
Maximizing throughput in zero-buffer tandem
lines with constrained flexible servers

Mohammad H. Yarmand and Douglas G. Down

Department of Computing and Software
McMaster University

{yarmanmh,downd}@mcmaster.ca

Abstract. For tandem queues with no buffer spaces and both dedicated
and flexible servers, we study how flexible servers should be assigned to
maximize the throughput. We focus on systems in which flexible servers
are constrained to serve at specific stations. With three stations and
one or two constrained flexible servers, we completely characterize the
optimal policies and compare throughput improvement with systems in
which flexible servers are not constrained. Using numerical experiments,
we discuss the impact of constrained flexibility on performance and di-
mensioning of systems.

Keywords: Server Allocation; Zero Buffer; Tandem Queues; Constrained
Flexible Servers

1 Introduction

Consider a tandem queueing network with N ≥ 2 stations, M ≥ 1 dedicated
servers, and F ≥ 1 flexible servers. At any given time, each station can be
assigned multiple servers and each server can work only on one job, and a job
may have at most one server assigned to it. Assume that the service times of
each job at station i ∈ {1, . . . , N} are independent and identically distributed
exponential random variables with rate µi, i.e. the service rate of each server at
the ith station is only dependent on the station.

We assume that dedicated servers are already assigned to stations. We are
interested in determining the dynamic assignment policy for flexible servers that
maximizes the long-run average throughput. For simplicity, we assume that the
travel times for jobs to progress and also the travel times for flexible servers to
move between stations are negligible. We also assume there is an infinite supply
of jobs in front of the first station and infinite space for jobs completed at the
last station. There are no buffer spaces between stations – blocking occurs after
service (manufacturing blocking).

In this paper, we study situations where flexible servers are constrained to
operate between two adjacent stations. The motivation for this study is that
in practice, there might be situations where moving flexible servers among all
stations is not possible (or if possible, it might be costly).

2 Yarmand and Down

The concept of “hand-off” for flexible servers was introduced in [9]. Hand-off
happens when a flexible server passes the job it is serving to a dedicated server at
the same station. Although it is possible to perform hand-off at any time, we let
it occur only in the following two cases. When a station has a busy flexible server
and a free dedicated server, the flexible server can pass its job to the dedicated
server and become free. When a station has a busy flexible server and a blocked
dedicated server, jobs can be swapped between the two servers. In either of the
two cases, we say a hand-off has taken place. With the insights gained from [9]
(Theorems 1 and 2), our problem is significantly simplified, as we are able to
restrict our analysis to policies that perform hand-offs as described above and are
non-idling. (Note that is such hand-offs were not allowed, then optimal policies
may allow idling, to avoid flexible servers being blocked for extended periods of
time.)

Any allocation policy should define appropriate actions when blocking or
starvation occurs. In cases where there are multiple blocked or starved servers,
policies should prioritize resolving blocking or starvation of the involved servers.
We show that for systems with three stations, with balanced service rates, the
optimal policy clears blocking from the end of the line to the beginning and
avoids starving servers.

The literature on tandem lines with multiple servers and finite buffers is not
large, see the discussion in van Vuuren et al. [7]. We have previously studied
related problems in the assignment of dedicated and flexible servers in zero-
buffer tandem lines. In [8], we studied the problem of how to assign dedicated
servers in such settings, and in [9], we examined the problem of how to coordinate
dedicated and flexible servers, where the locations of where flexible servers could
work was not constrained. Constraining the servers in this manner is the focus
of the current paper.

Our work has been motivated by related work in two application domains:
hospital bed management and assembly line design. In the hospital bed setting,
Bekker et al. [1] discuss a number of issues with respect to how to manage
flexible hospital beds. In particular, they develop the insight that full flexibility
is beneficial for smaller systems, with less flexibility required for larger systems.
Our work complements this, as rather than studying the impact of the number
of flexible servers (as in [1]), we explore the scenario when movement of servers is
constrained. We imagine that such constrained flexibility may be appropriate in
such a setting – it may be problematic to move a flexible bed to all locations in a
ward/hospital. Our main conclusion is that there can still be significant benefit,
even if flexibility is constrained. For further discussion of the bed management
problem, see de Bruin et al. [2], Green [3], and Hall [4]. In terms of assembly
line design, an example of a zero-buffer tandem line can be seen in Hu et al. [5],
where a subset of fixtures can be reconfigured.

