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Within the combinatorial scheduling community, there has been an increasing interest in modelling and solving

scheduling problems in dynamic environments. Such problems have also been considered in the field of queueing

theory, but very few papers take advantage of developments in both areas, and literature surveys on dynamic

scheduling usually make no mention of queueing approaches. In this paper, we provide an overview of queueing-

theoretic models and methods that are relevant to scheduling in dynamic settings. This paper provides a context

for investigating the integration of queueing theory and scheduling approaches with the goal of more effectively

solving scheduling problems arising in dynamic environments.
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1 Introduction

Real-world scheduling problems are combinatorial, dynamic and stochastic. The goal in such problems is to

determine an approach that dictates, at every decision epoch, how the available resources should be allocated

among competing job requests in order to optimize the performance of the system. The combinatorial scheduling

literature (Graham et al., 1979; Pinedo, 2003; Leung, 2004; Pinedo, 2009; Baker and Trietsch, 2009) has mostly

focused on solving static and deterministic versions of these problems, and views a dynamic scheduling problem

as a collection of linked static problems (Bidot et al., 2009; Ouelhadj and Petrovic, 2009; Aytug et al., 2005;

Davenport and Beck, 2000; Suresh and Chaudhuri, 1993). Thus, methods developed for static scheduling problems

become directly applicable to dynamic ones. Such methods can effectively deal with complex combinatorics and

can optimize the quality of static sub-problem schedules, but tend to overlook the long-run performance and the

stochastic properties of the system, with notable exceptions being the work on anticipatory scheduling (Branke

and Mattfeld, 2002, 2005) and online stochastic combinatorial optimization (Van Hentenryck and Bent, 2006).
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Scheduling Queueing

A survey of dynamic scheduling in manufacturing sys-

tems (Ouelhadj and Petrovic, 2009)

Queueing theory in manufacturing: A survey (Govil

and Fu, 1999)

Scheduling and control of flexible manufacturing sys-

tems: a critical review (Basnet and Mize, 1994)

Flexible manufacturing systems: a review of analyti-

cal models (Buzacott and Yao, 1986)

Job shop scheduling techniques in semiconductor

manufacturing (Gupta and Sivakumar, 2006)

Queueing theory for semiconductor manufacturing

systems: A survey and open problems (Shanthikumar

et al., 2007)

Table 1: Pairs of complementary scheduling and queueing papers that focus on manufacturing.

It has long been recognized that queueing theory can also provide a basis for examination of scheduling prob-

lems (Conway et al., 1967). Moreover, the queueing theory literature frequently considers the same application

areas as scheduling. For example, both have extensively studied manufacturing environments, as is demonstrated

by the complementary papers listed in Table 1.

To our knowledge, only a few papers (e.g., those by Nazarathy and Weiss (2010), Bertsimas and Sethuraman

(2002) and Bertsimas et al. (2003)) combine queueing and scheduling ideas to address static scheduling problems,

and only two recent dissertations (Tran, 2011; Terekhov, 2013), and a subsequent paper (Terekhov et al., 2014),

propose methods for dynamic scheduling that take advantage of developments in both of these areas. It is true that

scheduling books such as those by Leung (2004) and Chrétienne et al. (1995) have chapters on both determinis-

tic scheduling and queueing approaches, but they usually make no link between queueing theory and the dynamic

scheduling frameworks developed by the combinatorial scheduling community.1 Additionally, except for the work

of Suresh and Chaudhuri (1993), literature surveys on scheduling in dynamic environments make no mention of

queueing approaches. This characteristic of the scheduling literature may be partially due to the fact that a signif-

icant proportion of queueing research has dealt with the development of descriptive models for evaluation of the

long-run expected behaviour of a system, while scheduling is prescriptive in nature and frequently considers only

short-run performance measures. Nevertheless, there has also been a substantial amount of work on prescriptive

queueing models that aims to provide a policy for stating which job or job class should be processed next.

The objective of this paper is to provide a review of the work done by researchers in queueing theory that

is relevant to scheduling, and to provide a foundation for the investigation of the integration of queueing theory

1It is important to note that in early research on resource allocation and sequencing, queueing theory and scheduling were more unified.

For example, the book Theory of Scheduling by Conway et al. (1967) contains many fundamental results for both deterministic scheduling

problems and queueing problems.
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and scheduling methods for solving dynamic scheduling problems. The literature on scheduling in the context

of queueing systems is extensive, and so our review is by no means exhaustive: our goal is to provide the reader

with a high-level view of the relevant material. We present the basic mathematical representation for each of

the methodologies covered in our review in order to provide the reader with a better understanding of each ap-

proach and of the differences among the approaches. Some methodologies, such as those in Section 4.3, are more

complex than others, and require substantial mathematical notation and/or statement of assumptions. For a more

mathematically rigorous coverage of scheduling models developed within queueing theory we refer the reader to

the comprehensive book by Meyn (2008).

Throughout the review, we make connections between the queueing theory and the scheduling literatures. We

use the term scheduling to mean the process of making decisions which specify the order in which the jobs should

be processed on the given machines (i.e., job sequencing or operational-level scheduling). We therefore do not

review the related issues of queueing control and design (Tadj and Choudhury, 2005; Crabill et al., 1977; Govil and

Fu, 1999) such as admission control (control of arrival rates, decision to accept/reject an arriving job, appointment

scheduling) (Stidham, 1985; Fan-Orzechowski and Feinberg, 2007; Hajek, 1984; Pegden and Rosenshine, 1990),

routing control (Ephremides et al., 1980; Veatch and Wein, 1992; Gurvich and Whitt, 2009), server assignment

(Ahn et al., 2002; Andradóttir et al., 2003) and control of service rates (Weber and Stidham, 1987; Grassmann

et al., 2001). Routing control and server assignment problems discussed in the queueing literature are resource

allocation questions that have a substantial influence on the construction of schedules in dynamic environments

with multiple machines. In server assignment models, a rule for assigning machines to job types needs to be

determined and decisions are typically made when a machine becomes free; in routing models, on the contrary,

machines have their own queues and the assignment of a job to a particular machine needs to be made at the arrival

time of the job (Righter, 1994). Investigating the relationship between queueing design and control models, and

scheduling is worthwhile and interesting, but a single paper is not sufficient to cover all of the relevant connections

and thus we leave such an investigation for future work.

Since our focus is on queueing-theoretic approaches for scheduling, we do not discuss work on the use of other

techniques to solve problems that can be described in a queueing setting, such as sample path analysis (El-Taha

and Stidham, 1999; Robinson, 1996; Plambeck et al., 1996), simulation and mixed-integer programming (Chan

and Schruben, 2008), and approaches from the electrical engineering and control literature (e.g., model predic-

tive control (Garcia et al., 1989; van Leeuwaarden et al., 2010), linear and affine controllers (Boyd and Barratt,
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1991; Skaf and Boyd, 2010)). Future work should investigate the connections between the use of these methods

in queueing and scheduling settings and, in particular, compare sample path and model-predictive methods with

predictive-reactive (Bidot et al., 2009) and online stochastic combinatorial optimization approaches (Van Henten-

ryck and Bent, 2006) from the scheduling literature. The work on robust queueing (Bertsimas et al., 2011; Bandi

and Bertsimas, 2012; Bandi et al., 2012) falls outside of the scope of our paper as well, since it replaces stochastic

process primitives with uncertainty sets and thus is not a traditional queueing-theoretic approach. To the best of

our knowledge, robust queueing has, to date, focused on descriptive (performance analysis) problems, whereas

our main interest is in prescriptive models dealing specifically with scheduling (see Section 3.3 for a discussion of

descriptive and prescriptive queueing models). We also do not review methods from the following areas: stochas-

tic scheduling, which focuses on problems with a fixed set of jobs that have stochastic characteristics (Pinedo,

2003; Baker and Trietsch, 2009); online scheduling (Pruhs, 2007), which studies competitive analysis and worst-

case performance in dynamic scheduling problems without distributional knowledge; and real-time scheduling,

which addresses problems that have explicit timing (i.e., deadline) requirements, which may be deterministic or

probabilistic (Sha et al., 2004; Lehoczky, 1996).

We restrict our attention to unary-capacity single and multiple machine scheduling problems with jobs that

arrive dynamically over time. We assume that all of the parameters necessary for defining a queueing system

(see Section 3) that cannot be modified by the decision-maker are known with certainty, although not all of the

scheduling approaches surveyed use all of the available parametric information to make a decision. The reader who

is interested in scheduling of queueing systems with arrival and processing rates being modelled by uncertainty

sets is referred to the dissertation by Su (2006). Su (2006) applies the robust optimization framework of Bertsimas

et al. (2004) and Bertsimas and Sim (2004) to the fluid model representation of a queueing system, which is

discussed in Section 4.3.1.1. For a game perspective, where the uncertain parameters are assumed to be chosen

by an adversary, we refer to the work of Day (2006) and Dupuis (2003). For an overview of queueing models for

systems with interruptions, we refer to the paper by Wu (2014).

The current paper is organized as follows. In Section 2, we describe our classification of scheduling problems.

Section 3 provides a brief introduction to queueing theory and general queueing models, making the distinction

between single-station and multi-station models, between single-class and multi-class systems, and between de-

scriptive and prescriptive models. In Section 4, a variety of queueing-theoretic approaches that may be helpful

for making operational-level scheduling decisions are surveyed. The section is divided into three parts: Markov
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Decision Processes (MDPs), which allow for investigation of optimal scheduling policies without assuming a par-

ticular policy structure; queueing models that aim to optimize decision-making when a particular policy type is

assumed; and models based on alternative representations (e.g., approximations). Such an organization is aimed

at providing an understanding of the main methodological streams in queueing theory that address scheduling

problems. Within each of the three parts, we discuss both single-machine and multiple-machine scheduling prob-

lems. Section 5 summarizes future work ideas for integrating queueing theory and scheduling that are mentioned

throughout the review. We conclude in Section 6.

2 Classification of Scheduling Problems

In a static and deterministic environment, scheduling corresponds to determining the start times of a given set of

jobs that has to be processed on one or several machines. This problem is combinatorial in nature, and involves a

finite set of jobs with known characteristics and a finite time period whose length is equivalent to the schedule’s

makespan. In reality, such a problem corresponds to only one possible scenario that the scheduler may be faced

with at a particular point in time, and the schedule created based on this scenario is likely to be valid for only a

short horizon. In fact, the scenario represents a realization of many stochastic processes that govern the evolution

of the system in question (e.g., inter-arrival times, processing times, etc.). From the perspective of real scheduling

problems, static and deterministic scheduling deals with short-run decisions based on a local, myopic view of

the environment, its combinatorial structure and realized uncertainty. The majority of the classical scheduling

literature deals exactly with such problems.

A static and stochastic problem aims to determine the order in which a fixed set of jobs with stochastic char-

acteristics should be processed. Such a problem deals with a short time horizon and adopts a myopic view of the

system, corresponding to a particular realization of the job arrival process at a specific point in time.2 Thus, the

problem models a variety of scenarios for a particular set of jobs, and the schedule has to be constructed in a way

that deals not only with the combinatorics of the problem, but also with its stochastic nature: since it is impossible

to create a schedule that would be of high quality in all scenarios, the goal in such problems is usually to achieve

good (or optimal) performance in a probabilistic sense (e.g., in expectation). Work on these problems is known

as stochastic scheduling (e.g., see the books by Pinedo (2003) and Baker and Trietsch (2009)), and methods for

stochastic scheduling are based on approaches for deterministic problems as well as some probabilistic reasoning

2The realization may be partial in the sense that, for the given set of jobs, the actual arrival times (release dates) of jobs might not be known

with certainty.
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(Righter, 1994; Beck and Wilson, 2007; Daniels and Carrillo, 1997; Wu et al., 2009; Leon et al., 1994; Davenport

et al., 2001; Herroelen and Leus, 2005).

The problem of scheduling in a dynamic environment involves a long time horizon and has to deal with all

the possible realizations of the job arrival process and of the job characteristics. The ultimate goal in solving this

problem is to construct a schedule that is optimal for the specific realization that actually occurs. The quality

should be close to that of the schedule that could have been constructed if all of the uncertainty had been revealed

a priori. Clearly, this is a difficult task, because to make a decision, one can use only the information that is

known with certainty at that particular decision point and the stochastic properties of scenarios that can occur in

the future. In addition, the effect of the decision on both short-run and long-run performance has to be considered.

Interestingly, “the problem of planning or scheduling dynamically over time, particularly planning dynamically

under uncertainty” was the initial motivation for George Dantzig’s research on linear and mathematical program-

ming; writing in 1991, Dantzig stated that “If such a problem could be successfully solved it could eventually

through better planning contribute to the well-being and stability of the world” (quoted in Ben-Tal et al. (2009)).

To deal with dynamic scheduling problems, queueing theory and scheduling have adopted different approaches.

Queueing theory has taken the viewpoint that, since it is impossible to create an optimal schedule for every single

sample path in the evolution of the system, one should aim to achieve optimal performance in some probabilistic

sense (e.g., in expectation) over a long time horizon. This goal could be attained by construction of a policy based

on the global stochastic properties of the system. For example, a policy could specify how start time decisions

should be made each time a new job arrives or a job is completed. The schedule resulting from such a policy, while

being of good quality in expectation, may be far from optimal for the particular realization of stochastic processes

that occurs. Moreover, queueing theory generally studies systems with simple combinatorics, as such systems are

more amenable to rigorous analysis of their stochastic properties, and usually assumes distributional, rather than

exact, knowledge about the characteristics of jobs or job types.

In the scheduling community, a dynamic scheduling problem is generally viewed as a collection of linked

static problems. This viewpoint implies that methods developed for static scheduling problems become directly

applicable to dynamic ones. Such methods can effectively deal with complex combinatorics and can optimize

the quality of the schedules for each static sub-problem. Except for the work on anticipatory scheduling (Branke

and Mattfeld, 2002, 2005) and online stochastic combinatorial optimization (Van Hentenryck and Bent, 2006),

scheduling methods tend to overlook the long-run performance and the stochastic properties of the system.
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Thus, the perspectives taken by queueing theory and scheduling with respect to dynamic scheduling problems

are complementary: the former can effectively deal with the dynamism and stochasticity in the system, while the

latter is able to reason about the combinatorics.

3 Queueing Theory Fundamentals

Queueing theory can be defined as the mathematical study of waiting lines (queues) (Gross et al., 2008). It there-

fore models systems in which one or more servers (machines) at one or more service stations serve (process)

arriving customer requests (jobs).3 As stated by Gross et al. (2008), a mathematical model of a queue is composed

of six main features.4

Arrival Pattern The main characteristic of the arrival pattern is the probability distribution of times between

successive customer arrivals. This distribution may or may not be stationary (independent of time) and may or

may not depend on the number of customers in the queue. Customers may arrive one-by-one or in a group (batch)

whose size may be determined by a probability distribution (which could be deterministic). A customer may de-

cide to join the queue and stay there until receiving service, join the queue but leave without service (renege) due

to a long wait, or not join the queue at all (balk). If the system consists of more than one queue, a customer may

decide which queue to join and/or to switch (jockey) from one queue to another.

Service Pattern Similarly, the service pattern is characterized by a service time5 distribution, which may be

stationary or non-stationary and which may or may not depend on the number of customers waiting for service

or their waiting time. Customers may be served singly or in groups whose size is determined by a probability

distribution (which could be deterministic). The service time of a customer may become known with certainty

upon arrival or at the end of service.

Queue Discipline The queue discipline is a rule that determines the order in which customers receive service.

The simplest and most common queue discipline is first-come, first-served (FCFS). Other examples of queue dis-

3The terms server and customer are more common in the queueing literature, while the terms machine and job are more common in

scheduling. In this section on queueing theory fundamentals, we use the queueing terminology. For the rest of the review, we employ

scheduling terms, except when the description clearly demands otherwise (e.g., in Section 4.2.2, which talks about polling models).
4Throughout the paper, we take many of the fundamental queueing theory concepts and results from the book by Gross et al. (2008), an

excellent introduction to queueing theory. The reader is also referred to the textbook by Kleinrock (1976).
5The scheduling literature employs the term processing time instead.
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ciplines include last-come, first-served (LCFS), random selection for service (RSS) or shortest processing time

(SPT) first. The queue discipline is, essentially, a scheduling policy, and the reader may note the strong similarity

between these examples of policies and dispatching rules in the scheduling literature (Pinedo, 2009).

