibility to model real systems, it is more difficult to analyze. Note

that both open and semi-open systems can have restricted capacity, which can

make the analysis more complex. A queueing network with restricted capacity has

finite queues. After the maximal capacity has been achieved, new arrivals will be

blocked or rejected. In this paper, we assume that our open and semi-open systems

do not have restricted capacities.

2.2. Service Demand Estimation

To estimate service demands for DFS-enabled computers, we need to take the effects

of DFS into account. Consider a scenario where a core is idle for a sufficient length

of time such that its frequency has been scaled down to the minimum to save

energy. Upon a job arrival, the core is still at this power-saving stage and needs

some time to “warm up”. Consequently, the service demand of the job is increased

due to the decreased frequency during this interval. The parameterization of the

MVA algorithm can be effectively enhanced with a corresponding service demand

adjustment.

Formally, we state the following observation for a DFS-enabled computer: There

exists a probability that a job will be (partially) processed at a slow rate, if the core

where it is allocated has been idle for a sufficient interval and its frequency has thus

been scaled down to the lowest value.

Based on this observation, our next step is to estimate this probability. On a

DFS-enabled platform, the Linux operating system takes workload (utilization)

samples every 10 milliseconds under the “ondemand” policy, and then decides

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

6 Lei Zhang, Douglas Down

whether to scale the core frequency up or down. Then the probability that an

arriving job will enter a server working at the slowest possible rate is identical to

the probability that the time interval between a job arrival to an idle server and

the last departure is larger than the sampling interval. The probability is given by

P (A > s), where A is an interarrival time and s is the sampling interval. In the

queueing model, we assume that jobs arrive with the interarrival time (or think

time) following an exponential distribution with mean Z. We let P slow(n) be the

probability that a job arrives to a slow server given that there are n jobs in the

system. By the memoryless property, we can write

P slow(n) = P (A > s|n) ≈ Exp(− sn

ZK
),

where n is the number of jobs in the system, and K is the number of cores in the

CPU. Here we assume that each core has the same arrival rate.

Using this, we have the adjustment of the CPU service demand as follows,

D(i) = Dunadjusted(i)
(
1− P slow(n)

)
+Dslow(i)P slow(n), (1)

where Dunadjusted(i) is the CPU demand with i jobs at the CPU, and Dslow(i) is

the service demand of the CPU with one core running at the minimum frequency.

To calculate Dslow(i), it is easier to compute the inverse of the service rate - µslow(i)

- using the following equation:

µslow(i) = µslow(1) + µ(i− 1), (2)

where i = 1, . . . ,K, µslow(1) is measured with one job in the system and the CPU

running at the minimum frequency, and µ(i − 1) is the service rate with one less

job at the CPU.

Formally, we make the following assumptions to develop our estimate:

(i) The interarrival times follow an exponential distribution.

(ii) If an arrival enters a “slow” server, then the entire job will be processed at the

slowest possible rate.

(iii) Each logical core works independently.

(iv) The mean think time is sufficiently large.

The proposed technique is a somewhat crude means to adjust the service de-

mand due to the effects of DFS. The real “ondemand” DFS and multi-core CPU

scheduling policies within Linux are much more complicated. In reality, if the job’s

processing time is longer than the sampling interval, only part of the job will be

processed at the slowest possible rate. The core’s frequency will be scaled up at

the next sampling point. Thus, the remaining part of the job will be processed at

higher rates. As a result, this approximation will be more effective when the CPU

demand is small. In addition, in a multi-core processor, one job running on a core

may be impacted by another job running on a different core due to shared memory

interference. Although our technique is a coarse approximation, it is to the best of

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 7

our knowledge the first attempt to account for the effects of DFS in determining

demands.

2.3. Approximate MVA Algorithms for Different Performance

Models

The service demand estimation needs to be embedded into the corresponding MVA

algorithms. In this section, we will present three different MVA algorithms for

closed, open and semi-open systems, respectively.

2.3.1. Approximate MVA Algorithm for Closed Systems

The original MVA algorithm for load-dependent queues in closed systems suffers

from numerical instability issues. It may exhibit numerical difficulties under heavy

load conditions which eventually result in unreasonable results, such as negative

throughputs, response times and queue lengths. In order to address the numerical

instability of the load-dependent MVA algorithm, we adopt the Conditional MVA

(CMVA) algorithm,10 which relates the average queue length of a load-dependent

server to the conditional queue length as seen by a job during its residence time at

that server.

Algorithm 1 presents the CMVA algorithm with the service demand adjustment

for DFS. We call this algorithm CMVA-DFS. Unlike the original CMVA algorithm,

we assume that all of the resources are load dependent, because we only have FESs

in this case study. This extension of the CMVA-DFS algorithm is straightforward.

2.3.2. Approximate MVA Algorithm for Open Systems

For the MVA algorithm in the closed model, we do not make any assumptions

on service demands. In the open model, we make the assumption that the service

demand eventually becomes constant as the system load increases. This means that

there exists a finite N̄ such that Dm(n) = Dm(N̄) if n > N̄ . This assumption makes

physical sense. Firstly, suppose that the value of service demand approaches zero

as the system load increases, i.e., there is no limit to how fast the corresponding

resource can become. This scenario is physically impossible. Secondly, the service

demand going to infinity (as workload increases) would automatically lead to an

unstable system. One remedy would be to control the number of jobs in the system.

For example, this assumption automatically holds in an open system with restricted

capacity. Thirdly, this assumption could be an approximate solution for the case

that the service demand converges, for example, D(n) = 1 + 1/n. Here, D(n) has a

limiting value of one, but it never reaches one. However, the open MVA algorithm

may encounter numerical issues (e.g., overflow) if the service demand converges

very slowly to its limit. We will see the reason behind this later, and more concrete

examples will be analyzed in Section 3.3. Last but not least, this assumption is

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

8 Lei Zhang, Douglas Down

Algorithm 1 The CMVA-DFS algorithm

Input:

Z,M,N,Dunadjusted
m (n), Dslow

m (n), s,Km

Output:

Q,X,R

Initialization:

for m = 1 → M and t = 1 → N + 1 do Qm(0, t) = 0

DFS adjustment:

for m = 1→M do

if m is a DFS-enabled resource then

for n = 1→ N do

P slowm (n) = Exp(−sn/ZKm)

Dm(n) = Dunadjusted
m (n)

(
1− P slowm (n)

)
+Dslow

m (n)P slowm (n)

end for

end if

end for

Iteration:

for n = 1→ N do

for t = 1→ N − n+ 1 do

for m = 1→M do

if n == 1 then Dm(n, t) = D(t)

else Dm(n, t) = Dm(n− 1, t)X(n− 1, t)/X(n− 1, t+ 1)

end if

end for

for m = 1→M do

Rm(n, t) = Dm(n, t)
(
1 +Qm(n− 1, t+ 1)

)
end for

X(n, t) = n/
(
Z +

∑M
m=1Rm(n, t)

)
for m = 1→M do

Qm(n, t) = X(n, t)Rm(n, t)

end for

end for

end for

supported by our tests - we observed that the service rate of the FES eventually

becomes roughly a constant when the system load is sufficiently large.

