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Abstract

We derive asymptotic expressions for the distribution of the total queue length in a polling
model with two classes of customers and unequal service rates. The server employs a schedul-
ing policy that alternately visits each queue, with the maximum number served in each visit
potentially being different for each queue. We provide sufficient conditions for the behaviour
to lie in one of two regimes, depending on the system parameters. The first regime, called
codominant, has both queues tending to grow as the total system size grows. The single-class
dominant regime has only one queue tending to grow as the total system size grows. Finally,
we present numerical results that demonstrate that the developed conditions are only sufficient
and comment on the implications of this observation.

1 Introduction

We consider a single server, k;-limited polling model with two customer classes. Arrivals of class
1 occur according to a Poisson process of rate \;. The service times for a customer of class i are
exponentially distributed with rate u;. By k;-limited polling model, we mean that when a server
visits class 4, it serves k; customers of class i (if possible) before switching to the other class. Service
is non-preemptive and non-idling, so the server will not idle at an empty queue if there are customers

waiting at the other. Without loss of generality, we will assume that the classes are labeled such



that A\1/k; > Ao/ky. The k;-limited policy is a natural generalization of the round-robin policy,
i.e. a policy in which the server alternately serves each queue (as long as there is a customer to
serve). The round-robin policy enforces a notion of fairness. Generalizing to a different number of
customers served on each visit to a queue allows a system designer to place more importance on a
particular queue. Such policies have seen applications in communications [1, 5] and logistics [15].

There is a huge literature relating to polling systems, a testament to their usefulness. Two sur-
veys, that of Takagi [16] and a more recent one by Vishnevskii and Semenova [18] are recommended.
With this wealth of literature, however, the problem of determining the invariant (or steady-state)
distribution for our model is one that remains open. In this work, we are interested in computing a
function of the invariant distribution: the tail asymptotics of the invariant distribution of the total
queue length. In other words, we are interested in exactly computing the probability that the total
queue length is large. This is of interest when one is concerned with rare, potentially catastrophic
events. To be precise, we would like to calculate constants ¢ and « such that the probability that
the total number in system is equal to £ is asymptotically equal (as ¢ goes to infinity) to ca~.
The rate (or rough asymptotics) for the system is given by 1/a, while if one can calculate ¢, the
expression ca~! is known as the ezact asymptotics.

This work continues studies begun in [3, 4]. The main difference here is that [3, 4] assumed that
the service rate was independent of the customer class. In that case, it is easy to see that the total
queue length behaves as an M/M/1 queue, so the focus is on more detailed behaviour, such as the
relative proportion of the different customers when a large total queue length is reached. Here, we
remain interested in the detailed behaviour, however in this case it is also not obvious what the rate
will be. So, while the problem is more difficult than that in [3], we find that in particular, the work

in [2, 3, 4] makes the analysis tractable so that the techniques from McDonald [14] (elaborated on



in Foley and McDonald [10]) can be applied. Over the course of our work, we find an interesting
adaptation needs to be used. We in fact apply the methodology from [10, 14] twice, in order to
sharpen our results. This technique may be of independent interest.

Besides the work undertaken in this research program ([3, 4]), the most relevant work is that
of Delcoigne and De La Fortelle [7]. They identify the local rate function for a scaled version
of the queue length process in a general polling model. The model in [7] is different than that
considered here in that after each service completion, the server randomly chooses (according to
some distribution) the next queue to serve. So, unfortunately, we cannot leverage their work on
identifying the rate function to aid in finding the rate for the system that we consider. Other work
that has been done for large deviations in polling models are in Choudhury and Whitt [6], Duffield
[9], and Ioresh [12], but all of these study a different kind of service policy (exhaustive or gated
types).

The organization of the paper is as follows. Section 2 constructs a Continuous Time Markov
Chain model for the system. Section 3 gives the main results, while Section 4 provides the proofs
of the main results. Section 5 provides numerical results that explore the issue of whether the pa-
rameter space is completely covered (it is not) and how the solution varies as particular parameters

change. Section 6 provides final thoughts.