System Capacity A queueing system may have finite or infinite capacity. In a finite capacity queue, there is a

limit on the number of customers that can be present in the system at any point in time, and customers who arrive

at times when this limit has been reached are not allowed to enter the system.

Number of Service Stations and Servers A queueing system may be composed of one or more stations (stages),

each of which has one or more servers (channels). A multi-station system may be thought of as a network of in-

terconnected nodes, with each node consisting of one or more queues with one or more servers. When there are

several servers at a station, there may be a queue for each server, as in a supermarket, or one queue for all servers,

as in the case of a bank. In a multi-station system, the order in which customers visit the stations (the routing)

may be deterministic or stochastic. The distinction between single-station and multi-station models is discussed

in more detail below.

Additional characteristics of queueing models include the server types (see, for example, the work on flexible

servers by Ahn et al. (2002), Andradóttir et al. (2003) and Gurvich and Whitt (2009)) and the customer types

served by a system, as discussed in Section 3.2. Such characteristics affect the kinds of scheduling problems that

need to be solved.

3.1 Single-station vs. Multi-station Models

In this section, we give some additional characteristics of single-station and multi-station queueing models and

their relation to single-machine and multi-machine scheduling problems.

Single-station Queueing Models In the scheduling literature, the notation used for describing a scheduling

problem is α|β|γ, where α represents the machine environment (e.g., the number of machines and the relations

among them), β represents job processing characteristics and constraints, and γ is the objective function (Graham

et al., 1979; Pinedo, 2003). Similarly, in queueing theory a single-station queueing model is usually specified by

a combination of symbols A/B/X/Y/Z , where A and B specify the inter-arrival and service time distributions,
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respectively, X is the number of parallel servers, Y indicates the capacity of the system and Z describes the

queue discipline. Typical entries for A and B are: D, which stands for deterministic6; M , which stands for

an exponential distribution (Markovian); GI , which stands for a general independent distribution; or G, which

corresponds to a general7 distribution. X and Y are represented by positive integers or ∞. Examples for Z

include FCFS, LCFS, RSS, priority (PR) or general discipline (GD). When the Y or Z fields are empty, infinite

capacity and FCFS discipline are assumed, respectively. For example, an M/G/3/5/LCFS queue is a queue

with Markovian arrivals (M ), a general service time distribution (G), three servers, a system capacity of five jobs,

and last-come, first-served order of service.

Assuming equivalence between a server in queueing and a machine in scheduling, a single-station model

corresponds either to a single-machine or a parallel-machine scheduling environment, depending on the number

of servers. If there are multiple machines, having one queue in the system implies that any job can be processed

on any machine, while having a distinct queue attached to each server models the situation when each job has to

be processed on one specific machine.

Multi-station Queueing Models A queueing system with more than one service stage is typically referred to as

a queueing network or a network of queues. It consists of a set of nodes, each of which is a (single-stage) queue.

Jobs typically require service at several nodes (stations) of the network in some order (routing).

Queueing networks in which jobs enter the system “from the outside” and leave the system upon receiving

service are referred to as open queueing networks. Models in which a finite population of jobs circulates within

the system, and there are no arrivals from or departures to the outside, are called closed queueing networks. Semi-

open networks include characteristics of both open and closed networks (Chen and Yao, 2001), i.e., there are

arrivals from the outside but the system has fixed capacity. Definitions of such networks in the literature differ

mainly with respect to what happens to arriving customers when the system’s capacity has been reached. As

noted by Massey and Srinivasan (1991), some authors (Dubois, 1983; Chen and Yao, 2001) assume that arriving

customers are blocked and lost when the system is full, while others (Buzacott and Shanthikumar, 1985; Jia and

Heragu, 2009) assume that arriving customers wait outside and enter the system when space becomes available.

Massey and Srinivasan (1991) assume that a semi-open system is divided into parts, such that the numbers of jobs

in some regions of the network are controlled, while in others are unconstrained. Open networks in which jobs can

6Deterministic refers to all inter-arrival or service times having the same value.
7For a general distribution, there are no assumptions regarding its precise form. Thus, results that apply to the general distribution apply to

any specific distribution.
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arrive at a node only from the outside or from an upstream node are referred to as acyclic or feed-forward networks.

This kind of network can be analyzed in a recursive manner, starting from the upstream stations. In networks with

feedback, on the contrary, jobs may visit the same station more than once (Chen and Yao, 2001). More complex

networks may involve fork-join queues, in which an arriving job is split into sub-jobs that have to be processed in

parallel and then reassembled (Bose, 2002; Baccelli et al., 1989). The work of Baccelli and Makowski (1989) and

Baccelli and Liu (1990) considers synchronized queueing networks, which can model multiprocessor systems that

process programs consisting of multiple tasks related by precedence constraints.

It has long been recognized that queueing networks are good models for dynamic job shop environments

(Jackson, 1963; Wein and Chevalier, 1992; Buzacott and Shanthikumar, 1985, 1993). Semi-open and open net-

work models provide the most intuitive representations of dynamic job shops since they allow one to explicitly

model the process of job arrivals. A semi-open network can be used to represent a job shop with a strict limit on

the number of jobs in the shop, while an open network can model a system with no such limit. Closed queueing

networks can be used to model job shops in which the total number of jobs remains constant or, in other words,

for which it is valid to assume that a new job arrives at the same instant as another job is completed and leaves.

Examples of environments that can be modelled as closed queueing networks include production systems that

have a constant work-in-process inventory or follow a one-for-one replenishment policy (base-stock control rule)

(Chen and Yao, 2001). Alternatively, one can imagine that there is a fixed number of palettes circulating through

the service stations of the system, that raw materials are placed on one such palette and that these raw materials

are gradually transformed into finished products as they receive processing (Williams, 1996). Acyclic networks

can represent flow shops while networks with fork-join queues can be used to model shops with assembly opera-

tions. Synchronized queueing networks can be useful for machine scheduling problems with complex precedences

among the activities, such as the task management problem (Myers et al., 2007), and for project scheduling.

A generalization of a queueing network is referred to as a stochastic network (Kelly et al., 1996) or a stochastic

processing network (Harrison, 1996). A stochastic processing network is defined by a set of buffers, a set of

activities and a set of processors. Buffers hold jobs that have arrived to the system and are awaiting processing.

Each activity uses one or several processors in order to process one or several jobs (which may belong to different

buffers).8 Scheduling in stochastic processing networks corresponds to the determination of the order of executing

8This definition of activity can be viewed as a generalization of the notion of activity in scheduling: it represents a particular processing

task. Classical scheduling typically assumes that the task is performed on one job by one machine, whereas stochastic processing networks

allow modelling of the case when one task corresponds to multiple job components being processed by multiple machines simultaneously

(e.g., assembled by a team of workers).
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the different activities on the various available processors. Stochastic processing networks can be used to model

more complex scheduling environments than those that can be modelled by multi-class queueing networks. For

example, they can allow one to represent material handling and machine-operator interaction (Dai and Lin, 2005)

or input-queued switches (Dai and Prabhakar, 2000). In the remainder of this literature review, we focus on

queueing networks rather than stochastic processing networks.

3.2 Single-class vs. Multi-class Systems

In the literature, a distinction is usually made between single-class and multi-class queueing networks. In a

single-class network, jobs being processed or waiting for processing at any given station are assumed to be in-

distinguishable. A multi-class system is one in which several classes of jobs are served at each station (Posner

and Bernholtz, 1968; Harrison and Nguyen, 1993). A class is usually defined as a combination of job type and

processing stage. An instance of a job belonging to a particular class is equivalent to an activity or operation in

scheduling terminology. The reader should note a slight subtlety arising from these definitions. Specifically, in a

single-class network, according to the definition of a class, there are, in total, as many classes as there are stations

(Harrison and Nguyen, 1993). The term single-class refers to the fact that a single class is served at each station.

A multi-class network is called mixed when it is open for some classes of jobs and closed for others (Bose, 2002).

It is important to note that the individual jobs belonging to the same class are different: they have unique

arrival times, unique processing times and, in the case of multiple machines, may have a unique route. However,

these differences between the jobs are stochastic variations – all jobs in a class are governed by the same stochastic

processes and are, except for these stochastic variations, indistinguishable.

In a single-class system, scheduling corresponds to determining the order in which the jobs should be processed

at each node of the network. Since the jobs are stochastically indistinguishable, scheduling decisions have to be

based on realizations of job characteristics such as their processing times. In the context of single-class systems,

the queueing literature mostly focuses on the performance evaluation of scheduling policies (e.g., FCFS, LCFS,

shortest-remaining-processing-time-first, processor-sharing) (Shanthikumar, 1982; Wolff, 1989; Harchol-Balter,

2011). For instance, one very strong result is the optimality of the shortest-remaining-processing-time policy in

an M/G/1 queue (Schrage, 1968; Smith, 1978).9

9Not surprisingly, for the single-machine case the scheduling literature has analogous results: for a static deterministic problem with n jobs,

the shortest-processing-time-first rule minimizes the total flow time; the weighted-shortest-processing-time rule minimizes the total weighted

flow time (equivalently, the sum of weighted completion times) (Pinedo, 2003; Baker and Trietsch, 2009). Similarly, Baker and Trietsch (2009)

and Pinedo (2003) show that, for a problem with n jobs and stochastic processing times (i.e., the realization of the processing time for a given

operation is not known until it is finished), the shortest (weighted) expected-processing-time rule is optimal for the (weighted) expected flow
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Scheduling in multi-class queueing networks involves the determination of a policy that specifies which class

of jobs should be processed next on each machine. This problem falls under the category of models for control

of multi-class queueing networks, which are known to be mathematically challenging (Bertsimas et al., 1994). In

particular, the choice of job to be processed next at every station of the network at every decision time point may

depend not only on the number and characteristics of jobs present in the station’s queue, but also on the state of

the other nodes in the network.

3.3 Descriptive vs. Prescriptive Models

Queueing theory is composed of work on descriptive and prescriptive (control) models (Gross et al., 2008; Stid-

ham, 2002). The goal of descriptive queueing theory is to evaluate the performance of a queueing system based

on some assumptions about its characteristics. Typical performance measures (Adan and Resing, 2002) include

• the distributions of the amount of time spent by jobs in the system (sojourn time) and of the jobs’ waiting

time in the queue prior to receiving service (queueing time),

• the distributions of the number of jobs in the system and in the queue,

• the distribution of the amount of work in the queue, with work being defined as the sum of the service times

of the jobs waiting in the queue and the residual service time of the job(s) currently receiving service,

• the distribution of the length of the busy period of a server, which is the time period during which the server

is continuously busy,

• cost-based measures such as expected holding costs (Reiman and Wein, 1998) or net present value of the

difference between rewards and costs over an infinite time horizon (Harrison, 1975).

Most of descriptive queueing theory focuses on steady-state analysis of the system, that is, its performance over a

long period of time during which the system behaviour should stabilize. Specifically, steady-state expected values

of the above-mentioned distributions are essential for understanding the performance of the system. Transient

analysis (Grassmann, 1977; Kaczynski et al., 2011) and evaluation of time-dependent probability distributions

(Massey and Whitt, 1998) provide additional insights into system performance but are, in general, more difficult

to derive and hence rarer.

time objective.

12



The area of queueing theory that deals with prescriptive models is frequently called the design and control of

queueing systems (Tadj and Choudhury, 2005; Gross et al., 2008). In both queueing design and control problems,

the goal is to find optimal values for the controllable parameters of the queue. These parameters include the

number of machines (channels) available for processing arriving jobs, the limit on the length of the queue(s)

(system capacity), the arrival rate of jobs to the queue(s), the service rates of the machine(s), as well as any

combination of these. Queueing design problems are static – once the optimal value of a controllable parameter

is determined, it becomes a fixed characteristic of the queue. Queueing control problems, on the contrary, are

dynamic – the goal in such problems is usually to determine an optimal action to take when the system is in a

particular state. For example, consider a retail facility with workers who have to serve stochastically arriving

customers and also perform back room tasks which are independent of the customer arrival process (Terekhov

et al., 2009). In order to optimize the performance of such a facility, one has to solve the queueing design problem

of finding the optimal number of cross-trained servers to employ as well as the related queueing control problem

of determining when to dynamically switch these workers between the two task types. Overviews of design and

control problems involving queues can be found in the papers of Tadj and Choudhury (2005) and Crabill et al.

(1977), and the books by Kitaev and Rykov (1995), Stidham (2009) and Meyn (2008); the reader is also referred

to the queueing design and control papers cited in the introduction.

The queueing discipline of each buffer determines the order in which arriving jobs are processed. The queue-

ing discipline can, in fact, be seen as a scheduling policy. Consequently, both descriptive and prescriptive queueing

models can be of use in scheduling. Descriptive models can be helpful for analyzing the performance and deriving

theoretical properties of particular scheduling policies. Prescriptive models, on the contrary, allow one to deter-

mine good or optimal scheduling rules. Some authors (Crabill et al., 1977) classify such models as part of the

queueing control literature.

4 Methodologies for Scheduling

This section is aimed at providing the reader with an understanding of the main methodological streams in queue-

ing theory that address scheduling problems. To achieve this goal, we classify queueing methodologies related to

scheduling into three categories. Firstly, we discuss Markov Decision Processes (MDPs), which can provide the

basis for proving theoretical properties of policies as well as for computation of policy parameters. Theoretically,

the MDP approach does not need to place a-priori restrictions on the space of scheduling policies that is consid-
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Figure 1: The criss-cross network.

ered. However, when the complexity of the problem grows, MDP approaches fail due to the size of this space.

In general, there are two ways to deal with such complexity: optimize within a restricted policy space or solve

alternative representations of the problem (such as approximations) to obtain guidance for scheduling decisions in

the original problem. These are the remaining two categories we discuss. Within each of the three parts of this

section, we make connections with single-machine and multiple-machine scheduling problems from the classical

scheduling literature, and provide ideas for future work on the integration of queueing and scheduling.

Of main interest to us are models in queueing theory that can help with sequencing decisions. For illustration

purposes, we use a system that is frequently called the criss-cross network (Martins et al., 1996), which processes

two types of jobs as shown in Figure 1. Jobs of typeA require processing at station 1 while jobs of type B need to

be processed at station 1 and then at station 2. Each station consists of exactly one machine. There are, therefore,

three classes: class 0 corresponds to type A jobs, class 1 to type B jobs at machine 1, and class 2 to type B jobs

at machine 2. We assume that class 0 jobs arrive to the system with rate λ0 and a general inter-arrival distribution;

class 1 inter-arrival times also follow a general inter-arrival distribution, with rate λ1. The arrival rate to class

2 depends on the arrival and processing rates of class 0 and 1, and the scheduling policy employed at machine

1. Processing times for class k are generally-distributed with rate µk. This problem setting has been extensively

studied in the queueing literature as it captures the key difficulties arising in dynamic scheduling and control (Chen

et al., 1994). The reader is encouraged to think about the scheduling and resource allocation questions that may

arise in this environment, and about how to address them using a predictive-reactive method or other dynamic

scheduling methods. In our illustrative example, we focus on the problem of sequencing type A and B jobs at

machine 1 in order to minimize the discounted total cost over an infinite time horizon, assuming that per time unit
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holding cost of ck is incurred for jobs in class k.

