
COSHH: A Classification and Optimization based Scheduler for Heterogeneous
Hadoop Systems

Aysan Rasoolia, Douglas G. Downa

aDepartment of Computing and Software, McMaster University, L8S 4K1, Canada

Abstract

A Hadoop system provides execution and multiplexing of many tasks in a common datacenter. There is a rising
demand for sharing Hadoop clusters amongst various users, which leads to increasing system heterogeneity. However,
heterogeneity is a neglected issue in most Hadoop schedulers. In this work we design and implement a new Hadoop
scheduling system, named COSHH, which considers heterogeneity at both the application and cluster levels. The main
objective of COSHH is to improve the mean completion time of jobs. However, as it is concerned with other key Hadoop
performance metrics, our proposed scheduler also achieves competitive performance under minimum share satisfaction,
fairness and locality metrics with respect to other well-known Hadoop schedulers.

Keywords: Hadoop System, Scheduling System, Heterogeneous Hadoop

1. Introduction

Hadoop systems were initially designed to optimize the
performance of large batch jobs such as web index con-
struction [1]. However, due to its advantages, the number
of applications running on Hadoop is increasing, which
leads to a growing demand for sharing Hadoop clusters
amongst multiple users [1]. Various types of applications
submitted by different users require the consideration of
new aspects in designing a scheduling system for Hadoop.
One of the most important aspects which should be consid-
ered is heterogeneity in the system. Heterogeneity can be
at both the application and the cluster levels. Application
level heterogeneity is taken into account in some recent
research on Hadoop schedulers [2]. However, to the best
of our knowledge, cluster level heterogeneity is a neglected
aspect in designing Hadoop schedulers. In this work, we
introduce a new scheduling system (called COSHH) de-
signed and implemented for Hadoop, which considers het-
erogeneity at both application and cluster levels.

The main approach in our scheduling system is to use
system information to make better scheduling decisions,
which leads to improving the performance. COSHH con-
sists of several components. The component which gathers
system information was first introduced in [3], and is fur-
ther developed in [4], which provides a means to estimate
the mean job execution time based on the structure of the
job, and the number of map and reduce tasks in each job.
The main motivations for our scheduler are as follows:

• Scheduling based on fairness, minimum share
requirements, and the heterogeneity of jobs
and resources. In a Hadoop system, satisfying the
minimum shares of users is the first critical issue.

The next important issue is fairness. We design a
scheduling algorithm which has two stages. In the
first stage, the algorithm considers the satisfaction of
the minimum share requirements for all users. Then,
in the second stage, the algorithm considers fairness
for all users. Most current Hadoop scheduling algo-
rithms consider fairness and minimum share objec-
tives without considering heterogeneity of the jobs
and the resources. One of the advantages of COSHH
is that while it addresses the fairness and the mini-
mum share requirements, it does this in a way that
makes efficient assignments, by considering the het-
erogeneity in the system. The system heterogeneity
is defined based on job requirements (e.g., estimated
execution time) and resource features (e.g., execu-
tion rate). Consequently, the proposed scheduler re-
duces the average completion time of the jobs.

• Reducing the communication cost in the Hadoop
system. The Hadoop system distributes tasks among
the resources to reduce a job’s completion time. How-
ever, Hadoop does not consider communication costs.
In a large cluster with heterogenous resources, maxi-
mizing a task’s distribution may result in overwhelm-
ingly large communication overhead. As a result,
a job’s completion time will be increased. COSHH
considers the heterogeneity and distribution of re-
sources in the task assignment.

• Reducing the search overhead for matching
jobs and resources. To find the best matching of
jobs and resources in a heterogeneous Hadoop sys-
tem, an exhaustive search is required. COSHH uses
classification and optimization techniques to restrict

Preprint submitted to Elsevier January 13, 2014

the search space. Jobs are categorized based on their
requirements. Every time a resource is available, it
searches through the classes instead of the individual
jobs to find the best matching (using optimization
techniques). The solution of the optimization prob-
lem results in the set of suggested classes for each
resource, used for making routing decisions. More-
over, to avoid adding significant overhead, COSHH
limits the number of times that classification and op-
timization are performed in the scheduler.

• Increasing locality. In order to increase locality,
we should increase the probability that tasks are as-
signed to resources which also store their input data.
COSHH makes a scheduling decision based on the
suggested set of job classes for each resource. There-
fore, the required data of the suggested classes of a
resource can be replicated on that resource. This
can lead to increased locality, in particular in large
Hadoop clusters, where locality is more critical.

We use a Hadoop simulator, MRSIM [5], and extend it
to evaluate our proposed scheduler. The four most com-
mon performance metrics for Hadoop systems: locality,
fairness, minimum share satisfaction, and average comple-
tion time, are implemented. The performance of COSHH
is compared with two commonly used Hadoop schedul-
ing algorithms, the FIFO algorithm and the Fair-sharing
algorithm [1]. The results show that COSHH has signif-
icantly better performance in reducing the average com-
pletion time, and satisfying the required minimum shares.
Moreover, its performance for the locality and the fairness
performance metrics is very competitive with the other two
schedulers. Furthermore, we demonstrate the scalability of
COSHH based on the number of jobs and resources in the
Hadoop system. The sensitivity of the proposed algorithm
to errors in the estimated job execution times is examined.
Our results show that even in a system with as much as
40% error in estimating job execution times, the COSHH
algorithm significantly improves average completion times.

To evaluate the overhead of the COSHH scheduler,
we present its scheduling time, and compare it with the
other schedulers. The improvement in average completion
time is achieved at the cost of increasing the overhead
of scheduling. However, the additional overhead for the
COSHH algorithm, compared to the improvement for av-
erage completion time, is in most cases negligible.

The remainder of this paper is organized as follows.
The high level architecture of COSHH is introduced in
Section 2. Details of the two main components in our
proposed scheduler are presented in Sections 3 and 4. In
Section 5, we present details of the evaluation environ-
ment, and study the performance of COSHH with two
well-known real Hadoop workloads. Section 6 provides
further discussion about the performance of the COSHH
scheduler, and analyzes it from sensitivity and scalabil-
ity perspectives. Implementation on an actual cluster is

presented in Section 7. Current Hadoop scheduling algo-
rithms are given in Section 8. We discuss future directions
in the concluding section.

2. Proposed Hadoop Scheduling System

The high level architecture of COSHH is presented in
Figure 1. In this section we present a brief overview of all
of the components. We will provide greater detail for the
main components in the next two sections.

Figure 1: The high level architecture of COSHH

A typical Hadoop scheduler receives two main messages
from the Hadoop system: a message signalling a new job
arrival from a user, and a heartbeat message from a free
resource. Therefore, COSHH consists of two main pro-
cesses, where each process is triggered by receiving one of
these messages. Upon receiving a new job, the scheduler
performs the queuing process to store the incoming job in
an appropriate queue. Upon receiving a heartbeat mes-
sage, the scheduler triggers the routing process to assign
a job to the current free resource. In Figure 1, the flows
of the job arrival and heartbeat messages are presented by
solid and dashed lines, respectively.

The high level architecture of COSHH consists of four
components: the Hadoop system, the task scheduling pro-
cess, the queuing process, and the routing process. The
task scheduling process estimates the execution time of an
incoming job on all resources. These estimates are passed
to the queuing process to choose an appropriate queue for
the incoming job. The routing process selects a job for the
available free resource, and sends it to the task schedul-
ing process. Using the selected job’s characteristics, the
task scheduling process assigns tasks of the selected job to
available slots of the free resource. The Hadoop system
and task scheduling process are introduced in this section,
and the detailed description of the queuing and routing
processes are provided in Sections 3 and 4, respectively.