Algorithm 2 presents the open MVA algorithm for load-dependent queues and

DFS-enabled servers. We call this algorithm Open MVA-DFS. The open MVA al-

gorithm requires a stability condition: Um < αm(N̄m), where αm(N̄m) is a service

demand ratio defined as αm(N̄m) = Dm(1)/Dm(N̄m). Our algorithm is based on

the MVA algorithm introduced by Menascé et al. (Chapter 14),2 but has two dif-

ferences:

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 9

Algorithm 2 The Open MVA-DFS algorithm

Input:

λ,M,Km, D
unadjusted
m (n), Dslow

m (n), s, N̄m
Output:

Q,R

Initialization:

DFS adjustment:

for m = 1→M do

if m is a DFS-enabled resource then

for n = 1→ N̄m do

P slowm (n) = Exp(−snλ/Km)

Dm(n) = Dunadjusted
m (n)

(
1− P slowm (n)

)
+Dslow

m (n)P slowm (n)

end for

end if

end for

for m = 1→M do

Um = λDm(1)

for n = 1→ N do

αm(n) = Dm(1)/Dm(n)

end for

if Um ≥ αm(N̄m) then

Stop and exit

end if

end for

Iteration:

for m = 1→M do

Pm(0) =
[∑N̄m

j=0

∏j
k=0

Um

αm(k) +
∏N̄m

j=1
αm(N̄m)
αm(j) ×

(
Um/αm(N̄m)

)N̄m+1

1−Um/αm(N̄m)

]−1

Qm = Pm(0)× {
∑N̄m

j=1 j
∏j
k=1

Um

αm(k) +
∏N̄m

j=1
Um

αm(j) ×
Um

αm(N̄m)

×
[Um/αm(N̄m)+(N̄m+1)

(
1−Um/αm(N̄m)

)(
1−Um/αm(N̄m)

)2

]
}

Rm = Qm/λ

end for

(i) The effect of DFS on the service demand is considered. Note that the estimate

here is slightly different from the estimate in Algorithm 1. Instead of using the

mean think time Z, we use the arrival rate λ. Since the number of jobs varies

in an open system, the calculation of P slowm (n) can be potentially inaccurate.

One approach that we can choose to bound the value of P slowm (n) is to check

the condition P slowm (n) ≥ Pm(0). If this condition is violated, the estimation

of P slowm (n) must have accuracy issues. During our experiments, this condition

has never been violated, although it is not clear how to modify the value of

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

10 Lei Zhang, Douglas Down

P slowm (n) if the condition is violated. This would be a useful avenue for future

work.

(ii) When calculating the value of Pm(0), we have a term
∏N̄m

j=1

(
αm(N̄m)/

αm(j)
)

in our algorithm. In the original algorithm, this term is presented as(
αm(N̄m)

)N̄m
/βm(N̄m), where βm(N̄m) = αm(1)×· · ·×αm(N̄m). However, the

value of βm(N̄m) can potentially cause numerical issues if N̄m is very large. To

address this, we break down βm(nm) and perform divisions of αm(nm) before

the multiplication in our algorithm. However, overflow or underflow could still

occur if the service demand converges very slowly to its limit (as mentioned

before). On the one hand, the product of αm(N̄m)/αm(j) can cause overflow

if αm(N̄m)/αm(j) is larger than one (e.g.,
∏
n

(1 + 1/n), n = 1, . . . ,∞). In this

case, Dm(j) is larger than Dm(N̄m), and it converges to Dm(N̄m) as j in-

creases. On the other hand, the product of αm(N̄m)/αm(j) can be rounded

to zero (underflow) if αm(N̄m)/αm(j) is smaller than one (e.g.,
∏
n

[1 − 1/

(n + 1)], n = 1, . . . ,∞). In this case, Dm(j) is smaller than Dm(N̄m), and

it converges to Dm(N̄m).

2.3.3. Performance Model for Semi-open Systems

��������	

��
����������	

����������

(a) Lower level network

��������		
���

(b) Upper level network

Fig. 2: A hierarchical model with two levels of FES

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 11

Algorithm 3 The Open MVA algorithm for semi-open systems

Input:

λ,M,Dr
m(n), N̄m, T, Z

Output:

Xr, Rr

Initialization:

for m = 1→M do

for n = 1→ N do

Dm(n) = T ×Dr
m(n)

αm(n) = Dm(1)/Dm(n)

end for

Um = λDm(1)

if Um ≥ αm(N̄m) then

Stop and exit

end if

end for

Iteration:

for m = 1→M do

Pm(0) =
[∑N̄m

j=0

∏j
k=0

Um

αm(k) +
∏N̄m

j=1
αm(N̄m)
αm(j) ×

(
Um/αm(N̄m)

)N̄m+1

1−Um/αm(N̄m)

]−1

Qm = Pm(0)× {
∑N̄m

j=1 j
∏j
k=1

Um

αm(k) +
∏N̄m

j=1
Um

αm(j) ×
Um

αm(N̄m)

×
[Um/αm(N̄m)+(N̄m+1)

(
1−Um/αm(N̄m)

)(
1−Um/αm(N̄m)

)2

]
}

Rm = Qm/λ

end for

for m = 1→M do

Rrm = (Rm − T × Z)/T . response time in seconds per request

end for

Xr = λT . throughput in requests per second

Semi-open systems are much more complex to analyze than closed or open

systems, and we cannot use MVA algorithms directly. For semi-open systems, we

use hierarchical modelling to solve the network.11 The FES technique is the key

to hierarchical modelling. The top level of the model may consist of one or more

FESs. An FES is represented as a more detailed subsystem in the next level down.

This lower subsystem may also contain one or more FESs, which can again be

represented in detail in the next level down, and so forth. The level of hierarchy

grows until the lowest level models can be solved. In general, service rates of an

FES in an upper level are obtained from solving the corresponding subsystem in

the lower level.

We model the system as a non-product-form queueing network shown as in

Figure 2a. The system has two levels of FES. The lower level network is a closed

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

12 Lei Zhang, Douglas Down

system with an FES which represents all of the resources (CPUs and disk) in the

system. The lower level is shown within the dashed lines in Figure 2a. Then, the

entire lower level closed network is replaced by an FES. We build the upper level

open network as in Figure 2b. The service rate curves of the FES in the lower level

with n jobs present are also obtained by the throughput of the system with different

numbers of jobs. The service rate curves of the FES in the upper level are obtained

by the throughput of the system with various numbers of jobs and think time with

mean Z.

We first use Algorithm 1 for closed systems to calculate the throughputs with

n jobs and mean think time Z. The throughputs are the service rates of the FES

in the upper level, so that we use their inverses - Dr
m(n) - as input parameters for

Algorithm 3. Other input parameters are obtained directly from the system. Finally,

we use Algorithm 3 to solve the upper level open network, which is equivalent to

the entire semi-open system.

Algorithm 3 is also based on the MVA algorithm introduced by Menascé et al.

(Chapter 14).2 One difference is that we need to calculate the expected number

of requests per user T in Algorithm 3. The performance metrics in Algorithm 1

are at request level. However, the performance metrics are at user session level in

Algorithm 3, because the unit of the input parameter λ is users per second. As

a result, we need Dm(n) = T × Dr
m(n) to transform from the service demand of

a request Dr
m(n) to the service demand of a user Dm(n). Finally, the outputs of

Algorithm 3 are all transformed to request level.

2.4. The APEM Method

Given the performance models introduced, we are now able to provide a detailed

description of the APEM method.