Throughout the review, we use consistent notation to describe the different approaches from the literature,

rather than using the notation of the respective papers. We use bold-face upper-case letters to denote matrices and

bold-face lower-case letters to denote vectors. Comparison of two vectors is always assumed to be component-

wise, e.g., x ≥ y denotes xk ≥ yk ∀k. In a few instances, when there is clearly no ambiguity, we re-use

notation. We denote the set of classes in a multi-class network by K and the set of stations10 by M, with σ(k)

representing the machine that is required to process class k. Km is the set of classes processed by machine m,

and C is the constituency matrix, with each entry (m, k) equal to 1 if k ∈ Km and 0 otherwise. We number

classes starting from 0 and machines starting from 1. The arrival and processing rates for class k are denoted λk

and µk, respectively; the corresponding vectors are λ = (λ0, . . . , λ|K|−1)
T and µ = (µ0, . . . , µ|K|−1)

T , where T

denotes transpose. The queue length of class k at time t is denoted by qk(t), the queue length process for class k

byQk = {qk(t), t ≥ 0}, and q(t) = (q0(t), q1(t), ..., q|K|−1(t)). The control policy is typically represented using

the letters u and U , although the exact interpretation varies from one methodology to another.

4.1 Markov Decision Processes

An MDP model consists of states, actions, decision points, costs, transition probability distributions and an opti-

mization criterion (Sennott, 1999). In the scheduling literature, it is typical to assume that jobs belonging to the

same class are distinguished from each other by their weights, processing times and due dates; schedules are con-

structed based on these individual characteristics. The MDP approach is general enough to represent scheduling

problems under such assumptions, with actions corresponding to the choice of the specific job to process next,

or the choice to remain idle. However, the state representation in the corresponding MDP model would need to

include all of the known job characteristics and to keep track of the processing sequence, leading to an enormous

state space that would make the problem intractable to solve.

The queueing representation of scheduling problems is much more amenable to analysis via MDP methods,

since it assumes that jobs belonging to a particular class are stochastically indistinguishable and scheduling de-

cisions amount to choosing the class of jobs to be processed next, rather than the individual job. If the queue

discipline is FCFS, a state can be defined as the number of jobs of each class present in the system; decision points

can be job completion epochs or time points when there is a job arrival; an action may be the choice to process a

10Unless otherwise specified, we assume each station has exactly one unary-capacity machine and thus we sometimes use the terms of

station and machine interchangeably.
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particular job class on a given machine or for this machine to remain idle (Harrison, 1975). The goal is to find a

policy that specifies the action to be taken in every state of the system so that an objective is optimized.

The policies may or may not depend on the history (past states) of the system, or on the actual time point

when a decision is made. Derman (1970) classifies MDP policies in a hierarchical fashion. The most general is

the set C of all possible policies, i.e., policies which may be dependent on the complete history of the system. An

important subset is CM , which consists of all memoryless, or Markovian, policies. In such policies, it is assumed

that the probability of taking action a is a function of only the current state and the current time. CS is a subset of

CM which consists of time-invariant policies. Under these policies, the probabilities of taking a particular action

are dependent only on the system state. A special subset of CS , CD, consists of all deterministic policies. A

deterministic policy is one in which the probability of taking a particular action a in a state i is either 0 or 1.

We now give a formal definition of a general MDP with a countable state space X and action space A based

on the paper by Chen and Meyn (1999). For each state x ∈ X, there is a non-empty subset A(x) ⊆ A, which

consists of actions that are admissible when x is the state at time t, denoted x = Φ(t). Transitions in the state

process Φ occur according to conditional probability distributions {πa(x, y)}, which define the probability that

the next state is y ∈ X given that the current state is x ∈ X and action a ∈ A is taken. A policy u can then

be formally defined as a sequence of actions {a(t) : t ∈ Z
+}, where a(t) can depend only on the history of the

process {Φ(0),Φ(1), . . . ,Φ(t)} and Z
+ is the set of non-negative integers. A Markovian policy is of the form

u = (u0(Φ(0)), u1(Φ(1)), u2(Φ(2)), . . . ) where ui, for each i, is a mapping from X to A and ui(x) ∈ A(x) for

each state x. A stationary policy is then a Markovian policy with ui = u for all i and for some fixed u. Given a

one-step cost function c(Φ(t), u(Φ(t))) associated with taking action u(Φ(t)) in state Φ(t), the goal of the MDP

may be to find a stationary policy u which minimizes the objective of interest.

Variants of MDP models are defined similarly. For example, semi-Markov decision processes (SMDPs) gener-

alize MDPs by representing the evolution of the system in continuous time, with the time spent by the process in a

particular state following an arbitrary probability distribution. The decision-maker is allowed or required to choose

actions whenever the system state changes (Puterman, 1994). Additional examples include partially-observable

MDPs, in which there is uncertainty about the state of the process but state information can be acquired (Monahan,

1982), and constrained MDPs, which have constraints on the cumulative costs incurred at any time (Yeow et al.,

2006). See also the paper by Glasserman and Yao (1994), which discusses generalized SMDPs.

After a problem is modelled as an MDP or a variant, stochastic dynamic programming methods may be applied
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to either obtain numerically-optimal solutions (Sennott, 1999) or to characterize the structure of optimal policies

(Stidham and Weber, 1993). For example, one common approach to finding the optimal policy is value iteration

(Chen and Meyn, 1999). The reader is referred to the books by Bertsekas (2005, 2007) for an extensive coverage

of topics related to the use of dynamic programming in optimal control problems, to the book on MDPs by

Puterman (1994) and to the book by Meyn (2008), which provides an in-depth treatment of various topics related

to scheduling in queueing systems, and talks about MDPs in detail in Chapter 9.

Stidham and Weber (1993) state that using MDPs and dynamic programming to determine optimal policies

in large problems (e.g., communication networks of realistic size) is usually intractable. However, determining

the structure of optimal policies for small problems can help in the development of heuristic policies for large

systems. Similarly, Glasserman and Yao (1994) state that computation of optimal controls for MDPs is generally

infeasible without special structure, which motivates investigation of the form of optimal policies. For example, in

a switching curve policy, a threshold function is defined in terms of the states of the system: one action is optimal

in the states below the threshold curve, while another is optimal for the states above the curve (Glasserman and

Yao, 1994).

For the two-station problem of Figure 1 with generally-distributed inter-arrival and processing times, the state

at time t is Φ(t) = (q0(t), q1(t), q2(t)). The actions are: to process class 0 or to process class 1 at station 1, or to

idle station 1. Assuming machine 2 is non-idling, from the queueing perspective there are no scheduling decisions

to be made for class 2, since it is the only class processed by machine 2; from the scheduling perspective, there is

of course the question of sequencing jobs within this class. The approach of Chen et al. (1994) for this problem,

which models arrival and service processes as counting processes with controllable stochastic intensities, reduces

to a discrete-parameter Markov decision model (Stidham and Weber, 1993). Value iteration is then used as part

of their proof of the existence of a stationary policy that is optimal for determining the actions at machine 1.

This policy switches machine 1 from processing class 1 to processing class 0 (if there are jobs available in class

0) or to idling (if there are none) when the congestion level at machine 2 exceeds a threshold that is a function

of the state at machine 1. Thus, the policy has a switching-curve structure, and reflects the intuition that as the

congestion at station 2 grows, it becomes less and less appealing to process class 1 jobs (Chen et al., 1994). The

work of Hariharan et al. (1996), which uses a discrete-time MDP model to study the generalization of our example

to multiple machines, implies that when the processing times are all constant and equal, the optimal policy is

to process class 0 whenever there are any class 0 jobs present and the number of jobs at station 2 is at least 2.
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Moustafa (1987) shows the same result but with the assumption that exogenous arrivals are allowed at station

2. Moustafa (1996) uses a semi-Markov decision model to solve the same problem in the case of exponential

inter-arrival and processing times and a cost for switching the machine between class 0 and 1 jobs.

There is a fundamental difficulty with applying the MDP approach even in the context of scheduling classes

of jobs. Specifically, when buffers are infinite, the corresponding optimization problem is infinite-dimensional;

when the buffers are finite, the complexity of the problem grows exponentially with the state space dimension

(Meyn, 2001). Nevertheless, recent advances in the use of approximate dynamic programming (ADP) (Powell,

2010, 2012) have helped to overcome some of these computational challenges. The ADP approach is based

on approximating the dynamic programming optimal cost-to-go function within the span of a given set of basis

functions (Desai et al., 2012). For instance, in the context of the criss-cross network of Figure 1, Desai et al. (2012)

use a smoothed approximate linear program with four basis functions: the constant function and the squared

queue length for each of the three classes. Other examples of the use of approximate dynamic programming for

scheduling in queueing networks include the papers by de Farias and Van Roy (2003), de Farias and Weber (2008),

Moallemi et al. (2008), Veatch and Walker (2008), Veatch (2009, 2010) and Abbasi-Yadkori et al. (2014).

As mentioned above, an MDP formulation of the problem of deciding how to allocate resources to job classes

can lead to both theoretical and numerical results. These results are useful in a variety of applications, e.g., in

healthcare (Patrick et al., 2008; Zonderland et al., 2010). In applications where the processing time of a job can

be well-estimated upon arrival or where operational-level decisions need to be made (Zonderland et al. (2010)

mention the development of operational-level policies as future work), it is interesting to determine whether com-

bining MDP results with detailed within-class scheduling methods or with the predictive-reactive framework of

Bidot et al. (2009) is useful.

The rest of the queueing-theoretic approaches for scheduling that we consider are based either on models with

a specific structure, or models which approximate or aggregate system characteristics.

4.2 Models with Specific Structure

One approach to addressing the complexity of scheduling problems is to restrict the policy types that are consid-

ered. In this section, we discuss four major classes of models that adopt this approach: priority queues, polling

systems, vacation models and bandit models.
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4.2.1 Priority Queues

The simplest models in queueing theory assume a FCFS discipline: jobs are processed in the order in which they

arrive. A priority queueing model is different from a regular FCFS queue in two respects. Firstly, in a priority

queueing model, arriving jobs are divided into classes or types of different priority. This notion of priority is

analogous to that of job weights in scheduling: both are a measure of a job’s importance. Since queueing models

do not, in general, distinguish jobs based on individual characteristics, it is natural for these models to group jobs

into priority classes; in scheduling, each job may be assigned a unique weight. Secondly, the system operates

according to a “priority discipline”, which is similar to a dispatching rule. In fact, they are based on the same idea:

at a particular decision time point, be it the completion time or the arrival time of a job, one assigns an index to all

jobs that are waiting to be processed and chooses the job according to the index (largest or smallest, depending on

the ordering chosen) as the one to be processed next.

The queueing literature, just like the scheduling literature on dispatching rules, makes a distinction between

preemptive and non-preemptive rules, and static and dynamic rules (Jaiswal, 1968).11 For a system in which

processing times become known upon arrival, an example of a priority queueing model with a static discipline is

one in which a job class with index p is composed of all jobs that require between p and p+∆p units of processing

time (Adan and Resing, 2002), and jobs are sequenced in non-decreasing order of their priority index, which does

not change throughout each job’s time in the system. For multi-class systems in which each job class k has

weight/cost ck and an expected processing time of 1
µk

, a classic discipline is the cµ rule (equivalently, weighted-

shortest-expected-processing-time rule). This rule schedules classes in non-increasing order of their ckµk values,

and uses FCFS within each class. Jaiswal (1982) provides several examples of dynamic priority rules. In one of

these, the instantaneous priority index of a job in class k is prk(t) = ck − wk(t), where wk(t) is the amount of

time a job has been waiting in the system up to time t. More generally, prk(t) can be a concave function of the

waiting time.

In scheduling, a dispatching rule is generally viewed as a heuristic approach that can be applied to a variety

of scheduling problems, regardless of whether they are deterministic or stochastic, static or dynamic. In the

literature, the performance of dispatching rules is usually evaluated experimentally, although in some cases a

dispatching rule can be shown to be optimal. In addition, there is significant interest in finding rules with tight

worst case bounds on performance and polynomial running time, referred to as polynomial-time approximation

11Jaiswal (1968) actually uses the terms exogenous and endogenous instead of static and dynamic, respectively. Nonetheless, the terms

static and dynamic are also used in queueing. See, for example, the paper by Goldberg (1977).
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schemes (PTAS) (Schuurman and Woeginger, 1999). An example of such a dispatching rule is the list scheduling

heuristic proposed by Graham et al. (1979), in which, at a time point when a machine completes processing, the

first available job from a specified priority list is scheduled. Following Schuurman and Woeginger (1999), we

refer the reader to the papers by Hall (1997) and Lenstra and Shmoys (1995) for overviews of PTAS.

In queueing theory, the focus has been on theoretical performance evaluation of queueing systems operating

under a particular queueing discipline and particular assumptions regarding the inter-arrival and processing time

distributions. For example, consider a single-class M/G/1 system with arrival rate λ, mean processing time E[S]

and system load ρ = λE[S] (0 ≤ ρ < 1). Let f(·) denote the probability density function of the processing

time distribution. It has been shown that the distribution of the number of jobs in the system is the same for all

non-preemptive scheduling disciplines that do not use job size information (Conway et al., 1967). As a result, the

expected response time (flow time or sojourn time) E[T ], defined as the length of time between the arrival of a job

and its completion, is the same for all such policies, including RSS, LCFS and FCFS:

E[TRSS] = E[TLCFS] = E[TFCFS] = E[S] +
λE[S2]

2(1− ρ)
. (1)

Equation (1) is based on the famous Pollaczek-Khintchine formula for the expected number of jobs in the sys-

tem (Pollaczek, 1932; Khintchine, 1932). In contrast, the distribution of the response time is different for these

scheduling disciplines and, in particular, var(TFCFS) < var(TRSS) < var(TLCFS) (Conway et al., 1967).

The expected response time in the same system operating under the SPT policy, a common rule that does use

processing time information, is:

E[T SPT ] = E[S] +

∫ ∞

0

E[WSPT (s)]f(s)ds, (2)

whereE[WSPT (s)] = [λE[S2]]/[2(1− ρ(s))2] is the time a job of size swaits before its processing is started, and

ρ(s) = λ
∫ s

0
tf(t)dt is the system load consisting of jobs of size less than s only (Phipps Jr., 1956; Harchol-Balter,

2011).

Similar types of results can be obtained for multi-class systems. For instance, consider a multi-class M/G/1

queue with πk being the probability that an arriving job belongs to class k. Lower-numbered classes have higher

priorities (so, class 0 has the highest priority and class |K| − 1 has the lowest), and preemptions are not allowed.

The random variable Sk denotes the processing time of a class k job and has distribution Gk. Define S as the

“overall” processing time, drawn from distribution G =
∑|K|−1

k=0 πkGk, and ρk = λπkE[Sk] as the system load
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corresponding to class k jobs only. The expected delay of class k jobs in this system has been shown to be

[λE(S2)]/[2(1−∑

k<l ρk)(1 −
∑

k≤l ρk)] (Wolff, 1989).

Recently, there has been a strong interest in the performance evaluation of a class of policies that aims to

prioritize shorter jobs in order to ensure “SMAll Response Times”; this class of “SMART” policies was introduced

by Wierman et al. (2005). In their paper, Wierman et al. (2005) formalize the commonly used heuristic of giving

priority to jobs which are short initially or have small remaining processing times; they derive simple bounds on

the mean response time of any policy in the SMART class and tight bounds on the mean response time specifically

for the preemptive-shortest-job-first and shortest-remaining-processing-time-first policies. Nuyens et al. (2008)

further evaluate the performance of this policy class with respect to the tail of the processing time distribution.

In some cases, it can be shown that a queueing discipline is optimal under particular distributional assumptions.

One of the most general results for a multi-class single-machine system is the optimality of the cµ rule in the class

of all scheduling rules (not just priority policies) in the M/GI/1 queue with the possibility of idling and machine

breakdowns (Meilijson and Yechiali, 1977). For our example problem, the paper by Chen et al. (1994) shows that

when c0µ0 ≤ (c1 − c2)µ1, it is optimal for class 1 (type B jobs at machine 1) to have preemptive priority over

class 0 (type A jobs at machine 1).