2 Continuous Time Markov Chain model

A Continuous Time Markov Chain (CTMC) for this system is given by

Q(t) = (Qu(t), Q2(t), Z(2), I(t)),

where Q;(t) is the number of waiting customers of class i (including the one in service, if applicable),

Z(t) is the class being served (we will arbitrarily set this to 1 if Q1(t) + Q2(t) = 0), and I(t) is



the number of service completions during the current server visit (we will assume that if this
reaches k; — 1 during a visit to class ¢ and the other queue is empty, that a service completion at
class i will leave I(t) unchanged at k; — 1). The state space for Q(t) is S = Z4 x Z4 x {1,2} x
{0,...,max(ky, ko) — 1}. We will look at the uniformized chain, Q[n], where we assume (without
loss of generality) that time has been rescaled such that A; + Ay + 1 + p2 = 1. We will denote the
transition kernel for Q[n]| by K, where K (x,y) gives the probability of moving in one step to state
y, given that the chain started in state x. For example, if z = (4,7,2, k), with i,7 > 0, ko > 1, and

k< ko — 2,

K(z,(i+1,7,2,k) = A\
Kz, (i,j+1,2,k) = X
K(ﬂj‘,l’) =

K(z, (1,7 — 1,2,k +1)) = peo

Using a simple workload argument, the existence of a unique invariant distribution for Q[n], g, is

guaranteed if the load on the system is less than one, i.e.

pi=A/p1+ A2/ p2 < 1.

We will assume that this stability condition holds. Note that while the condition for stability is
known, there is no known explicit expression for mg. (One can compute generating functions for
the invariant distribution, see the work of Lee [13], for example.)

In the next section we give expressions for the probability that the total system size is large, i.e.
we are interested in the asymptotic behaviour of the event Fy = {Q1[n] + Q2[n| = £}. One could

get similar results for related events, such as the probability that a particular queue length is large.



3 Main Results

In this section, we provide the main results, sufficient conditions and expressions for the exact
asymptotics under different parameter combinations. In particular, Section 3.1 identifies when
the exact asymptotics are determined due to the influence of both classes of customers, while
Section 3.2 discusses the case when the exact asymptotics are determined due to the influence of

c;lass 1 customers only.

3.1 Codominant case

The goal of this section is to provide a sufficient condition for the case when the exact asymptotics
for the total queue length are determined by state trajectories where both queues are large. Here,
the exact asymptotics rely on three values: «, § and -, which depend on the system parameters in
a non-trivial fashion. Unfortunately, it is difficult to give direct intuition for these constants, other
than that they are required to construct a harmonic function for Q[n].

First, we need to solve the following for o. There are in general multiple solutions and it is easy

to see that one of these is o = 1.

« «

k‘l k2
" <_> <_> (1= e = Ao — i)™ (1= Mo = g — )" (1)
K1 12

Given a solution «, we also define the values:

ﬂ = %(1 — )\104 - )\204 - ,ul) (2)
N 3)

Note here that it cannot be the case that there is more than one solution of (1)-(3) satisfying (4)
as this would contradict the uniqueness of the invariant distribution 7g. Of course, there may be

no valid solution.



If there exist «, 3, v satisfying (1)-(3) such that o > 1 is real-valued and

A2 <ﬁ + i) > L] (4)

Buz v a?
then we will call the system codominant. In Section 4.1, we provide a more detailed discussion on
solutions to (1)-(3). Here, F} is reached by both queue lengths getting large. For such systems, the
asymptotic behaviour is characterized in the following theorem. For arbitrary functions f and g,
the notation f ~ g denotes limy_,o f(¢)/g(¢) =1 and Ty = min{n > 0 : Q1[n] + Q2[n] = ¢} is the

first time that F} is reached.

Theorem 1 For a codominant system

(i)

E[TAQ[O] = (07 0’270)] ~ O/g_l

where g is given in (13). Note that g may be obtained by fast simulation, i.e. we do not need

to estimate events with low probability.

