
Power-Aware Linear Programming Based Scheduling for

Heterogeneous Computer Clusters

Hadil Al-Daoud

Department of Computing and Software
McMaster University

Issam Al-Azzoni

INRIA
Grenoble, France

Douglas G. Down

Department of Computing and Software
McMaster University

Abstract

In the past few years, scheduling for computer clusters has become a hot
topic. The main focus has been towards achieving better performance. It is
true that this goal has been attained to a certain extent, but on the other
hand, it has been at the expense of increased energy consumption and con-
sequent economic and environmental costs. As these clusters are becoming
more popular and complex, reducing energy consumption in such systems
has become a necessity. Several power-aware scheduling policies have been
proposed for homogeneous clusters. In this work, we propose a new policy
for heterogeneous clusters. Our simulation experiments show that using our
proposed policy results in significant reduction in energy consumption while
performing very competitively in heterogeneous clusters.

1. Introduction

Optimizing performance in computer clusters has been a topic of interest
in a number of recent research papers. A computer cluster is constructed
by networking various machines with different capabilities and coordinating
their use to execute a set of tasks. It is true that research has been, to a

Preprint submitted to Elsevier February 24, 2011

certain extent, successful in accomplishing this goal but on the other hand,
energy consumption has been mostly neglected.

There is often a trade-off between performance and energy consumption.
Thus, good performance can be attained but often at the expense of an
undesired level of energy consumption. This is because better performance
can be achieved by keeping all machines on all the time in order to handle
peak load conditions and improve system responsiveness. Since peak load
conditions typically happen infrequently and as a result, most of the time the
cluster is underutilized, energy consumption can be reduced significantly just
by taking advantage of the times during which the cluster is underutilized.

Reducing energy consumption in computer clusters has become a ne-
cessity for many reasons. First of all, for a large cluster which consumes
significant amounts of energy, it can be necessary to use expensive cooling
equipment. Cooling equipment can consume up to 50% of the total energy
consumption in some commercial servers (see Rajamani et al. [26]). Also,
because of the growing cost of electricity, reducing energy consumption has
become an economic necessity (see Bianchini et al. [6]). Furthermore, reduc-
ing energy consumption helps the environment since gas emissions during
electricity production are reduced (see Chase et al. [8]).

In this paper, we attempt to develop scheduling policies which aim to
reduce energy consumption in computer clusters. Computer clusters can
be homogeneous or heterogeneous. In our study, we consider heterogeneous
clusters. Widespread availability of low-cost, high performance computing
hardware and the rapid expansion of the Internet and advances in computing
networking technology have led to an increasing use of heterogeneous com-
puting (HC) systems (see Kontothanassis and Goddeau [21]). Such systems
are constructed by networking various machines with different capabilities
and coordinating their use to execute a set of tasks.

Scheduling for such systems is complicated due to several factors. The
state of the system dynamically changes and a scheduling policy should adapt
its decisions to the state of the system. Another factor contributing to the
complexity of scheduling for clusters is related to the heterogeneous nature
of such systems. These systems interconnect a multitude of heterogeneous
machines (desktops with various resources: CPU, memory, disk, etc.) to per-
form computationally intensive applications that have diverse computational
requirements. Performance may be significantly impacted if information on
task and machine heterogeneity is not taken into account by the scheduling
policy.

2

In our earlier work ([1] and [2]), we have developed several scheduling
policies that perform competitively in heterogeneous systems. The policies
use the solution to an allocation linear programming problem (LP) which
maximizes the system capacity. However, machine power consumption is not
considered. In this paper, we suggest a power-aware scheduling policy (the
Power-Aware Linear Programming based Affinity Scheduling policy (LPAS)).
The proposed policy also uses the solution to an allocation LP which takes
into consideration machine power consumption. Our experiments show that
our policy provides significant energy savings.

The policy uses the arrival and execution rates to find the maximum
capacity. Also, the policy uses information on the power consumption of
each machine in order to find an allocation of the machines which results in
the maximum energy saving. However, there are cases where obtaining such
information is not possible or there is a large degree of uncertainty. In this
paper, we also suggest a power-aware policy for structured systems that only
requires knowledge of the ranking of machines with respect to their power
efficiencies. Structured systems are a special kind of heterogeneous systems
that are common for cluster environments. These are defined in Section 6.

The organization of the paper is as follows. Section 2 gives the workload
model in detail. Section 3 describes several scheduling policies. The Power-
Aware LPAS policy is described in Section 4. In Section 5, we present the
results obtained in our simulation experiments including simulation results
for realistic cluster models. In Section 6, we describe a power-aware schedul-
ing policy for structured systems. Section 7 gives an overview of related
work. Section 8 concludes the paper.

A preliminary version of this work appeared in [3].

2. Workload Model

In our model for a computer cluster (see Figure 1), there is a dedicated
front-end scheduler for assigning incoming tasks to the back-end machines.
Let the number of machines in the system be J .

It is assumed that the tasks are classified into I classes. Tasks of class
i arrive to the front-end at the rate αi. Let α be the arrival rate vector,
the ith element of α is αi. The tasks are assumed to be independent and
atomic. In the literature, parallel applications whose tasks are independent
are sometimes referred to as Bag-of-Tasks applications (BoT) (as in Anglano
et al. [4]) or parameter-sweep applications (as in Casanova et al. [7]). Such

3

applications are becoming predominant for clusters and grids (see Iosup et
al. [18] and Li and Buyya [23]).

While determining the exact task execution time on a target machine
remains a challenge, there exist several techniques that can be used to esti-
mate an expected value for the task execution time (see Rao and Huh [27]
and Seneviratne and Levy [29], for example). The policies considered in
this paper exploit estimates on mean task execution times rather than exact
execution times. Furthermore, in computer clusters and grids, tasks that
belong to the same application are typically similar in their resource require-
ments. For example, some applications are CPU bound while others are
I/O bound. In fact, several authors have observed the high dependence of
a task’s execution time on the application it belongs to and the machine it
is running on. They argue for using application profile information to guide
resource management (see [21]). We follow the same steps and assume that
the tasks are classified into groups (or classes) with identical distributions
for the execution times.

Let µi,j be the execution rate for tasks of class i at machine j, hence
1/µi,j is the mean execution time for class i tasks at machine j. We allow
µi,j = 0, which implies machine j is physically incapable of executing class
i tasks. Each task class can be executed by at least one machine. Let µ be
the execution rate matrix, having (i, j) element µi,j. Our workload model is
similar to the workload model in Al-Azzoni and Down [2].

We note that performance monitoring tools such as NWS [32] and Mon-
ALISA [22] can be used to provide dynamic information on the state of the
cluster system. Furthermore, these tools anticipate the future performance
behaviour of an application including task arrival and machine execution
rates.