Prescriptive models that determine the best service discipline have been developed in the queueing control

literature (Crabill et al., 1977). For example, Robinson (1978) uses semi-Markov decision theory to determine the

optimal priority policy for deciding which of two job types a machine should process; Jaiswal (1968) describes a

dynamic programming approach developed by Oliver and Pestalozzi (1965) to optimize processing time thresholds

on which priorities are based, under the assumption that processing times become known upon arrival. Hassin

et al. (2009) address optimization of relative priorities using an achievable region approach, which is discussed in

Section 4.3.1.2. Related work includes optimization of the service discipline in a setting where there is uncertainty

in the input data (Pardo and de la Fuente, 2007) and determination of the optimal thresholds for switching from a

preemptive to a non-preemptive discipline (Drekic and Stanford, 2000). A general class of priority policies called

fluctuation smoothing policies is proposed by Lu et al. (1994). Queueing models with switchover, which deal with

the control of the service process and the queue discipline in the presence of state-dependent switching costs, are

reviewed by Rosa-Hatko and Gunn (1997).

Since the underlying idea of dispatching rules and priority queueing models is the same, integration of method-

ologies from these two fields may be valuable. Priority queueing models can be beneficial from the perspective of
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scheduling since it may be possible to cast a dispatching rule as a priority queueing discipline and apply queueing

analysis in order to derive theoretical performance guarantees for this rule under particular assumptions regarding

the processing or inter-arrival time distributions. As mentioned previously, there has been a significant amount of

work in this direction (Harchol-Balter, 2011; Nuyens et al., 2008; Wierman et al., 2005). Conversely, new priority

queueing models can be developed based on dispatching rules that have been studied in scheduling but not in

queueing theory. One future work direction is to determine whether the steady state performance of composite

dispatch rules, such as the Apparent Tardiness Cost heuristic (Pinedo, 2009), could be analyzed using queueing

theory.

In addition, it has been noted that any scheduling algorithm can be represented as a function of DM , the

decision mode; PF , a priority function; and AR, an arbitration rule (Jaiswal, 1982; Ruschitzka and Fabry, 1977).

DM defines the time points at which the priority function PF is evaluated for all jobs in the system. The job

with the highest priority value from PF is chosen for processing. AR is used to break ties between jobs with

equal priorities. Representing scheduling approaches as priority policies in this manner may provide insight into

the properties of these approaches, and serve as one possible framework for integrating queueing and scheduling.

4.2.2 Polling Systems

Another category of queueing-based models is known as “polling systems” (Takagi, 1988; Vishnevskii and Se-

menova, 2006; Boon et al., 2011). In a typical polling system, a single server has to visit and serve several queues

of jobs in some order. Jobs belonging to different queues may vary in some of their characteristics, such as their

inter-arrival time distributions. The server switching between the queues is equivalent to a machine or a set of

machines being switched between processing of different job types. The polling system can be controlled by de-

ciding: (i) the order in which the different queues are served (polling order); (ii) the jobs processed on each visit

to a queue (queue service discipline); and (iii) the sequencing of jobs within each queue (queue service order)

(Takagi, 1988; Wierman et al., 2007). Together, these decisions prescribe the order in which the jobs should be

processed and, thus, form a global scheduling policy.

Polling occurs in a variety of real-world applications (Boon et al., 2011), such as flexible manufacturing

(Sharafali et al., 2004). For problems that do not naturally possess a polling structure, using a polling model

may still be useful. For example, a frequent assumption in polling models is the presence of switching times/costs.

Therefore, such models are relevant for single machine scheduling problems with setup times/costs and, as noted

by Wierman et al. (2007), for the stochastic economic lot scheduling problem. More generally, we can think of the
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polling structure, together with decisions (i)–(iii), as a particular scheduling policy type, which can, theoretically,

be applied to a wide range of scheduling problems. In our example problem, which does not require a polling

structure, we can nonetheless apply a polling-type scheduling policy: (i) “visit” the queues corresponding to job

types A and B in a cyclic order (A, B, A, etc.); (ii) during each visit, process jobs of the corresponding type until

the queue is empty (exhaustive queue discipline); (iii) sequence jobs within each queue in FCFS order. We can

then gain an understanding of the performance of this policy by using descriptive results for polling models.

Consider a polling system with |K| queues where for each queue k, job arrivals follow a Poisson process

with rate λk , and processing times are distributed according to a distribution Gk with first moment γk and second

moment γ
(2)
k . The load of queue k is ρk = λkγk, and the total system load is ρ =

∑|K|−1
k=0 ρk. The server visits the

queues in a cyclic order. If no switching time is incurred when the server switches between different queues, then

this system is equivalent to an M/G/1 queue with arrival rate Λ =
∑|K|−1

k=0 λk and processing time distribution

∑|K|−1
k=0 (λk/Λ)Gk. Since no work is created or destroyed in such a system, it has to obey a conservation law

(Yechiali, 1993). Thus, if E[Wk] denotes the mean waiting time for type k jobs then, regardless of the queueing

discipline, the expected amount of work in the system is (Schrage, 1970; Boxma and Groenendijk, 1987):

|K|−1
∑

k=0

ρkE[Wk] = ρ

∑|K|−1
k=0 λkγ

(2)
k

2(1− ρ)
. (3)

With non-zero switching times, the above conservation law does not hold, because during the switch-over

periods the server is idle while there may be work present in the system. However, useful pseudo-conservation

laws (which do depend on the service discipline) have been developed. Suppose the switching times from queue

k to queue (k + 1) mod |K| are independent and identically distributed random variables with first moment

ςk and second moment ς
(2)
k . Given that the polling order is cyclic, the first and second moments of the total

switching time during one cycle (length of time between visits to the same queue) are ς =
∑|K|−1

k=0 ςk and ς(2) =

∑|K|−1
k=0 [ς

(2)
k −ς2k ]+ς2, respectively. For a system with the cyclic polling order and the exhaustive queue discipline,

it has been shown that (Boxma and Groenendijk, 1987):

|K|−1
∑

k=0

ρkE[Wk] = ρ

∑|K|−1
k=0 λkγ

(2)
k

2(1− ρ)
+ ρ

ς(2)

2ς
+

ς

2(1− ρ)
[ρ2 −

|K|−1
∑

k=0

ρ2k]. (4)

The first term in this expression corresponds to the total amount of work in the system without switch-over times,

while the second and third terms represent the amount of work present at an arbitrary epoch during a switch-over

period (Levy and Sidi, 1990).
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There has been an extensive amount of descriptive work on polling systems under particular assumptions

regarding decisions (i)–(iii). We refer the reader to the work of Takagi (1986), Takagi (1988) and Levy and Sidi

(1990) for overviews of such work. Below, we focus on optimizing the three different types of decisions that need

to be made in polling models.

(i) Polling Order Similarly to dispatching rules, the polling order can be static or dynamic. For example, the

cyclic policy, which states that the server should visit the |K| queues in order 0, 1, 2, . . . , |K| − 1, 0, 1, 2, . . . , is a

static order since it is chosen prior to system operation and is independent of the system state (Levy and Sidi, 1990).

An example of a dynamic polling order is one in which the server is assigned to the queue that contains the greatest

amount of work at a decision epoch. Optimization of a static polling order amounts to optimizing a pattern which

repeats itself every̟ visits (referred to as a polling table) and has the form Id(1), Id(2), . . . , Id(̟), Id(1), Id(2), . . . ,

with Id(i) being the identity of the queue in the ith position of the pattern, 0 ≤ Id(i) ≤ |K| − 1 (Levy and Sidi,

1990). Boxma et al. (1989; 1991; 1993) employ a three-step heuristic approach for this problem with switching

times:

Step 1: Determine the relative visit frequencies frk for queues k = 0, 1, 2, . . . , |K| − 1,

Step 2: Determine the size of the polling table,̟, and the number of visits, numk, that should be made to queue

k, k = 0, 1, . . . , |K| − 1, within a cycle (note that ̟ =
∑|K|−1

k=0 numk),

Step 3: Given the values of̟, numk and frk for all k, determine the order of visits to the queues within a cycle.

Each of the three steps is itself an optimization problem. For step 1, Boxma et al. (1989) propose to use the opti-

mal proportions obtained from solving a related non-linear optimization problem in a Markovian polling system.

Boxma et al. (1993) also address step 1, stating that this is the most important of the three steps. For step 2, the

table size ̟ should be chosen in such a way that ensures that ̟fr0, ̟fr1, ̟fr2, . . . , ̟fr|K|−1 are integers, or

within ǫ of an integer, and such that the sum of these integers equals ̟ (Boxma et al., 1993). For step 3, the goal

is to find an order in which, for every k, the number of visits to other queues between two visits to queue k is

approximately the same; the authors use the Golden Ratio policy proposed by Hofri and Rosberg (1987). If we fix

the table size, ̟, steps 2 and 3 become closely related to the notion of fair sequences that has received attention in

the scheduling literature (e.g., see the book chapter by Kubiak (2004)): given “desired” frequencies frk, we may

optimize some function of the differences between the actual number of visits, numk, and frk so as to achieve a

“fair” polling order.
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Now, suppose that the system state, (q0, q1, . . . , q|K|−1), where qk is the number of jobs currently present in

queue k, can be observed at the beginning of each cycle. Browne and Yechiali (1989a; 1989b) show that visiting

the queues in increasing order of qk/λk minimizes the expected length of the cycle. This result holds for the two

most common queue service disciplines and is independent of the processing time requirements of the queues.

Therefore, we can combine this rule with policies other than FCFS to solve more complex scheduling problems.

For example, a manufacturing facility may want to minimize the length of a production cycle but also minimize the

total job tardiness. In this case, we can use the above result to construct the production cycle with the minimum

expected length; if we can observe processing times and due dates upon the server’s arrival to a queue, then a

static, deterministic scheduling problem can be solved to optimize the total tardiness of the current set of jobs. To

our knowledge, such an approach has not been investigated in the literature.

The reader is referred to the papers by Levy and Sidi (1990) and Yechiali (1993) for overviews of approaches to

optimization of both static and dynamic polling orders, and to the papers by Altman and Yechiali (1993), Yechiali

(1991), Borst et al. (1994) and Gaujal et al. (2007) for additional examples. Khamisy et al. (1992) address the

equivalent problem of positioning the queues on the cyclic path of the server (referred to as optimization of the

network topology) in a polling system with precedence constraints. Bertsimas and Xu (1993) derive cost lower

bounds for both static and dynamic polling orders, noting that optimization of the polling order can be seen as a

vehicle routing problem in a dynamic and stochastic environment.

(ii) Queue Service Discipline The rule that is used to decide the number of jobs processed during a visit to

a particular queue is the queue service discipline.12 Two common queue service disciplines are the exhaustive

and the gated disciplines. Under the exhaustive discipline, a queue is served until it becomes empty. Under the

gated service discipline, all jobs that are present in the queue at the start of the visit are processed (all jobs that

arrive during service have to be processed in the next visit). The exhaustive policy tends to optimize the system’s

efficiency, while the gated policy is known to be fairer in its allocation of the processing resource among different

queues (Levy and Sidi, 1990; Levy, 1991).

The general idea for controlling the system via the queue service discipline is to employ disciplines with con-

trollable parameters that limit the amount of service each queue receives. One option is to employ a deterministic

limited policy, which has a parameter Lk that represents the maximum number of jobs that should be processed

12Note the difference between the earlier term “queue discipline” and the term “queue service discipline” used here.
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during a visit to queue k.13 Since even performance evaluation of this policy is difficult, there has been work on

a related alternative: the binomial-gated policy (Levy, 1991). In such a policy, a parameter, propk , represents the

proportion of jobs present in queue k at the start of the cycle that should be processed during this cycle. Assuming

that qk is the number of jobs in queue k when the cycle begins, the number of jobs processed is a binomial random

variable with parameters qk and propk; thus, on average, a fraction propk of the jobs present in queue k at the

beginning of the cycle will be processed during the cycle. Optimization of the system therefore amounts to finding

the optimal propk values. Since one of the main reasons this policy is considered is its analytical tractability, there

is some doubt regarding its applicability in practice.

Another way to control the service discipline is to use a Bernoulli limited policy: upon completion of a job in

queue k, the probability that the server will process a job from the same queue is given by a parameter ψk. Blanc

and van der Mei (1995) study the problem of finding ψk values for all queues with the objective of minimizing the

sum of steady-state mean waiting times weighted by arbitrary strictly positive values.

van Wijk et al. (2012) propose an approach to find service disciplines that balance efficiency and fairness.

Their measure of efficiency is
∑|K|−1

k=0 ρkE[Wk]. Fairness is expressed in terms of the differences in mean waiting

times between the queues, maxk,l(E[Wk] − E[Wl]). Their goal is to optimize a weighted combination of these

objectives, maxk,l(E[Wk] − E[Wl]) + α
∑|K|−1

k=0 ρkE[Wk], for some α ∈ [0,∞), by choosing the values κk for

every queue k and implementing the corresponding κ-gated service discipline. This discipline allocates at most

κk gated service phases to each queue k once the server arrives there. In the first phase at queue k, the server

processes all jobs present at the time of its arrival to this queue. If there are jobs present in queue k once phase 1

is finished, the server stays at this queue and processes all jobs that have arrived since the start of the first phase

(this corresponds to phase 2). If there are jobs in queue k when phase 2 is completed, phase 3 is started, etc.,

until at most κk phases are completed. At that point, the server switches to the next queue l and serves it using at

most κl phases. This multi-phase approach is very similar to the notion of periodic scheduling (Bidot et al., 2009;

Ouelhadj and Petrovic, 2009; Davenport and Beck, 2000), since in both cases the system is periodically reviewed

and only those jobs that have arrived by the review time point are considered for scheduling.

(iii) Queue Service Order Work on scheduling within a given queue in polling systems has received little

attention compared to optimization of the polling order and the queue service discipline. Fournier and Rosberg

(1991) consider systems with various priority disciplines within each queue. Wierman et al. (2007) demonstrate

13See the paper by Levy and Sidi (1990) for a summary of variations of the limited policy.
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that the order of service within the queue can have a significant impact on the performance of the system. They

analyze policies that use processing time information, such as SPT, as well as those that do not. For instance,

they consider a symmetric two-queue polling system with processing times and setup times being exponentially

distributed with mean 1, and with a cyclic polling order and gated service discipline. They experimentally show

that the mean waiting time under SPT is, on average over a variety of loads, 15% lower than that of FCFS. For

the same system with a more variable Weibull distribution, the improvement of SPT over FCFS is even greater

(Wierman et al., 2007). Boon and Adan (2009) study a polling system in which jobs within each queue are divided

into low- and high-priority classes.

Optimization of the queue service order is a promising area for scheduling techniques. When a gated or a

limited-type queue service discipline is employed, one needs to solve a single-machine static scheduling problem

at the beginning of each queue visit. If processing times become known upon arrival, deterministic single-machine

approaches may be applied; if only expected processing times are known, then a stochastic scheduling problem

needs to be solved. These problems may be of varying complexity: minimizing flow time is polynomial (employ-

ing SPT or expected SPT policies is optimal) while minimizing total tardiness is in general NP-complete (Baker

and Trietsch, 2009) and therefore would require a more sophisticated optimization method.

Although most of the polling literature focuses on single-server and single-station models, there have been ex-

tensions of these models to multiple-server systems (Borst, 1995; Down, 1998; Antunes et al., 2011) and networks

of polling systems (Reiman and Wein, 1999; Beekhuizen et al., 2008). Scheduling decisions in such systems are

the same as in single-station, single-server ones (the order of visiting the queues, the set of jobs processed on

each visit and the sequence in which the jobs are to be processed), but they have to be made for every server and

every station, and are dependent on the locations of all servers and the existence of constraints on the number

of servers at a station at any time point, making the overall problem more complex. As a consequence, there

has been very little work on optimization of scheduling decisions in such systems. An important example is the

work by Browne and Weiss (1992), who consider a polling system in which the server is composed of N parallel

machines which switch between queues as one unit. They address optimization of the polling order at the start of

each cycle with the goal of minimizing the expected cycle length (as do Browne and Yechiali (1989a; 1989b) for

a single-server system). Terekhov et al. (2012a; 2012b) and Terekhov (2013) study a polling system in which the

server is composed of two machines in tandem. They investigate the performance of periodic scheduling methods
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in which a static deterministic scheduling problem is solved at the beginning of each queue visit under cyclic,

gated assumptions.

