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Abstract

This paper considers the problem of routing Poisson asit@lV parallel servers under the condition
that the system is heavily loaded. We propose a scheme irhvehproportion of arrivals are routed ran-
domly, while the others are routed to one of two neighbougugues using load information. We show that
this scheme, which exploits a limited amount of load infatioraand takes into account locality consid-
erations, achieves performance close to that of a routitigypahich requires complete load information.
In addition, we show that this scheme has a diffusion scaledig length process that is the same as if all
of the servers were pooled with a single queue (in other wardsouting decision need be made). Our

insights provide an additional option in load balancingmptementing the related work on the power of
two choices.
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1 Introduction

There has been a significant amount of work over the pastaeyears on the “power of two choices”
for various load balancing problems (see Mitzenmacher.g6gfor an overview of existing results and
implications). In our work, we concentrate on the problendyriamically assigning tasks to servers, where
tasks arrive sequentially and must be routed to a serverraladf we consider the case where all servers
are identical, and we are interested in minimizing a tasléaumwaiting time, then it seems reasonable that
we would like to assign an arriving task to the least loadeatesgei.e., to join the shortest queue (JSQ).
Winston [11] gives optimality properties for such a poli€yhe service times are exponentially distributed
and the local service discipline is first-come-first-seiv€ES). Weber [9] gives similar results for service
times with non-decreasing hazard rates. Unfortunateth aupolicy may not be scalable, as gathering com-
plete load information of all servers may be very expensive td such issues as message passing overhead.
On the other hand, no system state information would be redyuf arriving tasks were simply randomly
assigned to a server. While this latter option may be atiadtom an information gathering viewpoint,
there is usually an unacceptable gap between random assigamd using full system information to make
routing decisions.

In [5], Mitzenmacher proposed a load balancing algorithrniclw is somewhere between complete ran-
dom routing and JSQ routing. (We denote it as J5Q~.) Suppose a system consists\didentical servers
(service times exponentially distributed with mean onel-Bdiscipline) and a Poisson arrival process with
rate N \. If each arrival chooses servers independently and uniformly at random from Ahservers and
joins the one with the shorter queue, then the limiting bahavof such choice leads to exponential im-
provements in the expected waiting time in the system forc&amy2 overd = 1. To be specific, lef;()\)
denote the expected time an arrival spends in the limitirsgesy (V — oo) for d > 2, then the asymptotic
improvement as the system approaches unity load is

Ta(N\) 1
MlogTi(V) — logd’

(1.1)

whereTi()) is the expected waiting time for ah/ /)M /1 queue with arrival rate\ and service rate 1.
For example, when the system is in heavy traffig(1) ~ 3log 73 (1) implies that JISQ@/N will achieve
exponential improvement over complete random routings Teémarkable result falls under his “power of
two choices” label.

In the concluding remarks of [5], the problem of dealing witleality is suggested as an interesting
issue, i.e. rather than randomly choosing queues, one maytawaonstrain the choices of which queues
may be chosen together. Insight into this problem is giveByars et al. [1]. They showed that when
items are placed at servers withd choices per item, when nearest neighbours are chosen, thienom
number of items assigned to a server is a constant factarléngn a system where thlechoices are made
randomly.

In this work, we explore similar issues in the context of sefead balancing, where Poisson arrivals
occur to a number of parallel servers (we begin with the serlseing identical, later examining the het-
erogeneous case). We propose a policy that provides armvigth either no choice or the choice of two
neighbouring queues, for which they join one of the two ggewith the shorter expected waiting time. We
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show that this policy yields a diffusion scaled queue lerib#t is the same as one in which arrivals join a
single queue in front of all of the servers and are served iRFGrder. This type of behaviour has been
termedcomplete resource poolingoined in Harrison and Lopez [4]). We are able to apply négeork by
Stolyar [8] that gives conditions for complete resourcelpgoto hold for a class of models that has ours
as a special case. These conditions are relatively stfaigiard to check for our proposed policy. We then
proceed to give evidence that other policies (including ith§s]) should behave in a similar manner. All of
these policies share the feature that a fraction of the iimegrvorkload may be shifted from any queue to
any other queue in the system, which we believe is the mestmatfiat leads to the significant performance
improvement.

We believe that this paper makes several contributions fifgtés the one just mentioned, as it suggests
that in designing good routing policies, it is key to allove@aming workload to be freely shifted between
queues. Furthermore, the fact that the choice may be sgVengied (a proportion of arrivals may have no
choice) demonstrates (at least in heavy traffic) that nadfate arriving workload needs to be capable of
being shifted. In other words, if a small proportion of aatsycan be routed using load information while
the remaining arrivals are randomly routed without any liodormation, the system performance is close to
that achieved by a load balancing policy which requires detedoad information. This complements the
insights given in [1, 5], in particular those in [1]. The framork that we employ also allows us to address
generally distributed service times. Finally, we also exeniheterogeneous servers.