2.1. Hadoop System
The Hadoop system consists of a cluster, which is a

group of linked resources. The data in the Hadoop system
is organized into files. The users submit jobs to the sys-
tem, where each job consists of a number of tasks. Each
task is either a map task or a reduce task. The Hadoop
components related to our research are described as fol-
lows:

2

1. The cluster consists of a set of resources, where each
resource has a computation unit and a data storage
unit. The computation unit consists of a set of slots
(in most Hadoop systems, each CPU core is consid-
ered as one slot) and the data storage unit has a
specific capacity. We assume a cluster with M re-
sources as follows:

Cluster = {R1, . . . , RM}
Rj =< Slotsj ,Memj >

• Slotsj is the set of slots in resource Rj , where
each slot (slotkj) has a specific execution rate
(exec ratekj). Generally, slots belonging to one
resource have the same execution rate. A re-
source Rj has the following set of s slots:

Slotsj = {slot1j , . . . , slotsj}

• Memj is the storage unit of resource Rj , which
has a specific capacity (capacityj) and data re-
trieval rate (retrieval ratej). The data retrieval
rate of resource Rj depends on the bandwidth
within the storage unit of this resource.

2. Data in the Hadoop system is organized into files,
which are usually large. Each file is split into small
pieces, which are called slices (usually, all slices in a
system have the same size). We assume that there
are f files in the system, and each file is divided into
l slices, which are defined as follows:

Files = {F1, . . . , Ff}
Fi = {slice1

i , . . . , slice
l
i}

3. We assume that there are N users in the Hadoop
system, where each user (Ui) submits a set of jobs
to the system (Jobsi) as follows:

Users = {U1, . . . , UN}
Ui =< Jobsi >

Jobsi = {J1
i , . . . , J

n
i },

where Jdi denotes job d submitted by user Ui, and n
is the total number of jobs submitted by this user.
The Hadoop system assigns a priority and a mini-
mum share to each user based on a particular policy
(e.g. the pricing policy of [6]).
The priority is an integer which shows the relative
importance of a user. Based on the priority (priorityi)
of a user Ui, we define a corresponding weight (weighti),
where the weight can be any integer or fractional
number. The number of slots assigned to user Ui de-
pends on her weight (weighti). The minimum share
of a user Ui (min sharei) is the minimum number
of slots that the system must provide for user Ui at
each point in time.
In a Hadoop system, the set of submitted jobs of a
user is dynamic, meaning that the set of submitted
jobs for user Ui at time t1 may be completely differ-
ent at time t2. Each job (Ji) in the system consists

of a number of map tasks and reduce tasks. A job Ji
is represented by

Ji = Mapsi ∪Redsi,
where Mapsi and Redsi are the sets of map tasks
and reduce tasks of this job, respectively. The set
Mapsi of job Ji is denoted by

Mapsi = {MT 1
i , . . . ,MTm

′

i }.
Here, m′ is the total number of map tasks, and MT ki
is map task k of job Ji. Each map task MT ki per-
forms some processing on the slice (slicelj ∈ Fj)
where the required data for this task is located.
The set Redsi of job Ji is denoted by

Redsi = {RT 1
i , . . . , RT

r′

i }.
Here, r′ is the total number of reduce tasks, and
RT ki is reduce task k of job Ji. Each reduce task
RT ki receives and processes the results of some of
the map tasks of job Ji.
The value mean execT ime(Ji, Rj) defines the mean
execution time of job Ji on resource Rj , and the
corresponding execution rate is defined as follows:

mean execRate(Ji, Rj) =

1/mean execT ime(Ji, Rj).

2.2. Task Scheduling Process
Upon a new job arrival, an estimate of its mean execu-

tion times on the resources is required. The task schedul-
ing process component uses a task duration predictor to
estimate the mean execution times of the incoming job on
all resources (mean execT ime(Ji, Rj)). This component
is a result of research in the AMP lab at UC Berkeley [4].

To define the prediction algorithm, first various analy-
ses are performed in [4], to identify important log signals.
Then, the prediction algorithm is introduced using these
log signals, and finally the accuracy of the prediction algo-
rithm is evaluated on real Hadoop workloads. The predic-
tion algorithm should be able to make a decision within
a matter of microseconds, with fairly high accuracy. To
achieve this goal, the estimator consists of two parts: the
first part, chrond, refers to a daemon running in the back-
ground. It is responsible for analyzing Hadoop history log
files as well as monitoring cluster utilizations every speci-
fied time interval. For example, for Facebook and Yahoo!
workloads, an interval of every six hours is able to provide
the desired accuracy [7].

Periodically, k-means clustering [8] is applied on this
data, which keeps track of the cluster boundaries. On
the other hand, the second part, Predictor, is an on-the-
spot decision engine. Whenever a new job arrives, the
Predictor classifies its tasks into various categories de-
pending on the file they operate on, the total cluster uti-
lization at that point in time, and the input bytes they
read, by consulting the lookup table populated by chrond.
Finally, it returns the mean job execution times.

3

The refined Predictor algorithm for COSHH is pro-
vided in [9]. Accuracy experiments for Chronos are pro-
vided in [4] on 46 GB of Yahoo! and Facebook cluster
logs. The results show that around 90% of map tasks are
predicted within 80% accuracy. Further, about 80% of
reduce tasks are predicted within 80% accuracy. Most im-
portantly, the addition of Chronos to the existing Hadoop
Schedulers did not result in any significant performance
degradation [4].

3. Queuing Process

Figure 2 shows the stages of the queuing process. The
two main approaches used in the queuing process are clas-
sification and optimization based approaches, introduced
in detail in Sections 3.1, and 3.2, respectively. At a high
level, when a new job arrives, the classification approach
specifies the job class, and stores the job in the corre-
sponding queue. If the job does not fit any of the current
classes, the list of classes is updated to add a class for the
incoming job. The optimization approach is used to find
an appropriate matching of job classes and resources. An
optimization problem is defined based on the properties of
the job classes and features of the resources. The result
of the queuing process, which is sent to the routing pro-
cess, contains the list of job classes and the suggested set
of classes for each resource.

Figure 2: The Queuing Process

The classification and optimization approaches are used
to reduce the search space in finding an appropriate match-
ing of resources and jobs. Moreover, by using these ap-
proaches, we consider the heterogeneity in the system, and
reduce completion times. However, using these two ap-
proaches can add overhead to the scheduling process. In
order to avoid significant overhead, we limit the number
of times that these steps are performed. Also, we per-
form the classification and the optimization approaches by
methods with small overheads. In the following, we first
introduce the details of the classification and optimization
approaches, and later we will provide a complete algorithm
for the queuing process.

3.1. Classification-based Approach
Investigations on real Hadoop workloads show that it

is possible to determine classes of “common jobs” [10].
COSHH uses k-means, a well-known clustering method [8],
for classification. This method is used for classifying jobs
in real Hadoop workloads [10].

We designed our scheduler based on the fact that there
are two critical criteria with different levels of importance
in a Hadoop system. The first criterion, imposed by the
Hadoop provider, is satisfying the minimum shares. The
Hadoop providers guarantee that upon a user’s request at
any time, her minimum share will be provided immediately
(if feasible). The second criterion, important to improve
the overall system performance, is fairness. Considering
fairness prevents starvation of any user, and divides the re-
sources among the users in a fair manner. Minimum share
satisfaction has higher criticality than fairness. Therefore,
COSHH has two classifications, to consider these issues for
first minimum share satisfaction, then for fairness. In the
primary classification (for minimum share satisfaction),
only the jobs whose users have min share > 0 are clas-
sified, and in the secondary classification (for fairness) all
of the jobs in the system are considered. The jobs whose
users have min share > 0 are considered in both classifi-
cations. The reason is that when a user asks for more than
her minimum share, first her minimum share is given to
her immediately through the primary classification. Then,
extra shares should be given to her in a fair way by con-
sidering all users through the secondary classification.

In both classifications, jobs are classified based on their
features (i.e. priority, mean execution rate on the resources
(mean execRate(Ji, Rj)), and mean arrival rate). The set
of classes generated in the primary classification is defined
as JobClasses1, where an individual class is denoted by
Ci. Each class Ci has a given priority, which is equal to
the priority of the jobs in this class. The estimated mean
arrival rate of the jobs in class Ci is denoted by αi, and
the estimated mean execution rate of the jobs in class Ci
on resource Rj is denoted by µi,j . Hence, the heterogene-
ity of resources is completely addressed with µi,j . The
total number of classes generated with this classification
is assumed to be F , i.e.

