
Polling Models with Unequal

Service Rates under Limited Service

Policies - Sharp Asymptotics

Douglas G. Down

downd@mcmaster.ca

Department of Computing and Software

McMaster University

1280 Main Street West

Hamilton, Ontario L8S 4L7

Canada

January 27, 2012

Abstract

We derive asymptotic expressions for the distribution of the total queue length in a polling
model with two classes of customers and unequal service rates. The server employs a schedul-
ing policy that alternately visits each queue, with the maximum number served in each visit
potentially being different for each queue. We provide sufficient conditions for the behaviour
to lie in one of two regimes, depending on the system parameters. The first regime, called
codominant, has both queues tending to grow as the total system size grows. The single-class
dominant regime has only one queue tending to grow as the total system size grows. Finally,
we present numerical results that demonstrate that the developed conditions are only sufficient
and comment on the implications of this observation.

1 Introduction

We consider a single server, ki-limited polling model with two customer classes. Arrivals of class

i occur according to a Poisson process of rate λi. The service times for a customer of class i are

exponentially distributed with rate µi. By ki-limited polling model, we mean that when a server

visits class i, it serves ki customers of class i (if possible) before switching to the other class. Service

is non-preemptive and non-idling, so the server will not idle at an empty queue if there are customers

waiting at the other. Without loss of generality, we will assume that the classes are labeled such
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that λ1/k1 ≥ λ2/k2. The ki-limited policy is a natural generalization of the round-robin policy,

i.e. a policy in which the server alternately serves each queue (as long as there is a customer to

serve). The round-robin policy enforces a notion of fairness. Generalizing to a different number of

customers served on each visit to a queue allows a system designer to place more importance on a

particular queue. Such policies have seen applications in communications [1, 5] and logistics [15].

There is a huge literature relating to polling systems, a testament to their usefulness. Two sur-

veys, that of Takagi [16] and a more recent one by Vishnevskii and Semenova [18] are recommended.

With this wealth of literature, however, the problem of determining the invariant (or steady-state)

distribution for our model is one that remains open. In this work, we are interested in computing a

function of the invariant distribution: the tail asymptotics of the invariant distribution of the total

queue length. In other words, we are interested in exactly computing the probability that the total

queue length is large. This is of interest when one is concerned with rare, potentially catastrophic

events. To be precise, we would like to calculate constants c and α such that the probability that

the total number in system is equal to ℓ is asymptotically equal (as ℓ goes to infinity) to cα−ℓ.

The rate (or rough asymptotics) for the system is given by 1/α, while if one can calculate c, the

expression cα−ℓ is known as the exact asymptotics.

This work continues studies begun in [3, 4]. The main difference here is that [3, 4] assumed that

the service rate was independent of the customer class. In that case, it is easy to see that the total

queue length behaves as an M/M/1 queue, so the focus is on more detailed behaviour, such as the

relative proportion of the different customers when a large total queue length is reached. Here, we

remain interested in the detailed behaviour, however in this case it is also not obvious what the rate

will be. So, while the problem is more difficult than that in [3], we find that in particular, the work

in [2, 3, 4] makes the analysis tractable so that the techniques from McDonald [14] (elaborated on

2



in Foley and McDonald [10]) can be applied. Over the course of our work, we find an interesting

adaptation needs to be used. We in fact apply the methodology from [10, 14] twice, in order to

sharpen our results. This technique may be of independent interest.

Besides the work undertaken in this research program ([3, 4]), the most relevant work is that

of Delcoigne and De La Fortelle [7]. They identify the local rate function for a scaled version

of the queue length process in a general polling model. The model in [7] is different than that

considered here in that after each service completion, the server randomly chooses (according to

some distribution) the next queue to serve. So, unfortunately, we cannot leverage their work on

identifying the rate function to aid in finding the rate for the system that we consider. Other work

that has been done for large deviations in polling models are in Choudhury and Whitt [6], Duffield

[9], and Ioresh [12], but all of these study a different kind of service policy (exhaustive or gated

types).