(i) Characterize the system workload structure. In order to accurately

model the system performance, workload characterization is the necessary first

step, whether real workloads or benchmarks are employed. Firstly, representa-

tive workloads are identified. Secondly, the representative workloads are classi-

fied by different resource intensities, for example, a CPU-intensive workload is

separated from an I/O-intensive workload. Thirdly, special features are charac-

terized, e.g., simultaneous resource possessions or locking behaviours. Fourthly,

all representative workloads should have transaction logs. Last but not least,

job structure is also important for performance models. A job structure con-

sists of job and request relationships, e.g., whether jobs are independent of

each other, or if a job triggers more than one request. For example, we employ

the TPC-W benchmark in our case studies in Section 3, for which all of the

workload classes and job structures are characterized in its specification.12

(ii) Determine the performance model. Based on the characterized workload

and job structure, an appropriate performance model is chosen. If any features

that violate conditions for product-form solutions (in Section 2.1) are found

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 13

in Step 1, a non-product-form queueing network should be considered as a

candidate. If a system has a fixed user population, then a closed queueing

network is an appropriate choice. If a system has a variable user population,

then an open queueing network is a good fit. If a system has features of both

open and closed systems, a more complex model should be considered, i.e., a

semi-open queueing network.

(iii) Obtain the service rates. Service rates or service demands are important

input parameters for MVA algorithms. There are many approaches to obtain

service rates, all of which involve system measurements. The Service Demand

Law is one of the most popular approaches. Since the resource utilization and

the resource demand are assumed to have a linear relationship, regression

techniques can be employed when measurements of utilizations or through-

put are not available.13,14,15,16,17 In addition, the response time is related to

the resource demand in a nonlinear manner. As a result, different estimation

techniques can be used to estimate the resource demand from response time

measurements.18,19 If the FES technique is involved, the service rates are ob-

tained by measuring throughputs of the appropriate aggregated system with

different numbers of jobs. If the system is DFS enabled, the service rates of a

slow server are obtained as discussed in Section 2.2.

(iv) Choose an MVA algorithm. Corresponding to the performance model(s)

chosen in Step 2, we choose a corresponding MVA algorithm(s) to solve the

performance model. Different MVA algorithms fit different scenarios. Closed

MVA algorithms are used to solve closed systems, while open MVA algorithms

are used for open systems. Single-class MVA algorithms are easy to param-

eterize, and multi-class MVA algorithms are deployed for detailed class-level

performance evaluation. While MVA algorithms with load-independent queues

work with constant service demands, MVA algorithms with load-dependent

queues work for the FES technique. When it becomes problematic to use an

exact MVA algorithm, an approximate MVA algorithm can be chosen. When

solving a closed queueing network with load-dependent queues, it is critical to

choose a numerically stable MVA algorithm.

(v) Solve the performance model. The appropriate MVA algorithm is used to

obtain the desired performance metrics, such as the mean response times, the

mean number of jobs in the system, and the throughputs. The service rates in

Step 3 are used as input parameters. Other input parameters, such as the mean

think time, the arrival rate, and the user population, may also be required.

(vi) Analyze the results. The results from the MVA algorithm are compared

with system measurements. If the results are sufficiently close, the performance

model is validated. Otherwise, we need to review all previous steps, and identify

any potential issues which caused the failure. Errors in the performance model

should be analyzed, with particular attention to which scenarios give rise to

the largest errors. As a rule of thumb, response time errors within 20% are

considered acceptable (see Chapter 4 in the work of Menascé et al.).2

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

14 Lei Zhang, Douglas Down

(vii) Predict the performance of the system. The goal of performance mod-

elling is to evaluate the system performance without extensive operation of the

real system. A performance model can be used to evaluate different workloads

on the system by adjustments of input parameters, such as the number of jobs,

the think time, the arrival rate, and the service demand. Designed workloads

should reflect user behaviours when the system is operational. For example, the

model can be used to predict the performance of the system with peak work-

load. Compared to stress testing solutions, the performance model approach

can be both inexpensive and efficient.

3. Accuracy of APEM with Different Performance Models

In this section, we demonstrate the use of the APEM method for closed, open, and

semi-open systems, respectively.

All three case studies in this section are built on the same testbed, a Dell desktop

computer equipped with an Intel i7-2600 quad-core processor (octo-core logically

with Hyper-Threading Technology), 8GB RAM, and a 1TB disk (7200 RPM). The

processor is DFS enabled, and has frequency range from 1.6 GHz to 3.4 GHz. For

the operating system, we used Ubuntu Server 12.04.3 LTS (kernel version 3.5.0-44).

The testbed carries a web application server and a database. The web server accepts

client requests and issues queries to the database in order to retrieve the requested

data. For the web server and the database server, we used JBoss 3.2.7 and MySQL

5.1.70, respectively.20,21 The average response time is our performance metric of

interest.

3.1. Experiments for Closed Systems

The TPC-W that we use is the implementation of Horvath.22 The number of users

ranges from 1 to 800, and we set the average think time (Z) to 3.5 seconds, in order

to validate APEM under different workloads. In our tests, the CPU utilization

varies from 1.09% to 61.59%, and the average CPU frequency varies from 1.61 GHz

to 2.61 GHz.

We apply APEM in the following manner:

(i) Model the non-product-form system as a closed queueing network with an

FES.

(ii) Calculate the service demands of the FES under different workload mixes. This

step involves measurements of the throughputs (service rates) with various

numbers of users in the FES.

(iii) Calculate the service demands of the FES with slow cores under different

workload mixes. This step involves measurements of the throughput with one

user in the FES while the CPU is running at its minimum frequency.

(iv) Use the CMVA-DFS algorithm to predict average response times for the sys-

tem under different workload mixes.

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 15

(v) Measure the average response times of the system under different workload

mixes. This step involves measurements of the average response times with

the corresponding number of users from the previous step.

(vi) Validate predicted results with corresponding measurements under different

workload mixes.

Number of Users
0 2 4 6 8 10 12 14 16

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

50

100

150

200

250

300

350

400

original service rate
adjusted service rate

(a) Browsing mix

Number of Users
0 2 4 6 8 10 12 14 16

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

50

100

150

200

250

300

350

400

original service rate
adjusted service rate

(b) Shopping mix

Number of Users
0 2 4 6 8 10 12 14 16

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

100

200

300

400

500

600

700

800

original service rate
adjusted service rate

(c) Ordering mix

Fig. 3: Service rate of FES with different mixes

For the second step, we need to generate a set of service demands with varying

numbers of users, from one user to a potentially very large number of users. To

accomplish this, we select several values for the number of users, calculate the

service rates from measurements (measured throughputs), then interpolate between

these points to generate a service rate curve as shown in Figure 3. The points on

the original service rate curve are calculated from measurements (the service rate

is equal to the measured throughput). Other points on the curve are approximated

by performing linear interpolation between the measured points. For instance, the

measured service rates correspond to the number of users - 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 12 and 16 in Figure 3. Note that this approximation may affect the accuracy of

the performance model, but we can increase its accuracy by increasing the number

of points which are calculated from measurements. The balance between the time

consumed in measurements/parameterizing the model and the model accuracy can

be adjusted as necessary. Further discussion based on experimental results with

different granularities can be found in our previous work.8

For the third step, we calculate the adjusted service demands using Eq. (1) in

Section 2.2. The service rates of cores running at the minimum frequency can be

measured by fixing the CPU frequency at its minimum, or the mean think time at

a large value (to ensure a CPU has sufficient idle time to scale down its frequency

to the minimum). Then, Eq. (2) is used to calculate the desired service rates. These

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

16 Lei Zhang, Douglas Down

curves are also shown in Figure 3. Note that these service rate curves will be reused

for the parameterization in the next two case studies.