At this stage, we introduce the machine power consumption model. We
assume that at any point in time a machine can be either busy or in a low
power state. For the time being, we assume that each machine has a single
operating frequency for the busy state. We will relax this when we discuss
Dynamic Voltage Scaling in Section 5.3. Each machine may have different
power consumption when executing different classes of tasks. Let Mi,j be
the power consumption of machine j when executing a task of class i (it is
measured in terms of the energy consumed per time-unit). In addition, we
assume that a machine is put into a low power state when it is not executing
any task. Let Bj be the power consumption of machine j when it is in a low
power state. We assume that Bj � Mi,j. Our power consumption model is

4

Class 1

arrivals

Class N

arrivals

M

1

N

1

Scheduler

Figure 1: The cluster system model

similar to the one considered in Heath et al. [17].

3. Current Policies

A scheduling policy that is applicable to our workload model is the clas-
sical First-Come-First-Served (FCFS) policy. FCFS is used in major sched-
ulers (such as Domingues et al. [9] and Kondo et al. [20]). An advantage of
FCFS is that it does not require any dynamic information on the state of
the system. However, FCFS only performs well in systems with limited task
heterogeneity and under moderate system loads. As the application tasks
become more heterogeneous and the load increases, performance degrades
rapidly (see Al-Azzoni and Down [1]). Furthermore, FCFS ignores machine
power consumption and thus may result in severe energy wastage.

Another candidate scheduling policy is the Pick-the-Most-Efficient (PME)
policy. The policy uses a greedy approach for assigning tasks to machines.
It is defined as follows. When a machine j becomes available, it is assigned a
class i task where the power efficiency of machine j on class i is the maximum
amongst those classes with at least one task waiting. The power efficiency
of a machine j on class i tasks is defined as µi,j/Mi,j. The PME policy only
requires dynamic information on the machine execution rates and power con-
sumption. It does not take into account information on the task arrival rates.

4. The Power-Aware LPAS Policy

The Power-Aware LPAS policy requires solving two allocation linear pro-
gramming (LP) problems. The first LP does not take power consumption

5

into account. It is the same LP that is used in the other LPAS-related poli-
cies (see [1] and [2]). This LP is solved for the purpose of obtaining the
maximum capacity of the system λ∗. This value is used in the second LP.

In the first LP, the decision variables are λ and θi,j for i = 1, . . . , I, j =
1, . . . , J . The variables θi,j are to be interpreted as the proportional allocation
of machine j to class i.

max λ

s.t.
J∑
j=1

θi,jµi,j ≥ λαi, for all i = 1, . . . , I, (1a)

I∑
i=1

θi,j ≤ 1, for all j = 1, . . . , J, (1b)

θi,j ≥ 0, for all i = 1, . . . , I, and j = 1, . . . , J. (1c)

The left-hand side of (1a) represents the total execution capacity assigned
to class i by all machines in the system. The right-hand side represents the
arrival rate of tasks that belong to class i scaled by a factor of λ. Thus, (1a)
enforces that the total capacity allocated for a class should be at least as
large as the scaled arrival rate for that class. This constraint is needed to
have a stable system. The constraint (1b) prevents overallocating a machine
and (1c) states that negative allocations are not allowed.

Let λ∗ and {θ∗i,j}, i = 1, . . . , I, j = 1, . . . , J , be an optimal solution to
LP (1). The LP always has a solution, since no lower bound constraint is
put on λ. However, the physical meaning of λ∗ requires that its value be at
least one. In this case, 1/λ∗ is interpreted as the long-run utilization of the
busiest machine.

The value λ∗ can also be interpreted as the maximum capacity of the sys-
tem. We define the maximum capacity as follows. Consider a system with
given values for αi (i = 1, . . . , I) and λ∗. If λ∗ ≤ 1, then the system is un-
stable. Thus, the system will be overloaded and tasks will queue indefinitely.
If, however, λ∗ > 1, then the system can be stabilized even if each arrival
rate is increased by a factor less than or equal to λ∗ (i.e., the same system
with arrival rates α′i ≤ λ∗αi, for all i = 1, . . . , I, can be stabilized). In this
case, the values {θ∗i,j}, i = 1, . . . , I, j = 1, . . . , J , can be interpreted as the
long-run fraction of time that machine j should spend on class i in order to
stabilize the system under maximum capacity conditions.

6

The second LP considers the power consumption of the machines. The
decision variables are δi,j for i = 1, . . . , I, j = 1, . . . , J .

min
J∑
j=1

(
I∑
i=1

δi,jMi,j + (1−
I∑
i=1

δi,j)Bj)

s.t.
J∑
j=1

δi,jµi,j ≥ cαi, for all i = 1, . . . , I, (2a)

I∑
i=1

δi,j ≤ 1, for all j = 1, . . . , J, (2b)

δi,j ≥ 0, for all i = 1, . . . , I, and j = 1, . . . , J. (2c)

The constraint (2a) enforces that the total execution capacity allocated for
a class should be at least as large as the arrival rate for that class scaled
by a factor c. The optimal solution for this LP is given in the form of a
matrix δ∗ where the (i, j) entry is δ∗i,j. The matrix δ∗ specifies an allocation
of machines to tasks such that the the energy consumption is minimized while
still meeting capacity c.

The Power-Aware policy considers the trade-off between energy consump-
tion and performance. Let c represent the target capacity of the system.
Assuming that λ∗ > 1, the value of c can range from 1 to the maximum
capacity of the system, i.e., 1 ≤ c ≤ λ∗. In this case, LP (2) always has
a solution, since θ∗ already satisfies the constraints (2a)-(2c). Choosing for
c values closer to 1 may cause performance to degrade while achieving in-
creased energy saving. If c is very close to 1, then only the minimum capacity
is utilized and this results in severe performance degradation (or even system
instability). Thus, we avoid the use of such values for c. On the other hand,
the closer c to the maximum capacity λ∗, the better the performance, at the
expense of increased energy consumption. Note that even though LP (1)
may have an infinite number of optimal solutions, the value λ∗ is unique and
LP (2) only uses λ∗.

In order to achieve the allocations δ∗i,j, we use the following mechanism.
Suppose that machine j requests a task at time point t. Let δi,j(t) be the
proportion of time that machine j has been executing class i tasks up to
time t. The scheduler assigns the machine to a class i task such that δ∗i,j > 0
and δ∗i,j - δi,j(t) is the maximum. If all the values of δ∗i,j - δi,j(t) are negative,

7

machine j is put in a low power state until
Lj(t)

t
= 1−

∑I
i=1 δ

∗
i,j, where Lj(t)

is the total time machine j has been in a low power state up to time t.
The Power-Aware LPAS policy is a dynamic scheduling policy. As the

policy only involves solving two LPs, it is suited for scenarios when machines
are added and/or deleted from the system or the rates change. On each of
these events, one needs to simply solve two new LPs and continue with the
new values.

Consider a system with two machines and two classes of tasks (I = 2, J
= 2). The arrival and execution rates are as follows:

α =
[

1 1.5
]

and µ =

[
9 5
2 1

]
.