This paper is organized as follows. In Section 2 we use Markov Decision
Process theory to derive the optimal policy for tandem lines with three stations,
a dedicated server at each station, and one or two constrained flexible servers.
We further show how to employ the Policy Iteration algorithm to construct the

Maximizing throughput with constrained servers 3

optimal policy. In Section 3 we examine larger systems and discuss the impact
of constrained flexibility. Finally, Section 4 concludes the paper and discusses
future work.

2 Tandem lines with three stations

In this section, we study the following four cases: when there is a flexible server
which only moves between the first and second stations; when there is a flexible
server which only moves between the second and third stations; when there are
two flexible servers, one moving only between the first and second stations and
the other one moving only between the second and third stations; and finally
when there are two flexible servers that can move among all of the stations (which
we call the fully flexible case). We provide a brief comparison between the last
two cases. Before looking at these cases, we first discuss the framework for such
problems with an arbitrary number of servers and stations. The performance
metric that we seek to optimize is the throughput.

We use a Markov Decision Process (MDP) model. For our controlled continuous-
time Markov chain (CTMC), let S,A, and As represent the state space, the
action space, and the action space conditioned on the Markov chain being in
state s ∈ S, respectively. We assume that the system employs hand-offs in the
following manner. If a station has a busy flexible server and an idle dedicated
server, then the busy flexible server can pass its job to an idle dedicated server.
Also, when a station has a busy flexible server and a blocked dedicated server,
the jobs are swapped between the servers. We also assume that servers are non-
idling. Theorems 1 and 2 from [9] can be applied to show that an optimal policy
performs hand-offs and is non-idling. With these assumptions, the choice of a
state is simplified, as we do not need to keep track of which servers (dedicated
or flexible) are busy at each station. Thus our choice of state s ∈ S is defined by
the tuple

s = (x1, y1, . . . , xi, yi, . . . , xN)

where xi is the number of busy servers in station i and yi is the number of
blocked servers in station i. Note that we do not need to include yN in the
state, as no servers can be blocked at the last station. We uniformize the CTMC
(see Lippman [6]) to convert the continuous time problem to discrete time. The
normalization constant that we will employ is denoted by q, and is defined below.

Constructing the transition matrices is a two stage process. One needs to
start from the initial state (s) and follow possible actions (a) to determine the
new states (s′). The state s′ is an intermediate state which does not appear
in the transition matrix. The transition between s and s′ is immediate. From
there, it is possible to follow further transitions and reach new states (s′′) with
the probabilities defined in the transition matrix. We have:

s
a→ s′

Pa→ s′′

4 Yarmand and Down

that is reflected in the transition matrix as Pa(s, s′′) =
γa,s,s′′

q
where

q = max
s∈S,a∈As

∑
s′′∈{S−s}

γa,s,s′′ and γa,s,s′′ is the transition rate from s′ to s′′, and

s′ is the state transitioned to from state s using action a.

The size of the action space is |A| =
(
F+N−1
N−1

)
. An action a ∈ A is denoted

by ai1i2···iK , where ij is the location of the jth flexible server.

2.1 Constrained servers

We first consider a tandem line with three stations and a dedicated server at each
station. Assume a flexible server exists which can only move between the first
and second stations. Theorem 1 describes the optimal policy. In the interest of
space, we have not included the proof, as it is similar to the proof of Theorem 3.
(Theorem 3 is the key analytic result, so as such it is the one result for which
we provide a proof outline.)

Theorem 1. The optimal policy prioritizes clearing blocking. It performs hand-
off and allocates the flexible server to the first station, whenever possible. Oth-
erwise the flexible server is assigned to the second station. The optimal policy is
independent of the service rates.

