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Abstract

We study a queueing network where customers go through several stages of processing,
with the class of a customer used to indicate the stage of processing. The customers are
serviced by a set of flexible servers, i.e., a server is capable of serving more than one class of
customers and the sets of classes that the servers are capable of serving may overlap. We
would like to choose an assignment of servers that achieves the maximal capacity of the
given queueing network, where the maximal capacity is λ∗ if the network can be stabilized
for all arrival rates λ < λ∗ and cannot possibly be stabilized for all λ > λ∗. We examine
the situation where there is a restriction on the number of servers that are able to serve
a class, and reduce the maximal capacity objective to a maximum throughput allocation
problem of independent interest: the Total Discrete Capacity Constrained
Problem (TDCCP). We prove that solving TDCCP is in general NP-complete, but we
also give exact or approximation algorithms for several important special cases and discuss
the implications for building limited flexibility into a system.

Keywords: Queueing, scheduling, approximation algorithms, flexible servers.

1 Introduction

Suppose that one is presented with a queueing network with flexible servers. By flexibility,
we mean that if the class of a customer is used to indicate the stage of processing, then a
server may be capable of serving more than one class of customer and the sets of classes that
the servers are capable of serving may overlap. Such models have arisen in areas that include
production scheduling (Hillier and So [15] is but one example), power control for wireless
networks (Armony and Bambos [5]), and parallel computer systems (Squillante et al. [27]).

The performance measure of interest in our work is the maximal capacity of a given network,
defined to be λ∗ if the network can be stabilized for all arrival rates λ < λ∗ and cannot possibly
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be stabilized for all λ > λ∗. A number of authors have examined flexible server systems with
throughput as a performance measure. These include Tassiulas and Ephremides [29], Tassiulas
and Bhattacharya [28], Andradóttir, Ayhan, and Down [3, 4], Andradóttir and Ayhan [2],
Bischak [7], Dai and Lin [9], Zavadlav, McClain, and Thomas [31], and Ostolaza, McClain,
and Thomas [21]. None of these papers study the problem when there is a constraint on the
number of servers that may be at a class. We believe that this is the first attempt to address
such a problem. For a more extensive overview of the flexible server literature (including works
that look at other performance measures), see [4] and Hopp and van Oyen [17].

In the area of queueing networks, the use of fluid limits to characterize stability is a standard
technique, originating in the work of Rybko and Stolyar [23] and Dai [8]. The central idea in
this approach is that one can equate stability of a (stochastic) queueing network with that of
a related deterministic model (the fluid model). Most of the work in this paper addresses the
deterministic model that arises from the stochastic network. We stress that this deterministic
model is the result of a formal limiting process and not an approximation, so results for the
deterministic model have direct implications for that of the stochastic network.

For the flexible server setting, the fluid limit methodology has been used to break down the
determination of maximal capacity to two steps (see [4] and [9]).

1. Determine the maximal capacity of the fluid model and an optimal allocation of each
server’s effort.

2. Use the allocation to construct a scheduling policy for the original network.

The framework in [4] gives a standard means by which to perform the second step. Also, if
there is no constraint on the number of servers that can be at a class at any one time, it
is shown in [4] that for the problem that we consider in this paper, the first step reduces to
solving a linear programming problem.

In this work, we wish to examine what happens when there is a constraint on the number
of servers that may ever be allowed to serve a class. There are several reasons for studying
such a model. A designer can explore the impact of less flexibility (and hence reduced train-
ing costs) by considering reduced training levels at each class. It also allows for the design
of decentralized scheduling policies that respect a constraint on the number of servers at a
class at any point in time. (Note that the problem of designing polices that require server
coordination to satisfy such a constraint should lead to better performance. The resulting
required server synchronization makes the problem significantly more difficult and is a topic
for future consideration.) There is a negative side to our result, in that a very simple means of
limiting flexibility results in a computationally challenging problem, so it can only be expected
that related problems will provide similar challenges. There has been much recent work on
designing and evaluating stochastic systems with limited flexibility, see for example (the list is
not exhaustive) Akşin and Karaesmen [1], Gurumurthi and Benjaafar [14], Hopp, Tekin, and
van Oyen [16], Sheikhzadeh, Benjaafar, and Gupta [24], Jordan and Graves [18], and Wallace
and Whitt [30]. The specific problem that we will examine we will call the Total Discrete
Capacity Constrained Problem (TDCCP). For this problem, the second step in the above
procedure is unchanged. It is the first step in the procedure which sees the most significant
change, and the resulting optimization problem is the focus of this paper. We show that this
problem is NP-complete even for special cases. Hence we look for approximation algorithms
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for such hard special cases and for the general problem. We achieve an approximation factor
of 1/10 for the important case of service rates that depend only on the servers (and not on
the classes)1, and these approximation techniques extend also to the general case (but with a
worse approximation factor). Even more importantly, some of these techniques give exactly
the same approximation factors for the budgetary constraint version of the problem. In this
generalization, a per service unit cost of assigning a particular server to a particular class is
given, as well as a budget that our total assignment cost should not exceed. Some of our ap-
proximation algorithms produce solutions that are within the previous approximation factors
without violating the budget.

With the ability to evaluate the maximal capacity of a network under a given set of con-
straints, our framework is a step towards allowing one to study the design problem of choosing
the number of servers that are able to serve a class to satisfy some optimality criterion (which
would typically trade off network performance and costs).