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

18

19

20

21

22

23

24

25

26

27

28

Measured
CMVA
CMVA-DFS

(a) Browsing mix

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

17

18

19

20

21

22

23

24

25

Measured
CMVA
CMVA-DFS

(b) Shopping mix

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

8

9

10

11

12

13

14

15

16

17

18

Measured
CMVA
CMVA-DFS

(c) Ordering mix

Fig. 4: Predicted and measured R with different mixes and Z = 3.5 seconds

Finally, the experimental results are shown in Figure 4. The results from APEM

are compared with the results from measurements, and the original CMVA algo-

rithm. As can be seen in Figure 4, compared with the CMVA algorithm, which

consistently underestimates the average response time (by as much as 25.41% for

the ordering mix), the CMVA-DFS algorithm produces better predictions. The un-

derestimation issue of the CMVA algorithm is caused by the overestimation of the

service rates (as shown in Figure 3).

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

18

19

20

21

22

23

24

25

26

27

28

Measured
CMVA
CMVA-DFS

(a) Browsing mix

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

17

18

19

20

21

22

23

24

25

26

Measured
CMVA
CMVA-DFS

(b) Shopping mix

Number of Users
0 100 200 300 400 500 600 700 800

R
es

po
ns

e
T

im
e

(m
s.

)

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

Measured
CMVA
CMVA-DFS

(c) Ordering mix

Fig. 5: Predicted and measured R with different mixes and Z = 3.5 seconds (no

JBoss logging)

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 17

A small number of abnormally large response times are observed during our

experiments - these values have a significant effect on the results, especially when

the system is under heavy load. After extensive experimentation and analysis, we

determined that these outliers arise due to JBoss logging. We have two options to

remove those effects: we can simply disable JBoss logging, or adopt a univariate

method to detect and remove outliers. In this paper, we choose the latter approach,

because one may prefer to keep JBoss logging enabled for administrative purposes.

Here, we show another set of results in Figure 5 with JBoss logging disabled to

demonstrate that our method also works in such a case. As can be seen in Figure 5,

the CMVA-DFS algorithm still produces better predictions compared to the CMVA

algorithm. More discussion and results with JBoss logging disabled can be found

in my thesis.23 The outlier detection technique is discussed in Appendix A.

3.2. Experiments for Open Systems

The original TPC-W benchmark assumes a closed system. The number of jobs in

the system is fixed, and each job triggers a sequence of requests. For modelling

an open system, we modify the TPC-W kit introduced in Section 3.1 so that new

requests arrive to the system following a Poisson process. The original TPC-W kit

has a main thread which initializes all user sessions (EBs). Each user session is an

independent thread that sends a sequence of requests until the end of the test. After

receiving the reply for the last request, a user session will wait for a think time with

mean Z and send the next request.

We modified the TPC-W kit for open systems. In that TPC-W kit, the main

thread is the only one that decides when to send a request to the system. It sleeps for

an exponentially distributed interarrival time. After that, the main thread checks

if there are idling user threads waiting. If yes, one of these users receives a signal

from the main thread, and makes exactly one request. Otherwise, the main thread

creates a new user thread, and the new thread immediately makes one request. On

the user thread side, a user thread blocks and waits for the signal from the main

thread after sending each request. The source code of this modified TPC-W kit can

be acquired from our website.24 To verify our method under different workloads,

we vary the arrival rate from 1 per second to 550 per second.

We apply APEM in the following manner:

(i) Model the system as an open queueing network with an FES.

(ii) Calculate the service demands of the FES under different workload mixes. This

step involves measurements of the throughputs (service rates) with various

numbers of requests in the FES.

(iii) Calculate the service demands of the FES with slow cores under different

workload mixes. This step involves measurements of the response time of one

request in the system while the CPU is running at its minimum frequency.

Then, we have Dslow(1) = Rslow(1), where Rslow(1) is the average response

time when one request is processed at a slow server.

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

18 Lei Zhang, Douglas Down

(iv) Use the open MVA-DFS algorithm to predict average response times for the

system under different workload mixes.

(v) Measure the average response times of the system under different workload

mixes. This step involves measurements of the average response times with

the corresponding arrival rates from the previous step.

(vi) Validate predicted results with corresponding measurements under different

workload mixes.

For the first step, the queueing model is the same as that in Figure 1b. In

the second step, we need to calculate the service rates of the FES with different

numbers of requests in the open system. Here, we can reuse the service rate curves

in Figure 3.

Arrival Rate
0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(m
s.

)

16

18

20

22

24

26

28

30

32

34

Measured
MVA
MVA-DFS

(a) Browsing mix

Arrival Rate
0 50 100 150 200 250

R
es

po
ns

e
T

im
e

(m
s.

)

17

18

19

20

21

22

23

24

Measured
MVA
MVA-DFS

(b) Shopping mix

Arrival Rate
0 50 100 150 200 250 300 350 400 450 500 550

R
es

po
ns

e
T

im
e

(m
s.

)

9

10

11

12

13

14

15

Measured
MVA
MVA-DFS

(c) Ordering mix

Fig. 6: Predicted and measured R with different mixes

The experimental results are shown in Figure 6. The results from APEM are

compared with the results from measurements and the original open MVA algo-

rithm. Note that Figures 6a, 6b and 6c have different maximum arrival rates,

because of the stability condition Um < α(N̄m). Since Um = λDm(1) and

α(N̄m) = Dm(1)/Dm(N̄), we rewrite the stability condition as λ < 1/Dm(N̄).

In other words, the arrival rate cannot exceed the maximum service rate µm(N̄) in

the service rate curve to make sure our algorithm is applicable. In our tests, µm(N̄)

for the three mixes is 328.961, 286.660 and 600.908 per second, respectively.

As can be seen from Figures 6a, 6b and 6c, the MVA-DFS algorithm consistently

performs better than the original MVA algorithm, suggesting that our service de-

mand approximation based on DFS is a reasonable approach for such systems.

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 19

3.3. Experiments for Semi-open Systems

We have seen closed and open queueing systems in Sections 3.1 and 3.2, respectively.

While these are the most common systems for workload generators and benchmarks,

a more appropriate model may be to combine open and closed behaviours. Such

hybrid systems are called semi-open systems. In semi-open systems, external users

arrive following a Poisson process with rate λ. Once a user enters the system, it

triggers a sequence of requests to the system before leaving. Each user will spend a

think time with mean Z between receiving a response from the system and sending

the next request.

We again extend the TPC-W kit. The main thread generates new EBs following

an exponentially distributed time interval with a user configured rate λ. Once an

EB starts, it sends the first request immediately, and then waits for an exponentially

distributed think time with a user configured mean Z. After that, the EB repeats

the sending and waiting procedure until it finishes (when it revisits the Home page

again) and leaves. The expected numbers of requests per user T for the three mixes

are calculated according to the transition probabilities in the TPC-W standard

specification. The source code of this modified TPC-W kit can also be acquired

from our website.24

Here, both the average response time and system throughput are performance

metrics of interest. This is in contrast with open and closed networks, where the

average response time is the only metric of interest. The relatively large mean

think time makes it easy to estimate throughput for closed networks, and for open

networks the throughput is simply the arrival rate. We set smaller mean think

times in this case study because of the numerical overflow issue in the open MVA

algorithm - we will discuss this in detail later. The average think time here is 0.07

seconds. The arrival rate of user sessions varies from 1 per second to 40 per second.