The organization of the paper is as follows. Section 2 givesrhodel in detail and describes the
diffusion approximation method that we use to analyze ngufiolicies. Section 3 shows that for a system
with identical servers, our proposed policy has a diffussoaled queue length process that is identical to
that for a system where no routing decision need be madeioBetextends the main results to the case
of heterogeneous servers. Section 5 provides a discussioomoour main results should apply to other
policies (including that in [5]). Section 6 provides a fewnmerical results and Section 7 provides some final
thoughts. For the paper to be self-contained, Appendix Aldes some existing results that will be used in
our study.

2 Model

Define a finite set7 = {1,..., N} (N > 2). The base system that we study héparallel single-server
queues. Let{v;,, : m > 1} be a sequence of independent and identically distributéd.firandom
variables, which are formed by the service times at qyeiie= J. We assume

E[vjm] = p~", varfvi.] =5, Vje€J,
forallm > 1. Also, for all j € 7, the sequencel; ., } are assumed mutually independent. Service at each
gueue is First Come First Served (FCFS). The single arrivehm of tasks follows a Poisson process with
finite rate N\. A task must be assigned to one of the servers immediately agival. Our performance
goal is to minimize a task’s mean waiting time, or equivdieby Little’s law, to minimize the mean total
number of tasks in the system.
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We propose a routing policy as follows. With probabilityV (0 < p < 1), an arrival is randomly routed
to one of theV identical queues. We call such arrivdisdicatedarrivals. With probability(1 — p) /(N — 1),
an arrival is routed to one of two neighbouring queyiesid; + 1, j € {1,..., N — 1}, which has the shorter
gueue length. We call thedlexiblearrivals.

Like JSQ-2N (i.e., Mitzenmacher's Two Choices [5]), our policy is moakable than JSQ, as the
dedicated arrivals need no state information, while thaldlexones need information on the state of only
two servers. A large value of the flexibility levglimplies a small amount of state information is required
in making routing decisions. Unlike JSQ22/ our policy addresses the problems where (1) not all agival
need to be flexible for dynamic choice, (2) even for flexiblevafts, not all can afford complete random
choice of all servers: the choice may be very limited due tality constraints or personal preference of
the arrivals. Therefore, our proposed policy provides lagobption to JSQ-2Y, in the case where a more
constrained routing choice for arrivals is attractive.

To analyze the behaviour of our policy and compare it witheotholicies, we adopt the diffusion ap-
proximation method. Rather than give a long list of refeemnon this method, we refer to the monograph
of Chen and Yao [2] for an overview. The main idea is to essabthe diffusion limit for the queueing
process of interest (e.g., the queue length process or thimgviime process). To identify the diffusion
limit, a sequence of queueing systems is considered. Thiatioh comes from the fact that the queue
length process has a stationary distribution only when yiseem loadp is strictly less than one, while its
diffusion limit is zero wherp < 1. So the queueing system we are interested in is assumed todbenaent
in a sequence of systems whose traffic intensities appraaeh@nce the limit is obtained, it can be used to
approximate the queue length process of a stable systenpbymjate scaling. Therefore, we can compare
diffusion scaled queue length processes for differenimgigchemes. In contrast with the techniques in [5],
we will study a fixed, finite set of queues, as the load on theeaysipproaches unity. We will show that the
diffusion scaled total queue length is the same as that dffd&’/N queue in heavy traffic. The limiting
process is independent of the flexibility leyelwhich means even a small proportion of flexible arrivals
should yield significant improvement in system performaindecavy traffic.

3 Main Results

We consider a sequence of the identical server systemsaddexn. For then-th system, the arrivals
follow a Poisson process with rafé\(™); service times have mean ! and variances?. Assume that the
following conditions hold

lim A" = ), (3.1)
and
(n)\ 2+e
sup E |(v; < 0 3.2
nz1,§)eJ [( ]’1) } (32)

for somee > 0 (i.e., the first and second moments of the service times atevaed finite). In addition, let
i = Np, the heavy traffic condition

lim \/E<N)\(") - ,1) — <00 (3.3)

n—oo
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is assumed to be true for some finite constant_et p = N/ be the system load. Sinee> —oo
corresponds tp = 1, then by (3.1) and (3.3), we let the system go to heavy traffimbreasing the arrival
rate while fixing the processing time distribution.