In summary, there are numerous avenues for integration of work in the polling model and scheduling litera-

tures. Firstly, applying a polling-type scheduling policy to a problem implies that a vast number of descriptive

results become directly applicable. Such results may be used as bounds on optimal schedules or within schedul-

ing algorithms. Secondly, the division of the scheduling policy into three levels offers a natural framework for

modelling systems with different objectives at different decision-making levels. Scheduling approaches could also

prove useful for improving the performance of polling systems. Specifically, if we make the assumption that pro-

cessing times of jobs become known upon arrival, then the problem of optimizing the sequence in which jobs are

processed in each queue can be turned into a static, deterministic scheduling problem, making an abundance of

scheduling work directly relevant. If the total workload within each queue can be observed at the beginning of each

cycle, then the problem of optimizing the polling order becomes that of optimizing a system with N (batch) jobs.

It would be interesting to determine whether work on lot-sizing or batch scheduling methods would be applicable

in this context. The reader is referred to the work by Winands (2007) to see the connection between lot-sizing

and polling systems, and is encouraged to contrast the idea of using a batch scheduling model for the problem of

optimizing the polling order with the work on batch polling systems (Van Der Wal and Yechiali, 2003; Boxma

et al., 2008). Additionally, future work should consider the use of polling models with precedence constraints

(Khamisy et al., 1992) for modelling scheduling problems with precedences and the task management problem

described by Myers et al. (2007).

4.2.3 Vacation Models

In a queueing system with vacations, the server takes “vacations” from serving a particular queue of customers.

Vacations can correspond to breakdowns of a machine, maintenance operations, or processing of other job classes

(Stidham, 2002; Doshi, 1986). Consider the example of Figure 1. From the perspective of a class 0 job, the

time spent processing class 1 can be viewed as a machine vacation. Adopting this point of view, one can see

that determining how to allocate machine capacity among job classes is equivalent to determining the timing

and duration of vacations. In fact, a vacation model can be seen as a special case of a polling system. Thus,

we do not review vacation models in as much detail as the work on polling systems. We note, however, that

while the methodology employed in the study of vacation models is similar to that of polling systems, some more

general results have been obtained (Stidham, 2002). One of the most important results is that the waiting time
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in an M/GI/1 queue with vacations follows the distribution of the sum of two independent components: the

waiting time in an M/GI/1 queue without vacations and the equilibrium residual vacation time (Stidham, 2002;

Fuhrmann, 1984).

Vacation models could be useful for scheduling in the same way as work on optimization of the polling order

and queue service discipline in polling systems. In particular, vacation models can provide high-level guidance

regarding how much time should be spent on a specific class prior to taking a vacation. A review of descriptive

vacation models can be found in the paper by Doshi (1986), while various prescriptive vacation models are dis-

cussed by Tadj and Choudhury (2005). Extensions of vacation models to the case of multiple servers have been

analyzed by, for example, Kao and Narayanan (1991) and Chao and Zhao (1998). The book by Tian and Zhang

(2006) provides a comprehensive review of both descriptive and prescriptive vacation models.

4.2.4 Bandit Models

A multi-armed bandit (MAB) problem (Gittins, 1979; Whittle, 1988; Bertsimas, 1995; Bertsimas and Niño-Mora,

1996) consists of a set N of jobs, only one of which can be processed at each discrete point in time. For every

time point t when a job j in state xj(t) is being worked on, a reward Rj

xj(t)
is obtained. The rewards are assumed

to be additive and are discounted in time by a factor ϕ, 0 < ϕ < 1. The job that is being executed changes

state according to a homogeneous Markov transition rule, while the states of the jobs that are not being worked

on do not change. The goal of the problem is to determine a scheduling policy: a rule that, at each point in time,

prescribes which job should be executed and maximizes the total expected discounted reward over an infinite

horizon (Bertsimas and Niño-Mora, 1996). Interestingly, in computer science, significant attention (Streeter,

2007; Gagliolo and Schmidhuber, 2007; Cicirello and Smith, 2005; Radlinski et al., 2005; Vermorel and Mohri,

2005) has been given to a variation of the MAB problem in which the distribution of rewards is not known in

advance and the goal is to choose, at each iteration, the job to execute in order to maximize the sum of collected

rewards.

The initial inspiration for the study of MABs is the problem faced by a gambler in a casino deciding which

slot machine should be played (Puterman, 1994) or, equivalently, which lever or arm of a slot machine should be

pulled (Weber and Weiss, 1990). Naturally, the MAB problem is also a representation of the situation where a

decision-maker needs to choose which job to execute at a point in time, with states defined by the jobs’ levels of

completion and a reward being obtained only when a job is finished (Puterman, 1994). From the perspective of

scheduling, the MAB problem is a representation of a single machine scheduling problem with preemptions in
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which the set of jobs stays fixed over time (Pinedo, 2009). The state of the job can be the remaining processing

time, which changes only when this job is the one being processed by the machine. Bertsimas and Niño-Mora

(1996) state that the MAB problem is a special case of a dynamic and stochastic job scheduling problem. An

additional application of MABs is in sequential clinical trials where a new medical treatment is compared to an

existing one or to a placebo (Puterman, 1994).

The arm-acquiring bandit problem is an extension of the MAB problem in which a set of new jobs arrives at

time t. These jobs can be executed starting at time t+ 1 and are assumed to be independent of each other and of

all the previous jobs. As in the MAB problem, the goal is to determine a policy that specifies the job that should

be executed at each point in time (Mahajan and Teneketzis, 2007). This problem can be used as a representation

of a single machine dynamic scheduling problem with preemptions. The example of Figure 1 can be viewed as an

arm-acquiring bandit problem if we allow preemption. Within the queueing literature, the MAB problem is related

to polling models, since the decision to execute a particular job can be equivalent to choosing a particular queue.

There are many other variations of MAB models, most of which can be linked to problems from the scheduling

literature. These include:

• the MAB problem with switching penalties (Mahajan and Teneketzis, 2007), corresponding to a static single

machine preemptive scheduling problem with switching costs.

• the MAB problem with deadlines (Niño-Mora, 2007), corresponding to a static single machine preemptive

scheduling problem with deadlines.

• the branching bandit problem (Varaiya et al., 1985; Weiss, 1988), in which jobs are classified into types

according to their state and where a job is replaced by some number of new jobs of each type upon its

completion. This problem allows modelling of job arrival processes that are more general than Poisson and

can be used to represent a machine in a job shop that processes a variety of parts (Bertsimas et al., 1995).

• the restless bandit problem (Weber and Weiss, 1990; Niño-Mora, 2007), in which ̺ jobs have to be executed

at any time point; rewards may be incurred and states may change even for jobs that are not being worked

on. In the literature, it is stated that these models can represent situations where ̺ out of all available work-

ers always need to be active, and their states represent their physical condition; states change regardless of

whether the worker is busy or idle (e.g., if the workers are getting rest, their physical condition improves)

30



(Weber and Weiss, 1990). Similarly, we can use the restless bandit problem to model a manufacturing envi-

ronment with ̺ parallel machines; this model is general enough to represent deterioration and improvement

in the condition of machines. Future research should determine the relationship between the restless ban-

dit problem and stochastic variations of resource constrained project scheduling discussed by Mercier and

Van Hentenryck (2008). The restless bandit model can also be applied in the context of the system shown in

Figure 1, since we can think of type A and B jobs as two jobs which change state depending on the amount

of processing received and on the amount of work that arrives.

• the MAB problem with a goal state (Dumitriu et al., 2003; Katta and Sethuraman, 2005), which is related

to planning problems in artificial intelligence (Ghallab et al., 2004).

One of the biggest advantages of the MAB problem representation and its variants comes from a powerful

class of policies that have been developed for solving them. These policies are based on a priority index that is

defined for each job as a function of its state. At each time point, the set of jobs with the greatest priority index

values is chosen for processing (Niño-Mora, 2007).14

Interestingly, the earliest result on the optimality of priority index rules arose in the context of a deterministic

problem (Niño-Mora, 2007). Specifically, Smith (1956) showed that an index rule is optimal for the problem of

minimizing the sum of completion times of a set of jobs with known processing times and linear holding costs

(weights). In this setting, the index of a job can be defined as the ratio of the holding cost rate per unit of time to its

processing time, which represents the cost reduction per unit of effort, or the average productivity of work on the

job (Niño-Mora, 2007). Subsequently, Rothkopf (1966) extended Smith’s result to the problem with stochastic job

durations. Cox and Smith (1961) showed the optimality of an equivalent index rule in the context of a multi-class

single-server queue with linear holding costs. The seminal work by Klimov (1975) develops an optimal index rule

for a more complex version of this problem, one with Bernoulli feedback between job classes (Niño-Mora, 2007).

Both the MAB problem and the arm-acquiring bandit problem are solvable by a Gittins index policy (Gittins,

1979; Bertsimas and Niño-Mora, 1996; Mahajan and Teneketzis, 2007), which is a generalization of the well-

known cµ-rule (also discussed in the context of priority queues above, and in the context of fluid models and the

achievable region method in Section 4.3). According to such a policy, at each time point t, one should process the

job with the highest value of the Gittins index, which represents the maximum expected discounted reward per

14These policies are of the same nature as those discussed in the priority queues section above, and they can be similarly classified into static

and dynamic policies.
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unit of expected discounted time due to the processing of a job (Mahajan and Teneketzis, 2007). Heuristics based

on the Gittins index have also been developed for more complex problems, such as research planning (Glazebrook

and Owen, 1995). For the restless bandit problem, Whittle (1988) provides an index policy based on the solution of

its relaxation, while Weber and Weiss (1990) show that this policy is asymptotically optimal. The paper by Niño-

Mora (2007) provides a unifying approach for developing and computing index-based priority policies, illustrating

a number of application areas, including scheduling in multi-class queues and dynamic priority allocation to

multiple stochastic jobs. We note that MDP methods (Section 4.1) and achievable region methods (Section 4.3)

have both been used to examine bandit problems (Puterman, 1994; Bertsimas, 1995).

The simplicity of index policies, together with their theoretical optimality in some settings, implies that it

may be useful to model part or all of a dynamic scheduling problem as a bandit problem. For instance, a multi-

armed or an arm-acquiring bandit problem could be used as a relaxation of a non-preemptive scheduling problem

that is solved at each scheduling point in a predictive-reactive method. Alternatively, the Gittins indices of the

jobs could be used to create effective scheduling heuristics or to guide a predictive-reactive approach to better

decisions, since these indices can be incorporated into the constraints or the objective function of the models used

to construct predictive schedules.

4.3 Methods Based on Alternative Representations

In the previous section, we reviewed methods that deal with the complexity of scheduling in queueing systems by

restricting the type of policies considered. In this section, we discuss a methodology that is based on developing

alternative, simpler representations of the system of interest via approximations or abstractions. This methodology

consists of four steps:

1. formulation of the alternative representation for the problem of interest;

2. solution of the formulation;

3. derivation of an implementable scheduling policy for the original scheduling problem from the solution to

the alternative representation formulation;

4. performance analysis of the solution.

We discuss several options for steps 1 and 2 in the following section. General approaches for step 3 are discussed

in Section 4.3.2. Step 4 is outside the scope of this paper, and the reader is encouraged to consult the papers
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referenced throughout this section.

4.3.1 Alternative Representations

The alternative representations we present here are based on two main approaches. The first is system approxima-

tion via aggregation of time and state space, and the two specific approximations we consider are Brownian models

and fluid models. The second approach, called the achievable region method, uses aggregation of a different type:

since multiple policies may result in the same performance, it maps the problem of finding the optimal control to

the lower-dimensional problem of finding the optimal performance vector.

4.3.1.1 Approximations While the idea of approximating the problem of interest by a simpler one has also

been used in scheduling, the characteristics that are relaxed to develop the approximation are typically different

than those used in queueing. In scheduling, approximation techniques are based on relaxing precedence or no-

preemption constraints; in queueing, approximations are based on scaling time and space in order to view high

level patterns in the system’s behaviour.

Chen and Mandelbaum (1991) present the approximations used in queueing theory using a three-level ag-

gregation framework that is akin to the well-known abstraction framework for scheduling in supply chains (see,

e.g., the book by Pinedo (2009) or the paper by Kreipl and Pinedo (2004)). The lowest, microscopic level of

their framework corresponds to the original discrete stochastic network of interest; this level requires a detailed

representation of the jobs present in the system. At the highest, macroscopic level, the system is approximated

by a deterministic fluid model that captures the system’s long-run average behaviour and requires minimal data.

The intermediate, mesoscopic level represents the deviations between the original network and its fluid model,

modelled by stochastic diffusion approximations (Chen and Mandelbaum, 1991). These three levels correspond

to the operational, tactical and strategic levels of scheduling in a supply chain. Although this traditional supply

chain framework is not based on a formal scaling procedure, it also utilizes the ideas of scaling time and state

space, since moving from operational-level models to strategic-level ones requires decreasing the clock speed and

product differentiation (Kreipl and Pinedo, 2004).

The mesoscopic diffusion models we discuss here are Brownian models, which arise, due to a Functional

Central Limit Theorem, as a limit of a sequence of systems in which utilization is increased to 1 while the number

of machines is fixed and the probability of waiting increases to 1 (Chen and Mandelbaum, 1991; Halfin and Whitt,

1981). For alternative heavy traffic scaling approaches, such as when the arrival rate and the number of machines
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are increased to infinity while utilization is fixed, or when utilization increases to 1 but the probability of waiting

is fixed to a value below 1, we refer the reader to the paper by Halfin and Whitt (1981) and the references therein.

The macroscopic fluid models we review are a result of a rescaling procedure based on a Functional Law of Large

Numbers (Chen and Mandelbaum, 1991). For a review of fluid and diffusion approximations, we refer the reader

to the papers by Chen and Mandelbaum (1994a; 1994b).

Brownian control problems in higher than two dimensions are, in general, hard to solve. This is due to the fact

that determining the stationary distribution of higher dimension reflected Brownian motion is difficult, except in

cases where there is state-space collapse (Williams, 1998) or the stationary distribution has product form (Dieker,

2010). Thus, although Brownian models capture variability better than fluid models, and the fluid model can be

thought of as a coarser approximation method, fluid models are usually easier to work with. In some cases, it is

necessary to establish some specific characteristic of the system via the fluid model before a Brownian model can

be built (Kang et al., 2004). Interestingly, authors such as Maglaras (2003) have an alternative view on the use

of these two approximations, using the Brownian model for a description of an asymptotically optimal policy at

the macroscopic level, and the fluid model as a translation mechanism to derive an implementable policy. Veatch

(2003) provides a comparison of diffusion and fluid models in two queueing networks.

Brownian Models In heavy-traffic conditions, when the utilization of a system approaches its capacity, costs

are amplified and optimal control is even more important than in under-utilized systems (Stidham, 2002). It has

been shown that the queue length or the workload process of a queueing network with balanced heavy loading15

can be approximated by a diffusion process called a reflecting Brownian motion (Williams, 1996). The resulting

Brownian models have the advantages of requiring a minimal amount of data and of being based on a compact

mathematical representation (Harrison, 2003). Moreover, they can be used for networks with multiple classes of

jobs, both feedforward and feedbackward routings and machines subject to various types of disruptions (Chen and

Yao, 2001).

Specifically, Brownian models are constructed by compressing time by a factor of n and compressing the

spatial dimensions by a factor of
√
n (Harrison, 1996). More formally, Brownian approximations arise as a limit

of a sequence of systems indexed by n as n → ∞ (Kelly and Laws, 1993). When looking at the system on

this scale, it is impossible to pay attention to detailed scheduling decisions, but trends in the behaviour of the

15For a general open network, this term refers to the situation when the load imposed on each station by some exogenous input process is

approximately equal to the capacity of that station. In a closed queueing network, the term implies that the total population within the network

is large and the relative intensities for the different stations are approximately the same (Harrison, 1988).

34



system become apparent. Therefore, solving the Brownian scheduling problem amounts to determining high level

properties such as conditions for idling the machine(s). These properties can then be translated into implementable

scheduling policies. This approach is best illustrated using the two-station example presented at the beginning of

Section 4 and the paper of Harrison and Wein (1989).