JobClasses1 = {C1, . . . , CF }.

The secondary classification generates a set of classes
defined as JobClasses2. As in the priority classification,
each class, denoted by C ′i, has priority equal to the priority
of the jobs in this class. The mean arrival rate of the jobs
in class C ′i is equal to α′i, and the mean execution rate of
the jobs in class C ′i on resource Rj is denoted by µ′i,j . We
assume that the total number of classes generated with
this classification is F ′, i.e.

JobClasses2 = {C′1, . . . , C′F ′}.

For example, Yahoo! uses the Hadoop system in pro-
duction for a variety of products (job types) [11]: Data An-
alytics, Content Optimization, Yahoo! Mail Anti-Spam,

4

Ad Products, and several other applications. Typically,

User Job Type min share priority
User1 Advertisement Products 50 3
User2 Data Analytics 20 2
User3 Advertisement Targeting 40 3
User4 Search Ranking 30 2
User5 Yahoo! Mail Anti-Spam 0 1
User6 User Interest Prediction 0 2

Table 1: The Hadoop System Example (Exp1)

the Hadoop system defines a user for each job type, and
the system assigns a minimum share and a priority to each
user. For example, assume a Hadoop system (called Exp1)
with the parameters in Table 1. The corresponding jobs at
a given time t, are given in Table 2, where the submitted
jobs of a user are based on the user’s job type (e.g., J4, sub-
mitted by User1, is an advertisement product, while job J5

is a search ranking job). The primary classification of the

User Job Queue
User1 {J4, J10, J13, J17}
User2 {J1, J5, J9, J12, J18}
User3 {J2, J8, J20}
User4 {J6, J14, J16, J21}
User5 {J7, J15}
User6 {J3, J11, J19}

Table 2: The job queues in Exp1 at time t

Figure 3: The primary classification of the jobs in Exp1 system at
time t

jobs in the Exp1 system, at time t, is presented in Figure 3.
Note that here we assume that there is just one resource in
the system. The secondary classification of system Exp1,
at time t, is shown in Figure 4. The parameter k (used for
k-means clustering) is set in our systems to be the number
of users. Based on the studies on Facebook and Yahoo!
workloads, as well as studies of other Hadoop workloads,
jobs sent from a user to a Hadoop cluster can be classified
to belong to the same class ([10]). Setting k to a larger
number does not have significant impact on performance,
as the matching is defined based on heterogeneity of jobs
and resources.

3.2. Optimization based Approach
After classifying the incoming jobs, and storing them

in their appropriate classes, the scheduler finds a matching
of jobs and resources. The optimization approach used in
our scheduler first constructs a linear program (LP) which
considers properties of the job classes and features of the

Figure 4: The secondary classification of the jobs in Exp1 system at
time t

resources. The scheduler then solves this LP to find a set
of suggested classes for each resource.

An LP is defined for each of the classifications. The
first LP is defined for classes in the set JobClasses1 as
follows:

maxλ

s.t.

MX
j=1

µi,j × δi,j ≥ λ× αi, for all i = 1, . . . , F, (1)

FX
i=1

δi,j ≤ 1, for all j = 1, . . . ,M, (2)

δi,j ≥ 0, for all i = 1, . . . , F, and j = 1, . . . ,M. (3)

Here λ is interpreted as the maximum capacity of the
system, and δi,j is the proportion of resource Rj which is
allocated to class Ci. Moreover, M is the total number
of resources, and F is the total number of classes gener-
ated in the primary classification (|JobClasses1|). This
optimization problem increases the arrival rates of all the
classes by a fixed proportion, to minimize the load in the
system, while in (1) the system is kept stable. After solv-
ing this LP, we have the allocation matrix δ, whose (i, j)
element is δi,j . Based on the results of this LP, we define
the set SCj for each resource Rj as

SCj = {Ci : δi,j 6= 0}.
For example, consider a system with two classes of jobs,

and two resources (M = 2, F = 2), in which the ar-
rival and execution rates are α =

ˆ
2.45 2.45

˜
and µ =»

9 5
2 1

–
, respectively. Solving the above LP gives λ =

1.0204 and δ =

»
0 0.5
1 0.5

–
. Therefore, the sets SC1 and

SC2 for resources R1 and R2 will be {C2} and {C1, C2},
respectively. These two sets define the suggested classes
for each resource, i.e. upon receiving a heartbeat from re-
source R1, a job from class C2 should be selected. How-
ever, upon receiving a heartbeat from resource R2, either

5

a job from class C1 or C2 should be chosen. Even though
resource R1 has the fastest rate for class C1, the algorithm
does not assign any jobs of class C1 to it. If the system
is highly loaded, it turns out that the average completion
time of the jobs will decrease if resource R1 only executes
class C2 jobs.

The second optimization problem is used for the sec-
ondary classification. The scheduler defines an LP similar
to the previous one, for classes in the set JobClasses2.
However, in this LP the parameters λ, µi,j , δi,j , αi, and F
are replaced by λ′, µ′i,j , δ

′
i,j , α

′
i, and F ′, respectively:

maxλ′

s.t.
MX

j=1

µ
′
i,j × δ

′
i,j ≥ λ

′ × α′i, for all i = 1, . . . , F
′
, (4)

F ′X
i=1

δ
′
i,j ≤ 1, for all j = 1, . . . ,M, (5)

δ
′
i,j ≥ 0, for all i = 1, . . . , F

′
, and j = 1, . . . ,M. (6)

After solving this LP, we will have the matrix δ′, whose
(i, j) element is δ′i,j . We define the set SC ′j for each re-
source Rj as the set of classes which are allocated to this
resource based on the result of this LP, where SC ′j = {C ′i :
δ′i,j 6= 0}.

COSHH uses the sets of suggested classes SCR and
SC ′R for both making scheduling decisions and improving
locality in the Hadoop system. The scheduling decision
is made by the routing process, and locality can be im-
proved by replicating input data on multiple resources in
the Hadoop system. Most current Hadoop schedulers ran-
domly choose three resources for replication of each input
data [1, 12]. However, COSHH uses the sets of suggested
classes, SCR and SC ′R, to choose replication resources. For
each input data, the initial incoming jobs using this data
are considered, and from all the suggested resources for
these jobs, three of them are randomly selected for stor-
ing replicas of the corresponding input data. Since in this
work we evaluate our algorithm on a small cluster, we only
consider the initial incoming jobs to determine the replica-
tion resources. However, in large Hadoop clusters with a

Algorithm 1 Queuing Process
When a new Job (say J) arrives
Get execution time of J from Task Scheduling Process

if J fits in any class (say Ci) then
add J to the queue of Ci

else
use k-means clustering to update the job classification

find a class for J (say Cj) , and add J to its queue

solve optimization problems, and get two sets of suggested
classes, SCR and SC′R

end if

send SCR, SC′R and both sets of classes (JobClasses1 and
JobClasses2) to the routing process

high variety of available network bandwidths, developing
our proposed replication method to consider the updates
caused by later incoming jobs, could lead to significant
improvement in the locality. We leave this as future work.

We used the IBM ILOG CPLEX optimizer [13] to solve
the LPs. A key feature of this optimizer is its performance
in solving very large optimization problems, and the speed
required for highly interactive analytical decision support
applications [14]. As a result, solving the optimization
problems in COSHH does not add considerable overhead.

Now that we have defined the two main approaches of
our proposed queuing process, the complete algorithm is
presented in Algorithm 1.

4. Routing Process

When the scheduler receives a heartbeat message from
a free resource, say Rj , it triggers the routing process.
The routing process receives the sets of suggested classes
SCR and SC ′R from the queuing process, and uses them
to select a job for the current free resource. This process
selects a job for each free slot in the resource Rj , and sends
the selected job to the task scheduling process. The task
scheduling process chooses a task of the selected job, and
assigns the task to its corresponding slot.