In our main result, we will consider three different routipglicies, each operating on the same sequence
of systems. These are our proposed policy, JSQ, and one a@tere is a single queue and no routing (so
the result is an M/GY¥ system). Let the total queue length processes for thesggmlie given b)@g”) (1),
Qf,”S)Q(t), andQS\’}) (t), respectively (we assume that these are all equal to zenmatzero). We form the
diffusion scaled queue length processes as follows:

0=
with Q%)Q(t) andQ'? (¢) defined in the same manner.

To state our main results, we need a few more definitions.—£etdenote weak convergence (or con-
vergence in distribution for processes in the standard dbiaat space of right continuous functions with
left hand limits, see Appendix A.1) and RB¥ ¢2) denote a reflected Brownian motion with drifiand
varianceo?. The following is our main result:

) (nt), (3.4)

Theorem 3.1.

(i) The diffusion scaled total queue length process of ttmlsasten@fg) (t), converges weakly to a one-

dimensional reflected Brownian motighz which is independent of, p € [0,1). That ing) (t) —
Qp = RBM(c, N (1 + p23?)), asn — oo.

(i) ForJsQ,QY, % Q.
i)y For MIG/N, Q' (t) - Q.

Before we prove the theorem we comment on its implicationst,Ehe theorem justifies the claim that
for a stable system with load close to one, the distributibth® scaled queue length process is close to that
of the RBM. Therefore, given the system load 1, we can choose the index= 1/,/1 — p and obtain
the approximation of the unscaled queue length process

Qp(t) ~ Qs (t(1 —p)®) /(1 —p).

The mean of the distribution @@ 5(t) is close toN A (1 + ;232) /2|c|, which is the mean of the stationary
distribution of the RBM.

Next, it is noted that if two unscaled sequences of processest in the same diffusion limit for their
corresponding diffusion scaled processes, the differ&eteeen them is of the ordef/n). Thus, we
are unable to capture, for example the fact that there caoaild tonstant difference between the unscaled
sequences of processes. However, it does suggest thatrfbenmace of the systems should be relatively
close (in particular, for high loads). Theorem 3.1 paytimplies a small amount of flexibility should give
close to the performance improvement given by 100 percexibiliégy. Part (ii) implies that using our
proposed policy should have performance close to that of @8I@r heavy loads. Paftii) shows that our
proposed policy should have performance close to that osgesywhere no routing decision is required
(such a system clearly provides a lower bound on achievaisfermance).



Load Balancing - Limited Choice and Locality 5

Proof of Theorem 3.1.

(i) For the base system considered, define the®ets {1,...,N}, Zo = {N +1,...,2N — 1}, 7 =
7, UZ,. The arrivals can be viewed as consistingZ@ftypes, each typéhaving arrival rate

DA, if i € 77, the dedicated types,
N = AL _ _ (3.5)
2. ifieI,theflexible types

A graphg is constructed which has nodes being arrival tygge € 7) and queug (j € J), and arcs
(i) being the routing activities. To represeitwe use a matrixd = (¢; j)|z|x |7 With non-negative
elements, where; ; is the average rate at which seryvés time is allocated to serve typecustomers,
in the long run (so the total utilization of servgis p; = >, 7 ¢ ;). For the base system, we have

o1,1

ON,N
= | ONy1,1 PNy12 (3.6)

ON+2,2

PaN—2,N—1

i P2N-1,N-1 P2N-1,N | (@N_1)xN

where the diagonal matrig, represents the routing structure of the dedicated arritladsbi-diagonal
matrix @5, the flexible arrivals. Then the linear system

> ugij=X, Vi€ and > ¢i;=1, VjeUJ, (3.7)
JjeT 1€l
has the unique solution
p7 Z 6 Il! j - Z’y
$ij =14 (1—p) "=, i€y j=1i(modN), (3.8)
(1-p)i=, €Iy j=i(modN)+1.

When0 < p < 1, ¢;; > 0fori € 7o and¢; ; > 0 for i € Z;. The uniqueness b satisfying (3.7)
implies@ is a connected tree (i.e., all of the queues are connectedghrthe positive elements ).

Therefore, from Theorem A.1 in Appendix A.2, the so-callednplete resource pooling (CRP) condi-
tion holds for the vector = (Ai)1x |z With components\; defined in (3.5). When the CRP condition
is satisfied, in the heavy traffic limit the parallel queuetsyseffectively forms a single pool of service
capacity and the state space of the system informationpsgitainto one dimension, typically making
the system much easier to analyze.