The structure of the paper is as follows. Section 2 provides details of the model under study.
Section 3 describes the deterministic optimization problem whose solution characterizes the
maximal capacity of the network. Section 4 looks at special cases of the problem, in particular,
when the service rates depend only on the class or only on the server. The general case is
discussed in Section 5. The proof of NP-completeness for the problem with heterogeneous
servers is shown in Section 6. Section 7 contains three numerical examples, which serve to
show that our proposed algorithm’s performance can be well above its worst-case guarantee as
well as providing some insight into the issue of the difficulty of designing flexibility structures
for networks with heterogeneous servers. Finally, Section 8 provides concluding remarks.

2 Queueing Network Model

The model we consider is a generalization of that in Andradóttir, Ayhan, and Down [4]. For
completeness, we present the model in its entirety.

2.1 Network topology

Consider a network where the location of a customer is given by its class k. We assume that
there are K distinct classes, with a buffer of infinite size for each class. Arrivals to a class
may occur from inside or outside of the network. Customers arriving from outside of the
network do so according to an arrival process with independent and identically distributed
(i.i.d.) interarrival times {ξ(n)}. The associated arrival rate is λ = 1/E[ξ(1)]. An arrival from
outside of the network is routed to class k with probability p0,k, with

∑K
k=1 p0,k = 1. Within

the network, customers circulate as follows. Upon completion of service at class i, a customer
becomes one of class k with probability pi,k. The customer leaves the network with probability
1−

∑K
k=1 pi,k. We define the routing matrix P to have (i, k) entry pi,k for i, k = 1, . . . ,K and I

to be the K ×K identity matrix. We assume that all customers eventually leave the network,
which is equivalent to (I −P ′) being invertible. (Note that the (i, k) entry of (I −P ′)−1 is the
expected number of future visits to class k of a class i customer.)

1In Section 4.1 we show that the special case of service rates which depend only on the classes can be solved
optimally.
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For technical reasons, we assume that the interarrival times are unbounded and spread out.
In other words, there exists some non-negative function q(x) on R+ and some integer # such
that

P (ξ(1) > x) > 0 for all x > 0,
P (ξ(1) + · · · + ξ(#) ∈ dx) ≥ q(x)dx and

∫ ∞
0 q(x)dx > 0.

These assumptions imply that the origin is reachable for the Markov process that describes
the queueing network. These could be replaced by the assumption that a reachable compact
set exists for the Markov process (see Meyn and Down [20] and Sigman [26]). Note that these
assumptions will not be mentioned explicitly in the remainder of the paper. They arise in the
proof of Theorem 1, see [4].

2.2 Service mechanism

The network is populated by M servers which service customers within a class according to
First Come, First Served order. When switching from class i to class k for the nth time, server
j incurs a (possibly zero) switching time of ζj

i,k(n). It is assumed that the sequence {ζj
i,k(n)} is

i.i.d. for every j = 1, . . . ,M and i, k = 1, . . . ,K. Further, we assume that {ζj
i,i(n)} is identically

zero for all i and j.
Several servers may be simultaneously at a class, in which case they work in parallel (on

different customers). If server j is capable of working at class k, the service time of the nth
customer served by server j at class k is given by ηj,k(n), where the sequence {ηj,k(n)} is
assumed to be i.i.d. for each j and k. The associated mean service time for server j at class
k is mj,k = E[ηj,k(1)], with associated service rate µj,k = 1/mj,k. If server j cannot work at
class k, we set µj,k = 0. We only consider nonpreemptive policies.

The difference between the model in [4] and that considered here is that we put an upper
limit, ck ≤ M , on the number of servers that can be assigned to a class (a server is assigned
to a class if it spends any time at class k).

3 Total Discrete Capacity Constrained Problem

We are first interested in computing the capacity. A network operating under a service policy
π is said to have capacity λπ if the system is stable for all values of the arrival rate λ < λπ.
We wish to calculate a tight upper bound on the capacity that a given system can achieve
(called the maximal capacity). In the course of doing so, we identify a means to construct
server assignment policies that have capacity that is arbitrarily close to the maximal capacity.

3.1 The Allocation Program

First, we solve the traffic equations for the network, which give the expected number of visits
to class k, ak. Here we have

ak = p0,k +
K∑

i=1

pi,kai,
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for k = 1, . . . ,K. This system of equations is known to have a unique solution if (I − P ′) is
invertible. If the system is stable, then λk = λak is the total arrival rate to class k.

Let δj,k be the proportion of time that server j is working at class k. The resulting optimiza-
tion problem (with variables δj,k and λ) that will give us the assignment of servers to classes
is:

maxλ (AP)

s.t.
M∑

j=1

µj,kδj,k ≥ λak, k = 1, . . . ,K (1)

K∑

k=1

δj,k ≤ 1, j = 1, . . . ,M, (2)

δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M, (3)
M∑

j=1

1{δj,k > 0} ≤ ck, k = 1, . . . ,K, (4)

where 1{·} is the indicator function. The constraints in (AP) have the following interpretations.
The first, (1), says that the service rate allocated to class k must be at least as large as the
arrival rate. The second and third constraints, (2) and (3), prevent over allocations and
negative allocations of a server, respectively. Finally, the constraint (4) limits the flexibility,
by only allowing ck servers to be assigned to work at class k. Let a solution of (AP) be given
by λ∗, {δ∗j,k}. We will see that λ∗ is the desired maximal capacity and {δ∗j,k} is the set of
proportional allocations of server j to classes k required to achieve λ∗. The solution of (AP)
will allow us to construct a dynamic control for the original queueing network that can achieve
a capacity λπ arbitrarily close to the maximal capacity.