We apply APEM in the following manner:

(i) Model the system as a two-level queueing network with an FES. The upper

level is an open queueing network, and the lower level is a closed queueing

network.

(ii) Calculate the service demands of the FES in the lower level under different

workload mixes. This step involves measurements of the throughputs (service

rates) with various numbers of users in the FES.

(iii) Calculate the service demands of the FES with slow cores in the lower level un-

der different workload mixes. This step involves measurements of the response

time of one request in the system while the CPU is running at its minimum

frequency. Then, we have Dslow(1) = Rslow(1), where Rslow(1) is the average

response time when one request is processed at a slow server.

(iv) Use the CMVA-DFS algorithm to calculate throughputs with n (1 ≤ n ≤ N)

jobs and mean think time Z. These throughputs correspond to the service

rates of the FES (at request level) with n jobs in the upper level.

(v) Use the open MVA algorithm with load-dependent servers to predict average

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

20 Lei Zhang, Douglas Down

response times and system throughputs for the system under different workload

mixes. Because the arrival rate is at user session level, we need to calculate the

expected number of requests per user session T for the three mixes, and then

transfer all request level parameters to user session level.

(vi) Measure the average response times and the system throughput of the system

under different workload mixes. This step involves measurements of the average

response times and the system throughputs with the corresponding arrival

rates in the previous step.

(vii) Validate predicted results with corresponding measurements under different

workload mixes.

Number of Users
0 10 20 30 40 50 60 70 80

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

50

100

150

200

250

300

350

400

450

(a) Browsing mix

Number of Users
0 10 20 30 40 50 60 70 80

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

50

100

150

200

250

300

350

400

450

500

(b) Shopping mix

Number of Users
0 20 40 60 80 100 120

S
er

vi
ce

 R
at

e
(/

se
c.

)

0

100

200

300

400

500

600

700

800

(c) Ordering mix

Fig. 7: Service rate of FES with different mixes (Z=0.07 seconds)

Arrival Rate
5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(m
s.

)

0

5

10

15

20

25

30

Measured
MVA
MVA-DFS

(a) Browsing mix

Arrival Rate
5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(m
s.

)

0

5

10

15

20

25

Measured
MVA
MVA-DFS

(b) Shopping mix

Arrival Rate
5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(m
s.

)

0

2

4

6

8

10

12

14

16

18

Measured
MVA
MVA-DFS

(c) Ordering mix

Fig. 8: Predicted and measured R with different mixes (Z=0.07 seconds)

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 21

The service rate curves with Z = 0 are the same as those shown in Figure 3.

The service rate curves with Z = 0.07 seconds are shown in Figure 7. We discuss

the approach that we use to calculate T for the three mixes in Step 5 in Appendix

B.

Table 2: Throughputs (in transactions per second) with browsing mix (Z=0.07

seconds)

λ Measured MVA MVA-DFS

1 3.478 3.445 3.445

10 34.571 34.450 34.450

20 69.271 68.900 68.900

30 104.387 103.350 103.350

40 138.963 137.800 137.800

Table 3: Throughputs (in transactions per second) with shopping mix (Z=0.07

seconds)

λ Measured MVA MVA-DFS

1 5.995 6.264 6.264

10 62.697 62.640 62.640

20 122.807 125.280 125.280

30 186.058 187.920 187.920

40 248.296 250.560 250.560

Table 4: Throughputs (in transactions per second) with ordering mix (Z=0.07 sec-

onds)

λ Measured MVA MVA-DFS

1 11.137 10.957 10.957

10 109.263 109.570 109.570

20 221.771 219.140 219.140

30 332.333 328.710 328.710

40 440.356 438.280 438.280

The average response times of the three mixes are shown in Figure 8. The mea-

sured results are compared with the results from two approaches, both of which

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

22 Lei Zhang, Douglas Down

apply the same two-level FES technique. The first approach employs the MVA algo-

rithms without DFS adjustment (the original CMVA algorithm and Algorithm 3),

and the second one employs the MVA algorithms with DFS adjustment (Algo-

rithm 1 and Algorithm 3). As can be seen in the figures, the MVA algorithm with

the service demand estimate based on DFS is more accurate than the original MVA

algorithm. In addition, both of the MVA algorithms offer relatively good estimates

of throughputs, which can be seen in Tables 2, 3 and 4. As a result, we can con-

clude that our two-level performance model (with associated MVA algorithms) is a

reasonable approach for analyzing such systems.

The two-level performance model has one limitation, which may affect the de-

cision as to whether to use it or not. In our tests, we observe that the service

rate curve converges much slower when the think time increases. As a result, the

calculation of Pm(0) in the open MVA algorithm encounters numerical issues (see

Algorithm 3). The product involving αm(n) becomes very large and can cause over-

flow. This is the reason why we have relatively smaller think times (to make the

service rate curve converge faster) in this case study compared with previous case

studies. In Section 4, we will show more tests with a larger mean think time (which

is the largest Z that we can set without any overflow issues in our testbed) to

demonstrate the limits of our performance model in this case study.

Because service demand ratios (instead of the service demands themselves) are

used in open MVA algorithms, typical scaling techniques are inapplicable. One

candidate for mitigating the overflow is to increase the range of integers and floating

point numbers. We can apply a library for arbitrary precision arithmetic. One of

our choices is the GNU Multiple Precision (GMP) arithmetic library.25 GMP has

been bound to many popular languages, such as C, C++, and Python. However,

GMP is still limited by available memory. Another possible solution is to develop

a numerically stable approximate MVA algorithm for open networks. To the best

of our knowledge, there is no such approximation available in the literature. These

possibilities are left for future study.

3.4. Discussion

APEM has several limitations. First, APEM relies on the service rate curve. As

a result, any systems which are not operational (to obtain measurements) are not

suitable for our method. Second, the service rate curve is an approximation based

on a limited number of measured points. We suggest that the number of points

should stay at a reasonable level to at least represent the shape of the curve, for

example, choosing some key points on the curve. For instance, our testbed has eight

cores, so we assume that the service rate with eight users in the system is the peak

point on the curve. Then we can choose some key points (e.g., 1, 2, 4, 6, 8, 10, 12. . .)

to verify this assumption, and generate the curve. Last but not least, we adopt an

approximation to take DFS into account in the proposed CMVA algorithm, which

may not work as well in cases when the assumptions discussed in Section 2.2 are

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 23

violated.

4. Closed versus Open versus Semi-open

It is very important to build a queueing network which can accurately represent the

system being modelled. Schroeder et al. have shown that closed and open systems

can yield very different results even under the same load and with the same service

demands.26 Thus, an inappropriate choice of model may result in significant errors

in performance evaluation.

4.1. Closed versus Open

In closed queueing systems, the number of jobs in the system is fixed. In open

queueing systems, the number of requests in the system is not bounded. As a result,

the number of requests could increase dramatically for large arrival rates. This may

in turn cause inordinate contention among resources, and affect the performance.