Define

%, if i € 7,
bi=4 (3.9)
b if e Ty,
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so that) ;. b; = c¢. From (3.5) and (3.7), we have= . Then, using (3.3), we have

lim \/ﬁ(xg”) - >\Z-> — b, (3.10)

n—~00

Let &; be the workload contribution of servgrandv; be the workload contribution of typearrivals.
(For the precise definitions of the vectgrandr, see Appendix A.2. We do not go into detail here, as
we will see shortly that these values do not appear in our érpiessions.) In addition, I@g)m(t)
be the number of typearrivals at queug at timet a”ng)m(t) = Q%f)z—,j(nt)/\/ﬁ Given (3.1), (3.2)
and (3.10), a direct application of Theorem A.2 (in Apperdli®) yields

ST QR (1) 5 RBM(0,07%),  asn — oo,

jeJ el
where

0= Z vib, o°= ZVZZ |:/\i + Zﬂ@',j(ﬂﬁ)zl : (3.11)
iel i€l =

From (A.2) (in Appendix A.2), we have

§ = maxuv;, Vi = mjin i/ 1

which implies thatvi € I, v; is equal to some constaat(which, for our purpose, is not necessary to
calculate) and/j € J, & = ap. This, with (3.7), implies that

2 (1) 5 RBM (¢, NA (14 4%6%)), asn — oo,
which is clearly independent gf

(i) The JSQ policy is a special case of Stolyar’s MinDrifj(@olicy (see Appendix A.3). Le§; = 1/J,
then Theorem A.2 yields the result. We note that by applyihgdrem 3.1 from Zhang and Hsu [12],
the same result can be obtained.

(iii) A direct application of Theorem 5 in [7] yields the rdsu O

At this point, we make the observation that the routing $tmecgiven by (3.8) suggests that the intuition
behind Theorem 3.1 is that congestion at a particular quande alleviated by shifting a sufficient amount
of incoming workload from that queue to other queues. Thetfaat the tree structure for the routing of
flexible arrivals allows a fraction of the incoming worklotmbe shifted anywhere in the system leads to
complete resource pooling, i.e. all of the queues are “cttedé through the tree structure. What may be a
bit surprising is that an arbitrarily small amount of fleityi is enough to achieve this.

4 Extensions

We can extend our policy to cope with heterogeneous servdrs. will require a non-uniform choice for
the routing probabilities. Lefv; ., : m > 1} be a sequence of i.i.d. random variables formed by the servic
times at queug and assume

Efvj.] = p; ', varfv;i] = 3.
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Also, for all j € 7, the sequenceg; ,,,} are assumed mutually independent. The service disciplieach
gueue is still FCFS. The single arrival stream remains as@niprocess with rat&’ \.

It is known from Appendix A.3 that the “join the shortest egfel waiting time” (JSEW) policy, i.e.,
route an arrival of typé to queuej satisfying

J € argmin 72’ Qij(t),
JET
exhibits complete resource pooling for appropriate ra@ustructures. Her€);;(t) is the number of type
arrivals in queug at timet and .7 is the set of servers that can serve ty@arivals. Thus, for this section
we will use JSEW routing (note that JSEW routing is simply J&®Qe servers are identical).

We modify our policy as follows. Lei = E;-V:l . With probability py; /i (0 < p < 1), a (dedicated)
arrival is routed to one of th& queues. With probabilityl — p)(x; +¢;) /i (with constant ), a (flexible)
arrival is routed to join one of two neighbouring queugsnd;j + 1, j € {1,..., N — 1}, which has the
shorter expected waiting time. That is, the routing prolitsths proportional to the mean service rate of the
neighbour on the left.

To determine the routing probability for the flexible arisjathe constant$e; } are chosen as

ce (o,min (5%)) jell,..,N—2}
€5 = (41)
/LN_(N_2)57 J=N-1,

with

_ . Hj
ST Ny — 1 #.2)
Now consider a sequence of the heterogeneous server syisigemed byn. For then-th system, the

arrivals follow a Poisson process with rat&\(™); the service times at thgth server have mea,m;1 and
varianceﬁjz. Conditions (3.1)—(3.3) are still assumed to be true. Ferdghime sequence of systems, we
consider three different routing policies: our modifiedipgl JSEW, and an M/GY" queue (i.e. a system
with a single queue folN heterogeneous servers, service being FCFS). Let the tatakgength processes
for these policies be given byg‘) (1), QS@EW(t), andQE\’}) (t), respectively. For each of these, we again
need their diffusion scaled counterparts defined in the saareer as (3.4). Then we have the following
result:

Theorem 4.1.