Here, it should be noted that the scheduler is not lim-
iting each job to just one resource. When a job is selected,
the task scheduling process assigns a number of appropri-
ate tasks of this job to available slots of the current free
resource. If the number of available slots is fewer than the
number of uncompleted tasks for the selected job, the job
will remain in the waiting queue. Therefore, at the next
heartbeat message from a free resource, this job is con-
sidered in making the scheduling decision; however, tasks
already assigned are no longer considered. When all tasks
of a job are assigned, the job will be removed from the
waiting queue.

Algorithm 2 presents the routing process. There are
two stages in this algorithm to select jobs for the avail-
able slots of the current free resource. In the first stage,
the jobs of classes in SCR are considered, where the jobs
are selected in the order of their minimum share satisfac-
tion. This means that a user who has the highest distance
to achieve her minimum share will get a resource share
sooner. However, in the second stage, jobs for classes in
SC ′R are considered, and jobs are selected in the order de-
fined by the current shares and priorities of their users.
In this way, the scheduler addresses fairness amongst the
users. In each stage, if there are two users with exactly
the same conditions, we randomly choose between them.

It should be noted that COSHH is a dynamic sched-
uler. Based on any variation in the Hadoop workload and
resources, the classification and LP solver components can
update the scheduling decisions accordingly.

6

Algorithm 2 Routing Process
When a heartbeat message is received from a resource (say R)
NFS = number of free slots in R

while NFS 6= 0 and there is a job (J) whose

user.minShare− user.currentShare > 0
and

class ∈ SCR

and
((user.minShare− user.currentShare)×weight) is maximum

do
add J to the set of selected jobs (Jselected)

NFS = NFS − 1

end while

while NFS 6= 0 and there is a job (J) whose

class ∈ SC′R
and

(user.currentShare/weight) is minimum
do

add J to the set of selected jobs (Jselected)

NFS = NFS − 1

end while

send the set Jselected to the Task Scheduling Process to choose a
task for each free slot in R.

5. Experimental Results

In this section we evaluate our proposed scheduling
system on real Hadoop workloads. First, we define the
performance metrics considered. Later, we introduce our
experimental environment and workload, and finally we
present the evaluation results.

5.1. Performance Metrics
We define the functionDemand(U, t) as the set of unas-

signed tasks for user U at time t. Also, the function
AssignedSlots(U, t) is defined as the set of slots executing
tasks from user U at time t. We consider an experiment
which is run for time T . Using these definitions, we define
four Hadoop performance metrics:

1. AveragecompletionT ime is the average completion
time of all completed jobs.

2. Dissatisfaction measures how much the schedul-
ing algorithm is successful in satisfying the minimum
share requirements of the users. A user whose cur-
rent demand is not zero (|Demand(U, t)| > 0), and
whose current share is less than her minimum share
(|AssignedSlots(U, t)| < U.min share), has the fol-
lowing UserDissatisfaction:

UserDissatisfaction(U, t) =

U.min share−|AssignedSlots(U,t)|
U.min share ×U.weight,

where U.weight denotes the weight, and U.min share
is the minimum share of the user U . The total dis-
tance of all users from their min share is defined by
Dissatisfaction(t) as follows:

Dissatisfaction(t) =X
∀U∈Users

UserDissatisfaction(U, t).

Comparing two algorithms, the algorithm which has
smaller Dissatisfaction(T) has better performance.

3. Fairness measures how fair a scheduling algorithm
is in dividing the resources among users. A fair al-
gorithm gives the same share of resources to users
with equal priority. However, when the priorities
are not equal, then the user’s share should be pro-
portional to their weight. In order to compute the
fairness of an algorithm, we should take into ac-
count the number of slots which are assigned to each
user beyond her minimum share, which is computed
as ∆(U, t) = AssignedSlots(U, t) − U.min share.
Then, the average additional share of all users with
the same weight (Usersw) is defined as:

avg(w, t) =
P

U∈Usersw
∆(U,t)

|Usersw| ,

where Usersw = {U |U ∈ Users ∧ U.weight = w}.
Fairness(t) is computed by the sum of distances of
all the users in one weight level from the average
amount of that weight level:
Fairness(t) =X

w∈weights

X
U∈Usersw

|∆(U, t)− avg(w, t)|.

Comparing two algorithms, the algorithm which has
lower Fairness(T) achieves better performance.

4. Locality is defined as the proportion of tasks which
are running on the same resource as where their
stored data are located. Since in the Hadoop sys-
tem the input data size is large, and the map tasks
of one job are required to send their results to the
reduce tasks of that job, the communication cost can
be quite significant. A map task is defined to be local
on a resource R, if it is running on resource R, and its
required slice is also stored on resource R. Compar-
ing two scheduling algorithms, the algorithm which
has larger Locality(T) has better performance.

5. Finally, in each experiment, we present Scheduling
Overhead as the time spent for scheduling all of the
incoming jobs.

5.2. Experimental Environment
We use MRSIM [5], a MapReduce simulator, to sim-

ulate a Hadoop cluster and evaluate our scheduler. This
simulator is based on discrete event simulation, and ac-
curately models the Hadoop environment. The simulator
on the one hand allows us to measure scalability of the
MapReduce based applications easily and quickly, while
capturing the effects of different Hadoop configurations.

We extended this simulator to measure the five main
Hadoop performance metrics defined above. A job sub-
mission process component is added to the MRSIM archi-
tecture to be able to submit the desired stream of jobs in

7

our workload to the Hadoop system. The arrival times
of the jobs are calculated based on the workload informa-
tion. The job submitter is triggered based on the arrival
times to submit a new job to the system. Also, using this
component we can define various users with different min-
imum shares and priorities. The input data file of each job
is directed to the dfs component in MRSIM to calculate
the slices and store the file. The HJobTracker component
in MRSIM is extended to receive the desired scheduling
algorithm name from the configuration file. The schedul-
ing algorithms are implemented inside the scheduler class,
and are called from the HJobTracker component in each
heartbeat. The COSHH scheduler is called for classifying
the incoming job, and also for assigning a new job when
there is a heartbeat message from a resource. The COSHH
scheduler consists of several classes for the Classification,
Routing and LP solving processes. There is also an eval-
uation part added to the simulator which calculates the
desired performance metrics whenever a job is completed.
The detailed implementation architecture of COSHH is
provided in [9].

Our experimental environment consists of a cluster of
six heterogeneous resources. The resources’ features are
presented in Table 3. The bandwidth between the re-
sources is 100Mbps.

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4TB 9Gbps
R2 16 500MHz 400KB 40Kbps
R3 16 500MHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 16 500MHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 3: Experimental resources

We used two production Hadoop MapReduce traces,
presented in [10]. One trace is from a cluster at Facebook,
spanning six months from May to October 2009. The other
trace is from a cluster at Yahoo!, covering three weeks in
late February/early March 2009. Both traces contain a list
of job submission and completion times, data sizes of the
input, shuffle and output stages, and the running time of
map and reduce functions. The arrival rates of the jobs in
our experiments are defined by considering the number of
jobs in each Facebook and Yahoo! trace, the total number
of submitted jobs in each experiment, and also the total
number of classes of jobs in each trace. The proportion
of the number of each job class to the total number of
jobs in our workload is the same as the actual trace. The
research in [10] performs an analysis of both traces, which
provides classes of “common jobs” for each of the Facebook
and Yahoo! traces using k-means clustering. The details
of the Facebook and Yahoo! workloads that we use for
evaluating our scheduler are provided in Table 4 [10]. We
define heterogeneous users, with different minimum shares
and priorities. Table 5 defines the users in Facebook and
Yahoo! experiments. The minimum share of each user
is defined based on its submitted job size, and each user

submits jobs from one of the job classes in Table 4.