(ii)

= = kYoot kghe B2 s
Pro{@Qin] + Q2[n] = £, Z[n] = 1,I[n] =k} ~ o™ "y "3 I +k‘1ﬁ,u2f/d17

_ _ — 1 Ltk TH1 7
Pro{Quln] + Qaln] = €. Z[n] = 2. 1[n] = k} ~ ™3~ 2 f

where

i — ki(aX) + ade —ypr/a)Bus  ka(a + aly — Bue /o)y
kaypa + k1 Bue koyp1 + k1 Bue

and f is given in (12) and may be obtained by fast simulation.

(iii)

)

lim <Q1[Te] Qz[ﬂ]) - -
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3.2 Class one dominant case

As in the previous section, we are interested in determining an exact asymptotic expression for
the total number of customers in the system, this time for the case when the asymptotics are
determined by the state trajectory where there are a large number of class one customers and a
small number of class two customers. As in the codominant case, this involves three values: «, (8
and -y, all non-trivial functions of the system parameters. Here, a two-stage procedure is required.
We also need to find additional values o/, ' and 7' to define our conditions.

Step 1. Solve the following for o’:

o k2 N 1\" N
1=(— (A2 + pg — A2d) — (A2 + p1 — Aoad)
U2 H1

Given a solution o/, define

1

B = —(g+ p — Aa)
M1

7/ _ ﬁ/—k‘l/kz

If there is a solution such that o/ > 1 is real-valued and

kQO/ kl )
Ao < + > k
T\ T s ?

then call the resulting o/, o*.

Step 2. Solve the following for a:

o (e — Apn) + a2 (w1 — papie + poda — o + i3+ Mpa) + a(pnpo — pf — pa + pape) + 3 =0 (5)

Given a solution «, define

1

ﬁZA—(l—Ma—m—m/a) (6)
20



If there exists a solution to (5) and (6) with o > 1 real-valued satisfying

k k k
A28 (ﬁ + —1> < =3 (7)
w2 251 (]
2 2)\ 2)\
b2 ok 1 (8)
2 H1
g > 1/a*
we will call the system class one dominant.
Theorem 2 For a class one dominant system
PWQ{QI[TL] + Q2 [’I’L] = é? Ql[n] = j7 Z[TL] = k? I[TL] = m} ~ O[_Zﬁ_j(p(j7 k) m)g/d~17 (9)

where g may be obtained by fast simulation,

dy = kl_a ( aA _ 1>
P \1— 2820/
and @ is defined in Section 4.2.

Note that there can be only one solution of (5) and (6) satisfying the class one dominant conditions
and also that a system cannot be both codominant and class one dominant, due to the uniqueness
of the invariant distribution mg. Also note that in Theorem 2, we cannot provide an explicit
expression for ¢. However, it is useful to note that to evaluate (9), both g and ¢ can be estimated
by a fast simulation, i.e. we do not need to estimate events with small probabilities.

Note that there is no corresponding class two dominant condition (i.e. only queue two reaches
a large level). The reason is that our assumption that \;/k; > Ay/ke implies that when queue 2
grows large, with high probability queue 1 gets large (as the queue length at 2 goes to infinity, this

probability goes to 1, see [2]). Thus we only consider the class one dominant or codominant cases.



4 Proofs

4.1 Codominant case (Theorem 1)

We use the methodology presented in Foley and McDonald [10]. To do so, we first identify a
boundary A that corresponds to states where the queues that we expect to be large when reaching
F; are empty. We construct a series of chains using the transition kernel for Q[n], K, the boundary
A and a harmonic function for one of these constructed chains.