() The diffusion scaled total queue length proce@é’;) (t), converges weakly to a one-dimensional
reflected Brownian motio) 5 which is independent of boih € [0, 1) and g, j€{l,...,N -1}
That isQV” (t) % O = RBM(c, NA+Yies u?ﬂf—), asn — oo.

(i) For ISEW,Q0 (1) = Q.

w ~

(i) For MIGIN", Q) (t) * Q.
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Theorem 4.1 says that our policy should have heavy traffifopeance close to that in which no rout-
ing decision is made, so the suggested choice of routingapilities should lead to good performance in
general.

Proof of Theorem 4.1.

(i) We use the same sefy, Z, andZ defined in the proof of Theorem 3.1 and define the arrival rate
VeCtorX = (\;)1z| With components

Pl iel,j=i,
(1—p)(u; +ej),  i€Tzj=i(modN),

i =

(4.3)

whereg; is given in (4.1).

The routing structure matri® is the same as (3.6). Then the linear system (3.7) has thaeis@ution

P, 1 €11,j =1,
b= 22 (m-ilen), €D, j=i(modN), (4.4)
Lp SN ey, i € Ty, j = i(MOdN) + 1.

Given0 < p < 1 and (4.1), we have; ; > 0 for ¢ € Z,. Again, the uniqueness df implies that the
associated grapd is a connected tree. So from Theorem A.1, the CRP conditidusHor the arrival
rate vector defined in (4.3).

Let
bi{ cpu; /i i€Ti,j=i
c(pj+e)/p, i€y j=1i(modN),
so that) ", ; b; = c. From (4.3) and (3.7), we haye= >, _.; A\; = NA. Then, using (3.3), we have
lim (Af-”) - /\Z-> — b;. (4.5)

Let Qg)j(t) be the diffusion scaled queue length process ajtheserver, Theorem (A.2) yields that
S (i HQY) () - RBM(0,0?),  asn — o,
JjeJ

where

1€ €T JjeT

0=> vb, o*=> 1} {Ai +> Mj¢i,j(ﬂj5j)2] :
Again from (A.2), we have
§ = maxpivi, Vi = mjinfj/ﬂja
which implies that; is equal to some constaatand¢; = a;. This, with (3.7), implies that

O () 5 RBM (c, N+ Z;@?ﬁ?) . asn — oo. (4.6)

jedJ
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(i) JSEW is also a special case of the MinDrift(Q) policy€séppendix A.3). Let; = u;/f, then a
direct application of Theorem (A.2) yields the result.

(iif) A direct application of Theorem 5 in [7] yields the rdtu O

5 Rings and Supermarkets

Motivated by the observation at the end of Section 3, if theelmaism for good performance is that a
sufficient proportion of incoming workload can be shiftedrfr any server to any other server through the
routing structure, then there are two natural choices thailgl intuitively lead to better performance (while
still keeping the number of choices to be at most two). Onéne$é is to extend our policy so that there
is an additional stream of flexible arrivals that is allowedjdin the shorter of queued and 1. This
would allow incoming workload to be shifted bidirectionaltather than unidirectionally. We will call such
a routing structure a “ring” structure, as opposed to the€'trstructure of our original policy. Another
obvious choice is the JSQ+&/policy, as it can spread incoming workload over many diffiécpieues, so it
seems reasonable that it would also have better perforn{argeh would be consistent with observations
in [1] for the assignment of a fixed number of tasks). Like ttee tstructure, the ring structure provides an
option to JSQ-2V, where dynamic routing choice is more constrained. Unfately, as seen below, the
CRP condition does not hold for both the ring structure an@-28V, but we suggest a means to make a
comparison. As the JSQ<®/policy has only been defined in the homogeneous serversfoasiee rest of
this section we stick to that setting.

5.1 Ring Routing Structure

The difficulty in analyzing the ring structure is that theresponding arrival rate vectgk, ..., Aax|, which
has elements

N = DA, ff z e{l,..,N}, (5.1)
(1 —p)A, ifie{N+1,..,2N},

does not satisfy the CRP condition, because the routingtateimatrix

o1,1

ON,N
Q=1 dnt1,1 ON412 (5.2)

GaN-1,N-1 P2N-1,N

| dan1 $2n,N
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has a cycle in the corresponding graph. This means that#énemaultiple solutions of the linear system

ON+1,1F ON12 = Angr/p (5.3)
Gon,N + Pan1 = don/p
$aN1+ON+t11 = 1—\/p

Gon—1,N + NN = 1= AN/,

which is of the same form as (3.7). For< |e| < min; ;) ¢;;, define a perturbed matrig’ which has

elements

Gij — €
Gij + €,

¢§,j = {

Then (5.3) becomes

if i =N + 7,
if iilmodN) =7 — 1.