Users MinimumShare Priority
Facebook experiments
U1 5 1
U2 0 2
U3 0 2
U4 5 1
U5 10 2
U6 15 1
U7 4 2
U8 10 1
U9 10 1
U10 15 1

Yahoo! experiments
U1 5 1
U2 0 2
U3 10 2
U4 15 1
U5 10 1
U6 15 2
U7 10 1
U8 15 1

Table 5: User properties in experiments of both workloads

We submit 100 jobs to the system, which is sufficient
to contain a variety of the behaviours in our Hadoop work-
load. The Hadoop block size is set to 128MB, which is the
default size in Hadoop 0.21. We set the data replication
number to three in all algorithms in our experiments.

5.3. Results
In each experiment we compare COSHH with the FIFO

algorithm and the version of the Fair sharing algorithm
presented in [1]. The comparison is based on the four per-
formance metrics of interest, and the scheduling overheads.

Figure 5: Average completion time for Facebook workload

Figures 5 and 6 present the average completion time
metric for the algorithms running the Facebook and Ya-
hoo! workloads, respectively. The results show that com-
pared to the other algorithms, COSHH achieves the best

Figure 6: Average completion time for Yahoo! workload

8

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Facebook trace
Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10 KB 0 4.2GB 26321 0
Large data load 4200 10 405 KB 0 447GB 66657 0
Huge data load 18300 3 446 KB 0 1.1TB 125662 0
Fast aggregate 900 10 230 GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9 TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418 GB 2.5TB 45GB 1076089 974395
Data transform 2100 14 255 GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6 TB 51GB 104KB 4843452 853911
Yahoo! trace
Small jobs 60 114 174 MB 73MB 6MB 412 740
Fast aggregate 2100 23 568 GB 76GB 3.9GB 270376 589385
Expand and aggregate 2400 10 206 GB 1.5TB 133MB 983998 1425941
Transform expand 9300 5 806 GB 235GB 10TB 257567 979181
Data summary 13500 7 4.9 TB 78GB 775MB 4481926 1663358
Large data summary 30900 4 31 TB 937GB 475MB 33606055 31884004
Data transform 3600 36 36 GB 15GB 4.0GB 15021 13614
Large data transform 16800 1 5.5 TB 10TB 2.5TB 7729409 8305880

Table 4: Job categories in both traces. Map time and Reduce time are in Task-seconds, e.g., 2 tasks of 10 seconds each is 20 Task-seconds.

average completion time for both workloads. This signif-
icant improvement can be explained by the fact that un-
like the other two algorithms, COSHH considers the het-
erogeneity in making a scheduling decision based on the
job requirements and the resource features. On the other
hand, the Fair sharing algorithm has the highest average
completion time compared to the other two algorithms.
Both the Facebook and the Yahoo! workloads are hetero-
geneous, in which the arrival rates of small jobs are higher.
In a heterogeneous Hadoop workload, jobs have different
execution times (job sizes). For such workloads, as the
FIFO algorithm does not take into account job sizes, it
has the problem that small jobs potentially get stuck be-
hind large ones. Therefore, when the Hadoop workload
is heterogeneous, the FIFO algorithm can significantly in-
crease the completion time of small jobs. The Fair sharing
and the COSHH algorithms do not have this problem. Fair
sharing puts the jobs in different pools based on their sizes,
and assigns a fair share to each pool. As a result, the Fair
sharing algorithm executes different size jobs in parallel.
The COSHH algorithm assigns the jobs to the resources
based on the sizes of the jobs and the execution rates of
the resources. In general, there is a considerable increase
in completion times of all three algorithms after job 50.
This is both because of the increased load in the system
and also due to the presence of larger size jobs starting
around this time.

As the Fair sharing algorithm does not have the prob-
lem of small jobs getting stuck behind large ones, we ex-
pect better average completion time for this scheduler than
for the FIFO algorithm. However, because the Fair shar-
ing algorithm first satisfies the minimum shares, it exe-
cutes most of the small jobs after satisfying the minimum
shares of the larger jobs. Therefore, the completion times
of the small jobs (the majority of the jobs in this workload)
are increased. On the other hand, the Fair sharing algo-
rithm has the sticky slot problem, which arises when the
scheduler assigns a job to the same resource at each heart-
beat. This problem is first mentioned in [12] for the Fair
sharing algorithm, where the authors considered the effect
of this problem on locality. However, sticky slots can also
significantly increase the average completion times, when
an inefficient resource is selected.

In the Yahoo! workload, the COSHH algorithm leads
to 74.49% and 79.73% improvement in average comple-
tion time over the FIFO algorithm, and the Fair sharing
algorithm, respectively. Moreover, for the Facebook work-
load, the COSHH algorithm results in 31.27% and 42.41%
improvement in average completion time over the FIFO
algorithm, and the Fair sharing algorithm, respectively.
It should be noted that the COSHH algorithm leads to a
more substantial improvement for average completion time
in the Yahoo! workload than in the Facebook workload.
The reason is that the jobs in the Facebook workload are
smaller and less heterogeneous than the jobs in the Ya-
hoo! workload. As a result, taking the heterogeneity into
account in the Yahoo! workload leads to greater improve-
ment.

The overheads of the scheduling algorithms are pre-
sented in Figures 7 and 8 for the Yahoo! and the Face-
book workloads, respectively. The improvement for aver-
age completion time in the COSHH scheduler is achieved
at the cost of increasing the overhead of scheduling. How-
ever, the additional 5 second overhead for the COSHH
algorithm, compared to the improvement for average com-
pletion time (which is more than 10000 seconds) is neg-
ligible. The time spent for classification and solving the
LP at the beginning of the COSHH algorithm leads to
a higher scheduling time. The scheduling times for both
the Fair sharing and the COSHH algorithms increase con-
siderably at around the point of scheduling the 50th to
60th jobs. These algorithms need to sort the users based
on their shares to consider fairness and minimum share
satisfaction. In the first stage of satisfying the minimum
shares, they need to sort a smaller number of users. How-
ever, after satisfying the minimum shares, the number of
users to be sorted is increased. Also, the order of users
changes to consider fairness. As a result, the process of
sorting users takes longer, and causes an increase in the
scheduling time for both algorithms. The FIFO algorithm
has the least overhead.

The significant feature of COSHH is that although it
uses sophisticated approaches to solve the scheduling prob-
lem, it does not add considerable overhead. The reason is
that first, we limit the number of times required to do clas-
sification, by considering aggregate measures of job fea-

9

tures (i.e. mean execution time and arrival rate). Also,
since some jobs in the Hadoop system are submitted mul-
tiple times by users, these jobs do not require changing the
classification each time that they are submitted.

Fairness, dissatisfaction, and the locality of the algo-
rithms are presented in Tables 6 and 7 for the Yahoo! and
the Facebook workloads, respectively. The results for both
workloads show that COSHH has competitive dissatisfac-
tion and fairness with the Fair sharing algorithm. Because
the COSHH scheduler has two stages to consider the min-
imum share satisfaction and fairness separately, it is suc-
cessful in reducing the dissatisfaction along with improving
the fairness. First the scheduler only satisfies the minimum
shares based on the priority of the users, and then it fo-
cuses on improving fairness. Since COSHH considers the
weights of the users, it does not let a high priority user
with high minimum share starve lower priority users with
smaller minimum shares.

Metrics FIFO Fair COSHH

Dissatisfaction 8.618 7.16E − 04 1.209
Fairness 4.974 0.965 2.779
Locality(%) 95.6 97.4 96.5

Table 6: Dissatisfaction, fairness, and locality for Yahoo! work-
load

Metrics FIFO Fair COSHH

Dissatisfaction 10.782 8.31E − 02 0.294
Fairness 6.646 2.537 0.663
Locality(%) 97.7 95.7 95.0

Table 7: Dissatisfaction, fairness, and locality for Facebook
workload

The locality of COSHH is close to, and is in most
cases better than the Fair sharing algorithm. This can
be explained by the fact that our algorithm chooses the
replication places based on the suggested classes for each
resource. As our experimental environment is a small
Hadoop cluster, our scheduler’s replication method can
not lead to considerable improvement in the locality. How-
ever, the advantages of using COSHH’s replication method
could be significant on large Hadoop clusters.