Furthermore, assume that

B =
[

0.1 0.1
]

and M =

[
1 20
1 20

]
.

Thus, when executing a task, the power consumption of machine 2 is 20 times
that of machine 1. Both machines have the same power consumption in the
low power state.

Solving LP (1) gives λ∗ = 1.7647 and

θ∗ =

[
0 0.3529
1 0.6471

]
.

First, set c = λ∗. Solving LP (2) gives δ∗ = θ∗. The resulting δ∗ achieves
the maximum system capacity (see [1]), however it ignores power consump-
tion of the machines. Machine 2 is assigned tasks for execution although it
is very inefficient power-wise.

In the second case we set c = 1. Solving LP (2) gives

δ∗ =

[
0.1111 0
0.7500 0

]
.

Note that in this case machine 2 is put in a low power state. The allocation δ∗

results in the maximum energy saving while meeting the minimum capacity.

8

Policy c ∆ W
Power-Aware LPAS λ∗ = 1.7068 38.21% 0.165± 0.24%
Power-Aware LPAS midpoint=1.3534 45.63% 0.265± 1.97%

PME - 13.20% 0.261± 0.22%
FCFS - 0% 2.842± 14.08%

Table 1: Simulation Results for Experiment 1

5. Simulation Results

We use simulation to compare the performance of the scheduling policies.
In Section 5.1, we simulate artificial systems with different heterogeneities to
show the impact of heterogeneity on performance. Then, in Section 5.2, we
show the results of simulating a realistic cluster system.

The task arrivals are modeled by independent Poisson processes, each
with rate αi, i = 1, . . . , I. The execution times are exponentially distributed
with rates µi,j, where 1/µi,j represents the mean execution time of a task of
class i at machine j, i = 1, . . . , I, j = 1, . . . , J . Note that the distributions
are arbitrarily chosen. The Power-Aware policy does not depend on specific
distributional assumptions.

There are several performance metrics that can be used. We use the long-
run average task completion timeW , as a metric for performance comparison.
A task completion time is defined as the time elapsing between the submission
of the task and the completion of its execution. Another metric we also show
is the energy saving (∆) with respect to FCFS.

Each simulation experiment models a particular system, characterized by
the values of I, J , Bj, Mi,j, αi,j, and µi,j, i = 1, . . . , I, j = 1, . . . , J . Each
experiment is executed for 20,000 time-units and repeated 30 times. For
every case, we give W and ∆. For W , we also give the accuracy of the
confidence interval defined as the ratio of the half width of the interval over
the mean value (all statistics are at 95% confidence level).

5.1. Task and Machine Heterogeneity

There are different kinds of system heterogeneity. Machine heterogeneity
refers to the average variation along the rows of µ, and similarly task hetero-
geneity refers to the average variation along the columns (see Armstrong [5]).
In the first experiment, we simulate a system with high task heterogeneity
and high machine heterogeneity. In the second experiment, we simulate a

9

Policy c ∆ W
Power-Aware LPAS λ∗ = 1.4582 22.38% 0.308± 0.45%
Power-Aware LPAS midpoint=1.2291 54.14% 0.335± 1.92%

PME - 4.41% 0.207± 0.23%
FCFS - 0% 0.207± 0.25%

Table 2: Simulation Results for Experiment 2

system with high machine heterogeneity and low task heterogeneity. In both
experiments, machine power consumptions are completely heterogeneous.

5.1.1. Experiment 1

Consider a system with 3 classes and 6 machines (I = 3, J = 6). The
system is chosen to be both highly machine and task heterogeneous. The
arrival and execution rates for this system are given by α = [9.75 8.5 9.5]
and

µ =

 4.5 2 9.5 6.2 10.25 2.25
6.2 4.5 6 2 4.2 5.9
9.5 6.5 4 10 5.9 2.25

 ,
respectively. The following define machine power consumption:

B =
[

3.5 3 4 4 3.5 3
]

and

M =

 66 73 84 103 93 75
50 65 79 71 82 63
105 80 96 85 95 70

 .
Solving LP (1) gives λ∗ = 1.7068. Table 1 shows the simulation results

for the experiment. The table gives simulation results for the Power-Aware
LPAS policy under two different values of c: c = λ∗ and c = 1+λ∗

2
.

The results show that significant energy saving can be achieved by using
the Power-Aware LPAS policy. When c is set to the midpoint (i.e., 1+λ∗

2
), the

Power-Aware LPAS policy results in energy saving that is almost 2.5 times
that of PME while achieving the same performance. Furthermore, there is
still significant energy saving when setting c = λ∗. This can be explained
by the improvement in performance which results in the machines being put
into a low power state more often and thereby reducing energy consumption.

10

5.1.2. Experiment 2

In this experiment, we consider a system with high machine heterogeneity
and low task heterogeneity. The system has 6 machines and 3 classes (I
= 3, J = 6). The arrival and execution rates are respectively given by
α = [8.75 8.5 9] and

µ =

 2.2 7 10.25 1 5.7 12
1.95 7.05 9.78 0.95 5.65 11.85

2 7.25 10.02 0.98 5.75 11.8

 .

The following define machine power consumption:

B =
[

3.5 3 4 4 3.5 3
]

and

M =

 128.4 193.1 155.6 105.5 125.4 116.1
135.1 230.15 203.4 94.2 250.6 85.5
84.15 62.3 81.1 96.9 71.3 215.09

 .
Note that M in this case was generated randomly, so is different than the M
in Section 5.1.1. Our goal is not to compare the two systems.

Solving LP (1) gives λ∗ = 1.4582. Table 2 shows the simulation results
for the experiment. The table gives simulation results for the Power-Aware
LPAS policy under two different values of c: c = λ∗ and c = 1+λ∗

2
.

The results show that using the Power-Aware LPAS policy results in sig-
nificant energy saving compared to both FIFO and PME but at the expense
of an increased average waiting time. Note that the system has low task
heterogeneity. In such systems, previous work has demonstrated that LPAS-
related policies may not perform as well as other competing policies (see [1]
and [2]).

5.2. Realistic Architectures

In this section, we simulate a system which models a real computer clus-
ter [21] (for details, see He [16]) to compare the scheduling policies. The
system is a medium size system with 5 task classes and 30 machines. The
machines are partitioned into 6 groups, machines within a group are iden-
tical. Thus, if two machines are in the same group, then they have the
same execution rates. Groups T, U, V, W, X, and Y, consist of 2 machines,

11

6 machines, 7 machines, 7 machines, 4 machines, and 4 machines, respec-
tively. The execution rates are shown in Table 3. The arrival rate vector is
α = [204.10 68.87 77.63 5.01 10.43]. For such a system, λ∗ = 2.4242.