The organization of the paper is as follows. Section 2 constructs a Continuous Time Markov

Chain model for the system. Section 3 gives the main results, while Section 4 provides the proofs

of the main results. Section 5 provides numerical results that explore the issue of whether the pa-

rameter space is completely covered (it is not) and how the solution varies as particular parameters

change. Section 6 provides final thoughts.

2 Continuous Time Markov Chain model

A Continuous Time Markov Chain (CTMC) for this system is given by

Q(t) = (Q1(t), Q2(t), Z(t), I(t)),

where Qi(t) is the number of waiting customers of class i (including the one in service, if applicable),

Z(t) is the class being served (we will arbitrarily set this to 1 if Q1(t) + Q2(t) = 0), and I(t) is
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the number of service completions during the current server visit (we will assume that if this

reaches ki − 1 during a visit to class i and the other queue is empty, that a service completion at

class i will leave I(t) unchanged at ki − 1). The state space for Q(t) is S = Z+ × Z+ × {1, 2} ×

{0, . . . ,max(k1, k2) − 1}. We will look at the uniformized chain, Q[n], where we assume (without

loss of generality) that time has been rescaled such that λ1 + λ2 + µ1 + µ2 = 1. We will denote the

transition kernel for Q[n] by K, where K(x, y) gives the probability of moving in one step to state

y, given that the chain started in state x. For example, if x = (i, j, 2, k), with i, j > 0, k2 > 1, and

k ≤ k2 − 2,

K(x, (i + 1, j, 2, k)) = λ1

K(x, (i, j + 1, 2, k)) = λ2

K(x, x) = µ1

K(x, (i, j − 1, 2, k + 1)) = µ2

Using a simple workload argument, the existence of a unique invariant distribution for Q[n], πQ, is

guaranteed if the load on the system is less than one, i.e.

ρ := λ1/µ1 + λ2/µ2 < 1.

We will assume that this stability condition holds. Note that while the condition for stability is

known, there is no known explicit expression for πQ. (One can compute generating functions for

the invariant distribution, see the work of Lee [13], for example.)

In the next section we give expressions for the probability that the total system size is large, i.e.

we are interested in the asymptotic behaviour of the event Fℓ = {Q1[n] + Q2[n] = ℓ}. One could

get similar results for related events, such as the probability that a particular queue length is large.
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3 Main Results

In this section, we provide the main results, sufficient conditions and expressions for the exact

asymptotics under different parameter combinations. In particular, Section 3.1 identifies when

the exact asymptotics are determined due to the influence of both classes of customers, while

Section 3.2 discusses the case when the exact asymptotics are determined due to the influence of

c;lass 1 customers only.

3.1 Codominant case

The goal of this section is to provide a sufficient condition for the case when the exact asymptotics

for the total queue length are determined by state trajectories where both queues are large. Here,

the exact asymptotics rely on three values: α, β and γ, which depend on the system parameters in

a non-trivial fashion. Unfortunately, it is difficult to give direct intuition for these constants, other

than that they are required to construct a harmonic function for Q[n].

First, we need to solve the following for α. There are in general multiple solutions and it is easy

to see that one of these is α = 1.

1 =

(

α

µ1

)k1
(

α

µ2

)k2

(1 − λ1α − λ2α − µ2)
k1(1 − λ1α − λ2α − µ1)

k2 (1)

Given a solution α, we also define the values:

β =
α

µ2
(1 − λ1α − λ2α − µ1) (2)

γ = β−k2/k1 . (3)

Note here that it cannot be the case that there is more than one solution of (1)-(3) satisfying (4)

as this would contradict the uniqueness of the invariant distribution πQ. Of course, there may be

no valid solution.
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If there exist α, β, γ satisfying (1)-(3) such that α > 1 is real-valued and

λ2

(

k2

βµ2
+

k1

γµ1

)

>
k2

α2
(4)

then we will call the system codominant. In Section 4.1, we provide a more detailed discussion on

solutions to (1)-(3). Here, Fℓ is reached by both queue lengths getting large. For such systems, the

asymptotic behaviour is characterized in the following theorem. For arbitrary functions f and g,

the notation f ∼ g denotes limℓ→∞ f(ℓ)/g(ℓ) = 1 and Tℓ = min{n ≥ 0 : Q1[n] + Q2[n] = ℓ} is the

first time that Fℓ is reached.