The first step is to construct a chain W from @ such that its first component is at least £ on
Fy. Here, we use Win| = (Q1[n] + Q2[n],Qi[n], Z[n], I[n]). At this point, we construct the free
chain, W°[n] = (W>[n], W>[n]), from W and A by extending the transition structure of W on
S/A to the state space S = Z x Z x {1,2} x {0,...,max(ky,k2) — 1} such that if we define
W>[n] = (Q°[n] + QX [n], Q5°[n]) and W>®[n] = (Z>[n], I[n]), then W[n] is Markov additive,
with W[n] the Markovian part and W[n] the additive part. Here, the transition kernel for
Wee, K3y is simply one where the server serves exactly k; customers at each visit to class i, with
a negative number of customers allowed at each class. We need to construct two more chains, the
so-called twisted free chain and a twisted basic chain. The first is standard from [10], the second
was introduced in Chang and Down [4] (although the terminology twisted basic chain was not
introduced in [4]). The idea is that we modify the underlying distribution such that the rare events
are common. We can then use the Markov additive structure to derive appropriate expressions for
the asymptotic behaviour (this is all in [10]).

The appropriate twist requires finding a harmonic function of the form
h(z) = a®a(z, k)

for the W chain and where the state is x = (%1, &2, 2, k). If welet a(1,k) = v*8*2 for0 < k < k1 —1



and a(2,k) = B* for 0 < k < kg — 1, then by enumerating K*°h(x) = h(x) over all possible states,

we get that («, 3,7) must satisfy

a\" [ a\*
|- <Z> <E> (1= Mo — Ao — 2)" (1 — M — Apcr — pig ) (10)
(6%
B = E(l — A — Ao — fu1)
v = pR/k

Characterizing solutions to this seems a difficult task. For example, the number of solutions to (10)
with real-valued a > 1 can vary. For example, Ay = 0.1692, Ao = 0.0758, p1 = 0.6217, po = 0.1332,
k1 = 8, ko = 7 yields no real-valued roots a > 1, while Ay = 0.0926, Ay = 0.0573, p; = 0.6396,
po = 0.2105, k1 = 3, ko = 2 yields three real-valued roots o > 1. The twisted free chain, W>[n] is

described by its kernel, K*°(z,y), given by

K> (x,y) = K=(z,y)h(y)/h(z). (11)

We will postpone the description of the twisted basic chain, but at this point, we note that the
twisted free chain can be thought of as taking the free chain and multiplying the arrival rates Ay
and Ay by «, the service rate ps by 3/« and the service rate puy by v/a.

We are now ready to show Conditions C.1-C.12 in [10] (in the interest of space, we do not repeat
all of these conditions). Conditions C.1-C.5 have been satisfied by the construction given above.

For Condition C.6, if we let (4, k) be the invariant probability for W>[n], we see that if it

10



exists it satisfies the balance equations

vo(lk) = vp(l,k—-1), k=1,...

Yurp(1,0) = Buap(2, ke — 1)
Buzp(2,0) = yup(l,kr —1)

> el k) =1
7.k

The unique solution to this set of equations is

Bz
Lk = — PF2 oy,
#(L k) kaypr + k1Bp2
0(2,k) = S 0,

koypr + k1 Bue’

akl_l
kg —1
k-1
ke — 1

We next move to Condition C.8. This is equivalent to showing that with positive probability,

both queues for the twisted free process go to infinity. Using Theorem 3 and Corollary 4 of Chang

and Lam [2] exactly as in Lemma 1(ii) of [4], we see that as (4)

is satisfied for ¢ = 1, 2, both queues

in the twisted free process go to infinity with probability one. This also immediately yields C.7,

which requires that

d = > @@ EWTPY>[0] = i

zes

= (A1 + X2 — fi)k1o(1,0) + (A1 + Aa — fi2)kagp(2,0)

is finite and strictly positive. It is trivially finite and if it were not positive, it would contradict

C.8. Condition C.9 is trivially satisfied as S is finite.

At this point, we construct the twisted basic chain W. This is done by using the same twist

as in (11) on the original chain W. Note that the resulting kernel may not define a Markov chain

11



(as the function h is not harmonic for W), so we adjust the kernel by adding self-loops to give a
probability kernel. If these adjustments are made on a finite number of states, then we can use the
methodology introduced in [4]. Here, it is easy to see that the only state at which A is not harmonic
for W is (0,0,2,0). Condition C.10 (typically the most difficult condition to check) follows from
Theorem 3 in [4], Condition C.11 follows as in [4] and C.12 follows from the fact that S is finite.