We consider two cases. In the first case, machine power consumptions
are completely heterogeneous. The machine power consumption matrix M
is shown in Table 4. M1,...,10 is a sub-matrix of M which shows the power
consumption for machines 1, . . . , 10 (the sub-matrices M11,...,20 and M21,...,30

are defined analogously). Machines in Group T are 1 and 2, machines in
Group U are 3, . . . , 8, etc. While the arrival and execution rates are taken
from a real system, the machine power consumption matrix, M , is fictitious,
as no data is available for these quantities. (It would be useful to have such
data to benchmark power saving algorithms.)

The second case represents more homogeneous per-cluster power con-
sumption. We assume that the power consumption for a machine is just a
multiple of its execution rate. Thus, the faster the machine, the more energy
it consumes. Furthermore, the multiplicative factor is different amongst the
groups. This represents realistic systems in which the machines in a cluster
are homogeneous in terms of their power consumption while the clusters dif-
fer in their power efficiency. The multiplicative factor is 6, 4, 7, 5.5, 5, and
6, for group T, U, V, W, X, and Y, respectively.

In both cases, the power consumption in a low power state is 2 for ma-
chines in Group T , 3 for machines in Groups U , V , and X, 3.5 for machines
in Group W , and 4 for machines in Group Y . For the Power-Aware LPAS,
policy, we give simulation results corresponding to five different values of c
(1.1500, 1.3561, 1.7121, 2.0682, and 2.4242).

Figures 2 and 3 show the simulation results under both cases (note that
the curves for FCFS and PME are virtually identical). The figures show
that the Power-Aware LPAS policy performs competitively while reducing

Group
Task T U V W X Y

1 16.7 24.8 24.2 29 25.6 48.3
2 30.4 48.3 77.7 83.6 135.9 144.9
3 18.9 24.2 48.3 45.8 72.5 72.5
4 3 3 7.6 7.6 8.3 8.7
5 1 1.1 3 2.9 3 3

Table 3: The Execution Rates for the System in Section 5.2

12

M1,...,10 =

53.2 70.1 67.2 45.3 48.8 78.5 120.0 163.1 77.3 85.0
82.6 200.7 148.8 68.8 92.9 97.9 87.4 67.0 78.3 94.4

216.3 79.2 94.3 86.5 218.6 87.8 96.4 136.9 200.3 136.1
97.2 87.4 136.4 154.5 156.1 176.2 137.3 183.9 149.6 230.6

120.0 123.0 65.0 78.0 94.4 132.1 79.3 88.8 99.5 100.2

M11,...,20 =

93.3 64.1 82.6 72.9 59.1 69.1 59.3 75.4 88.0 130.6
90.6 69.7 84.4 73.3 120.2 102.1 160.7 210.3 93.7 190.8

164.2 89.3 95.5 189.6 129.6 87.5 74.8 98.0 94.9 129.0
94.8 86.9 94.1 78.4 76.6 98.0 75.3 120.2 134.4 160.2
90.4 65.0 73.0 97.9 179.0 213.0 169.8 61.2 123.0 145.5

M21,...,30 =

116.7 69.3 150.4 144.5 78.0 96.0 73.5 180.7 211.0 130.0
211.9 94.2 89.3 67.5 87.6 73.7 133.8 128.0 123.0 221.6
137.0 129.2 234.1 176.2 146.3 197.4 136.6 79.4 83.6 76.1
96.9 130.6 143.4 176.1 109.3 79.1 69.6 78.9 143.3 165.5

135.3 123.6 89.5 68.8 85.9 90.2 143.9 156.7 189.3 67.5

Table 4: The Machine Power Consumption Matrix for the System in Section 5.2 - The
heterogeneous Case

energy consumption. The improvements are more significant in systems with
higher degrees of heterogeneity. Also, when the parameter c is set to values
closer to λ∗, better performance results. In this case, since the system being
simulated is not highly loaded (41.25%), performance improvement is not
that significant. However, if the load increases, performance improvement
becomes much more significant.

The Power-Aware LPAS policy results in reduced energy consumption,
ranging from 25% to 50% in the heterogeneous case and from 0.5% to 5.5%
in the more homogeneous case. We note that the energy saving is not linear
with respect to decreasing values of c (the same observation holds for per-
formance with respect to increasing values of c). Furthermore, when c is set
to the midpoint (i.e., 1+λ∗

2
= 1.7160), the Power-Aware LPAS policy results

in a reasonable compromise between performance improvement and energy
saving. An administrator of a cluster can adjust the value of c to tailor to
the organization’s specific need. For example, one can reduce c just below
the midpoint if energy consumption is more of a concern than performance.

13

Figure 2: Simulation results for the system in Section 5.2 - The heterogeneous case

5.3. Comparison to Dynamic Voltage Scaling

The Power-Aware LPAS policy employs a dynamic cluster configuration
mechanism in which a machine is put in a low power state when it is not exe-
cuting a task. Another power management mechanism is the Dynamic Volt-
age Scaling mechanism in which a machine can have different CPU operating
frequencies. At any time, a machine’s low power state and busy power con-
sumption depend on the current machine operating frequency. Both mecha-
nisms are discussed in Section 7.

Consider the following Dynamic Voltage Scaling policy. The utilization
of each machine Uj is computed periodically and then the CPU operating
frequency for machine j is set to the closest value higher than Ujfmax, where
fmax is the maximum CPU operating frequency of machine j. This policy is
used in Govil et al. [13] and Rusu et al. [28].

In this section, we use the same system specified in Section 5.2 which
models a real computer cluster. However, to simulate the system using Dy-
namic Voltage Scaling, we need to scale the execution rates as well as each
machine’s low power state and busy power consumption. The scaling is
based on the power consumption parameters of a real machine used in the
experiments of [28] and which are reproduced in the following table:

Frequency (MHz) 1000 1800 2000 2200 2400
Idle (Watts) 70 74.5 78.5 83.5 89.5
Busy (Watts) 80.5 92.5 103.5 119.5 140.5

In our simulation experiments, we assume that all of the machines have
the same parameters as in the table above. Let f ′j be the current CPU

14

operating frequency for machine j. Then, the scaling is done as follows:

• µ′i,j =
f ′j

2400
µi,j, where µ is the execution rate matrix from Section 5.2.

Note that 2400 is the maximum CPU operating frequency of the mod-
elled machine..

• M ′
i,j =

machine j busy power consumption corresponding to f ′j
140.5

Mi,j, where M is the
machine busy power consumption matrix from Section 5.2. Note that
140.5 is the busy power consumption corresponding to the maximum
CPU operating frequency of the modelled machine.

• B′j =
machine j idle power consumption corresponding to f ′j

89.5
Bj, where B is the ma-

chine low power state power consumption matrix from Section 5.2.
Note that 89.5 is the idle power consumption corresponding to the
maximum CPU operating frequency of the modelled machine.