Here, we demonstrate the differences between a closed and an open system with

a concrete example. In this example, we would like to use MVA algorithms to

determine the different behaviours of closed and open systems. Both of the systems

have the same service rates and workloads. The test proceeds as follows:

(i) We use the service rate curve of the shopping mix from Figure 3b, and employ

Algorithm 1. We fix the mean think time Z = 1 second. The number of users in

the system ranges from 100 to 400. The outputs of interest are the throughput

X, the mean response time R, and the mean queue length at the server Q.

(ii) For the next step, we use the same service rate curve (both systems have the

same service rates), and use Algorithm 2 from Section 3.2. The arrival rate λ

equals the throughput X obtained from the last step (both systems have the

same workloads). The outputs of interest are X, R and Q.

(iii) Finally, we compare R and Q for these two systems.

The results are shown in Figure 9, where we compare the average response

times and queue lengths between the two systems. We do not need to compare

their throughputs because the arrival rate λ in the open model equals the system

throughput X in the closed model. When the number of jobs in the closed system

varies from 100 to 300, we do not observe much difference between these two sys-

tems. However, both R and Q of these systems diverge beyond N = 350. When

N = 350 in the closed system, the mean response time is 44.169 milliseconds, and

the mean response time of the open system is 56.214 milliseconds. The difference

is 27.27%. We have similar observations for the values of Q. The extreme case hap-

pens when N = 400 in the closed system. The mean response time of the open

system is about nine times larger than for the closed system, and so is the mean

queue length. In summary, closed and open systems may have significant differences

under heavy loads. This conclusion is consistent with the observations in Schroeder

et al.’s work.26

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

24 Lei Zhang, Douglas Down

Number of Users
100 150 200 250 300 350 400

R
es

po
ns

e
T

im
e

(m
s.

)

0

200

400

600

800

1000

1200

Closed
Open

(a) Response time comparison

Number of Users
100 150 200 250 300 350 400

Q
ue

ue
 L

en
gt

h

0

50

100

150

200

250

300

350

400

Closed
Open

(b) Queue length comparison

Fig. 9: Comparison between closed and open systems

4.2. Closed versus Semi-open

Both closed and open systems are well studied in the literature. However, semi-open

models are not as well understood. Considering an e-commerce website, neither the

assumption of a closed system nor the assumption of an open system is realistic.

On the one hand, a closed system assumes that the number of jobs in the system

is fixed. On the other hand, an open system assumes that requests are sent to the

server without any dependence on previous ones. While closed and open networks

can be used to model particular scenarios (e.g., stress tests), semi-open systems

can model realistic job structures and user behaviours of e-commerce systems. In

an e-commerce system, customers arrive at the website with an arrival rate. Once

a customer arrives, they start browsing the website. After a click on a webpage, the

customer may think for a period of time, and then make another click. Each click

on the webpage sends an HTTP request to the system. A customer repeats the

click and think behaviours until they leave the website. Such customer behaviours

are captured by a semi-open model.

While semi-open models may better reflect reality, they are more difficult to

analyze. A hierarchical flow-equivalent aggregation technique may be deployed for

such cases. Although flow-equivalent aggregation has been shown to be accurate

in the literature, hierarchical modelling brings more challenges. The performance

model in our case study in Section 3.3 only has a two-level FES, but new numerical

issues arose that did not appear for open or closed models.

It would be nice if we could use a closed or an open model to evaluate the

performance of a semi-open system. Suppose that we know the average number of

users in the system, then we can build a closed model for the system. Let us extend

the results in the semi-open system in Section 3.1 with a larger mean think time,

Z = 0.7 seconds. According to system logs, we calculate the average number of

users N (rounded up to the closest integer), and then use Algorithm 1 to compute

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 25

Arrival Rate
5 10 15 20 25 30 35 40 45 50

R
es

po
ns

e
T

im
e

(m
s.

)

13

14

15

16

17

18

19

20

21

Measured
Semi-Open
Closed

(a) Response time comparison

Arrival Rate
5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

/s
ec

.)

0

50

100

150

200

250

300

350

Measured
Semi-Open
Closed

(b) Throughput comparison

Fig. 10: Comparison between semi-open and closed systems

R and X for the closed model. For example, the average number of users is five

in the first case (when λ = 1). Then we use N = 5 as our input for the closed

MVA algorithm, and obtain R = 20.218 milliseconds and X = 6.942 per second.

As can be seen from Figure 10, the MVA algorithm for closed systems produces

very accurate results compared to measured values in all cases. In Figure 10, we

compare the average response times and throughputs with λ = 1, 10, 20, 30, 40

and 50. We have N = 5, 45, 89, 136, 182 and 228, respectively.

One of the conditions for this approach is that the average number of users is

measurable. In addition, we do not observe a large variance in the number of users

in our tests. The accuracy of this approximation in cases where this variance is

larger needs to be verified in future work.

5. Multi-class Models

For completeness, we extend the two proposed algorithms - Algorithm 1 and Algo-

rithm 2 - to the cases of multi-class closed and open networks, respectively. Algo-

rithm 3 in multi-class semi-open models can be found in Chapter 14 of Menascé et

al.’s work.2

For closed networks, consider that there are C classes of transactions, where the

job population vector is given by ~N = (n1, n2, . . . , nC), and each class has a mean

think time Zc (1 ≤ c ≤ C). The probability that a job of class c arrives to a slow

server at the mth queue with nc jobs is given by:

P slowm,c (nc) = Exp(− snc
ZcKm

). (3)

Using the results from Eq. (3), the formula for class-level service demands with

DFS adjustment at the mth queue is given by:

Dm,c(nc) = Dunadjusted
m,c (nc)

(
1− P slowm,c (nc)

)
+Dslow

m,c (nc)P
slow
m,c (nc). (4)

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

26 Lei Zhang, Douglas Down

Then, the multi-class CMVA-DFS algorithm iterates over all of the classes to com-

pute the mean response times, the throughputs, and the mean queue lengths, re-

spectively. Similar to Algorithm 1, we first introduce the formula for the class-level

mean response times:

Rm,c(~N, t) = Dm,c(~N, t)
(
1 +Qm(~N − 1c, t+ 1)

)
.

Here, ~N − 1c is the job population vector with one less class c job in the system.

The system throughput of class c is calculated by

Xc(~N) = nc/
(
Zc +

M∑
m=1

Rm,c(~N, t)
)
,

where 0 ≤ nc ≤ Nc. The mean queue length at the mth queue is

Qm(~N, t) =

C∑
c=1

Xc(~N)Rm,c(~N, t).

For open networks, we also consider that there are C classes of transactions, and

each class has arrival rate λc (1 ≤ c ≤ C). We rewrite the slow server probability

in Algorithm 2 for multi-class models as follows:

P slowm,c (nc) = Exp(−sncλc
Km

).

The formula for class-level service demands in open networks is exactly the same

as Eq. (4). As mentioned in Chapter 14 of Menascé et al.’s work,2 we assume that

the service demand ratio α of any load-dependent node is class independent, which

means that αm,c(n) = αm(n) for all c. Since the utilization at the mth queue is also

load independent, the formulas for Pm(0) and Qm in Algorithm 2 also do not change

in the multi-class open model. To determine the class-level mean queue lengths and

mean response times, we introduce two new equations as follows:

Qm,c = Qm(Um,c/Um),

where Um,c = λcDm,c(1), and

Rm,c = Qm,c/λc.