In order to complete the proof, we define the constants f and ¢ used in Theorem 1. Here,

fo= Y ma)h(z)H(z) (12)

TEA

g = [y w0,2)/h(z) (13)

z€8

where H(z) is the probability that the twisted free chain never hits A, starting at x, p is the
stationary distribution of (W§°[7,°]—£, W>®[7,]), and T, is the first time that the first component
of the twisted free chain is £. Note that f and g can be evaluated by a fast simulation.

Part (i) of Theorem 1 follows from Theorem 6 of [10], (ii) from Theorem 5 of [10] and the
expression for ¢(7, k), and (iii) from Corollary 2 of [10]. O

4.2 Class one dominant case (Theorem 2)

We perform a similar construction as in the previous section, with the main difference being that
the boundary A, and hence the subsequent chains, are changed. In this case, A corresponds to
removing the constraint that queue 1 is empty, i.e. for the free chain, we will allow exactly ki
customers to be served during each visit to class 1.

Here, we have Wn] = (Q1[n] + Qa[n], Q2[n], Z[n], I|n]) and W[n] = (W°[n], W[n]) where
W>[n] = (Q°[n] + Q°[n]), W=[n] = (Q3°[n], Z°°[n], I°°[n]) and W evolves on S®° = Z x Z, X
{1,2} x{0,...,max(k1, k2) — 1} (note the changes from the previous section: as we expect Fy to be

reached through queue 1 only, we include the queue length at class 2 in W, with a corresponding

12



adjustment to the state space).

To construct the twisted free chain, we search for a harmonic function of the form
h(z) = a™a(j, 2, k)

for the W chain. Letting a(j,2,k) = 37, by evaluating K°°h(z) = h(x) over all possible states,

we see that (a, ) must satisfy

0 = (e — Apa) + (1 — popr + pads — pio + 113 + Apa)

talpopn — 43 — p1 + popr) + 43

1
B = /\2—a(1 —)\1@—#2—M1/04)

As in the previous section, the twisted free chain, WW*[n| has transition kernel

K2 (2, y) = K> (x, y)h(y)/W(x),

which is equivalent to multiplying Ao by a8, A1 by «, and dividing p1 by « and us by af. Let
these modified rates be given by A2, A1, i1, and [ig, respectively.
Once again Conditions C.1-C.5 in [10] have been satisfied by the above construction.
Condition C.6 is equivalent to showing the stability of queue 2 in the twisted free chain. Using
Theorem 3 and Corollary 4 of [2], we have that queue 2 is stable (and thus a stationary probability

@ for Win)| exists) if

- [k k
)\2 <~—1 + ~—2> < ]{72.
H1 o M2

(This has the physical interpretation that the maximum expected number of arrivals in the longest
server cycle is less than the number of services in that cycle.) This is equivalent to (7). Using the

same results from [2], (8) yields instability of class 1, which implies C.7 and C.8. In addition d; is

13



simply the expected change in the total queue length in a cycle, which is

H1 1—)\2//L2

which must be positive as queue 1 is unstable for the twisted free process.
We now turn to Condition C.9. We must show that

> p(@)/a(#) < oc.