Theorem 1 For a codominant system

(i)

E[Tℓ|Q[0] = (0, 0, 2, 0)] ∼ αℓg−1

where g is given in (13). Note that g may be obtained by fast simulation, i.e. we do not need

to estimate events with low probability.

(ii)

PπQ
{Q1[n] + Q2[n] = ℓ, Z[n] = 1, I[n] = k} ∼ α−ℓγ−kβ−k2

βµ2

k2γµ1 + k1βµ2
f/d̃1,

PπQ
{Q1[n] + Q2[n] = ℓ, Z[n] = 2, I[n] = k} ∼ α−ℓβ−k γµ1

k2γµ1 + k1βµ2
f/d̃1,

where

d̃1 =
k1(αλ1 + αλ2 − γµ1/α)βµ2

k2γµ1 + k1βµ2
+

k2(αλ1 + αλ2 − βµ2/α)γµ1

k2γµ1 + k1βµ2

and f is given in (12) and may be obtained by fast simulation.

(iii)

lim
ℓ→∞

(

Q1[Tℓ]

ℓ
,
Q2[Tℓ]

ℓ

)

=

(

λ1α − γµ1βµ2

α(k2γµ1+k1βµ2)

d̃1

,
λ2α − βµ2γµ1

α(k2γµ1+k1βµ2)

d̃1

)

.
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3.2 Class one dominant case

As in the previous section, we are interested in determining an exact asymptotic expression for

the total number of customers in the system, this time for the case when the asymptotics are

determined by the state trajectory where there are a large number of class one customers and a

small number of class two customers. As in the codominant case, this involves three values: α, β

and γ, all non-trivial functions of the system parameters. Here, a two-stage procedure is required.

We also need to find additional values α′, β′ and γ′ to define our conditions.

Step 1. Solve the following for α′:

1 =

(

α′

µ2

)k2

(λ2 + µ2 − λ2α
′)k2

(

1

µ1

)k1

(λ2 + µ1 − λ2α
′)k1

Given a solution α′, define

β′ =
1

µ1
(λ2 + µ1 − λ2α

′)

γ′ = β′−k1/k2

If there is a solution such that α′ > 1 is real-valued and

λ2α
′

(

k2α
′

µ2γ′
+

k1

µ1β′

)

> k2

then call the resulting α′, α∗.

Step 2. Solve the following for α:

α3(µ2λ1 −λ1µ1)+α2(µ1 −µ1µ2 +µ2λ2 −µ2 +µ2
2 +λ1µ1)+α(µ1µ2 −µ2

1 −µ1 +µ1µ2)+µ2
1 = 0 (5)

Given a solution α, define

β =
1

λ2α
(1 − λ1α − µ2 − µ1/α) (6)
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If there exists a solution to (5) and (6) with α > 1 real-valued satisfying

λ2β

(

βk2

µ2
+

k1

µ1

)

<
k2

α2
(7)

α2β2λ2

µ2
+

α2λ1

µ1
> 1 (8)

β > 1/α∗

we will call the system class one dominant.

Theorem 2 For a class one dominant system

PπQ
{Q1[n] + Q2[n] = ℓ,Q1[n] = j, Z[n] = k, I[n] = m} ∼ α−ℓβ−jϕ(j, k,m)g/d̃1 , (9)

where g may be obtained by fast simulation,

d̃1 =
k1α

µ1

(

αλ1

1 − α2β2λ2/µ2
− 1

)

and ϕ is defined in Section 4.2.