6. Related Work

Workload characterization and parameterization is one of the most challenging

aspects in employing a multi-class MVA algorithm. Linear regression is one of

the most widely used approaches to estimate resource demands. Zhang et al.

applied a regression-based approximation of the CPU demands of online web

transactions.16,17 To minimize the absolute error, they adopted the non-negative

LSR provided by MATLAB to obtain resource demands. They then used the ap-

proximation results in a multi-tier queueing model. Kraft et al. also applied linear

regression and a maximum likelihood technique to parameterize a performance

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

APEM 27

model for an industrial ERP system.18 However, regression techniques suffer from

the well-studied problem of multicollinearity (see Chapter 15 in Jain’s work),27

which can lead to unreliable predictions for demands and very wide confidence in-

tervals for predicted demands. Mi et al. and Kalbasi et al. have shown that the

accuracy of regression-based techniques critically depends on the quality of moni-

toring data used in the regression analysis.15,28

Zhang et al. showed that it is not true that the service demand is load inde-

pendent for modern processors with DFS and Hyper-Threading Technology (HTT)

features.19 Their study demonstrated that the CPU demand can be modelled as a

polynomial function of the CPU utilization. The polynomial coefficients are inferred

from measured CPU utilizations and response times. They built their experimental

environment based on a server with a multi-core processor, and then compared the

accuracy of their proposed estimation method with a load-independent regression

method and a load-dependent estimation method proposed by Kumar et al.29 Using

various workloads, they showed that their estimation method is more accurate. It

is an interesting approach to explore the load-dependent behaviours in a multi-core

processor. However, it requires a very large number of measurements to parameter-

ize the polynomial function, because the estimate is based on measurements of not

only the CPU utilization but also response time. In addition, they did not adjust

the CPU demand to take into account the effects of DFS.

Different MVA approaches have been proposed for open, closed, and semi-open

queueing networks with load-dependent queues. However, to the best of our knowl-

edge, the literature is lacking awareness of the impact of DFS on performance

models. For closed systems, Seidmann’s approximation is widely used to address

MVA’s numerical instability issues.30,31,32 However, it is only applicable for multi-

server queues in which all servers are load independent. For closed systems with

generic load-dependent queues, Casale introduced the CMVA algorithm to overcome

the numerical instability issue.10 For open systems with load-dependent queues, a

multi-class MVA algorithm was introduced by Menascé et al. (Chapter 14).2 For

semi-open systems with load-dependent queues, the common analytic procedure

is to treat the open and closed classes separately. Bruell et al. first presented the

MVA algorithm for load-dependent semi-open networks,33 details can also be found

in Chapter 8 of Bolch et al.’s work.34 None of these MVA algorithms take into ac-

count the effect of DFS on multi-core computer systems.

7. Conclusions

To address performance modelling for a multi-core computer system which cannot

be modelled as a product-form queueing network, we proposed to solve a flow-

equivalent aggregated model using MVA algorithms, where service demands are

adjusted to compensate for the effects of DFS. In order to illustrate the applicabil-

ity of our performance model, we extended the original TPC-W benchmark to open

and semi-open systems, then we applied the APEM method in three case studies.

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

28

The performance metrics (average response times) are validated with the exper-

imental results. We have shown that our MVA algorithms with DFS adjustment

outperform the original MVA algorithms in all three case studies. We also discussed

and compared closed, open, and semi-open models and their limitations. Last but

not least, we extended the proposed MVA algorithms in APEM to multi-class mod-

els.

There are several potential directions for future work. Firstly, we would like

to improve the time and space complexities of the CMVA algorithm. Secondly,

we would like to develop numerically stable MVA algorithms without overflow/

underflow for open and semi-open systems.

Acknowledgment

The work reported in this paper was supported by the Ontario Research Fund and

the Natural Sciences and Engineering Research Council of Canada.

Appendices
Appendix A. Outlier Detection

In this paper, we use the outlier detection method presented by Ben-Gal.35 The

method takes three input parameters - the average µ, the variance σ2, and the

confidence level 1− α. The outlier region is defined by

out(α, µ, σ2) = {x : |x− µ| > z1−α/2σ},

where z1−α/2 is the (1− α/2)-quantile of a unit normal variate (see Chapter 13 in

Jain’s work).27 In our tests, we choose α = 0.1 (90% confidence interval), which is

a typical value.

Appendix B. Calculation of T for Semi-open Systems

We assume that every user session starts from a Home page access, and ends with

the next Home page access after several other page accesses. A user-web interac-

tion transfers from one page to another with a fixed probability. The transition

probabilities between pages in the three mixes are shown in Tables 5, 6 and 7.

The abbreviations are listed in Table 8. A blank entry in a table means zero (no

transition is possible). We would like to calculate the expected number of requests

between H1 and H2.

We use the following equation to calculate the expected number of requests per

user:

Ti = 1 +
∑
j

pi,jTj ,

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

29

Table 5: Transition probabilities for browsing mix

AC AR BS BC BR CR H1 H2 NP OD OI PD SRq SRs SC

AC 0.9878 0.0122

AR 0.9000 0.1000

BS 0.4607 0.0652 0.4683 0.0057

BC 0.0342 0.9658

BR 0.9200 0.0396 0.0404

CR 0.9146 0.0474 0.0380

H1 0.3792 0.3793 0.0103 0.1871 0.0440

H2 1

NP 0.0299 0.9569 0.0074 0.0058

OD 0.0802 0.9198

OI 0.0523 0.8334 0.1143

PD 0.0047 0.8300 0.1403 0.0141 0.0109

SRq 0.0788 0.9168 0.0044

SRs 0.3674 0.6195 0.0074 0.0057

SC 0.4099 0.4784 0.1116

Table 6: Transition probabilities for shopping mix

AC AR BS BC BR CR H1 H2 NP OD OI PD SRq SRs SC

AC 0.9952 0.0047

AR 0.9000 0.1000

BS 0.0167 0.0305 0.9456 0.0072

BC 0.0084 0.9916

BR 0.4614 0.1932 0.3453

CR 0.8667 0.0094 0.1239

H1 0.3124 0.3125 0.0469 0.0308 0.2973

H2 1

NP 0.0156 0.9580 0.0049 0.0215

OD 0.0069 0.9931

OI 0.0072 0.8801 0.1127

PD 0.0058 0.0774 0.0456 0.7316 0.1396

SRq 0.0635 0.8501 0.0864

SRs 0.2657 0.6638 0.0010 0.0695

SC 0.2585 0.6968 0.0447

Table 7: Transition probabilities for ordering mix

AC AR BS BC BR CR H1 H2 NP OD OI PD SRq SRs SC

AC 0.8349 0.1651

AR 0.9000 0.1000

BS 0.0001 0.0332 0.9666 0.0001

BC 0.0002 0.9998

BR 0.8000 0.1454 0.0546

CR 0.9900 0.0002 0.0098

H1 0.0499 0.0500 0.0270 0.0026 0.8705

H2 1

NP 0.0504 0.9439 0.0034 0.0023

OD 0.9940 0.0060

OI 0.1168 0.8801 0.0031

PD 0.0099 0.3651 0.1871 0.0720 0.3658

SRq 0.0815 0.9001 0.0184

SRs 0.0486 0.7332 0.2181 0.0001

SC 0.9500 0.0419 0.0081

where pi,j is the probability that a user visit transfers from page i to page j (cor-

responds to entries in Tables 5, 6 and 7), Ti and Tj are the expected numbers of

steps from page i and page j to the final state, respectively. In Table 5, we have

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

30

Table 8: TPC-W page name abbreviations

AC Admin Confirm

AR Admin Request

BS Best Sellers

BC Buy Confirm

BR Buy Request

CR Customer Regist.