€8
It is not hard to see that proving this is related to the asymptotics of We. To do this, we apply
the methodology of [10] a second time, with a goal of identifying the rough asymptotics of the
W chain. The W chain describes a system in which a server serves a queue until either ks
services have been performed or the queue becomes empty. This is then followed by the server
going on vacation for an Erlang distributed period of time, with k; stages, each with mean 1/pu;.
The dynamics for the free chain (derived from WOO) allow queue 2 to be negative, in other words
ky customers are always served. Let KS° be the kernel for the free chain derived from W, We
give a couple of elements of K5° here, in the interest of space we do not give it in its entirety. For

example,

Kgo((j727k)7(]_1727k+1)) = 2, —00<j <00, 0<k<ks
K?((]alyk)v(jvlyk_‘_l)) = M1, —OO<j<OO, 0§k’</{71
Kgo((372ak)7(3+172ak)) = A, —00<j<oo,i1=12 0<k<k

Now, we need to find a harmonic function for K$° of the form hy(j,4, k) = o’a(i, k). By enumer-

ating over all possible values of j, 4, k, and letting a(1,k) = v'*3'*2 and a(2, k) = g%, we find that

14



o, 3,4 must satisfy

Of/ kz / k:l 1 kl / k‘l
1 = — (A2 + p2 — A2a) — (A2 + g1 — A2
2 H1
1
B = —A2+p1 — M)
M1
7/ _ ﬁ,_kl/kz

We form the twisted chain as before, using the transition function K3°(z,y) = K3°(x, y)ha(y)/ha(x).
All of the technical conditions except for C.7 are satisfied either by construction or due to the fact
that the additive part is simply a single queue length, or the finiteness of the state for the Markovian

part. It is easy to see that in this case, C.7 corresponds to

k?go/ k’l >
Ao ( + > ko.
T\ s ?

If there exists an o/ which satisfies this, we will call it o*. If this holds, then we have from Theorem 5
of [10], that for some 0 < ¢ < oo, P{Q1[n] = £} ~ c(a*)’. Note that o* would be unique if it
exists, as the invariant distribution is unique. This vacation model could be of independent interest
(vacation models are a well studied area, see the surveys by Doshi [8] and Takagi [17]). It may
be worthwhile to derive sharp asymptotics for these, but at this point, we only need the rate.
Returning to the original problem, given the rate o, it is easy to see that 5 > 1/a* allows C.9 to
be satisfied for the W chain.

The use of the methodology twice appears to be a novel approach to demonstrating this con-
dition. While we do not see any immediate applications of this technique, it may be useful for
future problems where the harmonic function cannot be explicitly computed, or for systems (such
as polling models) where one queue remains stable while others become unstable.

Finally, for the W chain, conditions C.10 and C.11 follow in the same manner as the codom-

inant case.

15



The main result in Theorem 2 then follows from Theorem 5 of [10]. The form of g is given in
(13), with the set A changed to match the class one dominant case. Note that as compared to
the codominant case, we are unable to compute . However, we only require its value around the

origin, so it can be computed by fast simulation. &

5 Numerical Results

5.1 Parameter space coverage

At this point, one key question is: Do Theorems 1 and 2 cover the entire parameter space? In
other words, given arbitrary system parameters, is the resulting behaviour either codominant or
class one dominant?

Unfortunately, the answer appears to be no. Consider a system with Ay = 0.0944, \s = 0.0238,
w1 = 0.8456, ps = 0.0363, k1 = 3, ks = 1. Figure 1 shows a typical sample path for reaching a
total queue length of 200. These parameters do not satisfy either the codominant nor the class
one dominant conditions. The reason appears to be that the trajectory is such that queue 2, while
staying “small”, spends no time on the boundary (empty). This appears to be the so-called “bridge”
phenomenon described in Foley and McDonald [11]. (The term “bridge” was coined to denote a
trajectory that begins and ends on an axis, but in between never or rarely touches the axis.) One
might hope that one could apply their methodology here, however the fact that we do not have an
explicit form for the harmonic function makes it difficult to see how one could do so. We leave this
as a topic for future work.

Explicitly identifying the range of parameters for which either codominant or class one dominant
behaviour holds appears to be quite difficult, due to the complexity of the expressions that define

them. To try to get a better idea of how well the parameter space is covered, we generated 300

16



systems at random in the following manner. Here, the values of k; may be up to an order of

magnitude different, and the arrival and service rates can range over the entire stability region.