6. Analysis

In the previous section, we evaluated the algorithms in
the case that the minimum share of each user is defined

Figure 7: Scheduling overheads in Yahoo! workload

Figure 8: Scheduling overheads in Facebook workload

based on its submitted job size. However, as the minimum
shares and the priorities of users are usually defined by the
Hadoop provider, in some Hadoop systems the minimum
shares may be defined without taking the job sizes into ac-
count. The performance of the Hadoop schedulers may be
affected by different settings of minimum shares, scaling
the number of jobs and resources, and any possible esti-
mation errors. This section performs further evaluation on
the COSHH scheduler and analyzes it from the points of
view of minimum share effect, scalability and sensitivity.

6.1. Minimum Share Effect
Hadoop assigns a priority and a minimum share to each

user, where the minimum share of a user defines the min-
imum number of slots that the system must provide for
that user at each point in time. However, the priorities
and minimum shares in each Hadoop system are defined
based on a particular policy of the system such as the
pricing policy in [6]. The minimum shares can help in im-
proving average completion times, in particular when the
minimum shares are defined based on the job sizes. So, in
order to study the performance of the COSHH scheduler
without the effect of minimum shares, here we study the
performance of the algorithms with no minimum shares
assigned to the users. The experimental environment in
this part is the same as the previous section, except that
the users are homogeneous with zero minimum shares, and
priorities equal to one.

Figure 9: Average completion time for Facebook workload

Figures 9 and 10 present the average completion time
metric for the algorithms running the Facebook and Ya-
hoo! workloads, respectively. The results show that when
the users are homogeneous, and no minimum share is de-
fined, the average completion time of the FIFO algorithm
is higher than the Fair sharing algorithm. Unlike the

10

FIFO algorithm, the Fair sharing algorithm does not have
small jobs stuck behind large ones. In addition, the min-
imum share satisfaction of large jobs does not postpone
the scheduling of smaller jobs. In the Yahoo! workload,
the Fair sharing algorithm achieves a 37.72% smaller av-
erage completion time than the FIFO algorithm, and the
COSHH algorithm reduces the average completion time of
the Fair sharing algorithm by 75.92%. Moreover, in the
Facebook workload, the Fair sharing algorithm achieves a
26.42% smaller average completion time than the FIFO
algorithm, and the COSHH algorithm reduces the average
completion time of the Fair sharing algorithm by 42.97%.
Because of the job sizes, and level of heterogeneity, the
average completion time improvement of COSHH for the
Yahoo! workload is much higher than for the Facebook
workload.

The overheads of the scheduling algorithms are pre-
sented in Figures 11 and 12 for the Yahoo! and the Face-
book workloads, respectively. Because most of the jobs in
this workload are small, and they have fewer tasks, the
scheduling overheads are low. The classification and LP
solution time in the COSHH algorithm lead to a large ini-
tial scheduling time. The overheads of both the Fair shar-
ing and the COSHH algorithms are lower when the users
are homogeneous. In this case these algorithms no longer
have the minimum share satisfaction stages.

Fairness and locality of the algorithms are presented in
Tables 8 and 9 for the Yahoo! and the Facebook workloads,
respectively. Because there is no minimum share defined
in this experiments, the amount of dissatisfaction for all
schedulers is zero. The results show that the Fair sharing
algorithm has the best, and the COSHH algorithm has the
second best fairness.

Metrics FIFO Fair COSHH

Fairness 1.032 0.504 0.856
Locality (%) 94.9 97.9 98.1

Table 8: Fairness and locality for Yahoo! workload

Metrics FIFO Fair COSHH

Fairness 1.188 0.429 0.926
Locality(%) 93.4 95.2 98.3

Table 9: Fairness and locality for Facebook workload

The locality of COSHH is close to, and in most cases

Figure 10: Average completion time for Yahoo! workload

is better than the Fair sharing algorithm. This can be
explained by the fact that our algorithm chooses the repli-
cation places based on the suggested classes for each re-
source.

6.2. Scalability Analysis
The Hadoop system can scale with respect to the num-

ber of resources in the Hadoop cluster, and the number of
jobs submitted. It is critical for the Hadoop schedulers
to scale accordingly. We evaluate the COSHH algorithm
from scalability in two perspectives.

6.2.1. Number of jobs
In this part we evaluate the effect of the number of jobs

in the Hadoop workload on performance of the COSHH
algorithm. First, we consider a Hadoop workload with
total job number of 5, and measure the performance of all
schedulers in this underloaded system. Then, we increase
the number of jobs in the Hadoop workload, and provide
the results for each case. Figures 13 and 14 present the
average completion times for the Yahoo! and the Facebook
workloads, respectively.

When there are few jobs in the workload, and the sys-
tem is very underloaded, the COSHH algorithm has the
higher average completion time. This trend continues un-
til the number of submitted jobs reaches the total number
of slots in the system (there are 31 map slots and 23 re-
duce slots on all six resources). After there are around 30
jobs in the workload, the system load reaches the point
where all of the submitted jobs can not receive their re-
quired slots in the first scheduling round. Therefore, they
must wait in the queue until a slot becomes free. From this
point on the improvement in average completion time for
the COSHH algorithm overcomes its scheduling overhead.

When the system is highly underloaded, most of the re-
sources are free. Therefore, a simple scheduling algorithm
like FIFO which makes fast scheduling decisions leads to
better average completion time. However, when the load
in the system increases, the benefits of the COSHH al-
gorithm result in better average completion time. In an
overloaded system, initially the average completion time of
the Fair sharing algorithm is better than the FIFO algo-
rithm. After this initial transient, the average completion
time of the FIFO algorithm becomes better. The reason is
that the minimum shares assigned to the users are defined

Figure 11: Scheduling overheads in Yahoo! workload

11

Figure 12: Scheduling overheads in Facebook workload

based on the job sizes. Initially, Fair sharing is satisfying
the minimum shares, and as a result improves the average
completion times. However, after minimum share satis-
faction, the sticky slot feature leads to an increase in the
average completion time.

Figure 13: Average completion time for Yahoo! workload - Scal-
ability based on number of jobs

Figure 14: Average completion time for Facebook workload -
Scalability based on number of jobs

The average completion time for the Fair sharing algo-
rithm is initially low. However, once the load in the system
increases and it is necessary to assign the submitted jobs
to resources at different heartbeats, its average comple-
tion time increases at a greater rate than the others. The
reason is that by increasing the number of jobs, at each
heartbeat, the Fair sharing algorithm needs to perform
sorting and searching over large sort and search spaces.
Moreover, the sticky slot problem, and neglecting system
heterogeneity lead to higher average completion time.

Figures 15 and 16 present the scheduling times for the
Yahoo! and the Facebook workloads, respectively. The
overheads of all of the algorithms increase as the number of

Figure 15: Scheduling time for Yahoo! workload - Scalability
based on number of jobs

Figure 16: Scheduling time for Facebook workload - Scalability
based on number of jobs

submitted jobs increases. The growth rate in the COSHH
algorithm is higher than the others as a result of its more
complicated scheduling process. However, its growth rate
decreases as the number of jobs increases. Typically, the
jobs in Hadoop workloads exhibit some periodic behaviour.
The first submitted jobs of a job class can cause a longer
classification process. However, because subsequent jobs
of the same job class do not need new classes to be de-
fined, the classification process of the COSHH algorithm
has reduced overhead. In the Facebook workload, where
the jobs sizes are smaller, increasing the number of jobs
has less effect on the scheduling overhead.

6.2.2. Number of Resources
This part evaluates the performance of the schedulers

when the number of resources varies. We first study a
cluster with 6 resources, and then increase the number
of resources. To define different size clusters, we use the
six types of resources presented in Table 10. To increase
the number of resources we add a new resource from one of
the resource types in turn, starting from six resources, and
increasing the number to 102 resources (i.e. 17 resources
of each type).