H1 Home (Start)

H2 Home (End)

NP New Products

OD Order Display

OI Order Inquiry

PD Product Detail

SRq Search Request

SRs Search Results

SC Shopping Cart

TH1 = 1+0.3792TBS+0.3797TNP +0.0103TOI+0.1871TSRq
+0.0440TSC . Similarly,

we can write equations for TBS , TNP , TOI , TRSq
, TSC , and so on. We continue until

we have all of the equations (14 equations in our case) which calculate Ti from page

i to H2, and solve those equations. Finally, the expected numbers of requests per

user for the browsing, shopping and ordering mixes are 3.445, 6.264 and 10.957,

respectively.

References

1. M. Reiser and S. S. Lavenberg, Mean-value analysis of closed multichain queuing
networks, Journal of the ACM (JACM) 27(2) (1980) 313–322.

2. D. A. Menascé, V. A. Almeida and L. W. Dowdy, Performance by Design: Computer
Capacity Planning by Example (Prentice Hall Professional, 2004).

3. V. Pallipadi and A. Starikovskiy, The ondemand governor, in Proceedings of the Linux
Symposium, 2, (Linux Symposium, 2006), pp. 215–230.

4. D. A. Menascé, Modeling the tradeoffs between system performance and cpu power
consumption, in Proceedings of the 2015 Computer Measurement Group Conference,
(CMG, 2015).

5. G. Dhiman and T. S. Rosing, Dynamic voltage frequency scaling for multi-tasking
systems using online learning, in Proceedings of the 2007 international symposium on
Low power electronics and design, (ACM, 2007), pp. 207–212.

6. A. Wierman, L. L. Andrew and A. Tang, Power-aware speed scaling in processor
sharing systems, in Proceedings of the 28th Conference on Computer Communications,
(IEEE, 2009), pp. 2007–2015.

7. A. Wierman, L. L. Andrew and A. Tang, Power-aware speed scaling in processor
sharing systems: Optimality and robustness, Performance Evaluation 69(12) (2012)
601–622.

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

31

8. L. Zhang and D. G. Down, Approximate mean value analysis for multi-core systems,
in Proceedings of the 2015 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, (SCS, 2015), pp. 1–8.

9. K. M. Chandy, U. Herzog and L. Woo, Parametric analysis of queuing networks, IBM
Journal of Research and Development 19(1) (1975) 36–42.

10. G. Casale, A note on stable flow-equivalent aggregation in closed networks, Queueing
Systems 60(3-4) (2008) 193–202.

11. E. D. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik, Quantitative System
Performance: Computer System Analysis using Queueing Network Models (Prentice-
Hall, Inc., 1984).

12. Transaction Processing Performance Council, TPC-W official website
http://www.tpc.org/tpcw, (2005), last accessed 24 Feburary 2016.

13. G. Casale, N. Mi, L. Cherkasova and E. Smirni, Dealing with burstiness in multi-
tier applications: Models and their parameterization, IEEE Transactions on Software
Engineering 38(5) (2012) 1040–1053.

14. N. Mi, G. Casale, L. Cherkasova and E. Smirni, Burstiness in multi-tier applications:
Symptoms, causes, and new models, in Proceedings of 9th ACM/IFIP/USENIX In-
ternational Conference on Middleware, (Springer-Verlag New York, Inc., 2008), pp.
265–286.

15. N. Mi, L. Cherkasova, K. Ozonat, J. Symons and E. Smirni, Analysis of application
performance and its change via representative application signatures, in Proceedings
of Network Operations and Management Symposium, (IEEE, 2008), pp. 216–223.

16. Q. Zhang, L. Cherkasova, N. Mi and E. Smirni, A regression-based analytic model for
capacity planning of multi-tier applications, Cluster Computing 11(3) (2008) 197–211.

17. Q. Zhang, L. Cherkasova and E. Smirni, A regression-based analytic model for dy-
namic resource provisioning of multi-tier applications, in Proceedings of 4th Interna-
tional Conference on Autonomic Computing , (IEEE, 2007), pp. 27–36.

18. S. Kraft, S. Pacheco-Sanchez, G. Casale and S. Dawson, Estimating service resource
consumption from response time measurements, in Proceedings of 4th International
ICST Conference on Performance Evaluation Methodologies and Tools, (ICST, 2009).

19. Z. Zhang, S. Li and J. Zhou, Estimate load-dependent service demand for modern
CPU, Information Technology Journal 12 (2013) 632–639.

20. JBoss Group, JBoss application server http://jbossas.jboss.org, (2005), last accessed
24 Feburary 2016.

21. MySQL AB, MySQL http://www.mysql.com, (2008), last accessed 24 Feburary 2016.
22. T. Horvath, TPC-W J2EE implementation http://www.cs.virginia.edu, (2008), last

accessed 24 Feburary 2016.
23. L. Zhang, Performance Models for Legacy System Migration and Multi-core Comput-

ers - an MVA Approach, PhD thesis, McMaster University, (Ontario, Canada, 2015).
24. L. Zhang, TPC-W kits for open and semi-open systems http://www.cas.mcmaster.ca,

(2015), last accessed 24 Feburary 2016.
25. T. Granlund et al., GMP, the GNU multiple precision arithmetic library

https://gmplib.org, (2014), last accessed 24 Feburary 2016.
26. B. Schroeder, A. Wierman and M. Harchol-Balter, Open versus closed: A cautionary

tale, in Proceedings of 3rd Symposium on Networked Systems Design and Implemen-
tation, 3, (USENIX Association, 2006), pp. 239–252.

27. R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Exper-
imental Design, Measurement, Simulation and Modeling (John-Wiley, 1991).

28. A. Kalbasi, D. Krishnamurthy, J. Rolia and S. Dawson, DEC: Service demand es-
timation with confidence, IEEE Transactions on Software Engineering 38(3) (2012)

January 11, 2017 19:51 WSPC/INSTRUCTION FILE amva-journal-lei

32

561–578.
29. D. Kumar, L. Zhang and A. Tantawi, Enhanced inferencing: Estimation of a work-

load dependent performance model, in Proceedings of the Fourth International ICST
Conference on Performance Evaluation Methodologies and Tools, (ICST, 2009).

30. A. Seidmann, J. Paul and S. Shalev-Oren, Computerized closed queueing network
models of flexible manufacturing systems: A comparative evaluation, Large Scale Sys-
tems 12 (1987) 91–107.

31. X. Liu, J. Heo and L. Sha, Modeling 3-tiered web applications, in Proceedings of
the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, (IEEE, 2005), pp. 307–310.

32. Y. Chen, S. Iyer, X. Liu, D. Milojicic and A. Sahai, Translating service level objectives
to lower level policies for multi-tier services, Cluster Computing 11(3) (2008) 299–311.

33. S. C. Bruell, G. Balbo and P. Afshari, Mean value analysis of mixed, multiple class
bcmp networks with load dependent service stations, Performance Evaluation 4(4)
(1984) 241–260.

34. G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications
(John Wiley & Sons, 1998).

35. I. Ben-Gal, Outlier detection, in Data Mining and Knowledge Discovery Handbook ,
eds. O. Maimon and L. Rokach (Springer, 2005) pp. 131–146.