We assume that the front-end scheduler uses FCFS. Each machine sets its
CPU operating frequency every 0.0001 time-units (while this may be overly
fast, decreasing the rate would only degrade the performance of Dynamic
Voltage Scaling, which makes our comparison conservative). This high fre-
quency allows the machines to quickly adapt their CPU operating frequencies
while meeting the load. We performed simulation studies of the two cases in
Section 5.2. For the heterogeneous machine power consumption case, using
Dynamic Voltage Scaling results in an average task completion time that is
93.78% higher than that of FCFS with ∆ = −75.64%. For the more homo-
geneous machine power consumption case, using Dynamic Voltage Scaling
results in an average task completion time that is 92.69% higher than that
of FCFS with ∆ = −81.79%. These results indicate that Dynamic Voltage
Scaling does not perform well in systems with high task heterogeneity. Thus,
the average task completion time increases resulting in an increased energy
consumption. This nullifies any energy saving that should be achieved when
varying the CPU operating voltages.

6. Structured Systems

The execution rate matrix of a structured system is given by a combina-
tion of two components: a component that is completely dependent on the
task (the inherent task difficulty) and another component that is completely
dependent on the machine (the machine efficiency). Such systems appear to

15

be reasonable models for computer cluster environments. Thus, the execu-
tion rate of machine j on a class i task is given by µi,j = γjµi, i = 1, . . . , I,
j = 1, . . . , J .

The busy power consumption matrix is also structured such that each
machine’s power consumption is equal to a factor multiplied by its speed.
So, the power consumption of machine j while executing a class i task can
be given by Mi,j = βjµi,j, i = 1, . . . , I, j = 1, . . . , J , where the factor 1/βj is
the power efficiency of machine j.

Suppose we have a system with M = 7 machines and N = 4 tasks. To
formulate the execution rate matrix, we choose µ1 = 1, µ2 = 2, µ3 = 5, and
µ4 = 3. Suppose that γ1 = 1, γ2 = 3, γ3 = 4, γ4 = 0.2, γ5 = 6, γ6 = 5, and
γ7 = 10. Thus, the execution rate matrix is given by:

µ =

1 3 4 0.2 6 5 10
2 6 8 0.4 12 10 20
5 15 20 1 30 25 50
3 9 12 0.6 18 15 30

 .
Let β1 = 3.1, β2 = 11.7, β3 = 8.2, β4 = 6.5, β5 = 13.6, β6 = 17.4, and β7 =
1.3. Thus, the busy power consumption matrix is given by:

M =

3.1 35.1 32.8 1.3 81.6 87 13
6.2 70.2 65.6 2.6 163.2 174 26
15.5 175.5 164 6.5 408 435 65
9.3 105.3 98.4 3.9 244.8 261 39

 .
Assume also that :

B =
[

1 3 3 0.5 3 3 3
]
.

For structured systems, the machines should be put in a low power state
in increasing order of βj when the load on the system is reduced and employed
in decreasing order of βj when the load on the system is increased. Table 5

shows
∑I

i=1 δ
∗
i,j for each machine j (i.e., the load of the machine) at different

values of the system load (1
λ∗

) assuming c is set to the midpoint (1+λ∗

2
).

Notice that machine 6 (which has the largest β) is the first machine for
which

∑I
i=1 δ

∗
i,j is zero and thus it is the first machine to be put in the low

power state. If we decrease the load further and compute
∑I

i=1 δ
∗
i,j for each

machine j, the machines are put in a low power state in decreasing order of

16

βj: machines 5, 2, 3, 4, 1, then 7 (or equivalently, increasing order of the
power efficiency 1

βj
). In fact, we can show that putting machines in a low

power state in order of their power efficiencies as the load decreases (and vice
versa) characterizes a particular subset of optimal solutions to LP (2).

Lemma 1. For a structured system where Bj = 0 for j = 1, . . . , J , if there
are two machines j1 and j2 such that βj1 > βj2, we can not have:

∑
i δ
∗
i,j1

> 0
and

∑
i δ
∗
i,j2

= 0 in an optimal solution for LP (2).

Proof

We prove the lemma by contradiction as follows.

Consider a structured system with J machines and I classes. Assume
that for two machines j1 and j2 we have βj1 > βj2 .

Suppose that in an optimal solution, we have
∑I

i=1 δ
∗
i,j1

> 0 and
∑I

i=1 δ
∗
i,j2

=
0.

The value of the objective function at this optimal solution is then given
by: ∑

j 6=j2

I∑
i=1

µiγjβjδ
∗
i,j. (3)

Consider another solution δ∗ constructed as follows. Let δ∗ be identical
to δ∗ except for the columns corresponding to machines j1 and j2. Let δ∗i,j1
= γj1/(γj1 + γj2)δ

∗
i,j1

and δ∗i,j2 = γj1/(γj1 + γj2)δ
∗
i,j1

for i = 1,, I.
First, we show that the constructed solution is a feasible solution, i.e., it

satisfies (2a)-(2c).

17

To show that the constructed solution satisfies (2a), note that:

J∑
j=1

δ∗i,jµi,j

=
∑
j 6=j1,j2

δ∗i,jµi,j +
γj1

γj1 + γj2
δ∗i,j1µi,j1 +

γj1
γj1 + γj2

δ∗i,j1µi,j2

=
∑
j 6=j1,j2

δ∗i,jµi,j +
γj1

γj1 + γj2
δ∗i,j1 [µi,j1 + µi,j2]

=
∑
j 6=j1,j2

δ∗i,jµi,j +
γj1

γj1 + γj2
δ∗i,j1µi[γj1 + γj2]

=
∑
j 6=j1,j2

δ∗i,jµi,j + γj1δ
∗
i,j1
µi

=
∑
j 6=j2

δ∗i,jµi,j

≥ cαi, for i = 1, . . . , I.

To show that (2b) is satisfied, note that for j1:

I∑
i=1

δ∗i,j1µi,j1

=
I∑
i=1

γj1
γj1 + γj2

δ∗i,j1µi,j1

=
γj1

γj1 + γj2

I∑
i=1

δ∗i,j1µi,j1

≤ 1 since
γj1

γj1 + γj2
≤ 1 and

I∑
i=1

δ∗i,j1µi,j1 ≤ 1.

18

For j2, one can show that
∑I

i=1 δ
∗
i,j2µi,j2 ≤ 1 as follows:

I∑
i=1

δ∗i,j2µi,j2

=
I∑
i=1

γj1
γj1 + γj2

δ∗i,j1µi,j2

=
γj1

γj1 + γj2

I∑
i=1

δ∗i,j1µi,j2

=
γj1

γj1 + γj2

I∑
i=1

δ∗i,j1µiγj2

=
γj2

γj1 + γj2

I∑
i=1

δ∗i,j1µiγj1

=
γj2

γj1 + γj2

I∑
i=1

δ∗i,j1µi,j1

≤ 1 since
γj2

γj1 + γj2
≤ 1 and

I∑
i=1

δ∗i,j1µi,j1 ≤ 1.