1. k; were chosen independently and uniformly from {1,...,10}

2. p; were chosen independently and randomly according to a uniform distribution on (0, 1)

3. A1 was chosen by multiplying ;1 by a sample from a uniform distribution on (0, 1)

4. A9 was chosen by multiplying (1 — A1 /p1)ug by a sample from a uniform distribution on (0, 1)

5. types 1 and 2 were interchanged if Ao/ko > A1 /Ky

6. the arrival and service rates were normalized so that their sum was one

The results were quite encouraging in that our conditions covered all but 4 percent of the generated
systems. For every one of those remaining 4 percent, it appears that the behaviour is of the “bridge”
variety discussed earlier. At this point, we conjecture that our conditions cover all cases not giving

rise to the “bridge” phenomenon.

5.2 Additional insights

We present several additional results in this section. Our goal here is to give an idea of how the
asymptotics depend on the parameters of the system. Our first results are in Table 1, where we fix
Mo, p11 and o, while letting A\; vary. The parameters are chosen as follows: let Ao = 0.7, iy = 10,
fiz = 7, and let A\; vary as in Table 1. Then );, p; are chosen by taking the corresponding value
of \; or fi; and dividing by A1 + Ao + fi1 + [io. Here, ki = ky = 1. We see as \; increases, there
is a transition from the codominant regime, through the bridge regime and finally the class one

dominant regime. Note that 1/«, the tail decay rate, is always larger than the load on the system

17



(p), but appears to approach p as the load approaches one. In Table 2, the only change is to set

ko = 10. Here, the transition to the class one dominant regime occurs at lower values of Ay, which

is not surprising, as the larger ko, the more “priority” is placed on the second queue. Note that

in Tables 1 and 2, when both systems are class one dominant, the tail decay rate does not depend

on ki and ka (as expected). These observations are reinforced in Table 3, which takes the same

system, but with k1 = 2, ko = 1. Then, class 1 is visited longer when queue 1 is nonempty, so the

effect seen in Table 2 is reversed.

A1 Regime P 1/«
1.5 codominant 0.25 0.2771
2.0 codominant 0.30 0.3373
2.5 codominant 0.35 0.3974
3.0 bridge 0.40

3.5 bridge 0.45

4.0 bridge 0.50

4.5 class one dominant 0.55 0.5919
5.0 class one dominant 0.60 0.6331
5.5 class one dominant 0.65 0.6759
6.0 class one dominant 0.70 0.7200
6.5 class one dominant 0.75 0.7652
7.0 class one dominant 0.80 0.8111
7.5 class one dominant 0.85 0.8576
8.0 class one dominant 0.90 0.9047
8.5 class one dominant 0.95 0.9522

6 Conclusion

Table 1: kl = kz =1

We have presented results that give sufficient conditions for two types of behaviour in a two queue

polling model. In some sense, this work appears to be at the limit of what can be accomplished

using the techniques in [10, 14], due to the implicit nature of the constructed harmonic function.

More work could be done on trying to explicitly characterize the region of the parameter space
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A1 Regime P 1/«
1.5 codominant 0.25 0.3077

2.0 bridge 0.30
2.5 bridge 0.35
3.0 bridge 0.40
3.5 bridge 0.45

4.0 class one dominant 0.50 0.5530
4.5 class one dominant 0.55 0.5919
5.0 class one dominant 0.60 0.6331
5.5 class one dominant 0.65 0.6759
6.0 class one dominant 0.70 0.7200
6.5 class one dominant 0.75 0.7652
7.0 class one dominant 0.80 0.8111
7.5 class one dominant 0.85 0.8576
8.0 class one dominant 0.90 0.9047
8.5 class one dominant 0.95 0.9522

Table 2: kl = 1, kz =10

covered by the conditions in this paper. For that part of the parameter space that is not covered,
the use of the methodology in [11] could be explored. Both of these seem extremely challenging.
Finally, extending the results to more than two classes appears to not be conceptually more difficult,

although it would certainly would be much more complex algebraically.
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Figure 1: Queue length at queue 1 (left), queue 2 (right)
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