(dN411 —€) + (ONy12+€) = Ang1/p (5.4)
(pan,N —€) + (Pang +€) = on/p
(pang +€) + (dNy11—€) = 1—=X\i/p

(pan—1,N +€) + (panNy —€) = 1—=An/p,

which means that if® is a solution of (5.3), we can perturb tige ;’s along the arcs of the cycle so as to
produce a matrixp’ # @, such tha®’ also satisfies (5.3). From Theorem A.1, the CRP conditiors o
hold in this case, so we cannot directly make conclusiondaito Theorem 3.1.

However, as we shall see below, this does not imply that tigerduting structure will have performance
worse than the tree routing structure. (Remember that duition suggests that it should be better.) To
see this, we modify the ring structure so that the flexiblesals which join the shorter of queuésand N
instead join each of those two queues with equal probabilityen the arrival rate vectquil, e 5\21\/-1] for
this modified system has elements

ey, if i € 7y,
A=< pA if i € 7o, (5.5)
(1—p)A, ifiels,

where the set§1 ={1,N}, jQ ={2,..,N -1}, jg ={N+1,..,2N — 1} andfl Ujg Ujg =17.
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The corresponding routing structure matfhas the same form as (3.6) and as a result the linear system
(3.7) has the unique solution

B ey, j=i
<Z~5i,j = b, AS j?!j = i? (56)
12;;0’ iejg.

When0 < p < 1, ¢;; > 0fori € Z, UZz and¢; ; > 0 for i € Z,. From Theorem A.1, the CRP condition
holds for the arrival rate vector defined in (5.5).
Consider a sequence of these modified systems where corsdi8dl)— (3.3) are assumed true. Let

I it e 7,
bi=1{ 2, if i € 7o, (5.7)
p)l - if e T,

and as before, we sg€, ., b; = c. Thus, using (3.3), (3.10) is satisfied.
Let QRJ(t) be the number of tasks in queyat timet. By applying Theoren3.1(), we have

% Z Q) (nt) < RBM (¢, NA (1+ 423%)) . asn — oo. (5.8)
JjeJ
This means that the system in which the modified version ofitigerouting structure is applied, has the
total queue length process achieving the same RBM limitasahthe original tree model.

At this point, we suggest a relationship; < Lp, whereLp and Ly are the mean numbers in the
system with the original and modified ring structures, respely. While we are unable to provide a proof,
the intuition is that if at the two end queues, queue 1 has drhigher workload than queug, the original
ring structure enables the incoming workload to be shiftedctly from queue 1 to queud’, while the
modified structure only allows sequential shifting througleues 2 taV — 1. Apparently, congestion is
alleviated more quickly in the original ring structure thtéwe modified one. It would be useful to prove this
relationship. This, together with (5.8) and Theorem(8:1 suggest that the ring routing structure will also
perform very well.

We conjecture that although the total queue length prockeeeaing structure does not collapse into
a one-dimensional RBM in an arbitrarily long time range ¢sithe CRP condition does not hold), a linear
combination of its queue length processes collapses, htpgaat of time, into a one-dimensional RBM and
achieves the same limit as that of the original tree modélastbeen noticed that given the routing structure
matrix in (5.2), there are multiple solutions of ;'s to the linear system

D ngij=XNi, VieIgp and Y ¢i;=1, VjeJ, (5.9)

JjeJ i€l

whereZr = {1,...,2N} and)\; is defined in (5.1). Supposke = (¢; ;j)anxn and®’ = (¢;7j)2NxN are two
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of the solutions. Recalling (3.11) in the proof of Theorem(3, let

ot = NN+ ueii(uB)?|
i€LR L jeTJ |
o = N v N+ D ue(ub)?]
i€LR L jeTJ |

wherev? is the workload contribution of typearrivals. Using (5.9), we have

ot =0"=> VN (1+p°7). (5.10)
1€TR
If at two different points in time, the system characteribydb and®’ respectively followed an RBM limit
and the limit was characterized by the correspondifigand o2, (5.10) implies the two limits would be
identical.

5.2 JSQ2/N

In the supermarket model, there a¥e(/N > 2) parallel single-server queues, where the service times ar
i.i.d.and exponentially distributed with mean!. The single arrival stream follows a Poisson process with
rate N\. With probability 1/N, queuej is selected and with probability/ (N — 1), queuej’ is selected,
j, 7" € J,j # j'. Anarrival chooses to join the shorter of queyend;’.

Define the se¥ = {1,..., N(N — 1)/2}, so the arrivals consist ¢T| flexibletypes, each with rate

2\ .