For all other machines j,

I∑
i=1

δ∗i,jµi,j =
I∑
i=1

δ∗i,jµi,j ≤ 1.

Hence, constraint (2b) holds.
Finally, note that δ∗i,j ≥ 0 for all j and hence (2c) is satisfied.
The new objective function is given by:

∑
j 6=j1,j2

I∑
i=1

µiγjβjδ∗i,j +
I∑
i=1

µiγj1βj1δ
∗
i,j1 +

I∑
i=1

µiγj2βj2δ
∗
i,j2 (4)

By substituting δ∗i,j, i = 1, . . . , I, j = 1, . . . , J , in (4), the resulting ob-
jective function value is:

19

∑
j 6=j1,j2

I∑
i=1

µiγjβjδ∗i,j +
I∑
i=1

µiγj1βj1
γj1

γj1 + γj2
δ∗i,j1

+
I∑
i=1

µiγj2βj2
γj1

γj1 + γj2
δ∗i,j1

=
∑
j 6=j1,j2

I∑
i=1

µiγjβjδ∗i,j

+ (γj1βj1
γj1

γj1 + γj2
+ γj2βj2

γj1
γj1 + γj2

)
I∑
i=1

µiδ
∗
i,j1

=
∑
j 6=j1,j2

I∑
i=1

µiγjβjδ
∗
i,j + βj1γj1

γj1 + (βj2/βj1)γj2
γj1 + γj2

I∑
i=1

µiδ
∗
i,j1

Since βj2/βj1 ≤ 1, it follows that

γj1 + (βj2/βj1)γj2
(γj1 + γj2)

≤ 1.

Thus, the corresponding value of the new objective function (4) is no greater
than that of (3). Hence, the constructed solution is an optimal solution
contradicting our original assumption and the proof is complete. ♦

The following proposition is a direct implication of the lemma.

Proposition 1. As the value of c is decreased, the Power-Aware LPAS turns
machines off in descending order of βj. Conversely, as the value of c is
increased, the Power-Aware LPAS turns machines on in ascending order of
βj.

As a direct implication, we propose a Power-Aware policy that turns on
and off machines in the order of β and we call this policy the ordered-β
policy. The ordered-β policy uses the following parameters: the window
size (WS), the target waiting time (W) and the threshold (T). The window
size determines the decision points. After every WS time units, the scheduler
computes the average waiting time for the tasks that are executed during the
interval. The parameters W and T determine when a new machine should
be added to those being employed or a working machine should be put in

20

1
λ∗ 1 2 3 4 5 6 7

0.9418 1 1 1 1 1 0.83 1
0.856 1 1 1 1 1 0.58 1
0.7705 1 1 1 1 1 0.3301 1
0.6849 1 1 1 1 1 0.08 1
0.5993 1 1 1 1 0.8584 0 1
0.5137 1 1 1 1 0.6499 0 1
0.428 1 1 1 1 0.4417 0 1
0.3425 1 1 1 1 0.2333 0 1
0.2568 1 1 1 1 0.025 0 1
0.1712 1 0.6333 1 1 0 0 1
0.08556 1 0.2167 1 1 0 0 1
0.000856 1 0 0.325 1 0 0 1
0.000856 0.75 0 0 0 0 0 1
0.000856 0 0 0 0 0 0 1

Table 5: The Load on each machine for different system loads

Figure 3: Simulation results for the system in Section 5.2 - The more homogeneous case

a low power state. A new machine is added to those employed when the
average waiting time is above (1− T)W and an additional machine is put in
a low power state when the average waiting time is below (1− 2T)W , where
0 < T < 1. The machines to be added to those employed or to be put in
a low power state are chosen according to the ordering of βj, as explained
earlier.

The ordered-β policy only requires knowledge of the ranking of the ma-
chines in terms of their power efficiencies. It does not require the task arrival
or execution rates of the machines, nor their power consumptions. This is

21

Policy c ∆ W
Ordered-β - 40.38% 0.177± 0.33%

Power-Aware LPAS λ∗ = 2.3360 40.93% 0.167± 0.13%
Power-Aware LPAS midpoint= 1.6680 57.13% 0.20± 0.32%

PME - 0.009% 0.164± 0.10%
FCFS - 0% 0.163± 0.11%

Table 6: Simulation Results for the Structured System in Section 6

extremely useful in systems where obtaining such information is difficult or
there is a large degree of uncertainty.

Under arrival rates α = [6.25 6 6.25 6], we simulate the structured system
defined above using different scheduling policies. The simulation results are
given in Table 6. For the ordered-β policy, we use the following values for the
parameters: WS = 25, W = 0.2 and T = 0.1. The results show significant
energy saving achieved by the ordered-β policy. Furthermore, performance
is comparable to that of the Power-Aware LPAS at c = λ∗ which requires
knowledge of the arrival and execution rates as well as the machine power
consumptions.

The ordered-β policy also works well for almost structured matrices. For
example, consider a variation on the structured system above such that µi,j =
γjµi(1 + εai,j) and Mi,j = βjµi,j(1 + εbi,j), i = 1, . . . , I, j = 1, . . . , J . The
inaccuracy levels εai,j and εbi,j are sampled from the uniform distribution on
the interval [0.5,−0.5]. One particular pair of execution rate and busy power
consumption matrices is given as follows:

µ =

0.52 1.79 5.61 0.29 6.13 2.92 14.60
2.74 3.04 11.04 0.24 8.42 9.73 25.91
7.17 15.11 21.42 0.60 34.78 34.82 57.21
3.57 11.37 8.88 0.79 22.84 15.64 37.07

and

M =

1.61 20.99 45.98 1.87 83.32 50.87 18.99
8.49 35.52 90.55 1.55 114.57 169.24 33.68

22.23 176.83 175.63 3.89 473.05 605.92 74.38
11.06 133.05 72.86 5.17 310.58 272.06 48.19

respectively.

22

Policy c ∆ W
Ordered-β - 77.78% 0.229± 0.78%

Power-Aware LPAS midpoint= 2.0263 74.07% 0.217± 0.60%
FCFS - 0% 0.182± 0.14%

Table 7: Simulation Results for the Non-Exact Structured System in Section 6

To find the machine power efficiencies (βj), the following procedure can be
used. First, an approximation to the closest structured matrix to µ is found
by applying singular value decomposition (see Strang [31]). Singular value
decomposition is a factorization of an m×n matrix in the form USV T where
U is an m-by-m unitary matrix, S is an m-by-n diagonal matrix with non-
negative real numbers on the diagonal, and V T (an n-by-n unitary matrix)
is the conjugate transpose of V .

Based on the Eckart-Young theorem [10], a matrix A can be approximated
by a rank r matrix Ã, where Ã = US̃V T , in which S̃ is the same matrix as S
except that it contains only the r largest singular values (the other singular
values are replaced by zeros). By using this theorem, the service rate matrix
µ can be approximated by a rank 1 matrix µ̃. The resulting matrix µ̃ is the
closest structured matrix to µ.