Next, we consider a tandem line with three stations and a dedicated server
at each station. Assume a flexible server exists which can only move between
the second and third stations. Theorem 2 describes the optimal policy. As for
Theorem 1, its proof is not provided.

Theorem 2. The optimal policy prioritizes clearing blocking. It performs hand-
off and allocates the flexible server to the second station, whenever possible.
Otherwise the flexible server is assigned to the third station. The optimal policy
is independent of the service rates.

Comparing the policies described in Theorems 1 and 2 with the fully flexible
case, described in [9], all policies have similar structures. They clear blocking
and send the flexible server to upstream stations whenever possible.

We now move to the case where there are flexible servers between both sta-
tions. Unfortunately, the optimal server assignment becomes more complicated.
In general, the optimal policy is rate dependent. However, in the case where
the service rates are identical across all stations, the optimal policy again clears
blocking (here from the end to the beginning). This would suggest that such a
policy would be optimal when the service rates are near balanced across stations.
Theorem 3 provides the optimal policy for equal service rates in a zero-buffer
tandem line with three stations, a dedicated server at each station, and two flex-
ible servers, one constrained between the first and second stations, the second
constrained between the second and third stations.

Maximizing throughput with constrained servers 5

Theorem 3. Suppose that µ1 = µ2 = µ3 = µ. The optimal policy clears blocking
from the end to the beginning (i.e. the policy prioritizes clearing any blocking at
the second station over clearing blocking at the first station, when possible).

Proof. In the proof, we leave µ1, µ2, and µ3 general, as we will later comment
on the dependence of the optimal policy on these rates. To be able to construct
the discrete-time MDP, the normalization factor is q = µ1 +µ2 +µ3 + max{µ1 +
µ2, µ1 + µ3, µ2 + µ3, 2µ2}. The MDP details are as follows.

A = {a12, a13, a22, a23}

S = {(2, 0, 2, 0, 1), (2, 0, 2, 0, 0), (2, 0, 1, 1, 1), (2, 0, 1, 0, 2), (2, 0, 1, 0, 1), (2, 0, 1, 0, 0),
(2, 0, 0, 1, 2), (2, 0, 0, 1, 1), (2, 0, 0, 0, 2), (2, 0, 0, 0, 1), (2, 0, 0, 0, 0), (1, 1, 2, 0, 0), (1, 1, 1, 0, 2),
(1, 1, 1, 0, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 2), (1, 1, 0, 1, 1), (1, 0, 3, 0, 1), (1, 0, 3, 0, 0), (1, 0, 2, 1, 1),
(1, 0, 2, 0, 2), (1, 0, 2, 0, 1), (1, 0, 2, 0, 0), (1, 0, 1, 2, 1), (1, 0, 1, 1, 2), (1, 0, 1, 1, 1), (1, 0, 0, 2, 2),
(1, 0, 0, 2, 1), (0, 1, 3, 0, 1), (0, 1, 3, 0, 0), (0, 1, 2, 1, 1), (0, 1, 2, 0, 2), (0, 1, 2, 0, 1), (0, 1, 2, 0, 0),
(0, 1, 1, 2, 1), (0, 1, 1, 1, 2), (0, 1, 1, 1, 1), (0, 1, 1, 0, 2), (0, 1, 1, 0, 1), (0, 1, 0, 2, 2), (0, 1, 0, 2, 1),
(1, 0, 1, 0, 2), (1, 0, 1, 0, 1), (1, 0, 1, 0, 0), (1, 0, 0, 1, 2), (1, 0, 0, 1, 1), (1, 0, 0, 0, 2), (1, 0, 0, 0, 1),
(1, 0, 0, 0, 0)}

Let s̄ represent the index of a state s ∈ S, according to the order repre-
sented above. In what follows, we will use the label s̄ interchangeably with the
corresponding state s, i.e. A1 = A(2,0,2,0,1).