Again, however, the arrival rate vector does not satisfy@fRP condition, because the routing structure

matrix ) )
P11 b1,
ON-1,1 ON-1,N
®N2  ONg3
B | ) (5.12)
PN 3,2 G2N—3,N
L ¢N22—N’N_1 ¢N22—N’N ]

has multiple cycles in the corresponding graph. These pieltycles reflect the mechanism by which the
JSQ2/N policy shifts the workload among the queues, i.e. the wartklis shifted not just to the neighbour-
ing queues, but to all of the other queues without consiateraif locality constraints. Thus our intuition
suggests that the JSE)/V policy should perform even better than the ring structure.

To see this, we can modify the JSQA policy such that the modifications produce the tree routing
structure, by making some of the arrivals dedicated. lbfed from the facts that (1) if each flexible arrival
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can join only two out ofN queues and the routing structure matrix for the flexiblevalsiis a connected
tree, then it must have the same formdasin (3.6), i.e., there are exactlyv — 1) flexible types; (2) the
number of dedicated types is at ma@st which is equal to the number of queues.

The arrival streams that choose between quéwes; + 1, = 1,..., N — 1 are unchanged. For all
of the other streams, we convert them to dedicated arriyaleeofollowing manner: if a stream is choosing
between queuek and? (k < /¢, ¢ # k + 1), then it is modified to randomly join queu&sand /¢, with
equal probability. Using the same reasoning as at the eneédfdd 5.1, it is reasonable that this makes
the performance of the system worse. Thus there is now aatedi@rrival stream to each queue of rate
(N —2)\/N.

The routing structure matrix thus has the same form as (Bé)aa a result the linear system (3.7) has
the same unique solution as (3.8), with= (N — 2)/N. Now we can apply Theorem 3.1 and deduce that
the modified system has the same diffusion limit as an M/@lUeue. As the modifications have degraded
the performance, then JSQA2khould also exhibit good performance under high loads (gpeés 1 and
6).

6 Simulation

In our simulation work, we try to give some idea of the perfanmoe improvement that can be achieved using
different routing policies, as one backs away from heawi¢rébut still keeping the system heavily loaded).
Five simulation models are compared. Each model has a dtwéson arrival stream with rafé A and NV
identical servers, each with rgte= 1. Models 1 to 4 have the same topology: servers work in paicle
each server maintains its own queue with a buffer of infirite.sBut they adopt different routing structures.
In Model 1, an incoming task is randomly routed to one of thenittal queues, with equal probabilities. So,
Model 1 is equivalent tov M /G /1 queues. Models 2, 3 and 4 use the tree structure, ring steuaia JSQ-
2/N, respectively. Model 5 is ah//G /N queue, so no routing is needed. We compare the performance of
Models 2 to 5, using Model 1 as a reference. All statisticeeravaccuracy no worse than 5 percent at a 95
percent confidence level.

We begin with exponential service times. Using M /M /1 queues (each being 95% loaded) as a
reference, we first compare the mean number in system ofdhestructure (our original policy) and study
the impact of the proportion of flexible arrivald,— p). The performance improvements of the tree structure
with different levels of flexibility are shown in Table 1.

Several observations can be made from Table 1. First, fotrégestructure under high load, there is
a significant improvement for even a very small level of flditip (about 20 percent improvement at 3
percent flexibility, around 40 percent improvement at 1@&eet flexibility). Also, at 30 percent flexibility,
the amount of improvement is about 80 percent of that with d@@ent flexibility. Thirdly, at 100 percent
flexibility, the improvements increase as the number of g€V increases. The first two observations
are consistent with Theorem 3.1, in that (1) in heavy traffie, performance of the tree structure should
approach that of aé /M /N queue, which obviously outperforndé M /M /1 queues, (2) such performance
improvement will be independent of the flexibility level wrdrery high load. The third observation supports
the intuition behind Theorem 3.1, in that shifting incomingrkload from one queue to the other queues
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Table 1: Total mean queue lengths vs. the proportion of flexdbrivals, i.i.d. exponential service times,
95% loaded

|| Model || N xM/M/1 | Tree |
A 0.95 0.95
m 1 1
(1-p) - 0.03 01 | 03 | 05 | 1
N =4
Total queue length 76.00 59.74 47.16 36.14 | 31.20 | 26.87
Improvement 0% 22% 38% 53% 59% 65%
N =20
Total queue length|  380.00 293.34 | 226.70 | 161.46 | 137.55| 115.79
Improvement 0% 23% 41% 58% 64% 70%
N =100
Total queue length| 1900.00 | 1500.41| 1135.10| 766.11| 627.97 | 469.98
Improvement 0% 21% 40% 60% 67% 75%

plays an important role in making performance improvem€#ftien the system size grows, more candidate
gueues are available for shifting workload and each quelessscongested. Actually, it can be seen that the
average queue length at each queue is shorter in a largensyst