The machine power efficiencies can then be found using linear regression
(see Autar and Kalu [19]). βj is set to the slope of the straight line that
best fits the data points (Mi,j, µ̃i,j), i = 1, . . . , I. Several linear regression
methods exist. The simplest method is the ordinary least square method
which minimizes the sum of squared residuals [19].

By applying singular value decomposition, we get the following:

U =

−0.17 −0.48 0.27 −0.82
−0.30 −0.81 −0.19 0.47
−0.80 0.31 −0.47 −0.18
−0.48 0.15 0.82 0.28

 ,

S =

99.68 0 0 0 0 0 0

0 8.89 0 0 0 0 0
0 0 7.05 0 0 0 0
0 0 0 1.45 0 0 0

 ,
and V =

23

−0.08 0.04 −0.12 0.41 0 −0.59 −0.68
−0.19 0.35 0.29 0.31 −0.35 0.63 −0.38
−0.26 −0.40 −0.50 −0.50 −0.20 0.25 −0.42
−0.01 0 0.06 −0.01 0.90 0.32 −0.28
−0.43 0.52 0.31 −0.60 0.05 −0.29 −0.08
−0.39 0.45 −0.68 0.26 0.11 0.06 0.30
−0.74 −0.49 0.30 0.26 0.06 −0.05 0.21

.

Setting

S̃ =

99.68 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ,
we obtain µ̃ = US̃V T =

1.39 3.12 4.26 0.16 7.04 6.44 12.27
2.56 5.75 7.86 0.30 12.97 11.88 22.61
6.76 15.16 20.73 0.79 34.22 31.33 59.64
4.07 9.13 12.49 0.47 20.61 18.87 35.92

which is the closest rank 1 matrix to µ. Applying linear regression, we obtain
the machine power efficiencies: β1 = 3.1, β2 = 11.7, β3 = 8.2, β4 = 6.5, β5

= 13.6, β6 = 17.4, and β7 = 1.3.
The results of simulating this system under arrival rates α = [6.25 6 6.25 6]

are shown in Table 7. For the ordered β-policy, the following parameters are
used: WS = 100, W = 0.3 and T = 0.1. The results show that the energy
saving achieved by the ordered-β policy is still comparable to that achieved
by the Power-Aware LPAS policy.

7. Related Work

Energy conservation policies for clusters have been the focus of many
researchers. Typically, these policies aim to reduce energy consumption while
meeting certain performance requirements. Two basic power management
mechanisms dominate the literature: Dynamic Voltage Scaling (DVS) and
machine Vary-On/Vary-Off (VOVO).

The Dynamic Voltage Scaling mechanism uses the fact that power con-
sumption P is proportional to the square of the CPU operating voltage V

24

i.e., P ∝ V 2 (Elnozahy et al. [11] and Mudge [24]). This relation shows that
reducing the CPU operating voltage by half will reduce power consumption
by a factor of four. DVS adjusts the CPU operating voltage V by adapt-
ing the maximum CPU operating frequency f according to the intensity of
the workload. The relationship between V and f is linear, i.e., V ∝ fmax
[11]. By setting the values of the operating voltage and the maximum op-
erating frequency to the lowest values such that the system can still meet
performance requirements, the total energy consumption is reduced.

In the machine Vary-On/Vary-Off mechanism, sometimes referred to as
the dynamic cluster configuration mechanism, a subset of the available ma-
chines are put in a low power state or even completely turned off when the
system is not fully utilized [11]. Policies which use the VOVO mechanism
should ensure that performance is not severely impacted by keeping enough
machines in a normal operation mode.

In this section, we give an overview of several energy conservation policies.
First, we look at policies designed for homogeneous clusters. Then, we look
at policies designed for heterogeneous clusters.

7.1. Policies for Homogeneous Clusters

Five policies are proposed in [11]. Independent Voltage Scaling and Co-
ordinated Voltage Scaling are two policies that employ the DVS mechanism
in order to reduce the power consumption of each machine. In Indepen-
dent Voltage Scaling, each machine independently adjusts its CPU operating
frequency according to its load. In Coordinated Voltage Scaling, the CPU
operating frequency of each machine is set to a desired average. The third
policy uses the VOVO mechanism. Two other policies combine DVS and
VOVO mechanisms in order to achieve more energy saving. The first one is
a combination of VOVO and Independent Voltage Scaling. The second one
is a combination of VOVO and Coordinated Voltage Scaling. The main idea
is to adjust the number of operating machines based on a global (target)
CPU operating frequency. To clarify, if the global CPU operating frequency
increases above a threshold we turn a machine on and if it decreases below
this threshold then a machine is turned off.

In Pinheiro et al. [25], the authors propose a policy which uses a dynamic
cluster configuration mechanism and is based on control theory. Their ap-
proach is to dynamically turn machines on and off while keeping performance
degradation within acceptable levels. Acceptable performance degradation

25

levels are determined by the system administrator or the user. A machine is
turned off if the performance degradation is judged to be acceptable.

In Sharma et al. [30], the authors consider a homogeneous cluster with
different classes of arriving tasks. The authors show how to lower energy
consumption while meeting task deadlines. Both DVS and VOVO mech-
anisms are used. Meeting task deadlines is achieved by using a technique
called synthetic utilization. The CPU operating frequency of each machine
is adjusted based on the value of the synthetic utilization. Eventually, if
the value of the synthetic utilization is below a certain threshold, the CPU
operating frequency of each machine is decreased and vice versa.

Another policy is presented in Elnozahy et al. [12]. The authors propose a
policy that combines DVS and VOVO mechanisms. In the policy, a subset of
the machines are put in a low power state for specified periods of time called
the batching periods. The response time can be controlled by adjusting the
batching period.

In Hermenier et al. [15], a constraint programming approach is used to
determine migration strategies that have as one of their goals to reduce the
number of nodes that are required to be busy.

7.2. Policies for Heterogeneous Clusters

The energy conservation policy in [17] attempts to minimize the total
energy consumption-throughput ratio according to predicted load in a het-
erogeneous cluster. To accomplish this, the authors develop an optimization
procedure to find the optimal request distribution policy for the cluster. An-
alytical models are required to compute the predicted throughputs and total
energy consumption. The Power-Aware LPAS policy does not require such
analytical models.

In Rusu et al. [28], the authors present a policy for reducing energy con-
sumption in heterogeneous clusters while meeting certain requirements on the
quality of service (QoS). The proposed policy uses a dynamic cluster config-
uration mechanism that turns machines on and off according to the system
load while ensuring that the QoS requirements are achieved. In addition,
they examine the use of the DVS mechanism.

The authors in Guerra et al. [14] propose a policy that applies both DVS
and VOVO mechanisms in heterogeneous clusters. A linear-programming
formalism is employed to find the optimal CPU operating frequency for each
machine.