As̄ =



a12 for s̄ = 1, 2

a13 for s̄ = 4, 7, 9

a22 for s̄ = 18, 19, 29, 30

a23 for s̄ = 21, 25, 27, 32, 36, 40

{a12, a13} for s̄ = 3, 5, 6, 8, 10, 11

{a12, a22} for s̄ = 12

{a13, a23} for s̄ = 13, 16, 38, 42, 45, 47

{a22, a23} for s̄ = 20, 24, 31, 35

{a12, a22, a23} for s̄ = 22, 23, 33, 34, 41

{a13, a22, a23} for s̄ = 28

{a12, a13, a22, a23} for s̄ = 14, 15, 17, 26, 37, 39, 43, 44, 46, 48, 49

Our candidate optimal policy d0 is:

d0(s̄) =


a12 for s̄ = 1, 2, 5, 6, 8, 10, 11, 14, 15, 22, 23, 39, 43, 44, 48, 49

a13 for s̄ = 3, 4, 7, 8, 9, 17, 26, 28, 37, 42, 45, 46, 47

a22 for s̄ = 12, 18, 19, 29, 30, 33, 34

a23 for s̄ = 13, 16, 20, 21, 24, 25, 27, 31, 32, 35, 36, 38, 40, 41

and associated reward function is:

6 Yarmand and Down

rd0(s̄) =


0 for s̄ = 2, 6, 11, 12, 15, 19, 23, 30, 34, 39, 44, 49

µ3 for s̄ = 1, 3, 5, 8, 10, 14, 17, 18, 20, 22, 24, 26, 29, 31, 33, 35, 37, 43, 46, 48

2µ3 for s̄ = 4, 7, 9, 13, 16, 21, 25, 27, 28, 32, 36, 38, 40, 41, 42, 45, 47

Again in the interests of space, we explicitly provide only the first row of the
transition matrix Pa12

(s, s′′). It is a straightforward excercise to calculate the
remaining rows of Pa12

(s, s′′), as well as the other matrices Pai1i2
(s, s′′).

Pa12
(1, 18) =

2µ1

q

Pa12
(1, 4) =

2µ2

q

Pa12
(1, 2) =

µ3

q

Pa12
(1, 1) =

q − 2µ1 − 2µ2 − µ3

q

Pa12
(1, k) = 0, k 6= 1, 2, 4, 18.

To prove the optimality of d0, we need to show that d1(s) = d0(s), where:

d1(s) = argmaxa∈As
{r(s, a) +

∑
j∈S

Pa(s, j)h0(j)},∀s ∈ S,

is the result of one iteration of the Policy Iteration algorithm. This is equivalent
to showing that for all s

r(s, a) +
∑
j∈S

Pa(s, j)h0(j)−

r(s, d0(s)) +
∑
j∈S

Pa(s, j)h0(j)

 ≤ 0. (1)

When µ = µ1 = µ2 = µ3, we directly verified inequality that (1) holds
for each s and therefore d0(s) is optimal. The algebra is straightforward (but
somewhat lengthy). �

If the service rates are arbitrary, there are several states where the optimal
action is rate independent. These states are (2,0,0,0,1), (2,0,0,0,0), (1,0,0,0,1),
(1,0,0,0,0) with a12; (1,1,2,0,0), (0,1,2,0,1), (0,1,2,0,0) with a22; and (1,1,1,0,2),
(1,1,0,1,2), (0,1,1,2,1), (0,1,1,0,2) with a23.

The remaining states have optimal actions which depend on the service rates.
For example, for state (2,0,1,1,1), action a13 is the optimal action for equal
service rates (and also rates sufficiently close to each other). Action a12 be-
comes the optimal choice when the service rate at the first station is much faster
than the second station and a constrained flexible server will be required at the
second station, but at the same time the third station is fast enough to clear
the blocking with its dedicated server. Looking at an extreme set of rates like
µ1 = 20, µ2 = 1, µ3 = 17 makes it easier to comprehend why clearing blocking
is not the immediate chosen action, but this also occurs for less extreme rates.

Maximizing throughput with constrained servers 7

Unfortunately, explicitly characterizing the boundary between the optimality of
actions a13 and a12 appears difficult in general.