Obviously, the difficulty in solving (AP) comes from the integral constraints (4). (If (4) is
removed, then (AP) reduces to a linear program, studied in [4].) Note that in these constraints,
although the allocation variables δj,k are fractional, the capacity each one is allocated is either
0 or 1 (depending on whether δj,k is 0 or not). To the best of our knowledge, we are not
aware of other scheduling problems with such constraints. In Section 6 we show that even a
simpler variant of the problem is NP-complete. First we consider special cases in Section 4:
If the µj,k’s are independent of j, i.e., µj,k = µk for all j, then the problem can be solved in
polynomial time. If the µj,k’s are independent of k, i.e., µj,k = µj for all k, then the problem is
NP-complete, but can be approximated within a factor 1/10 by a reduction to the k-splittable
flow problem [6]. For the general case, we show in Section 5 that in polynomial time one
can find a solution within a factor 1/10wmax, where wmax := maxj maxk1,k2

µj,k1
µj,k2

. The bulk
of the remainder of the paper is concerned with how one can solve (AP). Before doing this,
we complete the connection between solving (AP) and the problem of finding the maximal
capacity in the original queueing network.

For the original queueing network, we consider the set of generalized round robin policies.
A generalized round robin policy π is given by a set of integers {#πj,k} and an ordered list of
classes V π

j . Server j serves classes in V π
j in cyclic order, with server j performing #πj,k services

at each class in V π
j (unless server j idles, in which case the server moves to the next class in

V π
j ). If the classes in V π

j are all empty, the server idles at an arbitrary class in V π
j . The details
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of how to construct a generalized round robin policy π given a set of required proportional
allocations {δ∗j,k} is given in Section 3.3 of [4]. As this can be used directly, we give no further
discussion of the construction here.

Define Qk(t) to be the number of class k customers present at time t and Q(t) be a vector
with kth entry Qk(t). The following theorem gives the strong connection between maximizing
capacity in the queueing network and the solution to (AP).

Theorem 1 (i) Any capacity less than λ∗ may be achieved. More specifically, for an arrival
process with rate λ < λ∗, there exists a generalized round robin policy such that the
distribution of the queue length process {Q(t)} converges to a steady-state distribution ϕ
as t → ∞.

(ii) A capacity larger than λ∗ cannot be achieved. More specifically, for an arrival process with
rate λ > λ∗, as t → ∞,

P (|Q(t)| → ∞) = 1.

Proof This is a trivial extension of Theorem 1 in [4]. We simply need

1. a generalized round robin policy can be constructed that achieves allocations arbitrarily
close to {δ∗j,k}

2. the constraint (4) in the allocation LP is equivalent to the required constraint on the
stochastic network

The first of these follows from Proposition 3 of [4]. The second follows from the observation
that δ∗j,k = 0 if and only if #πj,k = 0. !

Theorem 1 says that the difficult stochastic optimization problem can be converted into a
deterministic optimization problem. The mapping of the solution to the deterministic problem
back to a solution to the original stochastic problem does not depend on the complexity of
the deterministic problem (it simply uses the resulting solution). For the remainder of the
paper, we thus focus on solving (AP). In [4], the deterministic problem is simply (AP), with
the constraint (4) removed. This is easily seen to be a linear programming problem, and so
there is the appealing result that a difficult stochastic problem becomes a simple deterministic
problem. However, in our case, the resulting deterministic problem can also be difficult, as will
be seen below. From this point, we refer to the required deterministic optimization problem
as the TOTAL DISCRETE CAPACITY CONSTRAINED PROBLEM (TDCCP).

4 Solving TDCCP - special cases

It is instructive to first look at several special cases of TDCCP that give an idea of the inherent
complexity.

4.1 The case µj,k = µk for all j

Suppose that the service rates are independent of the server and that each server is capable of
working at every class, so µj,k = µk for j = 1, . . . ,M . Here, (AP) can be rewritten as

max λ
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s.t.
M∑

j=1

δj,k ≥ λak/µk, k = 1, . . . ,K, (5)

K∑

k=1

δj,k ≤ 1, j = 1, . . . ,M, (6)

δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M,
M∑

j=1

1{δj,k > 0} ≤ ck, k = 1, . . . ,K,

where 1{·} is the indicator function.

Proposition 1 If µj,k ≡ µk, the maximal capacity is

λ∗ = min

(
M

∑K
k=1 ak/µk

, min
1≤k≤K

ckµk

ak

)
.

Proof Suppose the solution to the allocation program is such that
∑M

j=1 1{δ∗j,k > 0} < ck for
all classes k. Then (5) and (6) are necessarily tight for all k = 1, . . . ,K and j = 1, . . . ,M ,
respectively (or else λ∗ could be trivially increased). As a result,

K∑

k=1

M∑

j=1

δ∗j,k = λ∗
K∑

k=1

ak

µk
.

But
∑M

j=1

∑K
k=1 δ

∗
j,k = M , so

λ∗ =
M

∑K
k=1 ak/µk

.