26

Our work can be seen as taking the VOVO mechanism, but using an LP
formulation to initially identify an efficient matching of workload to resources
under high system loads. A second LP is then used to identify where VOVO
may be used to gain savings as we back off from the maximum system load.
This separation of concerns appears to be a novel approach to the problem.

8. Conclusion

Our main contribution is the proposition of a new power-aware schedul-
ing policy for heterogeneous clusters. This policy seeks to provide significant
energy saving by solving two allocation LPs. The first LP is solved to find
the maximum system capacity, while the second is solved to find an optimal
allocation of the machines to minimize the energy consumption. Our sim-
ulation results demonstrate that significant energy saving can be achieved
if compared to a system that uses other policies. For structured systems,
we also suggest a policy which only requires the machine power efficiencies
and results in competitive energy saving and performance. In the future, we
plan to implement the proposed policies on a real heterogeneous cluster in
order to validate the simulation results. We note that there has been little
work done on characterizing machine power consumption for heterogeneous
systems. Hence, we believe that there is a need to develop a benchmark
framework which can be used to compare the different policies in terms of
performance and energy consumption. Finally, further investigation on de-
termining (near) optimal values of c would be worthwhile.

References

[1] Issam Al-Azzoni and Douglas G. Down. Dynamic scheduling for hetero-
geneous Desktop Grids. In Proceedings of the 9th International Confer-
ence on Grid Computing, pages 136–143, 2008.

[2] Issam Al-Azzoni and Douglas G. Down. Linear programming-based
affinity scheduling of independent tasks on heterogeneous computing
systems. IEEE Transactions on Parallel and Distributed Systems,
19(12):1671–1682, 2008.

[3] Hadil Al-Daoud, Issam Al-Azzoni, and Douglas G. Down. Power-aware
linear programming based scheduling for heterogeneous computer clus-
ters. In Proceedings of The Work in Progress in Green Computing Work-
shop, 2010.

27

[4] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski. Fault-
aware scheduling for Bag-of-Tasks applications on Desktop Grids. In
Proceedings of the 7th International Conference on Grid Computing,
pages 56–63, 2006.

[5] Robert Armstrong. Investigation of effect of different run-time distri-
butions on SmartNet performance. Master’s thesis, Naval Postgraduate
School, 1997.

[6] Ricardo Bianchini and Ram Rajamony. Power and energy management
for server systems. Computer, 37(11):68–74, 2004.

[7] Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud
Legrand. Heuristics for scheduling parameter sweep applications in
grid environments. In Proceedings of the 9th Heterogeneous Comput-
ing Workshop, pages 349–363, 2000.

[8] Jeffrey S. Chase and Ronald P. Doyle. Balance of power: Energy man-
agement for server clusters. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS), pages 163–165, 2001.

[9] Patricio Domingues, Paulo Marques, and Luis Silva. DGSchedSim: A
trace-driven simulator to evaluate scheduling algorithms for desktop grid
environments. In Proceedings of the 14th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, pages
83–90, 2006.

[10] Carl Eckart and Gale Young. The approximation of one matrix by
another of lower rank. Psychometrika, 1(3):211–218, 1936.

[11] E. N. Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy-
efficient server clusters. In Proceedings of the Second International Work-
shop of Power-Aware Computer Systems, pages 179–196, 2002.

[12] Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. En-
ergy conservation policies for web servers. In Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and Sys-
tems. USENIX Association, 2003.

28

[13] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithm
for dynamic speed-setting of a low-power CPU. In Proceedings of the
Conference on Mobile Computing and Networking, pages 13–25, 1995.

[14] Raphael Guerra, Julius Leite, and Gerhard Fohler. Attaining soft real-
time constraint and energy-efficiency in web servers. In Proceedings of
the Symposium on Applied Computing, pages 2085–2089, 2008.

[15] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and
Julia Lawall. Entropy: a consolidation manager for clusters. In Proceed-
ings of the 2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE ’09), pages 41–50, 2009.

[16] Yu-Tong He. Exploiting Limited Customer Choice and Server Flexibility.
PhD thesis, McMaster University, 2007.

[17] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira Jr., and
Ricardo Bianchini. Energy conservation in heterogeneous server clusters.
In Proceedings of the Symposium on Principles and Practice of Parallel
Programming, pages 186–195, 2005.

[18] Alexandru Iosup, Ozan Sonmez, Shanny Anoep, and Dick Epema. The
performance of bags-of-tasks in large-scale distributed systems. In Pro-
ceedings of the 17th International Symposium on High Performance Dis-
tributed Computing, pages 97–108, 2008.

[19] Autar Kaw and Egwu Kalu. Numerical Methods with Applications. 2008.

[20] Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource man-
agement for rapid application turnaround on enterprise desktop grids.
In Proceedings of the Conference on Supercomputing, 2004.

[21] Leonidas Kontothanassis and David Goddeau. Profile driven scheduling
for a heterogeneous server cluster. In Proceedings of the 34th Inter-
national Conference on Parallel Processing Workshops, pages 336–345,
2005.

[22] I.C. Legrand, H.B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras,
M. Toarta, and C. Dobre. MonALISA: an agent based, dynamic ser-
vice system to monitor, control and optimize grid based applications.

29

In Proceedings of the International Conference on Computing in High
Energy and Nuclear Physics, 2004.

[23] Hui Li and Rajkumar Buyya. Model-driven simulation of grid scheduling
strategies. In Proceedings of the 3rd International Conference on e-
Science and Grid Computing, pages 287–294, 2007.

[24] Trevor Mudge. Power: A first class design constraint. Computer, 34:52–
57, 2000.

[25] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver
Heath. Dynamic cluster reconfiguration for power and performance. In
Compilers and Operating Systems for Low Power, pages 75–93. Kluwer
Academic Publishers, 2003.

[26] Karthick Rajamani and Charles Lefurgy. On evaluating request-
distribution schemes for saving energy in server clusters. In Proceedings
of the International Symposium on Performance Analysis of Systems
and Software, pages 111–122, 2003.

[27] Imran Rao and Eui-Nam Huh. A probabilistic and adaptive schedul-
ing algorithm using system-generated predictions for inter-grid resource
sharing. Journal of Supercomputing, 45(2):185–204, 2008.

[28] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, and Aaron Wat-
son. Energy-efficient real-time heterogeneous server clusters. In Pro-
ceedings of the Real-Time and Embedded Technology and Applications
Symposium, pages 418–428, 2006.

[29] Sena Seneviratne and David C. Levy. Task profiling for load profile
prediction. Future Generation Computer Systems, 27(3):245–255, 2011.

[30] Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and
Zhijian Lu. Power-aware QoS management in web servers. In Proceedings
of the 24th International Real-Time Systems Symposium, pages 63–72,
2003.

[31] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge
Press, 2009.

30

[32] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather ser-
vice: a distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems, 15(5-6):757–768,
1999.

31