Recall that qk(t) is the total number of class k jobs present at time t. Let im(t) be the total amount of time that

machine m is idle in [0, t]. The scaled versions of these quantities, denoted by a tilde, are:

q̃k(t) =
qk(nt)√

n
, t ≥ 0, and k = 0, 1, 2, (5)

ĩm(t) =
im(nt)√

n
, t ≥ 0, and m = 1, 2. (6)

In order to define the Brownian model in terms of workload present in the system, letMmk be the expected amount

of time that should be given by machine m to a class k job before it leaves the system (Harrison and Wein, 1989);

denote the workload profile matrix made up of the Mmk values by M. Let W̃m = {W̃m(t), t ≥ 0} be the scaled

workload process where W̃m(t) =
∑2

k=0Mmkq̃k(t), t ≥ 0 and m = 1, 2. W̃m(t) is therefore the total expected

amount of scaled work left for machinem at time t anywhere in the system. It has been shown by Harrison (1988)

that the sequencing problem at machine 1 is well-approximated by the Brownian control problem of choosing

processes {q̃k(t), t ≥ 0, k = 0, 1, 2} and {ĩm(t), t ≥ 0,m = 1, 2} which are right continuous with left limits and

are a solution to the following workload formulation:

minimize lim
T →∞

sup
1

T E[

∫ T

0

2
∑

k=0

q̃k(t)dt] (7)

subject to
1

2
q̃0(t) +

1

2
q̃1(t) = B1(t) + ĩ1(t), ∀t ≥ 0, (8)

q̃1(t) + q̃2(t) = B2(t) + ĩ2(t), ∀t ≥ 0, (9)

{ĩm(t), t ≥ 0,m = 1, 2} is non-decreasing with ĩm(0) = 0,m = 1, 2, (10)

q̃k(t) ≥ 0, ∀t ≥ 0, k = 0, 1, 2, (11)

{q̃k(t), t ≥ 0, k = 0, 1, 2} is non-anticipating with respect to X, (12)

{ĩm(t), t ≥ 0,m = 1, 2} is non-anticipating with respect to X. (13)

In this formulation, X is a three-dimensional Brownian motion16 with drift vector θ and covariance matrix Γ,

and B(t) = MX(t), so that B = (B1,B2) is a two-dimensional Brownian motion with drift Mθ and covariance

16See Chapter 10 of the book by Ross (2003) for an introduction to Brownian motion.
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matrix MΓMT . In fact, there exists a solution that, with probability 1, simultaneously minimizes
∑2

k=0 q̃k(t) for

all t.

To obtain this solution, assume that the processes on the right-hand side of Equations (8) and (9) are known

processes b1 = {b1(t), t ≥ 0} and b2 = {b2(t), t ≥ 0}, respectively, where bm(t) = Bm(t) + ĩm(t), m = 1, 2,

the process {ĩm(t), t ≥ 0,m = 1, 2} satisfies Equations (10) and (13), and b1 and b2 are nonnegative (Harrison

and Wein, 1989). Given these processes, it can be observed that the following linear program is embedded in the

above workload formulation at time t:

minimize q̃0(t) + q̃1(t) + q̃2(t) (14)

subject to
1

2
q̃0(t) +

1

2
q̃1(t) = b1(t), (15)

q̃2(t) + q̃2(t) = b2(t), (16)

q̃k(t) ≥ 0, k = 0, 1, 2. (17)

This linear program can have different non-negative right-hand side values at each time t. The corresponding

dual variables represent the increase in the value of objective function (14) per unit increase in the value of bm(t).

Since b1(t) and b2(t) are non-negative, the solution to the dual will also be non-negative. Consequently, solving

the problem stated in Equations (7)–(13) amounts to finding ĩ1 and ĩ2 that minimize b1 and b2, respectively, and

then, for every time point, solving the linear program (14)–(17). Defining b∗m as this minimum value for machine

m, i.e., b∗m(t) = Bm(t)− inf0≤s≤t Bm(s), the solution to the linear program is:

Ĩ∗m(t) = − inf
0≤s≤t

Bm(s) for m = 1, 2, (18)

q̃∗0(t) = [2b∗1(t)− b∗2(t)]
+, (19)

q̃∗1(t) = [2b∗1(t) ∧ b∗2(t)], (20)

q̃∗2(t) = [b∗2(t)− 2b∗1(t)]
+, (21)

and
∑2

k=0 q̃
∗
k(t) = [2b∗1(t) ∨ b∗2(t)], t ≥ 0, where [a]+ denotes max{0, a}, [a ∧ b] denotes min{a, b} and [a ∨ b]

denotes max{a, b}.

Based on the definition of W̃m(t) and Equations (8), (9) and (18), this solution can be interpreted as follows:

ĩ∗m(t) increases only at times t when W̃∗
m(t) = 0 for m = 1, 2. Therefore, in this solution, machine 2 incurs

scaled idleness only when there are no scaled jobs of type B anywhere in the network (Harrison and Wein, 1989).

The interpretation of the above solution suggests that the policy for the original network should attempt to avoid
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machine 2 idleness when there are type B jobs in the system. Finding a policy that implements this notion in a

way that is optimal for the original system is non-trivial. For example, one intuitive implementation is a policy that

always gives priority to type B jobs at station 1. This policy, however, will tend to keep a greater total number of

jobs in the system than necessary since it will delay the processing of typeA jobs, which would have otherwise left

the system faster. Thus, a better approach is a policy that gives priority to type A if the number of jobs at station 2

is greater than some value ψ and gives priority to typeB otherwise. This policy balances the short-run objective of

reducing the number of jobs in the system (due to giving priority to type A jobs some of the time) and the longer-

run objective of avoiding idleness at station 2. The best value of the parameter ψ and the asymptotic behaviour

of the proposed policy (Step 4 of the above framework) are discussed by Harrison and Wein (1989). The papers

by Martins et al. (1996) and Kushner and Martins (1996) provide rigorous proofs of the connection between the

problem of scheduling in this network and the diffusion process that is its heavy traffic limit. Additional work on

scheduling in the criss-cross network based on Brownian models includes the papers by Kumar and Muthuraman

(2004) and Budhiraja and Ghosh (2005).

Brownian approximation models have been applied to scheduling problems in a variety of queueing settings,

including closed networks (Chevalier and Wein, 1993), networks with abandonments (Kim and Ward, 2013),

networks with both controllable arrivals and queue disciplines (Wein, 1990) and networks representing a hospital

emergency department (Huang, 2013). Wein (1994) uses Brownian approximations to address the bi-criteria

problem of minimizing the long-run expected average of a linear combination of job sojourn time and sojourn

time inequity between different job classes. For a comprehensive overview of Brownian models, the reader is

referred to the book by Harrison (2013).

Fluid Models Another way to approximate the problem of scheduling in a multi-class queueing system is

to relax the assumption that the system processes discrete jobs. If we consider the behaviour of the system over a

long time horizon, this makes intuitive sense – viewing the evolution of the system at a high level would give one

the impression of continuous fluids moving through the system, rather than discrete entities. Thus, a multiclass

fluid network is different from the network it approximates because it processes continuous fluid flows rather than

discrete jobs. Scheduling of this network corresponds to allocation of the available processing capacity of each

station to the various fluid classes (Chen and Yao, 1993). The fluid solution can then be translated into scheduling

decisions for the original system in both static and dynamic conditions.

Fluid model work on classical, deterministic scheduling problems is based on the fundamental result that the
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optimal fluid makespan provides a lower bound on the optimal makespan in a high-multiplicity17 job shop. The

optimal fluid makespan is equal to the workload on the bottleneck machine (known as the machine lower bound in

the scheduling literature) (Bertsimas and Gamarnik, 1999).18 These results are used by Bertsimas and Gamarnik

(1999), Boudoukh et al. (2001) and Bertsimas and Sethuraman (2002) to develop heuristic algorithms that produce

asymptotically optimal schedules as the number of jobs of each class (the multiplicity) grows. Bertsimas et al.

(2003) apply the same ideas to the harder problem of minimizing inventory holding costs in a job shop. Dai and

Weiss (2002) address minimization of makespan in a more general setting: the processing times of jobs in a class

are different but follow the same distribution. Nazarathy and Weiss (2009, 2010) study high-volume job shops,

where the number of jobs is large in comparison to the number of machines and the maximum number of activities

per job, with weighted flow time and makespan objectives, respectively.

The paper of Nazarathy and Weiss (2010), in addition, shows how a typical job shop scheduling problem can be

represented as a multi-class queueing network problem and provides a step toward the same goal of integration of

queueing and scheduling as this paper. Specifically, consider the job shop scheduling problem with a set N of jobs

and a set M of machines. Each job j consists of a set of activities. Activity i of job j is processed19 on machine

σ(i, j) and has duration si,j . In a high-volume job shop, |N | is large, but |M| is fixed and the number of activities

per job is bounded. This problem can be modelled as a multi-class queueing network as follows. The activities

are classified into a set K of classes, and to be consistent with queueing terminology, we further refer to these as

jobs of class k.20 A job of class k is processed by machine σ(k), and the set of classes processed by machinem is

denoted Km. Looking at the processing times of all jobs in class k leads to a processing time distributionGk with

rate µk. By considering the next routing step possible after the completion of any class k job, define πk,l as the

fraction of class k jobs that, upon completion, turn into class l jobs, and 1−∑

l πk,l as the fraction of class k jobs

that, upon completion, leave the system. In summary, the corresponding multi-class queueing network consists of

|M| machines and |K| classes, with jobs of class k processed according to distribution Gk and routed according

to the probability matrix Π defined by the πk,l values, further referred to as the routing matrix. The initial number

of jobs in each class is qk(0), k = 0, 1, . . . , |K| − 1, with |N | = ∑|K|−1
k=0 qk(0). There are no exogenous arrivals;

hence, this system is called a finite-horizon multi-class queueing network (Nazarathy and Weiss, 2010).

17The term high-multiplicity refers to the fact that more than one job is present in each class.
18In the scheduling literature, it is known that the maximum, over all machines, of the total processing time required by the jobs provides a

lower bound for the makespan of the problem.
19A job is allowed to visit the same machine more than once along its route.
20Recall that an instance of a class k job is equivalent to an activity in the scheduling literature.
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The dynamics of the fluid model corresponding to this queueing network are based on the following equation:

q̄k(t) = q̄k(0)− µk

∫ t

0

ūk(y)dy +
∑

l

πl,kµl

∫ t

0

ūl(y)dy, (22)

where q̄k(t) is the amount of fluid present in class k at time t and ūk(y) is the instantaneous allocation of the

processing capacity of machine σ(k) to class k. Fluid quantities are denoted by a bar, e.g., q̄k(t), for the rest of

the paper. Equation (22) states that the total amount of fluid in class k at time t is equal to the initial amount of

fluid minus the amount that has been processed up to time t, plus the amount that has arrived from other classes

by time t. Let q̄
(+)
k (t) be the total amount of class k fluid that still needs to flow through class k (including fluid

currently in other classes that will turn into class k eventually). Assuming that Tm denotes the total workload for

machine m, let T ∗ = max{T1, . . . , T|M|} be the machine lower bound for the job shop. The solution to the fluid

makespan minimization problem is shown by Nazarathy and Weiss (2010) to be:

ūk(t) =
q̄
(+)
k (0)

µkT ∗
, (23)

q̄k(t) = q̄k(0)(1−
t

T ∗
), (24)

q̄
(+)
k (t) = q̄

(+)
k (0)(1− t

T ∗
). (25)

Let qk(t) be the number of class k jobs that are present in the queue of machine σ(k) at time t, and q
(+)
k (t) be the

total number of class k jobs that still need to be completed at time t (including jobs of class k that have not yet

arrived at σ(k)). The jobs can then be scheduled via an online fluid tracking policy:

for each time t and each machine m that is free

define Km(t) = {k ∈ Km : qk(t) > 0},

if Km(t) = ∅

idle machine m

else

process an available job of class k∗ which achieves the maximum, over the set {l ∈ Km(t)}, of
q
+

l
(t)

q
+

0
(t)

.

Ties for k∗ and the choice of job within k∗ can be decided using arbitrary rules. We refer the reader to the paper by

Nazarathy and Weiss (2010) for additional details as well as an overview of other job-shop scheduling rules based

on the solution of the fluid model. We also refer the reader to the thesis by Raviv (2003) which demonstrates that

fluid models can be used as approximations of large instances of other hard combinatorial problems.
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The fluid policy described above can be applied in a dynamic setting if the fluid model on which it is based is

adjusted to include exogenous arrival information. In this case, Equation (22) becomes

q̄k(t) = q̄k(0) + λk(t)− µk ˆ̄uk(t) +
∑

l

πl,kµl ˆ̄ul(t), (26)

where ˆ̄uk(t) =
∫ t

0 ūk(y)dy is the cumulative amount of time that station σ(k) devotes to class k in [0, t] (Chen

and Yao, 1993).

Suppose we would like to minimize holding costs in a network with |K| classes and |M| machines, |M| ≤ |K|,

arrival rate vector λ = (λ0, . . . , λ|K|−1)
T and processing rate vector µ = (µ0, . . . , µ|K|−1)

T . Assume the sys-

tem’s routing matrix is Π and the constituency matrix is C. Recall that the constituency matrix specifies which

classes are processed by which machines, i.e., each entry (m, k) is 1 if class k can be processed by machinem and

0 otherwise. Define A = (I−Π′)diag(µ), where diag(µ) is a diagonal matrix of processing rates. A is referred to

as an input-output matrix in stochastic processing network terminology, since each of its entries represents the av-

erage rate at which a particular machine depletes a particular class (Teh, 2000) (see below for an example). Let 1 be

a vector of 1s of the appropriate dimension, q̄(t) = (q̄0(t), . . . , q̄|K|−1(t))
T and ˆ̄u(t) = (ˆ̄u0(t), . . . , ˆ̄u|K|−1(t))

T .

Recall that in the description of Brownian models, im(t) was used to denote the total idleness in [0, t]; we assume

the same meaning here and, using the appropriate fluid scaling, define ī(t) = (̄i1(t), . . . , ī|M|(t)). Let ck be the

per time unit holding cost for jobs of class k, and c = (c0, . . . , c|K|−1). The fluid model for the problem of

minimizing the total holding cost is:

minimize

∫ ∞

0

cq̄(t)dt (27)

subject to q̄(t) = q̄(0) + λt−Aˆ̄u(t) ∀ t, (28)

q̄(t) ≥ 0, ∀ t, (29)

ˆ̄u(t) is non-decreasing with ˆ̄u(0) = 0, ∀ t, (30)

ī(t) = 1t−Cˆ̄u(t) is non-decreasing, ∀ t. (31)

For the example problem of Figure 1, q̄(t) = (q̄0(t), q̄1(t), q̄2(t))
T , λ = (λ0, λ1, 0)

T , c = (c0, c1, c2)
T ,

Π =





0 0 0
0 0 1
0 0 0



 ,

A =





µ0 0 0
0 µ1 0
0 −µ1 µ2



 ,
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and

C =

(

1 1 0
0 0 1

)

.

One approach for obtaining a solution to the above fluid control problem is based on the idea that for some

(possibly small) period of time, say [0, t1], the allocation of capacity remains a constant proportion, i.e., ˆ̄u(t) = ut

with a fixed u for all t ∈ [0, t1] (Chen and Yao, 1993). Each component of the column vector u, uk, k =

0, . . . , |K| − 1, represents the proportion of capacity that station σ(k) should devote to processing class k fluids

(Atkins and Chen, 1995) and forms the solution to the following linear program (Atkins and Chen, 1995; Chen

and Yao, 1993):

maximize (cA)u (32)

subject to (Au− λ)k ≤ 0, k ∈ S, (33)

Cu ≤ 1, (34)

u ≥ 0. (35)

The set S is a subset of {0, . . . , |K| − 1} corresponding to classes with 0 fluid level. Constraint (33) ensures

that the fluid level for classes in the set S does not go below 0, while constraint (34) states that any chosen

allocation u has to satisfy the unary capacity of each machine. The linear program is re-solved at different

decision epochs and, when the fluid level in a particular class becomes 0, that class is added to the set S. Atkins

and Chen (1995) create state-dependent priority rules based on the solution of the linear program and compare

their performance to traditional policies such as FCFS and SPT in four environments. They conclude that the

performance of fluid policies is at least comparable to classical scheduling heuristics regardless of the distributions

of processing or inter-arrival times and the traffic intensities. They state that more research is necessary to highlight

the advantages of fluid policies, which may become more apparent in non-stationary situations or when there are

machine breakdowns.