Now, suppose that for some #,
∑M

j=1 1{δ∗j," > 0} = c". Then, if we let k0 =
arg min1≤k≤K ckµk/ak, either

∑M
j=1 1{δ∗j,k0

> 0} = ck0 , or else we can transform the solu-
tion so that

∑M
j=1 1{δ∗j,k0

> 0} = ck0 without decreasing λ∗, by increasing δ∗j,k0
and decreasing

δ∗j,k for at least one j. The resulting value of λ∗ is here min1≤k≤K ckµk/ak.
Combining the two cases yields the result. !

Note that in this case (the servers are identical), the solution is very simple. To see how
this relates to the literature on limited flexibility, consider the case when ak/µk = 1/µ for
k = 1, . . . ,K, and K = M . Then,

λ∗ = min
(

µ, min
1≤k≤K

ckµ

)
,

so we see that ck = 1 gives the maximal capacity that is equal to that of a system with ck = M
(full flexibility). In general, if the system is roughly balanced (i.e. ak/µk are all close), then we
would expect ck = 2 would be sufficient to achieve the same performance as full flexibility. The
chaining structure in [14, 16, 24, 18] satisfies this. There are other structures that also achieve
this, but the chaining structure is the one that in addition to yielding ck = 2, minimizes the
difference between the number of classes to which servers are assigned.
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This result suggests something more general in the sense that as long as we build in flexibility
such that

ckµk

ak
>

M
∑K

k=1 ak/µk

for all classes k, then we should have near optimal performance. The exact structure of the
assignment of servers to classes would be revealed by the resulting set {δ∗j,k}.

In the flexibility literature, the case when servers are heterogeneous has not been studied (as
far as we know of). This may be partially explained by the fact that solving for the maximal
capacity under limited flexibility is a much more difficult problem, as we shall see in the next
section.

4.2 The case µj,k = µj for all k

Suppose now that the service rates depend only on the server and that each server is capable
of working at every class, so µj,k = µj for k = 1, . . . ,K. In this case (AP) can be written as

max λ s.t.∑M
j=1 xj,k ≥ λak, k = 1, . . . ,K∑K
k=1 xj,k ≤ µj, j = 1, . . . ,M

xj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M
j=1 1{xj,k > 0} ≤ ck, k = 1, . . . ,K

(AP′)

where we performed the substitution xj,k := µjδj,k, ∀j, k. This case is already NP-complete,
as is shown in Theorem 2 in Section 6.

(AP′) actually is an instance of the maximum concurrent multicommodity k-splittable flow
problem which can be stated as follows: Let G = (V,E) be a directed or undirected graph with
integral edge capacities ue > 0, for all e ∈ E. There are l source-sink pairs (si, ti), i = 1, . . . , l,
one for each of l different commodities. For each commodity i there is also a demand di, and
a bound ki on the number of different paths allowed for this commodity. Then the maximum
concurrent multicommodity k-splittable flow problem is asking for a flow assignment to paths
in G that respects the edge capacities and the splittability bounds for the commodities, and
routes the maximum possible fraction of all commodity demands simultaneously. This, together
with several other versions of k-splittable problems, are studied in [6]. Also, when ki = 1, ∀i,
then these problems are simply called unsplittable (instead of 1-splittable).

Problem (AP′) is an instance of the multicommodity k-splittable flow problem: the K
classes can be seen as K commodities of demand ak, k = 1, . . . ,K, each with a splittability
upper bound of 0 < ck ≤ M . These commodities are routed on the network of Figure 1. All
commodities have the same source s, but commodity i has its own sink ti. Each of the vertices
ti, i = 1, . . . ,K is connected to all vertices uj , j = 1, . . . ,M , and s is connected to all vertices
vj , j = 1, . . . ,M . The edge (vj , uj) has capacity µj for all j = 1, . . . ,M , while the rest of the
edges have infinite capacity. Note that a solution to the maximum concurrent multicommodity
k-splittable flow problem on this instance will also give a solution to our original problem (AP′),
since every flow path that carries flow f of commodity k through edge (vj , uj) corresponds to
setting δj,k := f . And vice versa, a solution to (AP′) gives us also a path flow assignment that
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Figure 1: The graph for our special k-splittable flow instance.

achieves the same value for the minimum fraction of commodity demand that is satisfied in
the maximum concurrent multicommodity k-splittable flow problem above.

Baier et al. [6] show that any ρ-approximation algorithm2 for the maximum concurrent
unsplittable flow problem yields a ρ/2-approximation algorithm for the maximum concurrent k-
splittable flow problem. Dinitz et al. [10] present an algorithm that achieves an approximation
factor of ρ = 1/5 in running time O(KM(K +M)), using ideas by Kolliopoulos and Stein [19].
Therefore the solution we get for our problem has a guaranteed worst-case performance of at
least 1/10 of the optimum. Note that in our case, the usual balancing assumption

max demand ≤ min capacity

does not necessarily hold (cf. Stage 2 of the following algorithm description), hence the some-
what worse approximation ratios achieved, as compared to the ratios achieved if this assump-
tion holds. We will denote this first algorithm as Algorithm 1. It is the combination of the
algorithm of [6] with the algorithm of [10], and goes through the following stages:

Stage 1: Transformation of initial problem to a maximum concurrent uniform
exactly-k-splittable flow problem. Replicate each terminal tk into ck identical terminals
tk,i, i = 1, . . . , ck. Every commodity k with demand dk is split into ck commodities (k, i), i =
1, . . . , ck, each with the same demand dk,i := dk/ck and with the same source s and a different
sink tk,i (the values of the dk,i’s are determined in the next stage). Each one of the new
commodities (k, i) will have to be routed unsplittably.