Note that there can be only one solution of (5) and (6) satisfying the class one dominant conditions

and also that a system cannot be both codominant and class one dominant, due to the uniqueness

of the invariant distribution πQ. Also note that in Theorem 2, we cannot provide an explicit

expression for ϕ. However, it is useful to note that to evaluate (9), both g and ϕ can be estimated

by a fast simulation, i.e. we do not need to estimate events with small probabilities.

Note that there is no corresponding class two dominant condition (i.e. only queue two reaches

a large level). The reason is that our assumption that λ1/k1 ≥ λ2/k2 implies that when queue 2

grows large, with high probability queue 1 gets large (as the queue length at 2 goes to infinity, this

probability goes to 1, see [2]). Thus we only consider the class one dominant or codominant cases.
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4 Proofs

4.1 Codominant case (Theorem 1)

We use the methodology presented in Foley and McDonald [10]. To do so, we first identify a

boundary ∆ that corresponds to states where the queues that we expect to be large when reaching

Fℓ are empty. We construct a series of chains using the transition kernel for Q[n], K, the boundary

∆ and a harmonic function for one of these constructed chains.

The first step is to construct a chain W from Q such that its first component is at least ℓ on

Fℓ. Here, we use W [n] = (Q1[n] + Q2[n], Q1[n], Z[n], I[n]). At this point, we construct the free

chain, W∞[n] = (W̃∞[n], Ŵ∞[n]), from W and ∆ by extending the transition structure of W on

S/∆ to the state space S∞ = Z × Z × {1, 2} × {0, . . . ,max(k1, k2) − 1} such that if we define

W̃∞[n] = (Q∞

1 [n] + Q∞

2 [n], Q∞

1 [n]) and Ŵ∞[n] = (Z∞[n], I∞[n]), then W [n] is Markov additive,

with Ŵ∞[n] the Markovian part and W̃∞[n] the additive part. Here, the transition kernel for

W∞, K∞

W is simply one where the server serves exactly ki customers at each visit to class i, with

a negative number of customers allowed at each class. We need to construct two more chains, the

so-called twisted free chain and a twisted basic chain. The first is standard from [10], the second

was introduced in Chang and Down [4] (although the terminology twisted basic chain was not

introduced in [4]). The idea is that we modify the underlying distribution such that the rare events

are common. We can then use the Markov additive structure to derive appropriate expressions for

the asymptotic behaviour (this is all in [10]).

The appropriate twist requires finding a harmonic function of the form

h(x) = αx̃1 â(z, k)

for the W∞ chain and where the state is x = (x̃1, x̃2, z, k). If we let â(1, k) = γkβk2 for 0 ≤ k ≤ k1−1
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and â(2, k) = βk for 0 ≤ k ≤ k2 − 1, then by enumerating K∞h(x) = h(x) over all possible states,

we get that (α, β, γ) must satisfy

1 =

(

α

µ1

)k1
(

α

µ2

)k2

(1 − λ1α − λ2α − µ2)
k1(1 − λ1α − λ2α − µ1)

k2 (10)

β =
α

µ2
(1 − λ1α − λ2α − µ1)

γ = β−k2/k1

Characterizing solutions to this seems a difficult task. For example, the number of solutions to (10)

with real-valued α > 1 can vary. For example, λ1 = 0.1692, λ2 = 0.0758, µ1 = 0.6217, µ2 = 0.1332,

k1 = 8, k2 = 7 yields no real-valued roots α > 1, while λ1 = 0.0926, λ2 = 0.0573, µ1 = 0.6396,

µ2 = 0.2105, k1 = 3, k2 = 2 yields three real-valued roots α > 1. The twisted free chain, W∞[n] is

described by its kernel, K∞(x, y), given by

K∞(x, y) = K∞(x, y)h(y)/h(x). (11)

We will postpone the description of the twisted basic chain, but at this point, we note that the

twisted free chain can be thought of as taking the free chain and multiplying the arrival rates λ1

and λ2 by α, the service rate µ2 by β/α and the service rate µ1 by γ/α.