Another example is state (0,1,1,1,1), where action a13 is the optimal action
for equal service rates. Action a23 becomes the optimal choice when service rates
are skewed such that the first station is much slower than the second and third
stations, in which case admitting jobs becomes the priority. An example set of
rates where this holds is µ1 = 1, µ2 = 4, µ3 = 5.

2.2 Two fully flexible servers

Consider a tandem line with three stations and a dedicated server at each station.
Assume two flexible servers exist that can move between all stations. The optimal
policy is rate dependent. When the service rates are equal, Theorem 4 describes
the optimal policy. Its proof is similar to the proof of Theorem 3.

Theorem 4. When µ1 = µ2 = µ, the optimal policy clears blocking from the
end to the beginning. The policy sends the flexible servers to the first station,
whenever possible.

Now we compare the structure of the optimal policies with two flexible
servers. When the service rates are equal, in both constrained and fully flex-
ible cases, the optimal policies prioritize clearing blocking. Both of the policies
coordinate allocations such that flexible servers are freed to send them to the
first station. Both of the policies are rate dependent.

In terms of throughput results, Table 1 compares the two policies for a num-
ber of workloads. In this table, the entries in the header row represent service
rate vectors and the other table entries are throughput values.

XXXXXXXXXFlexibility
Rates

(1, 1, 1) (2, 1, 1) (1, 2, 1) (1, 1, 2)

Dedicated (5) 0.8873 1.2812 1.1186 1.2888

Dedicated (6) 1.3314 1.4779 1.5597 1.4785

Constrained 1.3606 1.6355 1.4974 1.6027

Fully flexible 1.4600 1.6407 1.7252 1.6435

All fully flexible 1.6667 2.0 2.0 2.0
Table 1. Comparison of throughputs for different flexibility situations

The first row considers an allocation where there is a dedicated server at each
station and two of the stations have one extra dedicated server each. For each
column of the first row, the highest throughput resulting from different possible
server allocations is represented. The second row represents an allocation where
there are two dedicated servers at each station. The third and fourth rows give
throughput results for systems with a dedicated server at each station, the third
row also has two constrained servers as in Theorem 3, the fourth row has two

8 Yarmand and Down

fully flexible servers as in Theorem 4. The final row has all five servers fully
flexible.

Examining Table 1 in more detail, we see that moving to a system with a
single constrained server between each pair of servers achieves a significant per-
centage of the gains made by making servers flexible (compare rows one, three
and four). So, without increasing the total number of servers, significant per-
formance gains are possible, even with constrained flexibility. Also, we see that
with two constrained servers, we essentially have the same throughput with five
servers as with six dedicated servers, a potential savings in required resources.

3 Larger systems

In this section, we examine how our insights for N = 3 stations extends to
systems with both a larger number of stations and servers. The numerical results
in this section are obtained from simulation, where each simulation is a long run
(100 million departures).

We begin with systems where there is one constrained flexible server between
each pair of stations. The service rates at all stations are equal to one. In Table
2, the first column, N , shows the number of stations. In the case of dedicated
servers (represented in the second column), there are two dedicated servers at
each station; in the case of constrained flexible servers (represented in the third
column), each station has a dedicated server and there are N − 1 constrained
flexible servers, one between each consecutive pair of stations (so there is one less
server in total than for the dedicated system); in the case of fully flexible servers
(represented in the fourth column), there are N−1 fully flexible servers and each
station has one dedicated server. For the fully flexible server system (here and
throughout this section), we use “Policy I” as described in [9]: “clear blocking
from end to beginning only if it does not cause starvation in the b 2

3Nc previ-
ous stations; uses hand-off”, which was shown to perform well for longer lines.
Looking at Table 2, constrained flexibility offers roughly 40% of the throughput
improvement that full flexibility provides. Note that the constrained flexibility
appears to make the resulting throughput relatively insensitive to N . As a re-
sult, the throughput gain (as a percentage) appears to be a slightly increasing
function of N .