Stage 2: Calculation of demands dk,i. We perform a binary search on the value λ
of the fraction of the initial demands ak that can be routed. Initially λmin := 0, λmax :=
M ·maxj,k{µjck/ak}. Note that the initial value of λmax is an upper bound on the maximum
possible fraction of demands that can be routed simultaneously on the given network. Do the
following until λmax < (1 + ε)λmin for some (given) accuracy parameter ε > 0:

1. λ := (λmin + λmax)/2.

2. dk,i := λak/ck, ∀k, i.

2An α-approximation algorithm is an algorithm producing solutions within a factor α of the optimum.
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3. We formulate a standard LP for the fractional routing of commodities (k, i) in the network
built in Stage 1. Let xj,k,i be a variable that denotes the amount of commodity (k, i) that
flows through edge (vj , uj). If µj < dk,i then we add to the LP the constraint xj,k,i = 0,
and we do this for all j, k, i.

4. If the LP is infeasible then set λmax := λ and go to Step 1, else set λmin := λ and go to
Step 1.

At the end of this stage we have calculated a fractional flow whose λ comes within 1 − ε of
the best possible fraction of demands that can be routed on the given network satisfying the
condition xj,k,i = 0 if µj < dk,i. The latter optimum is an upper bound to the optimum
fraction in the unsplittable case. Let λ∗ be the λ value we have calculated, and xj,k,i the flow
of commodity (k, i) that passes through edge (vj , uj) for all j, k, i that achieves this λ∗. Then
the demand for commodity (k, i) that is satisfied is d∗k,i = λ∗ak/ck. Since it may be the case
that maxk{λ∗ak

ck
} > minj{µj}, the balancing assumption may not hold.

Stage 3: Transformation of the fractional flow calculated in Stage 2 into an
unsplittable flow. Let dmin := mink,i{d∗k,i}, dmax := maxk,i{d∗k,i}. We consider the following
sequence of intervals:

[dmin, 2dmin), [2dmin, 22dmin), . . . , [2ldmin, 2l+1dmin), . . . , [2ν−1dmin, 2νdmin]

where ν := +log dmax
dmin

,. Let l := 0 initially. Do the following:

1. Find the commodities (k, i) whose demand d∗k,i falls within the interval [2ldmin, 2l+1dmin).
We assume that there are m such commodities, and for clarity we denote them as com-
modities 1, 2, . . . ,m and their corresponding sinks as t1, t2, . . . , tm. Assign these com-
modities unsplittably to edges (vj , uj) as follows:

(a) Let xj,tl be the flow variable that denotes the flow of commodity l that goes through
edge (vj , uj). Remove all edges with 0 flow going through them.

(b) If there is any tl with only one incoming edge (uj , tl) then assign commodity l to
edge (vj , uj) and remove tl and (uj , tl) from the network. Also set xj,tl := 0 and
remove commodity l from the network by adjusting the flow variables of the network
appropriately. After this step is done, each of the remaining tl’s has at least two
incoming edges.

(c) Starting from a node uj1 , start going alternatively forward and backward on edges
of the network between nodes uj and terminals tl until we either find a cycle of the
form

uj1 → tl1 → uj2 → tl2 → · · · → uj1

or a path of the form

uj1 → tl1 → uj2 → tl2 → · · · → ujp

and there is no outgoing edge from ujp that has not been traversed yet. In the
second case, complete a cycle by adding s → vj1 → uj1 going forward on edges, and
ujp → vjp → s going backwards on edges. We emphasize that every edge in this
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cycle or path should be traversed only once. Let e be the minimum amount of total
flow through any of the forward traversed edges of the cycle. By adjusting the edge
flow variables appropriately, we reduce the flow on all forward going paths by e and
increase the flow in backward edges by e. This will eliminate the flow from at least
one edge (the edge where the flow is exactly e). Go to Step (a).

2. We scale down the calculated unsplittable flow by a factor of maxj

P
(k,i) xj,k,i

µj
if this

quantity is greater than 1. This is our solution, and the λ that corresponds to this
solution is the throughput we achieved.

4.2.1 A different approximation algorithm (Algorithm 2)

The previous algorithm cannot take advantage of the better approximation factor of 2 for the
unsplittable flow problem, because the balancing assumption does not hold in our case. Here
we follow a different path, in order to provide an approximation algorithm that under certain
assumptions achieves a factor better than 1/10 for the case µj,k = µj for all k. We will reduce
our problem to the generalized assignment problem, and then we will use the approximation
algorithm by Shmoys and Tardos [25].

The first step of the new algorithm is the same as before: we transform the given problem
into an exactly-k-splittable flow problem, with a loss of a factor of 1/2. Hence commodity k is
split into ck commodities (k, i), i = 1, . . . , ck, each with demand ak/ck.

During the second step, we solve the following concurrent flow problem in the network
defined above, which in turn is a relaxation of the concurrent unsplittable flow:

max λ s.t.∑M
j=1 xj,(k,i) ≥ λak

ck
, ∀k, i∑

(k,i) xj,(k,i) ≤ µj, ∀j

xj,(k,i) ≥ 0, ∀i, j, k

(LP-NEW)

If x∗, λ∗ is the optimal solution for (LP-NEW), then define λ(k,i) := (
∑M

j=1 x∗
j,(k,i))/(ak/ck).