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4TB 9Gbps
R2 2 500GHz 400KB 40Kbps
R3 2 500GHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 2 500GHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 10: Resource Types

12

Figures 17 and 18 present the average completion times
with various number of resources for the Yahoo! and the
Facebook workloads, respectively. Increasing the number
of resources reduces the load in the system and leads to
reducing the average completion time for all schedulers.
However, increasing the number of resources can reduce
the chance of local execution, which leads to an increase in
the average completion time. Therefore, by increasing the
number of resources, first the average completion times of
the schedulers reduce until the number of resources reaches
approximately 57. Beyond this point the average comple-
tion times of the schedulers increase slightly, because of
the locality issue.

Figure 17: Average completion time for Yahoo! workload - Scal-
ability based on number of resources

Figure 18: Average completion time for Facebook workload -
Scalability based on number of resources

Figure 19: Scheduling time for Yahoo! workload - Scalability
based on number of resources

Figures 19 and 20 present the scheduling times with
various number of resources for the Yahoo! and the Face-
book workloads, respectively. The overheads of the COSHH

Figure 20: Scheduling time for Facebook workload - Scalability
based on number of resources

and the Fair sharing algorithms increase as the number of
resources increases. The reason is that the search and sort
times increase in these algorithms. Moreover, increasing
the number of resources increases the classification and LP
solution times in the COSHH algorithm. Therefore, the
rate of increase in the COSHH algorithm is higher than
the Fair sharing algorithm. However, its growth rate de-
creases as the number of resources increases. We remark
that the total COSHH scheduling overhead here is around
60-180 seconds, which is negligible compared to the im-
provement for average completion time (which is around
20000-100000 seconds).

6.3. Sensitivity Analysis
The Task Scheduler component in the COSHH schedul-

ing system provides an estimate of the mean execution
time of an incoming job. To measure how much the per-
formance of our algorithm is dependent on the estimation
error, we evaluate our algorithm with various workloads
under different levels of error. In order to completely study
the robustness of our algorithm, we examine cases that
have 0% to 40% error in the estimates; typically these
errors are on the order of 10% [15]. We use the error
model discussed in [16] for estimating execution times.
The error model in these estimates is an Over and Un-
der Estimation Error model, which is as follows. Define
the actual execution time of job i on Resource j to be
L(i, j). Let L̂(i, j) denote the (corresponding) estimated
execution time. In our simulations, L̂(i, j) is obtained from
L̂(i, j) = L(i, j)× (1 + Er). Here, Er is the error for esti-
mating the job execution time, which is sampled from the
uniform distribution [−I,+I], where I is the maximum
error.

First, we evaluate our algorithm in an environment
with accurate estimated execution times, and then increase
the amount of error. Figures 21 and 22 present the average
completion times for the Yahoo! and the Facebook work-
loads, respectively. Different error levels are considered in
these figures, where here COSHH-n denotes the COSHH
scheduler with n% error in estimating the execution times.
For each experiment, we run 30 replications in order to
construct 95 percent confidence intervals. The lower and

13

upper bounds of the confidence intervals are represented
with lines on each bar.

Based on the results, up to 40 percent error in estima-
tion does not significantly affect the average completion
time of our algorithm. The reason is that the COSHH
algorithm uses the estimated execution times to provide
suggestions for each resource; the estimates themselves are
not directly used in the final scheduling decisions. The
small levels of error lead to only a slight change in job
classes. As a result, the average completion time is not
increased for 10% error levels. When the error level is
higher, it leads to more changes in the job classes, which
modifies the suggested set of classes considerably, and af-
fects the average completion time. The results show that
the COSHH algorithm is not too sensitive to the estimated
execution times, and it maintains better average comple-
tion time than the other algorithms in up to 40% error in
estimating the execution times.

Figure 21: Average completion time for Yahoo! workload - Sen-
sitivity to error in estimation

Figure 22: Average completion time for Facebook workload -
Sensitivity to error in estimation

Figures 23 and 24 give the scheduling times for the Ya-
hoo! and the Facebook workloads, respectively. The error
level can cause a slight increase in scheduling time, which
is caused by longer classification processes. When there
are estimation errors, the k-means clustering method may
need to run more steps to reach the appropriate classifica-
tion.

Figure 23: Scheduling time for Yahoo! workload - Sensitivity to
estimation error

Figure 24: Scheduling time for Facebook workload - Sensitivity
to estimation error

7. Results on Real Hadoop System

In this section the performance of Hadoop schedulers
is evaluated by running experiments using a real Hadoop
workload on a Hadoop cluster. Due to our limitations in
evaluation on a real cluster, the results should be seen as
a basis for verifying overheads and practicality of the so-
lution on real systems. The simulation results provide a
wider possibility of evaluation at differing levels of het-
erogeneity, scale and sensitivity. The jobs in these exper-
iments are selected from the Facebook workload used in
previous sections, and are presented in Table 4. The users
are defined to be homogeneous with zero minimum shares,
and priorities equal to one. A cluster of four quad core
nodes is used for these experiments (Table 11). The band-
width between the resources is 2Gbps. Hadoop 0.20 is
installed on the cluster, and the Hadoop block size is set
to 128MB. Also, the data replication number is set to the
default value of three in all algorithms.

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 4 100MHz 500MB 3.2GB/s
R2 4 800MHz 16GB 3.2GB/s
R3 4 400MHz 4GB 3.2GB/s
R4 4 3200MHz 32GB 3.2GB/s

Table 11: Resources in the heterogeneous cluster

Table 12 presents the dissatisfaction performance met-
ric for the schedulers. As the Fair Sharing algorithm has

14

minimum share satisfaction as its main goal, it is success-
ful in reducing the dissatisfaction rate compared to the
other schedulers. The COSHH algorithm also considers
the minimum shares as the first critical issue in making
scheduling decisions. It assigns the minimum shares while
it takes the system heterogeneity into account. This re-
sults in competitive dissatisfaction with the Fair Sharing
algorithm. However, the FIFO algorithm significantly in-
creases the dissatisfaction rate by ignoring the minimum
shares.

FIFO Fair COSHH

10.302 3.984 5.869

Table 12: Dissatisfaction of schedulers - Heterogeneous Users.

In Figure 25, the average completion times for the three
schedulers are presented. The FIFO algorithm achieves
better average completion time than the Fair Sharing al-
gorithm, when the users are set to be heterogeneous. Both
the FIFO and the Fair Sharing algorithms do not consider
heterogeneity in their scheduling decisions. However, the
minimum shares effect on the Fair Sharing algorithm leads
to larger average completion time. When the users are ho-
mogeneous the average completion time of the FIFO algo-
rithm becomes larger than the Fair Sharing algorithm. In
this case, the starvation of small jobs behind large jobs in
the FIFO scheduler increases the average completion time
of small jobs, and leads to larger average completion time.

Figure 25: Average completion time of schedulers.

Figure 26: Fairness of schedulers.

Figures 26 and 27 present the fairness and locality
of the schedulers, respectively. The Fair Sharing algo-

Figure 27: Locality of schedulers.

rithm provides the best fairness, while the COSHH sched-
uler has competitive locality and fairness. The scheduling
overheads in the case studies are presented in Figure 28.
Scheduling complexity for the COSHH algorithm leads to
higher scheduling time and overhead. However, the total
scheduling overhead of COSHH is less than 25 seconds,
which is negligible compared to the processing times.

Figure 28: Scheduling time of schedulers.

8. Related Work

In this section we present an overview of some of the
current Hadoop scheduling algorithms. More detailed com-
parison of Hadoop schedulers with schedulers introduced
for other distributed computing systems are provided in
the first author’s PhD thesis [9].