N dedicated const flx fully flx

4 1.2420 1.3438 1.6001

5 1.1939 1.3434 1.6520

8 1.1192 1.3514 1.7286

15 1.0610 1.3561 1.7868

30 1.0282 1.3585 1.8213
Table 2. Throughput for larger homogeneous systems

Maximizing throughput with constrained servers 9

We extend our study to systems where there is more than one dedicated
server per station. Table 3 considers a configuration with three stations. The
third column of this table shows the number of constrained flexible servers among
each pair of stations. For example (2,2,0) means that there are two constrained
flexible servers between the first and second stations and two constrained flex-
ible servers between the second and third stations. Comparing the first and
eighth rows, a configuration with 21 dedicated servers and six constrained flex-
ible servers has throughput close to a configuration with 30 dedicated servers,
meaning constrained flexibility can compensate for a reduction of three servers.
Also, comparing the eighth and ninth rows, it appears that when there are mul-
tiple servers per station, the throughput difference between constrained and full
flexibility is less compared to configurations which have one or two servers per
stations.

N Dedicated Alloc Const flx Alloc Throughput

30 (10, 10, 10) 8.31077

30 (9,10,9) (1,1,0) 8.63140

29 (9,9,9) (1,1,0) 8.39741

30 (8,9,9) (2,2,0) 8.87239

30 (9,9,8) (2,2,0) 8.86033

30 (8,8,8) (3,3,0) 9.14992

28 (8,8,8) (2,2,0) 8.35096

27 (7,7,7) (3,3,0) 8.22025

27 (7,7,7) F = 6 (fully) 8.63805
Table 3. Throughput for configurations with N = 3 and multiple dedicated and flexible
servers per station

To give an idea of how the effect scales, we examine a system with 10 stations,
see Table 4. We see that with N = 91 or 92 servers and 18 of these being
(constrained) flexible servers, we can achieve close to the same throughput as
with N = 100 servers, all dedicated. In general, it appears that we can reduce
the number of servers by approximately 10 percent by adding a small amount of
constrained flexibility. Finally, the gap between constrained flexibility and full
flexibility increases with the number of stations. This is not at all surprising, as
full flexibility allows the flexible servers to work at all of the stations, providing
more opportunities to leverage them.

4 Conclusion

Based on our observations, optimal policies under constrained flexibility have
a similar structure to optimal policies under full flexibility. All of the policies
perform hand-off such that the flexible server is freed to send it to upstream
stations. They also clear blocking if any exists. Also as expected, the through-
put improvement under constrained flexibility is less compared to full flexibility.