Obviously λ(k,i) ≥ λ∗ > 0, ∀(k, i). Also, we define yj,(k,i) := ck
λ(k,i)ak

x∗
j,(k,i) and pj,(k,i) :=

ak
ckµj

,∀i, j, k. Then y satisfies the following system of inequalities:

∑M
j=1 yj,(k,i) = 1, ∀k, i∑

(k,i) pj,(k,i)yj,(k,i) ≤ 1/λ∗, ∀j

yj,(k,i) ≥ 0, ∀i, j, k

This is exactly the relaxation of the problem (without costs) of scheduling unrelated parallel
machines that [25] studies. We can think of the commodities (k, i) as jobs, the edges of
capacities µj as machines, pj,(k,i) as the processing time of job (k, i) on machine j, 1/λ∗ as the
makespan, and y as a feasible (fractional) assignment of jobs to machines that achieves this
makespan. Suppose that there is some ρ > 0 such that pj,(k,i) ≤ ρ/λ∗,∀i, j, k. Then Theorem
2.1 of [25] implies that their algorithm produces an (integral) assignment of jobs to machines
ŷ with makespan at most (1 + ρ)/λ∗. This is the third step of our algorithm.

Our solution assigns x̂j,(k,i) := λ(k,i)ak

ck
ŷj,(k,i) (note that for every (k, i), these values are going

to be 0 for all j except one.) It is easy to prove the following:
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Lemma 1 The solution produced by Algorithm 2 is within 1/2(1 + ρ) of the optimum.

Proof The solution x̂ satisfies the constraints of (LP-NEW) for λ := λ∗/(1 + ρ). Hence it
approximates the maximum concurrent unsplittable flow within a factor of 1/(1+ρ). Together
with the approximation factor of 1/2 from the first step, this implies the lemma. !

If the assumption ρ < 4 holds, the approximation guarantee of this algorithm is better than
the guarantee of 1/10 achieved by the algorithm in the previous section.

4.3 The case µ = α · βT

The results of the previous section can be generalized to any M × K matrix µ which is the
product of an M × 1 vector α and the transpose of a K × 1 vector β, i.e., µ = α · βT (in
other words, the service rates satisfy µj,k = αjβk). Then it is easy to see that the initial
problem (AP) is equivalent to

max λ s.t.∑M
j=1 xj,k ≥ λbk, k = 1, . . . ,K∑K
k=1 xj,k ≤ αj , j = 1, . . . ,M

xj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M
j=1 1{xj,k > 0} ≤ ck, k = 1, . . . ,K

(AP′′)

where xj,k := αjδj,k, for all j, k, and bk := ak/βk. (AP′′) then falls into the case of Section 4.2.

4.4 Extension to TDCCP with costs

We can extend TDCCP by introducing costs to the assignment of servers to classes. Let cj,k

be the per unit cost of assigning server j to class k. Hence, if δj,k is the fraction of its effort
dedicated by server j to class k, then the cost incurred is cj,kδj,k. For example, the assignment
of a worker to a machine where he has no expertise may incur a bigger cost (because of training
needs, damages because of deficient products he produces etc.) than the cost of an experienced
worker to the same machine. Together with these costs cj,k, we are also given a budget that
cannot be exceeded by our final assignment. Hence we are asked for an assignment of servers
to classes that respects the given budget and maximizes the capacity.

The algorithms of [6] and [25] used in Section 4.2.1 are cost preserving, in the sense that the
cost of the integral solution produced by rounding a fractional solution is not bigger than the
cost of that fractional solution. When in the first step we transform the budget-constrained k-
splittable flow problem into a budget-constrained exactly-k-splittable flow problem, [6] proves
that the optimal solution of the latter is not only an 1/2 approximation of the former, but it
also respects the initial budget constraint. Also the algorithm of [25] we use in Section 4.2.1
produces an assignment that always respects the budgetary constraint (although it may not
produce the optimal makespan).3

3Obviously the costs in the budgetary constraint in each of the LP formulations above are scaled following
the scaling of the assignment variables.

12



5 Solving TDCCP - general case

For the general case, let

wj :=
µmax

j

µmin
j

, j = 1, 2, . . . ,M

where µmax
j := maxk{µj,k} and µmin

j := mink{µj,k}. Note that µj,k = 0 implies that δj,k = 0,
so without loss of generality, we will assume that µj,k > 0 for all j, k. Also, let

wmax := max
j

{wj}

and let δ∗, λ∗ be the optimal solution to (AP). Instead of the original problem (AP), we will
try to solve (approximately) the following problem:

max λ s.t.∑M
j=1 µj,kδj,k ≥ λak, k = 1, . . . ,K∑K
k=1 µj,kδj,k ≤ µmax

j , j = 1, . . . ,M
δj,k ≥ 0, k = 1, . . . ,K, j = 1, . . . ,M∑M

j=1 1{δj,k > 0} ≤ ck, k = 1, . . . ,K.

(NEW AP)

It is clear that, as in Section 4.2, we can set xj,k := µj,kδj,k in (NEW AP) to get exactly the
same formulation as (AP′). Hence we can apply the same techniques we applied in Section 4.2,
to obtain an approximate solution x̂, λ̂, which is within 1/10 of the optimum solution (of (AP′)).
Then we output the following solution to the original problem:

δj,k :=
x̂j,k

wjµj,k
, ∀j, k. (7)

Proposition 2 Solution (7) is a feasible solution for (AP), and achieves a λ of value at least
λ∗/10wmax.