We are now ready to show Conditions C.1-C.12 in [10] (in the interest of space, we do not repeat

all of these conditions). Conditions C.1-C.5 have been satisfied by the construction given above.

For Condition C.6, if we let ϕ(j, k) be the invariant probability for Ŵ∞[n], we see that if it
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exists it satisfies the balance equations

γϕ(1, k) = γϕ(1, k − 1), k = 1, . . . , k1 − 1

γµ1ϕ(1, 0) = βµ2ϕ(2, k2 − 1)

βϕ(2, k) = βϕ(2, k − 1), k = 1, . . . , k2 − 1

βµ2ϕ(2, 0) = γµ1ϕ(1, k1 − 1)

∑

j,k

ϕ(j, k) = 1

The unique solution to this set of equations is

ϕ(1, k) =
βµ2

k2γµ1 + k1βµ2
, k = 0, . . . , k1 − 1

ϕ(2, k) =
γµ1

k2γµ1 + k1βµ2
, k = 0, . . . , k2 − 1.

We next move to Condition C.8. This is equivalent to showing that with positive probability,

both queues for the twisted free process go to infinity. Using Theorem 3 and Corollary 4 of Chang

and Lam [2] exactly as in Lemma 1(ii) of [4], we see that as (4) is satisfied for i = 1, 2, both queues

in the twisted free process go to infinity with probability one. This also immediately yields C.7,

which requires that

d̃1 =
∑

x̂∈Ŝ

ϕ(x̂)E[W̃∞[1]|Ŵ∞[0] = x̂]

= (λ̃1 + λ̃2 − µ̃1)k1ϕ(1, 0) + (λ̃1 + λ̃2 − µ̃2)k2ϕ(2, 0)

is finite and strictly positive. It is trivially finite and if it were not positive, it would contradict

C.8. Condition C.9 is trivially satisfied as Ŝ is finite.

At this point, we construct the twisted basic chain W. This is done by using the same twist

as in (11) on the original chain W . Note that the resulting kernel may not define a Markov chain
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(as the function h is not harmonic for W ), so we adjust the kernel by adding self-loops to give a

probability kernel. If these adjustments are made on a finite number of states, then we can use the

methodology introduced in [4]. Here, it is easy to see that the only state at which h is not harmonic

for W is (0, 0, 2, 0). Condition C.10 (typically the most difficult condition to check) follows from

Theorem 3 in [4], Condition C.11 follows as in [4] and C.12 follows from the fact that Ŝ is finite.

In order to complete the proof, we define the constants f and g used in Theorem 1. Here,

f =
∑

x∈∆

π(x)h(x)H(x) (12)

g = f
∑

z∈Ŝ

µ(0, z)/h(z) (13)

where H(x) is the probability that the twisted free chain never hits ∆, starting at x, µ is the

stationary distribution of (W̃∞

1 [T ∞

ℓ ]−ℓ, Ŵ∞[T ∞

ℓ ]), and T ∞

ℓ is the first time that the first component

of the twisted free chain is ℓ. Note that f and g can be evaluated by a fast simulation.

Part (i) of Theorem 1 follows from Theorem 6 of [10], (ii) from Theorem 5 of [10] and the

expression for ϕ(j, k), and (iii) from Corollary 2 of [10]. ♦

4.2 Class one dominant case (Theorem 2)

We perform a similar construction as in the previous section, with the main difference being that

the boundary ∆, and hence the subsequent chains, are changed. In this case, ∆ corresponds to

removing the constraint that queue 1 is empty, i.e. for the free chain, we will allow exactly k1

customers to be served during each visit to class 1.