MapReduce was initially designed for small clusters in
which a simple scheduling algorithm like FIFO can achieve
an acceptable performance level. However, experience from
deploying Hadoop in large systems shows that simple schedul-
ing algorithms like FIFO can cause severe performance
degradation; particularly in systems that share data among
multiple users [1]. As a result, the next generation sched-
uler in Hadoop, Hadoop on Demand (HOD) [17], addresses
this issue by setting up private Hadoop clusters on de-
mand. HOD allows users to share a common file system
while owning private Hadoop clusters on their allocated
nodes. This approach failed in practice because it vio-
lated the data locality design of the original MapReduce
scheduler, and it resulted in poor system utilization. To
address some of the shortcomings of the FIFO algorithm,

15

Hadoop added a scheduling plug-in framework with two
additional schedulers that extend rather than replace the
original FIFO scheduler [1].

The additional schedulers are introduced in [1], where
they are collectively known as Fair sharing. Fair sharing
defines a pool for each user, each pool consisting of a num-
ber of map slots and reduce slots on a resource. Each user
can use its pool to execute her jobs. If a pool of a user
becomes idle, the slots of the pool are divided among the
other users to speed up the other jobs in the system. The
Fair sharing algorithm does not achieve good performance
regarding locality [12]. Therefore, in order to improve the
data locality, a complementary algorithm for Fair shar-
ing is introduced in [12], called delay scheduling. Using
the delay scheduling algorithm, when Fair sharing chooses
a job for the current free resource, and the resource does
not contain the required data for the job, scheduling of the
chosen job is postponed, and the algorithm finds another
job. However, to limit the waiting time, a threshold is de-
fined; if scheduling of a job remains postponed until the
threshold is met, the job will be submitted to the next free
resource. The proposed algorithms can perform much bet-
ter than Hadoop’s default scheduling algorithm (FIFO);
however, these algorithms do not consider heterogeneous
systems in which resources have different capacities and
users submit various types of jobs.

In [6], a Dynamic Priority (DP) parallel task scheduler
is designed for Hadoop, which allows users to control their
allocated capacity by dynamically adjusting their budgets.
This algorithm prioritizes users based on their spending,
and allows capacity distribution across concurrent users to
change dynamically based on user preferences. The core of
this algorithm is a proportional share resource allocation
mechanism that allows users to purchase or to be granted
a queue priority budget. This budget may be used to set
spending rates denoting the willingness to pay a certain
amount per Hadoop map or reduce task slot per time unit.

Dominant Resource Fairness (DRF) [2] addresses the
problem of fair allocation of multiple types of resources
to users with heterogeneous demands. In particular, the
proposed algorithm is a generalization of max-min fairness
for multiple resources. The intuition behind DRF is that
in a multi-resource environment, the allocation of a user
should be determined by the user’s dominant share, which
is the maximum share of any resource that the user has
been allocated. In a nutshell, DRF seeks to maximize the
minimum dominant share across all users. For example, if
user A runs CPU-heavy tasks and user B runs memory-
heavy tasks, DRF attempts to equalize user A’s share of
CPUs with user B’s share of memory. In the single re-
source case, DRF reduces to max-min fairness for that re-
source. This algorithm only considers heterogeneity in the
user’s demand level. It does not take into account resource
heterogeneity in making scheduling decisions.

9. Future Work

Heterogeneity is for the most part neglected in design-
ing Hadoop scheduling systems. In order to keep the al-
gorithm simple, minimal system information is used in
making scheduling decisions, which in some cases could
result in poor performance. Growing interest in applying
the MapReduce programming model in various applica-
tions gives rise to greater heterogeneity, and thus must
be considered in its impact on performance. It has been
shown that it is possible to estimate system parameters
in a Hadoop system. Using the system information, we
designed a scheduling algorithm which classifies the jobs
based on their requirements and finds an appropriate match-
ing of resources and jobs in the system. Our algorithm
is completely adaptable to any variation in the system
parameters. The classification part detects changes and
adapts the classes based on the new system parameters.
Also, the mean job execution times are estimated when
a new job is submitted to the system, which makes the
scheduler adaptable to changes in job execution times.

For future work, we plan to improve the performance
of our scheduler by separating data intensive and compu-
tation intensive jobs in performing the classification.

Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. A major part
of this work was done while both authors were visiting
UC Berkeley. In particular, the first author would like to
thank Ion Stoica and Sameer Agarwal for sharing the task
scheduler part, and also their comments on our proposed
scheduler.

References

[1] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, I. Stoica, Job scheduling for multi-user MapReduce
clusters, Tech. Rep. UCB/EECS-2009-55, EECS Department,
University of California, Berkeley (April 2009).
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/

EECS-2009-55.html

[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
I. Stoica, Dominant resource fairness: fair allocation of multiple
resource types, in: Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, USENIX
Association, 2011, pp. 24–37.
URL http://dl.acm.org/citation.cfm?id=1972457.1972490

[3] K. Morton, M. Balazinska, D. Grossman, ParaTimer: a progress
indicator for MapReduce DAGs, in: Proceeding of the Interna-
tional Conference on Management of Data, 2010, pp. 507–518.

[4] S. Agarwal, I. Stoica, Chronos: A predictive task
scheduler for MapReduce, Tech. rep., EECS Depart-
ment, University of California, Berkeley, Author1 URL:
http://www.cs.berkeley.edu/∼sameerag/, Author1 email:
sameerag@cs.berkeley.edu (December 2010).

[5] S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, MRSim: a
discrete event based MapReduce simulator, in: Proceedings of
the 7th International Conference on Fuzzy Systems and Knowl-
edge Discovery (FSKD 2010), Yantai, Shandong, China, 2010,
pp. 2993–2997.

16

[6] T. Sandholm, K. Lai, Dynamic proportional share scheduling in
Hadoop, in: Proceedings of the 15th Workshop on Job Schedul-
ing Strategies for Parallel Processing, Heidelberg, 2010, pp. 110–
131.

[7] C. Mair, G. F. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. J.
Shepperd, S. Webster, An Investigation of Machine Learning
based Prediction Systems, Journal of Systems and Software
53 (1) (2000) 23–29.

[8] A. Ethem, Introduction to Machine Learning (Adaptive Com-
putation and Machine Learning), The MIT Press, 2004.

[9] A. Rasooli, Improving scheduling in heterogeneous Grid and
Hadoop systems, Ph.D. thesis, McMaster University, Hamilton,
Canada (July 2013).

[10] Y. Chen, A. Ganapathi, R. Griffith, R. H. Katz, The case for
evaluating mapreduce performance using workload suites, in:
Proceedings of the 19th Annual IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Washington, DC, USA, 2011, pp.
390–399.

[11] R. Bodkin, Yahoo! updates from Hadoop Summit 2010,
http://www.infoq.com/news/2010/07/yahoo-hadoop-summit

(July 2010).
[12] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,

S. Shenker, I. Stoica, Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling, in: Pro-
ceedings of the 5th European conference on Computer systems,
Paris, France, 2010, pp. 265–278.

[13] IBM ILOG CPLEX optimizer, [Online; accessed 30-November-
2010] (2010).
URL http://www-01.ibm.com/software/integration/

optimization/cplex/

[14] IBM ILOG CPLEX development bundle, [Online; accessed
November-2010] (2009).
URL http://www-01.ibm. com/software/integration/

optimization/cplex-dev-bundles/

[15] S. Akioka, Y. Muraoka, Extended forecast of cpu and net-
work load on computational grid, in: Proceedings of the 4th
IEEE International Symposium on Cluster Computing and the
Grid(CCGrid’04), IEEE Computer Society, Los Alamitos, CA,
USA, 2004, pp. 765–772.

[16] A. Iosup, O. Sonmez, S. Anoep, D. Epema, The performance
of bags-oftasks in large-scale distributed systems, in: Proceed-
ings of the 17th International Symposium on High Performance
Distributed Computing, 2008, pp. 97–108.

[17] Apache, Hadoop on demand documentation, [Online; accessed
30-November-2010] (2007).
URL http://hadoop.apache.org/common/docs/r0.17.2/hod.html

17