In some cases, it is possible to solve the linear program (32)–(35) for all possible states of the system a priori

and use the resulting information to develop an online scheduling policy. For example, consider a single station

serving four classes, with c0 being the largest of the holding costs. Solving the linear program for any state when

there is fluid present in class 0 results in an optimal solution u∗0 > 0, u∗1 = u∗2 = u∗3 = 0. This solution can be

translated into a policy in a straightforward manner: process class 0 jobs while there are such jobs in the system

(i.e., give priority to class 0) (Atkins and Chen, 1995). In fact, examining the remaining states of the system and
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solving the corresponding linear programs leads to the (known to be optimal) cµ rule. Other ways of using the

fluid model to determine a scheduling policy are discussed in Section 4.3.2.

In many cases, it can be shown that the fluid model is not just an approximation of the system of interest, but

rather a formal limit of a sequence of scaled systems as the initial number of jobs in the system goes to infinity.

Formal fluid models are of particular importance in stability analysis of queueing systems (Dai, 1995; Dai and

Meyn, 1995). Stability analysis consists of identifying conditions under which the number of jobs in the system

is guaranteed to remain bounded over time.21 In the queueing literature, understanding of the stability of a system

is considered to be a precursor to more detailed performance questions (Kumar and Meyn, 1995). Moreover, it

has been shown that a system may be stable under one scheduling discipline, but not another (Kumar and Meyn,

1995; Bramson, 1994). In spite of its importance as a measure of long-run performance, stability of periodic

scheduling approaches has only recently been introduced into the dynamic scheduling literature (Terekhov et al.,

2012b). In particular, Terekhov et al. (2012b) and Terekhov (2013) show the stability of a method based on

periodic makespan optimization in two flow shop systems, while Tran et al. (2013) and Terekhov et al. (2014)

show stability of periodic scheduling methods in dynamic parallel machine settings.

While several fluid-model heuristics have been developed in the literature, their performance has not been

empirically compared to predictive-reactive scheduling methods. For the parallel machine scheduling problem,

Tran (2011) and Tran et al. (2013) compare a round-robin policy, which is derived from the solution of a fluid-

model linear program, with a scheduling approach based on periodic makespan minimization. Studies of this type

for other scheduling problems are necessary in order to understand the strengths and weaknesses of queueing and

scheduling approaches, and to create effective hybrids, as is discussed by Terekhov (2013).

4.3.1.2 The Achievable Region Method The achievable region method is a mathematical programming ap-

proach for solving stochastic control optimization problems (Federgruen and Groenevelt, 1988; Bertsimas and

Niño-Mora, 1996; Stidham, 2002). Similar to the approximations discussed above, the achievable region method

aims to create a simpler representation of the scheduling problem of interest; instead of scaling time and the state

space, it maps the problem to a lower-dimensional space of performance measures. In traditional mathematical

programming formulations of scheduling problems, the goal is typically to determine the start times of the jobs or

their positions in the processing sequence on a machine, with constraints being expressed in terms of these vari-

21In contrast, in the predictive-reactive literature, a predictive schedule is called stable if it does not change much as uncertainty is realized

(Bidot et al., 2009). Similarly, in scheduling under uncertainty, stability analysis concerns the identification of the range of values that the

processing times may take while the given schedule remains optimal (Sotskov et al., 2010).
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ables. In the achievable region method, on the contrary, the decision variables are the performance measures for

each class, and constraints are written in terms of these measures. Therefore, while the traditional methodology in

scheduling is to find the schedule that optimizes the performance of the system, the achievable region approach is

based on finding the optimal performance measure first, and then determining the corresponding scheduling pol-

icy. The idea of posting constraints on the performance that is achievable by a policy is similar to that of adding

bounds on the quality of the schedule used in the scheduling literature.

More formally, consider as before a queueing system with |K| classes. Let u be a control rule that determines

how each machine’s time is allocated among the arriving job requests. Denote the set of all admissible control

rules by U . Although the precise definition of admissibility depends on the specific problem being addressed

(Stidham, 2002), it is generally required that all control policies in U are non-anticipative (so that a decision can

be based only on the current state of the problem and its history) and non-idling (so that a machine is not allowed

to be idle if there are jobs waiting to be processed on this machine) (Dacre et al., 1999).

Define a |K|-dimensional system performance vector υu = (υu0 , υ
u
1 , . . . , υ

u
|K|−1) associated with every control

policy u, where each υuk is the expected value of the performance measure for class k (Dacre et al., 1999). For

example, if the goal of the problem is to minimize a weighted combination of the expected waiting times for each

class, then the performance vector will consist of |K| expected waiting times, one for each class (Federgruen and

Groenevelt, 1988). The set of all admissible performance vectors, Υ = {υu, u ∈ U}, is called the performance

space or the achievable region of the problem. Frequently, the achievable region can be (at least partially) charac-

terized by constraints derived from conservation laws, which state that the amount of work in the system due to a

job class k under any policy is at least as much as the amount of class k work under the policy that gives this class

priority over all other classes processed by a particular machine.

Suppose that the cost of running the system under the control u is denoted c(υu). The scheduling problem of

interest is therefore to find a rule, uOPT , that would state how job classes should be assigned to machines in order

to optimize the cost of running the system. More formally, this problem is stated by Dacre et al. (1999) as

ZOPT = inf
u∈U

{c(υu)}. (36)

Alternatively, given Υ, uOPT can be determined by solving the problem

ZOPT = inf
υ∈Υ

{c(υ)}. (37)

In other words, instead of finding the control rule that achieves the smallest cost by solving problem (36), we can
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first find the best possible performance vector by solving (37) and then determine the optimal control associated

with this performance vector. Thus, the achievable region approach is composed of three steps (Dacre et al.,

1999):

1. Identification of the performance space Υ,

2. Solution of the mathematical programming problem (37),

3. Derivation of the optimal control rule u from the solution of problem (37).

To illustrate this approach, we consider a simplification of our example problem (Figure 1) which occurs if

we ignore station 2. Specifically, suppose we want to find a non-anticipative and non-idling scheduling policy u

for minimizing the long-run holding costs in a two-class M/M/1 system. Jobs of class k arrive to the system

according to a Poisson process with rate λk and are processed according to an exponential distribution with rate

µk. For stability, the rate at which work arrives to the system, ρ0 + ρ1 = λ0/µ0+λ1/µ1, is assumed to be strictly

less than 1. The problem can be stated as

ZOPT = inf
u∈U

{c0Eu(q0) + c1Eu(q1)}, (38)

where Eu(qk) is the expected steady-state number of class k jobs present in the system operating under policy u,

and ck is the holding cost per job of class k.

In steady state, the amount of work present in this system is not dependent on the control policy u. Thus, the

following constraints may be derived for u ∈ U :

Eu(q0)

µ0
+
Eu(q1)

µ1
=

ρ0µ
−1
0 + ρ1µ

−1
1

1− ρ0 − ρ1
, (39)

Eu(q0)

µ0
≥ ρ0µ

−1
0

1− ρ0
, (40)

Eu(q1)

µ1
≥ ρ1µ

−1
1

1− ρ1
. (41)

The first equation is an expression for the expected amount of work in the system in steady state. The second and

third equations follow from the observation that the steady state amount of class 0 work is minimized by giving

priority to class 0 over class 1, and vice versa. Defining υuk = Eu(qk)/µk, the problem can be written as

ZOPT = inf
υ∈Υ

{c0µ0υ0 + c1µ1υ1}, (42)
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where

Υ = {(υ0, υ1); υ0 ≥ ρ0µ
−1
0

1− ρ0
, υ1 ≥ ρ1µ

−1
1

1− ρ1
, υ0 + υ1 =

ρ0µ
−1
0 + ρ1µ

−1
1

1− ρ0 − ρ1
}. (43)

The minimum of this problem is attained at the point where class 0 has absolute priority over class 1 if

c0µ0 ≥ c1µ1 and at the point where class 1 has priority over class 0 if c0µ0 < c1µ1. Since it can be easily shown

that the performance space Υ = {(υu0 , υu1 ), u ∈ U} is equal to the line segment given by Υ, it follows that the

solution to the original control problem is the well-known cµ-rule: in this case, process the job class with the

largest ckµk value first (Dacre et al., 1999). The reader is referred to Section 3 of the paper by Bertsimas et al.

(1994) for an achievable region analysis of our example problem with two stations.

The idea of characterizing the region of achievable performance and writing the problem in terms of constraints

on performance vectors does not appear to have been used in scheduling, and should be explored in the future.

Alternatively, the constraints developed for the achievable region approach in queueing theory may be profitably

integrated into dynamic scheduling models.

4.3.2 Translation Techniques

In order for the approximation/abstraction methods to be useful in practice, their solutions need to be translated

into implementable policies. One approach, demonstrated above, is to derive policies that mimic the intuition

provided by the solutions to Brownian, fluid, or achievable region models. However, there are two main issues

with this approach: it is problem-specific, and there are multiple ways of implementing the same intuition, some

of which may in reality perform better than the others (see the paper by Maglaras (2000) for a discussion). Such

issues have motivated the study of general translation mechanisms and their performance guarantees. To date, the

study of such mechanisms has mostly been linked to Brownian and fluid models, and the application of similar

principles to derive translation techniques from the achievable region method requires additional investigation.

A general approach for translation, presented in the paper by Chen and Meyn (1999), is to initialize the MDP

value iteration algorithm (see Section 4.1) from the solution of the fluid model. Another approach is to define an

affine shift policy based on the fluid policy (Meyn, 1997). In particular, suppose that the policy obtained from the

fluid model is “process queue j at machine m if j = argmax
k:s(k)=m

{φT
k q}”, where argmax defines the argument of

the maximum, q is the vector of current queue lengths and φk is a vector of ratio-thresholds in R
|K|
+ which are

obtained from the fluid model. To implement the policy in the original network, Meyn (1997) proposes to use the

policy “process queue j at machine σ if j = argmax
k:s(k)=m

{φT
k (q− q0)}”, where q0 defines an affine shift of the linear
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switching curve of the fluid policy, and is used to prevent starvation of resources; q0 can be set, for example, to

the expected value of q.

The rest of the general translation mechanisms can be classified as either discrete-review or continuous-review.

In discrete-review methods, the time between two review points is typically large, while in continuous-review ones,

it is made as small as possible. Discrete-review methods have the advantage of requiring fewer optimizations,

while continuous-review methods should perform better because they take the most up-to-date information into

account (Teh, 2000). Both types of methods are similar in nature to periodic scheduling approaches from the

scheduling literature: they periodically observe the status of the system and solve a resource allocation problem

that prescribes how much time should be devoted to each job class until the next review point. Unlike periodic

methods from the scheduling literature, these approaches concern the allocation of capacity among job classes

rather than individual jobs. Another difference from scheduling methods is that the resource allocation problem

solved at each review point is usually modelled as a linear program (LP). Related ideas, referred to as sequential

open-loop strategies (Nash and Weber, 1982) and model-predictive control, have been successfully used within the

electrical engineering control literature (van Leeuwaarden et al., 2010; Skaf and Boyd, 2010). We do not discuss

the connections between queueing theory and that literature in this paper. References on early work on translation

approaches can be found in the paper by Meyn (2001).

It is important to note that when a queue is empty at the approximation level, its counterpart in the underlying

queueing network is not necessarily empty. This issue motivates the extensive use of the notion of safety stocks

within both discrete-review and continuous-review paradigms. Safety stocks state the amount of material that

should be present in the queues in order to avoid starvation of resources and thus help maintain stability (Meyn,

2008). Since, as discussed in Section 4.3.1.1, stability has not received much attention in the scheduling literature,

neither has the use of safety stocks. Interestingly though, in the scheduling literature, Branke and Mattfeld (2005)

demonstrate that avoiding early idleness is important for achieving good long-run performance.

4.3.2.1 Discrete Review We discuss several discrete-review approaches: BIGSTEP, reward-based policies and

trajectory-tracking policies. According to Meyn (2008, p.129), discrete-review methods are “the most natural

technique to translate a policy based on the fluid model or some other idealized model for application in a physical

network”.
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BIGSTEP The first discrete-review approach developed in the queueing literature is called BIGSTEP. It

was proposed by Harrison (1996) as a translation mechanism from solutions of Brownian approximation models,

discussed in Section 4.3.1.1, to tactical allocations of machine time. The BIGSTEP approach is defined by two

parameters: l, the length of time between two review time points, and ζ = (ζ0, . . . , ζ|K|−1)
T , the threshold

(planned safety stock) parameter vector (Teh, 2000). At every review time point τ = 0, l, 2l, . . . , the current

queue lengths q(τ) = (q0(τ), . . . , q|K|−1(τ))
T are observed, and an LP is formulated. This LP is called the

BIGSTEP planning problem. Its solution specifies the amount of time that should be spent on processing each job

class in the period [τ, τ + l], subject to the constraint that the number of jobs in each queue k cannot fall below ζk.

If the corresponding Brownian approximation model allows for a pathwise solution,22 then the BIGSTEP

planning problem at time τ is:

minimize cq(τ + l) (44)

subject to q(τ + l) = q(τ) + λl −Au, (45)

i(τ + l) = l1−Cu, (46)

q(τ + l) ≥ ζ, (47)

i(τ + l) ≥ 0, u ≥ 0, (48)

where u = (u0, . . . , u|K|−1)
T with uk specifying the amount of time that should be spent on class k within the

time period [τ, τ + l], i(l) = (i1(l), . . . , i|M|(l))
T with im(l) being the cumulative amount of idleness from time

τ to τ + l for machine m, 1 is a column vector of all 1s, 0 is a column vector of all 0s, and the rest of the

notation is defined as before. Since this model requires first-moment data only, and since most dynamic control

problems allow for a pathwise solution, the BIGSTEP approach can be applied to a wide range of problems. If

the Brownian approximation model does not have a pathwise solution, then a second term, representing the future

expected cost of machine idleness, is added to the objective in Equation (44). This additional term is κi(l), where

κ is the penalty rate vector obtained by solving the appropriate Brownian control problem (Teh, 2000). The reader

should note the similarity between the BIGSTEP planning problem and the fluid model in Equations (27)–(31)

when τ = 0 and ζ = 0. For an example of the application of the BIGSTEP approach to a parallel machine system,

we refer the reader to the paper by Harrison (1998).

22A pathwise solution is a dynamic scheduling policy that, in the heavy traffic limit, minimizes the instantaneous cost rate at every time

point with probability one (Teh, 2000).
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The idea behind the BIGSTEP approach is to ensure that the number of jobs present in each of the buffers

is large enough relative to the length of the planning horizon so that the actual sequence in which the jobs are

processed within the next l time units is not important from a tactical viewpoint (Harrison, 1996). In order to

implement these tactical allocations at the operational level, one can choose an arbitrary sequence in which to

consider classes, and process each class for the amount of time specified by the LP solution; a simple policy such

as FCFS can be used to sequence jobs within each class (Harrison, 1996). The assumption that the details of

the sequencing of individual jobs are “irrelevant” may seem unintuitive from a scheduling perspective. However,

one needs to keep in mind that the goal of BIGSTEP is to optimize the long-run performance of the system and

that the typical queueing-theoretic assumption is that job processing times do not become known upon the jobs’

arrival to the system. Naturally, in realistic applications, both short-run and long-run performance measures are of

interest and at least some processing time information may be available, which motivates the study of combining

the BIGSTEP approach with detailed scheduling models of each time period.