Here, we have W [n] = (Q1[n] + Q2[n], Q2[n], Z[n], I[n]) and W∞[n] = (W̃∞[n], Ŵ∞[n]) where

W̃∞[n] = (Q∞

1 [n] + Q∞

2 [n]), Ŵ∞[n] = (Q∞

2 [n], Z∞[n], I∞[n]) and W∞ evolves on S∞ = Z × Z+ ×

{1, 2}×{0, . . . ,max(k1, k2)−1} (note the changes from the previous section: as we expect Fℓ to be

reached through queue 1 only, we include the queue length at class 2 in Ŵ∞, with a corresponding
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adjustment to the state space).

To construct the twisted free chain, we search for a harmonic function of the form

h(x) = αx̃1 â(j, z, k)

for the W∞ chain. Letting â(j, z, k) = βj , by evaluating K∞h(x) = h(x) over all possible states,

we see that (α, β) must satisfy

0 = α3(µ2λ1 − λ1µ1) + α2(µ1 − µ2µ1 + µ2λ2 − µ2 + µ2
2 + λ1µ1)

+α(µ2µ1 − µ2
1 − µ1 + µ2µ1) + µ2

1

β =
1

λ2α
(1 − λ1α − µ2 − µ1/α)

As in the previous section, the twisted free chain, W∞[n] has transition kernel

K∞(x, y) = K∞(x, y)h(y)/h(x),

which is equivalent to multiplying λ2 by αβ, λ1 by α, and dividing µ1 by α and µ2 by αβ. Let

these modified rates be given by λ̃2, λ̃1, µ̃1, and µ̃2, respectively.

Once again Conditions C.1-C.5 in [10] have been satisfied by the above construction.

Condition C.6 is equivalent to showing the stability of queue 2 in the twisted free chain. Using

Theorem 3 and Corollary 4 of [2], we have that queue 2 is stable (and thus a stationary probability

ϕ for Ŵ[n] exists) if

λ̃2

(

k1

µ̃1
+

k2

µ̃2

)

< k2.

(This has the physical interpretation that the maximum expected number of arrivals in the longest

server cycle is less than the number of services in that cycle.) This is equivalent to (7). Using the

same results from [2], (8) yields instability of class 1, which implies C.7 and C.8. In addition d̃1 is
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simply the expected change in the total queue length in a cycle, which is

d̃1 =
k1

µ̃1

(

λ̃1

1 − λ̃2/µ̃2

− 1

)

which must be positive as queue 1 is unstable for the twisted free process.

We now turn to Condition C.9. We must show that

∑

x̂∈Ŝ

ϕ(x̂)/â(x̂) < ∞.

It is not hard to see that proving this is related to the asymptotics of Ŵ∞. To do this, we apply

the methodology of [10] a second time, with a goal of identifying the rough asymptotics of the

Ŵ∞ chain. The Ŵ∞ chain describes a system in which a server serves a queue until either k2

services have been performed or the queue becomes empty. This is then followed by the server

going on vacation for an Erlang distributed period of time, with k1 stages, each with mean 1/µ1.

The dynamics for the free chain (derived from Ŵ∞) allow queue 2 to be negative, in other words

k2 customers are always served. Let K∞

2 be the kernel for the free chain derived from Ŵ∞. We

give a couple of elements of K∞

2 here, in the interest of space we do not give it in its entirety. For

example,

K∞

2 ((j, 2, k), (j − 1, 2, k + 1)) = µ2, −∞ < j < ∞, 0 ≤ k < k2

K∞

2 ((j, 1, k), (j, 1, k + 1)) = µ1, −∞ < j < ∞, 0 ≤ k < k1

K∞

2 ((j, i, k), (j + 1, i, k)) = λ2, −∞ < j < ∞, i = 1, 2, 0 ≤ k < ki

Now, we need to find a harmonic function for K∞

2 of the form h2(j, i, k) = α′j â(i, k). By enumer-

ating over all possible values of j, i, k, and letting â(1, k) = γ′kβ′k2 and â(2, k) = β′k, we find that
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α′, β′, γ′ must satisfy

1 =

(

α′

µ2

)k2

(λ2 + µ2 − λ2α
′)k1

(

1

µ1

)k1

(λ2 + µ1 − λ2α
′)k1

β′ =
1

µ1
(λ2 + µ1 − λ2α

′)

γ′ = β′−k1/k2

We form the twisted chain as before, using the transition function K∞

2 (x, y) = K∞

2 (x, y)h2(y)/h2(x).