Proof By construction, we know that (7) satisfies the characteristic function constraints, since
δj,k is non-zero iff x̂j,k is non-zero. Also, note that

K∑

k=1

δj,k =
K∑

k=1

1
wjµj,k

x̂j,k ≤ 1
µmax

j

K∑

k=1

x̂j,k ≤ 1

where the first of the inequalities is due to the following fact:

µmax
j = wjµ

min
j ≤ wjµj,k, ∀k

and the second inequality is due to the fact that x̂ is feasible for (NEW AP).
Also, note that

M∑

j=1

µj,kδj,k =
M∑

j=1

x̂j,k

wj
≥

∑M
j=1 x̂j,k

wmax
≥ λ̂

wmax
.

Hence we have found a solution with a λ value at least 1/4wmax times the optimum.
!
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Obviously, this result extends to the case of a budgetary constraint problem, i.e. the ap-
proximation factor can be achieved without violating the (given) budget (cf. Section 4.4).

One other possibility is that if
µj,k

µj′,k
≤ (1 + ε)

for some ε > 0, for all j, j′, k, then one can use the result of Section 4.1 to get an approximation.
(Note that if µj,k = 0 for some j, k, then there is no finite ε such that the above bound holds.)
Suppose the system has maximal capacity λ∗ (as seen above, this requires solving an NP-
complete problem). If instead we were to find the maximal capacity of a system with µj,k

replaced by minj′ µj′,k and compute the resulting maximal capacity λ̃ using Proposition 1, it
is easy to see that

λ̃ ≤ λ∗ ≤ λ̃(1 + ε).

In other words, this may be a useful approach if there is “near homogoneity” of servers.

6 NP-completeness

We reduce a slight variation of the classical PARTITION problem (see [SP12] in [12]) to the
version of our problem that is studied in Section 4.2, which, by abusing the terminology a little
bit, we will call problem (AP′):

AP′

Instance: We are given (AP′) and λ∗ ∈ R.
Question: Is the solution of (AP′) greater than or equal to λ∗?

Obviously this problem is in NP. The PARTITION problem variation we reduce it to is the
following:

PARTITION
Instance: Finite set A of even cardinality and a size s(a) ∈ Z+ for each item a ∈ A.
Question: Is there a subset A′ ⊆ A of cardinality |A|/2 and such that

∑
a∈A′ s(a) =∑

a∈A\A′ s(a)?

Given the PARTITION instance, we identify the elements of A with the numbers
1, 2, . . . , |A|. Let S :=

∑|A|
j=1 s(j) be the total size. We set K := 2,M := |A| and

µj := s(j), j = 1, . . . , |A|. We also set c1 = c2 := |A|/2, and a1 = a2 := 1. Finally we
set λ∗ := S/2. Therefore we get an instance of (AP′) in polynomial time. From now on, when
we refer to (AP′), we actually refer to this specific instance we constructed. We prove the
following

Theorem 2 PARTITION has a solution iff (AP′) achieves λ ≥ λ∗.

Proof Before we proceed to the proof of the theorem, we will make some observations about
the nature of the solution to (AP′).

Claim 1 Every solution of (AP′) can be transformed into a solution that achieves the same λ
and, in addition, has the following properties:
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1. For all servers j, except possibly one, xj,1xj,2 = 0, i.e., xj,1, xj,2 cannot be both non-zero,
and if one is 0, the other is either 0 or µj .

2. If there is a server j with xj,1xj,2 > 0, then there is exactly one server l .= j with
xl,1 = xl,2 = 0.

Proof (of claim) First note that for any server j such that xj,1, xj,2 are not both 0, say, xj,1 > 0,
we can increase xj,1 without losing feasibility, until the constraint

2∑

k=1

xj,k ≤ µj

becomes tight. Therefore we can assume from now on that these constraints are tight for any
server j that is actually used, i.e., xj,1 > 0 or xj,2 > 0.

Suppose that there are two servers j, l such that xj,1xj,2 > 0 and xl,1xl,2 > 0. Let ε :=
min{xj,1, xl,2}. Set

xj,1 := xj,1 − ε

xj,2 := xj,2 + ε

xl,1 := xl,1 + ε

xl,2 := xl,2 − ε.

Note that this transformation does not violate feasibility or affect λ. But as a result, the
minimum of xj,1, xl,2 becomes 0. We continue performing this transformation until there is at
most one server j with xj,1xj,2 > 0, and part 1 of the claim is proven. If there is one such
server, then because of part 1 and the constraints

|A|∑

j=1

1{xj,k > 0} ≤ |A|/2, k = 1, 2

there are at most |A| − 1 servers that are used, therefore there is at least one server l with
xl,1 = xl,2 = 0. In fact, there will be exactly one such server, since if there were more, the
constraints above would not be tight, and we could have used one more (so far unused) server,
to increase λ, contradicting the optimality of the solution we got in part 1. !

It is easy to see that without the constraints

|A|∑

j=1

1{xj,k > 0} ≤ |A|/2, k = 1, 2,

(AP′) can achieve at most λ = S/2. Therefore, in order to prove Theorem 2 all we need to
show is that PARTITION has a solution iff (AP′) achieves λ = S/2. One direction is trivial:
if PARTITION has a solution, then set xj,1 := µj, xj,2 := 0, ∀j ∈ A′ and xj,1 := 0, xj,2 :=
µj, ∀j ∈ A \ A′; this achieves the maximum possible λ = S/2.