Reward-based Policies Maglaras (1999) extends the BIGSTEP approach to a family of discrete-review

methods derived from dynamic reward functions, which associate a positive reward rate rk(q) for spending time

on class k, given an appropriately normalized queue length vector q. Unlike in the BIGSTEP method, the length

of the review time period in the reward-based discrete-review methods grows as a function of the queue lengths.

In addition to the system characteristics (e.g., arrival rates), the reward-based discrete-review approach of

Maglaras (1999) requires three inputs: a reward function r(·); a function g(·) for computing the nominal length of

the planning period; and a |K|-dimensional vector ξ that satisfies ξ > µ (component-wise), used to define safety

stock levels. At each review point τj , the controller calculates the length of the review period and the target safety

stock level to be achieved at the end of the period. A linear program which is equivalent to the BIGSTEP linear

program stated above, with the exception of the objective function, is then solved to determine the amount of time

that should be allocated to each class k until the next review time point. The complete algorithm from the paper

by Maglaras (1999) for the case when the planning linear program is feasible is presented in Figure 2.

Trajectory-tracking Policies The trajectory-tracking family of policies is also an extension and a general-

ization of the BIGSTEP method (Maglaras, 2000), and also requires a function g(·) and a |K|-dimensional vector

ξ. Additionally, it is defined by the trajectory mapping Ψ, which describes the desired behaviour to be tracked.

One option for the trajectory map is the solution of the corresponding fluid model (Maglaras, 2000).
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given r(·), g(·), ξ
j = 0; τ0 = 0;

initial review period length l0 = ag(|q(0)|),
where a is a small (<< 1) positive constant independent of |q(0)|
repeat {

1. Compute review period length, l, and safety stock levels, ζ:

q := q(τj), q̃ := q/|q(0)|, l := l0 ∨ g(|q|), r := r(q̃), ζ := ξl.
2. Compute the nominal activity allocations u by solving the LP:

maximize rTu

subject to q+ λl−Au ≥ ζ, u ≥ 0, Cu ≤ l1.

3. Form processing plan α with idleness budget i:

αk := min{⌊µkuk⌋, qk} for k = 0, 1, . . . , |K| − 1; i := l1−Cu.

4. Execute (α, i), which takes a length of time denoted by T exe.

5. Update: τj+1 := τj + T exe; j := j + 1.

}

Figure 2: Reward-based Discrete-Review Algorithm (adapted from the paper by Maglaras (1999)).

The trajectory-tracking approach to scheduling in a queueing system resembles the algorithm in Figure 2, with

three major changes: at step 1, a target state, z = ζ + |q(0)|Ψ( l
|q(0)| ; max{0, (q− ζ)}/|q(0)|), is chosen for the

end of the review period; step 2 is replaced by calculations to find u that would allow the system to get to state z;

at step 3, the processing plan is defined as follows:

αk =
⌊

µkuk

⌋

, k = 0, . . . , |K| − 1, (49)

im = max{0, (l+ τζ − (Cu)k)}, m = 1, . . . , |M|, (50)

where τζ is the length of time needed to get from state q∧ ζ to ζ (∧ denotes the component-wise minimum). The

resulting policies are asymptotically optimal under fluid scaling, and guaranteed to be stable if the traffic intensity

of each station is less than one (Maglaras, 2000). A similar idea of trajectory-tracking policies is explored by

Meyn (2001), resulting in a class of feedback regulation policies.

The idea of trajectory tracking has not been investigated in the scheduling literature. We believe it should be

examined from two perspectives: firstly, predictive-reactive methods could be developed which aim to track the

solution of the fluid model as do the trajectory-tracking policies in queueing; secondly, for static problems, there

may be problem relaxations, such as preemptive versions of non-preemptive problems, that can be tracked.

4.3.2.2 Continuous Review We discuss several continuous-review approaches: discrete-review derived, trajectory-

tracking, and maximum pressure policies.

49



Discrete-review Derived Policies The work of Teh (2000) extends the idea of the BIGSTEP method to

discrete-review derived (DRD) continuous-review policies. As in the BIGSTEP method, the goal of a DRD policy

is to determine the amount of time that should be devoted to processing a particular class of jobs in the coming

time period of length l. However, in the BIGSTEP approach, the value of l needs to be large, while Teh (2000)

proposes to make l as small as possible without forcing the time allocation variables to take on negative values.

Moreover, the value of l may change when the allocation specified by the LP solved at each review point changes.

Trajectory-tracking Policies Bäuerle (2000) defines a class of tracking policies, which are constructed from

the optimal fluid control rule in such a way that the scaled state process converges to the optimal fluid trajectory.

Maglaras (2003), motivated by the trajectory-tracking idea from the area of model predictive control, proposes

policies that track a target state z obtained by solving a Brownian control problem.

Paschalidis et al. (2003; 2004) define target-pursuing policies, which are similar to trajectory-tracking policies,

but utilize the solution of an achievable region problem to set one of its parameters. At each time t and for a finite

review interval ∆t, a target-pursuing policy minimizes E[||q(t+∆t)−z|| |q(t)] for some norm || · || and target z;

that is, given the number of jobs in each class at time t, q(t), the policy minimizes the expectation (with respect to

the probability distribution of q(t+∆t)) of the norm of the difference between the number of jobs present in each

class at the next review point and the target (Paschalidis et al., 2004). Paschalidis et al. (2004) show that setting

z = υ∗, where υ∗ is the lower bound on the optimal performance obtained via an achievable region approach,

often results in good performance. For example, in the context of the problem of Figure 1, target-pursuing policies

with optimized parameters are numerically shown to be within 2.3% of the best-performing policies for various

loads for the weighted sum of mean queue lengths objective.

Maximum Pressure Policies Maximum pressure policies (Dai and Lin, 2005) are generalizations of the

well-studied MaxWeight policy (Tassiulas and Ephremides, 1992; Tassiulas and Bhattacharya, 2000; Andrews

et al., 2004; Stolyar, 2004). A maximum pressure policy looks at the system state at job completion and job arrival

epochs, and determines the allocation vector u = (uj) that maximizes the total network pressure (Dai and Lin,

2005). Each entry uj specifies the proportion of time that should be spent on processing job j (by the appropriate

machine(s)) that remains valid until the next review point. More formally, one has to choose u ∈ E(t) which max-

imizes ν(u,q(t)) = q(t) ·Ru, where q(t) is the vector of buffer levels at time t, R = (Rkj) is the input-output
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matrix in which each entry Rkj is interpreted as the average amount of buffer k material consumed per unit of job

j, E(t) is the set of extreme points of the feasible region of all possible maximum pressure policies, and · denotes

the inner product between the two vectors. The set E(t) depends on whether resources can process one or several

jobs at a time (i.e., whether processor splitting is allowed or not) and on whether preemptions are allowed or not.

Maximum pressure policies are different from the above-mentioned policies since they directly specify which job

should receive processing next. They are semi-local since the sequencing decisions for each machine are based

on both the state of the buffers for which the machine is responsible and the state of the downstream buffers. One

of the advantages is that the policy does not use any arrival rate information, which can be hard to estimate in

practice (Dai and Lin, 2005).

The work discussed in this section on alternative representations is aimed at deriving policies which are asymp-

totically optimal and stable, and, given the long-run nature of these objectives, they prescribe the proportion of

each server’s capacity that should be spent on processing a particular job class. In real scheduling problems, one

typically needs to address short-run performance measures in addition to long-run ones. Therefore, it is worth-

while to investigate different operational-level scheduling policies that can also respect the tactical allocations

provided by methods discussed in this section. For example, the solutions to approximations/abstractions may

be used in the form of bounds when operational-level schedules need to be constructed. Moreover, a model that

specifies high-level allocations could be used as part of a problem decomposition method such as the logic-based

Benders method of Hooker (2005); the work of Aramon Bajestani and Beck (2013) and Aramon Bajestani (2013,

Chapter 6) on the use of Benders decomposition in problems with maintenance and scheduling decisions would

be useful in the study of this direction.

5 Future Work on the Integration of Queueing Theory and Scheduling

In this section, we summarize future work on the integration of queueing theory and scheduling that was mentioned

above as well as proposing some additional future work directions. We classify these ideas into three levels at

which we believe integration can take place: conceptual, theoretical and algorithmic.

5.1 Conceptual Level

The conceptual level of integration of queueing and scheduling focuses on combining problem settings, concepts

and assumptions from the two areas. Specifically, the following ideas should be investigated in the future:
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• continuation of the work by Harchol-Balter (2011), Nuyens et al. (2008) and Wierman et al. (2005) on

using queueing analysis to derive theoretical performance guarantees for dispatching rules under particular

distributional assumptions (Section 4.2.1);

• development of new priority queueing models based on dispatching rules (e.g., composite dispatching rules

such as the Apparent Tardiness Cost heuristic (Pinedo, 2009)) and their analysis (Section 4.2.1);

• development of a general framework for integrating queueing and scheduling based on the observation that

any scheduling algorithm can be represented as a function of M , P and A, where M is the decision mode,

P is a priority function, and A is an arbitration rule (Jaiswal, 1982; Ruschitzka and Fabry, 1977) (Section

4.2.1);

• investigation of the applicability of results from the study of fair sequences (Kubiak, 2004) to the study of

optimization of the polling order (Section 4.2.2);

• study of problems that require optimization of polling order together with optimization of within-queue

sequencing (e.g., simultaneously minimizing the expected length of a production cycle and the total job

tardiness in a manufacturing facility) (Section 4.2.2);

• improvement of polling system performance by employing scheduling approaches to optimize within-queue

scheduling (Section 4.2.2);

• investigation of how polling models can represent systems with different objectives at different decision-

making levels (Section 4.2.2);

• further examination of the link between lot-sizing and polling systems (Winands, 2007), and the use of

lot-sizing or batch scheduling methods for optimization of polling order within polling systems (Section

4.2.2);

• investigation of the use of polling models with precedence constraints (Khamisy et al., 1992) for modelling

scheduling problems with precedences and the task management problem of Myers et al. (2007) (Section

4.2.2);

• study of the relationship between the restless bandit problem and stochastic variations of resource-constrained

project scheduling discussed by Mercier and Van Hentenryck (2008) (Section 4.2.4).
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In general, queueing theory and scheduling make differing assumptions regarding the information that is avail-

able for making decisions. In queueing theory, it is typically assumed that processing time distributions are known,

but the actual processing time of a job is not known until it is finished. In classical scheduling, on the contrary, the

common assumption is that a job’s processing time becomes known with certainty upon its arrival to the system.

Thus, following the work by Tran (2011), a general future work direction is to examine a wide range of problems

under a combination of queueing and scheduling assumptions, that is, assuming both knowledge of distributional

information and knowledge of individual job characteristics. From the theoretical perspective, there has not been

much previous work on this “middle ground” between queueing and scheduling assumptions, although there has

been a significant amount of work on the extremes (i.e., knowledge of distributions only, or knowledge of exact

processing times only). From the practical perspective, there exist applications (e.g., in manufacturing and com-

puter processing) in which distributional information can be derived from historical data and job processing times

can be well estimated upon their arrival to the system.

5.2 Theoretical Level

The theoretical level of integration focuses on combining theoretical notions from queueing and scheduling. The

following ideas for future work were proposed above:

• investigation of the steady-state performance of composite dispatching rules (Section 4.2.1);

• application of descriptive results from polling systems to the development of bounds on optimal schedules

and within scheduling algorithms (Section 4.2.2).

5.3 Algorithmic Level

As discussed in Section 4, scheduling algorithms developed within queueing theory are typically concerned with

the allocation of resources to job classes rather than with detailed sequencing decisions. They are likely to opti-

mize long-run objectives but may perform poorly for a given short time horizon. Scheduling methods, in contrast,

focus on sequencing and optimization of short-run performance but may be myopic. Thus, combining algorithmic

components from queueing theory and scheduling could lead to the development of hybrid algorithms for effec-

tively addressing dynamic scheduling problems. The following ideas for integration of queueing and scheduling

on the algorithmic level become evident from our review:
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• empirical comparison of the performance of queueing policies (e.g., priority policies, fluid model-based

heuristics), predictive-reactive scheduling methods, online stochastic combinatorial optimization methods

and hybrid algorithms, similar in style to the algorithmic work of Tran (2011) (Sections 4.2.1, 4.3.1.1, 4.3.2);

• examination of the MDP model as a meta-framework for the construction of queueing/scheduling hybrids:

if a queueing algorithm and a scheduling algorithm are chosen, and the state of the problem is compactly

represented, then we can define an action as the choice to follow the queueing algorithm or the choice to

follow the scheduling algorithm until the next decision time point (Section 4.1);

• investigation of whether it is useful to model part or all of a dynamic scheduling problem as a bandit

problem and to incorporate Gittins indices into the constraints or the objective function of the models used

to construct predictive schedules (Section 4.2.4);

• investigation of the applicability of the achievable region approach in scheduling (e.g., for derivation of

performance bounds) (Section 4.3.1.2);

• derivation of new constraints for the achievable region approach based on techniques from scheduling (Sec-

tion 4.3.1.2);

• investigation of operational-level scheduling policies that can also respect the tactical allocations provided

by queueing methods (e.g., Markov Decision Process approaches, fluid models, Brownian models) (Sections

4.1, 4.3.1.1, 4.3.2), similar to the investigation of Aramon Bajestani et al. (2014) which combines higher-

level maintenance decisions with lower-level operational ones;

• investigation of the idea of tracking for scheduling: firstly, predictive-reactive methods could be developed

which aim to track the solution of the fluid model as do the trajectory-tracking policies in queueing, and, sec-

ondly, for static problems, there may be problem relaxations, such as preemptive versions of non-preemptive

problems, that can be tracked (Section 4.3.2);

• use of a model that specifies high-level resource allocations as part of a problem decomposition method

such as the logic-based Benders method of Hooker (2005) (Section 4.3.2); the work of Aramon Bajestani

and Beck (2011, 2013) on the use of Benders decomposition in problems with maintenance and scheduling

decisions would be useful in the study of this direction.
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6 Conclusion

We surveyed the queueing theory literature related to scheduling, dividing it into three categories. The first is based

on MDP models, which are, theoretically, powerful enough to represent any scheduling problem. However, even

when focusing on classes rather than individual jobs, MDP models become intractable as the size of the problem

(i.e., the number of classes) increases. To overcome the difficulties of large MDP models, the queueing literature

has chosen either to restrict the types of policies that are considered or to use alternative problem representations

based on approximations or abstractions.

Section 4.2 reviewed the second category of models: those possessing a special structure. These include

priority queues, polling systems, vacation models and bandit models. Section 4.3 presented the general frame-

work for the use of alternative problem representations which consists of four steps: modelling and develop-

ment of the approximation/abstraction, solution of this approximation/abstraction, derivation of an implementable

scheduling policy based on this solution, and analysis of the optimality of the resulting policy. The approxima-

tions/abstractions used in the first two steps include Brownian models, fluid models and the achievable region

approach. Methods for the derivation of implementable scheduling policies are presented in Section 4.3.2.

Throughout this review, we have indicated various directions for future work on the integration of queueing and

scheduling. For instance, one common theme throughout this paper is that, since queueing-theoretic approaches

cannot deal with individual job characteristics, scheduling can be used to sequence jobs within each job class.

Doing so is especially important in applications where historical data is available and actual job durations can

be accurately estimated upon their arrival to the system. An extensive list of ideas for integrating queueing and

scheduling was presented in Section 5.

Real scheduling problems are dynamic, stochastic and combinatorial in nature. While classical scheduling

has focused on the combinatorial aspects and short-term objectives, queueing theory has been concerned with

stochastic properties and performance of the system over the long term. Thus, from the dynamic scheduling

perspective, the strengths of queueing theory and scheduling can be seen as being complementary. We believe that

integrating the two may allow us to develop both a better understanding of, and more effective solution techniques

for, scheduling in dynamic and stochastic environments, because we can more effectively reason about the long

run using queueing theory and about the short run using scheduling methods. We have published several papers

that investigate and provide support for this belief (Terekhov et al., 2012b; Tran et al., 2013; Terekhov et al., 2014).
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