All of the technical conditions except for C.7 are satisfied either by construction or due to the fact

that the additive part is simply a single queue length, or the finiteness of the state for the Markovian

part. It is easy to see that in this case, C.7 corresponds to

λ2α
′

(

k2α
′

µ2γ′
+

k1

µ1β′

)

> k2.

If there exists an α′ which satisfies this, we will call it α∗. If this holds, then we have from Theorem 5

of [10], that for some 0 < c < ∞, P{Q1[n] = ℓ} ∼ c(α∗)ℓ. Note that α∗ would be unique if it

exists, as the invariant distribution is unique. This vacation model could be of independent interest

(vacation models are a well studied area, see the surveys by Doshi [8] and Takagi [17]). It may

be worthwhile to derive sharp asymptotics for these, but at this point, we only need the rate.

Returning to the original problem, given the rate α∗, it is easy to see that β > 1/α∗ allows C.9 to

be satisfied for the W∞ chain.

The use of the methodology twice appears to be a novel approach to demonstrating this con-

dition. While we do not see any immediate applications of this technique, it may be useful for

future problems where the harmonic function cannot be explicitly computed, or for systems (such

as polling models) where one queue remains stable while others become unstable.

Finally, for the W∞ chain, conditions C.10 and C.11 follow in the same manner as the codom-

inant case.
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The main result in Theorem 2 then follows from Theorem 5 of [10]. The form of g is given in

(13), with the set ∆ changed to match the class one dominant case. Note that as compared to

the codominant case, we are unable to compute ϕ. However, we only require its value around the

origin, so it can be computed by fast simulation. ♦

5 Numerical Results

5.1 Parameter space coverage

At this point, one key question is: Do Theorems 1 and 2 cover the entire parameter space? In

other words, given arbitrary system parameters, is the resulting behaviour either codominant or

class one dominant?

Unfortunately, the answer appears to be no. Consider a system with λ1 = 0.0944, λ2 = 0.0238,

µ1 = 0.8456, µ2 = 0.0363, k1 = 3, k2 = 1. Figure 1 shows a typical sample path for reaching a

total queue length of 200. These parameters do not satisfy either the codominant nor the class

one dominant conditions. The reason appears to be that the trajectory is such that queue 2, while

staying “small”, spends no time on the boundary (empty). This appears to be the so-called “bridge”

phenomenon described in Foley and McDonald [11]. (The term “bridge” was coined to denote a

trajectory that begins and ends on an axis, but in between never or rarely touches the axis.) One

might hope that one could apply their methodology here, however the fact that we do not have an

explicit form for the harmonic function makes it difficult to see how one could do so. We leave this

as a topic for future work.

Explicitly identifying the range of parameters for which either codominant or class one dominant

behaviour holds appears to be quite difficult, due to the complexity of the expressions that define

them. To try to get a better idea of how well the parameter space is covered, we generated 300
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systems at random in the following manner. Here, the values of ki may be up to an order of

magnitude different, and the arrival and service rates can range over the entire stability region.