For the opposite direction, we first transform the solution to (AP′) that achieves λ = S/2,
so that it complies with Claim 1. If there is no server j such that xj,1xj,2 > 0, then all servers
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are used (due to optimality of λ), and for each server exactly one of xj,1, xj,2 is equal to µj

and the other is equal to 0. Hence in this case the solution of (AP′) corresponds exactly to a
solution of PARTITION. Now suppose that there is a server j such that xj,1xj,2 > 0. Part
2 of Claim 1 then implies that there is one server l that is not used, i.e., xl,1 = xl,2 = 0.
But then

∑2
k=1

∑|A|
j=1 xj,k ≤ S − s(l), which contradicts the fact that

∑|A|
j=1 xj,1 ≥ S/2 and

∑|A|
j=1 xj,2 ≥ S/2.

!

7 Examples

Here we present three examples to give an idea of the algorithms’ performance and also to
provide some discussion on the difficulty of finding flexibility structures for heterogeneous
servers. It should be stressed that the approximation bounds derived for our algorithms above
are worst-case guarantees. Therefore, it is conceivable that these algorithms may perform
much better in practice. The following examples suggest that this may be the case but are of
course not conclusive. This is the case in the examples studied below.

Example 1. Let M = 4, K = 10 classes in tandem, and consider µj,k = µj, with µ1 = 0.5,
µ2 = µ3 = 1, µ4 = 2. Here, with full flexibility (ck = 4), the maximal capacity is 9/20. For
more limited flexibility, we get the results in Table 1 for the appropriate maximal capacities.
Note that Algorithm 1 performs reasonably well (this example is small enough that the optimal

Table 1: Maximal capacities for Example 1

Algorithm 1 Algorithm 2 Optimal
ck = 1 1/3 1/4 2/5
ck = 2 1/3 1/4 9/20
ck = 3 3/7 3/7 9/20

solution can be produced by hand). Also, we see that one only needs ck = 2 to capture the
benefits of full flexibility.

Example 2. Here we use the same configuration as the previous example, but set µ1 = 0.1,
µ2 = µ3 = 1, µ4 = 10. With full flexibility, λ∗ = 1.21. The results for more limited flexibility
are in Table 2. Once again, Algorithm 1 performs reasonably. Algorithm 2 has the undesirable
property that the estimate of the value of the maximal capacity has decreased in this instance
when moving from ck = 1 to ck = 2 (there is a trivial remedy by simply taking the value for
ck = 1 for both cases).

An interesting observation (and perhaps one that gives some intuition as to why these
problems are so difficult in general) is that for ck = 1, server 1 is not utilized at all in the
optimal solution, while for ck = 2, there is some benefit to using this very slow server. This
tradeoff between effectively using faster servers versus idling slower ones is in essence what
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Table 2: Maximal capacities for Example 2

Algorithm 1 Algorithm 2 Optimal
ck = 1 1 1 1
ck = 2 1 2/3 1.21
ck = 3 1 3/4 1.21

makes the problem so difficult (this issue also arises in Rubinovitch [22]). With full flexibility
or homogeneous servers, this tradeoff disappears.

Example 3. Here we consider an instance of the general case. The topology is taken from
System 2 of [4]. Here, µj,k is given by the (j, k) entry in the following matrix:





1 1 1 1 1 0 0 0 0 0
2 1 0 0 0 2 1 0 0 0
0 1 2 1 0 0 1 2 1 0
0 0 0 1 2 0 0 0 1 2
0 0 0 0 0 1 1 1 1 1




.

In addition, the routing in the network is such that ak = 1 for 1 ≤ k ≤ 5 and ak = 0.5 for
6 ≤ k ≤ 10. Here, if we first choose ck = 2, 1 ≤ k ≤ 10, we get maximal capacity estimates
of 0.5 for Algorithms 1 and 2, while the optimal value is 0.9143 (the optimal value for full
flexibility is 0.9474). Once again, the performance of Algorithm 1 is well above its guarantee,
but is relatively worse than for the previous examples. If we further reduce the flexibility by
setting c1 = c10 = 1 and ck = 2 for 2 ≤ k ≤ 9, the results are unchanged. This demonstrates
that while we are employing a state of the art algorithm, it still may be problematic to employ
for design decisions. (That is, if one needs absolute values. The issue of using it to make
relative choices between design options is something that has not been explored and could be
a useful topic for future work.)

8 Concluding remarks

Except for the special cases considered in this work, we do not know the approximability of the
general allocation problem (AP). In the special case where the servers are homogeneous, we
have seen that the problem has a simple solution, and as a result it is relatively straightforward
to study the impact of limited flexibility. When the servers are heterogeneous, we see that
finding the maximal capacity is difficult under limited flexibility (as opposed to under full
flexibility, in which case it is straightforward), which leads one to believe that the problem
of how to exploit limited flexibility in this case is one that may be difficult to look at in
general. The fact that computing the maximal capacity itself is difficult also suggests that
finding general, structural results for heterogeneous servers may be very difficult. However,
the algorithm presented here gives hope that it may be used to study specific examples and as
such build insight into the issue.
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[4] S. Andradóttir, H. Ayhan and D.G. Down. Dynamic server allocation for queueing net-
works with flexible servers. Operations Research, 51:952-968, 2003.

[5] M. Armony and N. Bambos. Queueing networks with interacting service resources. Pro-
ceedings of the 37th Annual Allerton Conference on Communications, Control, and Com-
puting , 42-51, 1999.
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