10 Yarmand and Down

N Allocations Throughput

100 dedicated: (10,10,10,10,10,10,10,10,10,10) 7.65041

99 dedicated: (9,9,9,9,9,9,9,9,9,9)
const flx: (1,1,1,1,1,1,1,1,1,0) 8.06876

99 dedicated: (9,9,9,9,9,9,9,9,9,9)
fully flx: 9 8.81186

89 dedicated: (8,8,8,8,8,8,8,8,8,8)
const flx: (1,1,1,1,1,1,1,1,1,0) 7.19769

89 dedicated: (8,8,8,8,8,8,8,8,8,8)
fully flx: 9 7.93998

98 dedicated: (8,8,8,8,8,8,8,8,8,8)
const flx: (2,2,2,2,2,2,2,2,2,0) 8.30885

98 dedicated: (8,8,8,8,8,8,8,8,8,8)
fully flx: 18 9.26543

88 dedicated: (7,7,7,7,7,7,7,7,7,7)
const flx: (2,2,2,2,2,2,2,2,2,0) 7.41644

91 dedicated: (7,7,7,7,7,8,7,8,7,8)
const flx: (2,2,2,2,2,2,2,2,2,0) 7.61384

92 dedicated: (7,7,7,8,7,8,7,8,7,8)
const flx: (2,2,2,2,2,2,2,2,2,0) 7.69727

88 dedicated: (7,7,7,7,7,7,7,7,7,7)
fully flx: 18 8.28586

97 dedicated: (7,7,7,7,7,7,7,7,7,7)
const flx: (3,3,3,3,3,3,3,3,3,0) 8.37838

97 dedicated: (7,7,7,7,7,7,7,7,7,7)
fully flx: 27 9.36535

87 dedicated: (6,6,6,6,6,6,6,6,6,6)
const flx: (3,3,3,3,3,3,3,3,3,0) 7.47718

87 dedicated: (6,6,6,6,6,6,6,6,6,6)
fully flx: 27 8.38774

96 dedicated: (6,6,6,6,6,6,6,6,6,6)
const flx: (4,4,4,4,4,4,4,4,4,0) 8.33007

96 dedicated: (6,6,6,6,6,6,6,6,6,6)
fully flx: 36 9.45340

86 dedicated: (5,5,5,5,5,5,5,5,5,5)
const flx: (4,4,4,4,4,4,4,4,4,0) 7.39672

86 dedicated: (5,5,5,5,5,5,5,5,5,5)
fully flx: 36 8.46073

95 dedicated: (5,5,5,5,5,5,5,5,5,5)
const flx: (5,5,5,5,5,5,5,5,5,0) 8.14238

95 dedicated: (5,5,5,5,5,5,5,5,5,5)
fully flx: 45 9.36825

85 dedicated: (4,4,4,4,4,4,4,4,4,4)
const flx: (5,5,5,5,5,5,5,5,5,0) 7.17594

85 dedicated: (4,4,4,4,4,4,4,4,4,4)
fully flx: 45 8.40664

Table 4. Throughput for configurations with N = 10 and multiple dedicated and
flexible servers per station

Maximizing throughput with constrained servers 11

Unlike full flexibility, the optimal policy under constrained flexibility is not rate
independent for arbitrary configurations. The trade-off between the cost of mak-
ing servers flexible (fully or constrained) and the throughput improvement can
be used to decide if flexible servers should be constrained or not. In the future,
it would be instructive to explore if structural results could be developed for
systems where the service rates are heterogeneous and where the service distri-
butions are not exponential. It would also be instructive to examine more general
structures for how servers are constrained. For example, each flexible server could
have a “zone” in which they could work – here, the zones are simply pairs of
servers, but these zones could be more general in applications.

Acknowledgments. This work was supported by the Discovery Grant program
of the Natural Sciences and Engineering Research Council of Canada.

References

1. R. Bekker, G. Koole, and D. Roubos. Flexible bed allocations for hospital wards.
Health Care Management Science, 20:453–466, 2017.

2. A. de Bruin, R. Bekker, L. Zanten, and G. Koole. Dimensioning clinical wards using
the Erlang loss model. Annals of Operations Research, 178:23–43, 2010.

3. L. Green. Capacity planning and management in hospitals. In M. Brandeau, F. Sain-
fort, and W. Pierskella, editors, Operations Research and Health Care, pages 15–41.
2005.

4. R. Hall. Bed assignment and bed management. In R. Hall, editor, Handbook of
Healthcare System Scheduling, pages 177–200. 2012.

5. S. Hu, J. Ko, L. Weyand, H. ElMaraghy, T. Lien, Y. Koren, H. Bley, G. Chrys-
solouris, N. Nasr, and M. Shpitalni. Assembly system design and operations for
product variety. CIRP Annals - Manufacturing Technology, 60:715–733, 2011.

6. S. A. Lippman. Applying a new device in the optimization of exponential queuing
systems. Operations Research, 23(4):687–710, 1975.

7. M. van Vuuren. Performance analysis of tandem queues with small buffers. IIE
Transactions, 41:882–892(11), October 2009.

8. M. H. Yarmand and D. G. Down. Server allocation for zero buffer tandem queues.
European Journal of Operational Research, 230(3):596 – 603, 2013.

9. M. H. Yarmand and D. G. Down. Maximizing throughput in zero-buffer tandem
lines with dedicated and flexible servers. IIE Transactions, 47(1):35–49, 2015.