1. ki were chosen independently and uniformly from {1, . . . , 10}

2. µi were chosen independently and randomly according to a uniform distribution on (0, 1)

3. λ1 was chosen by multiplying µ1 by a sample from a uniform distribution on (0, 1)

4. λ2 was chosen by multiplying (1−λ1/µ1)µ2 by a sample from a uniform distribution on (0, 1)

5. types 1 and 2 were interchanged if λ2/k2 > λ1/k1

6. the arrival and service rates were normalized so that their sum was one

The results were quite encouraging in that our conditions covered all but 4 percent of the generated

systems. For every one of those remaining 4 percent, it appears that the behaviour is of the “bridge”

variety discussed earlier. At this point, we conjecture that our conditions cover all cases not giving

rise to the “bridge” phenomenon.

5.2 Additional insights

We present several additional results in this section. Our goal here is to give an idea of how the

asymptotics depend on the parameters of the system. Our first results are in Table 1, where we fix

λ2, µ1 and µ2, while letting λ1 vary. The parameters are chosen as follows: let λ̄2 = 0.7, µ̄1 = 10,

µ̄2 = 7, and let λ̄1 vary as in Table 1. Then λi, µi are chosen by taking the corresponding value

of λ̄i or µ̄i and dividing by λ̄1 + λ̄2 + µ̄1 + µ̄2. Here, k1 = k2 = 1. We see as λ1 increases, there

is a transition from the codominant regime, through the bridge regime and finally the class one

dominant regime. Note that 1/α, the tail decay rate, is always larger than the load on the system
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(ρ), but appears to approach ρ as the load approaches one. In Table 2, the only change is to set

k2 = 10. Here, the transition to the class one dominant regime occurs at lower values of λ1, which

is not surprising, as the larger k2, the more “priority” is placed on the second queue. Note that

in Tables 1 and 2, when both systems are class one dominant, the tail decay rate does not depend

on k1 and k2 (as expected). These observations are reinforced in Table 3, which takes the same

system, but with k1 = 2, k2 = 1. Then, class 1 is visited longer when queue 1 is nonempty, so the

effect seen in Table 2 is reversed.

λ̄1 Regime ρ 1/α

1.5 codominant 0.25 0.2771

2.0 codominant 0.30 0.3373

2.5 codominant 0.35 0.3974

3.0 bridge 0.40

3.5 bridge 0.45

4.0 bridge 0.50

4.5 class one dominant 0.55 0.5919

5.0 class one dominant 0.60 0.6331

5.5 class one dominant 0.65 0.6759

6.0 class one dominant 0.70 0.7200

6.5 class one dominant 0.75 0.7652

7.0 class one dominant 0.80 0.8111

7.5 class one dominant 0.85 0.8576

8.0 class one dominant 0.90 0.9047

8.5 class one dominant 0.95 0.9522

Table 1: k1 = k2 = 1

6 Conclusion

We have presented results that give sufficient conditions for two types of behaviour in a two queue

polling model. In some sense, this work appears to be at the limit of what can be accomplished

using the techniques in [10, 14], due to the implicit nature of the constructed harmonic function.

More work could be done on trying to explicitly characterize the region of the parameter space
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λ̄1 Regime ρ 1/α

1.5 codominant 0.25 0.3077

2.0 bridge 0.30

2.5 bridge 0.35

3.0 bridge 0.40

3.5 bridge 0.45

4.0 class one dominant 0.50 0.5530

4.5 class one dominant 0.55 0.5919

5.0 class one dominant 0.60 0.6331

5.5 class one dominant 0.65 0.6759

6.0 class one dominant 0.70 0.7200

6.5 class one dominant 0.75 0.7652

7.0 class one dominant 0.80 0.8111

7.5 class one dominant 0.85 0.8576

8.0 class one dominant 0.90 0.9047

8.5 class one dominant 0.95 0.9522

Table 2: k1 = 1, k2 = 10

covered by the conditions in this paper. For that part of the parameter space that is not covered,

the use of the methodology in [11] could be explored. Both of these seem extremely challenging.

Finally, extending the results to more than two classes appears to not be conceptually more difficult,

although it would certainly would be much more complex algebraically.
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Figure 1: Queue length at queue 1 (left), queue 2 (right)
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