Next, in Figure 1, we compare the performance of the treqy and JSQ-2¥ structures with an
M/M/N queue, using the improvement of expected waiting time (dedel 1). The tree and the ring
structures are at 100 percent flexibility. It is noted that itmprovements for the three routing structures
appear to be of the same order of magnitude. This is consistdnour observations in Section 5, and com-
bined with the observations in [5] that giving each arrivabtchoices yields an exponential improvement
(over one choice, i.e., Model 1), this would suggest thabflhese routing policies are roughly equivalent
in terms of giving a significant improvement. As suggeste8eation 5, the JSQ-27 policy would be pre-
ferred if implementable, an observation supported by thrikition results. Note that our results are also
consistent with the observation in [1] that for the statisigisment problem, using nearest neighbour poli-
cies gives only a constant degradation of performance (ing®f maximum queue length) over completely
random assignment.

Thirdly, we study the effects of changing the traffic load. Mteeach queue be 70% and 85% loaded in
the reference modelN x M /M/1). Figure 2 shows that the improvements under moderatecttafd are
relatively less than those under heavy traffic (so are theawgments of thé//M /N queues, see Figure 3).
When the proportion of flexible arrivals increases, the imvpments increase at a speed smaller than that in
heavy traffic. For example in Figure 2, at 30 percent flexipithe amount of improvement is only around 60
percent of that with 100 percent flexibility. Figure 3 agaiipgorts the observations made in Figure 1, while
in moderate traffic the difference between the tree, ringJ8d-2/NV structures becomes smaller. All these
observations are consistent with the fact that as the syiséehs further off the heavy traffic conditions, the
performance of the three policies goes further away fromdter bound of the achievable performance
that is indicated by Theorem 3.1.
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90% Ring
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10%

0%

N=4 N=20
Number of servers

Figure 1: Improvement of expected waiting time vs. routitigaures, i.i.d. exponential service times, 95%
loaded

Fourthly, we examine the effects of changing the service timriance. Two more service time dis-
tributions are applied. One is an Erlakhgdistribution with rate one and variance 0.1. The other is a
hyper-exponential distribution with rate one and variah@ed. The results are shown in Figures 4 and 6.
In addition to the observations made for the exponentialiceitimes setting, we see that all three policies
(tree, ring, JSQ-2¥) have larger improvement in systems with larger services ti@riance than in those
with small variance. This is probably not too surprisingjtasllows from the observation that when the
service time variance is small, the performance is lessitsenso the policy, i.e., for small service time
variance if some policy balances the load over long timeesgal is highly likely to also balance the load
under shorter time scales. For example, in the extreme aftanhservice times, an optimal routing policy
would be round robin. On the other hand, with large servite tvariance, load imbalances may occur over
short time scales due to the variability in service timest fecomes more desirable to be able to shift the
incoming work between queues.

Fifthly, we look at three models with heterogeneous servEech model has 20 parallel queues. The
service time distribution at queyeis exponential with ratg:;. Let the service rate vector e, 2, ..., 20]
and the single Poisson arrival stream have pate 199.5, so thatS\/ 250:1 p; = 0.95. For the system
with 20 M /M /1 queues, the arrivals are routed to quguat rate0.95.;, so the mean number at each
gueue is the same and the mean waiting time is calculatedebtptal mean number in system divided by
. In Table 2, we can see that both the tree and ring routingtstres yield similar improvements as those
seen in the homogeneous server case. Actually, we know filo@oréms 3.1 and 4.1 that in the case of
exponential service times, both the homogeneous and tleedgeneous systems have the same reflected
Brownian motion limit (when the CRP condition is satisfiegh),this observation is not surprising.
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Figure 2: Improvement of total mean queue lengths vs. sykiad) i.i.d. exponential service times
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Figure 3: Improvement of expected waiting time vs. routigaures, i.i.d. exponential service times, (a)
85% loaded, (b) 70% loaded,
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Figure 4: Improvement of total mean queue lengths vs. thpgrtion of flexible arrivals, 95% loaded, (a)
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Figure 5: Improvement of expected waiting time vs. routitgcures, 95% loaded, (a) i.i.d. Erlaig-
service times, (b) i.i.d. hyper-exponential service times
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Table 2: Expected waiting times, heterogeneous servepsnextial service times

|| Model || N x MIM/ 1 | Tree| Ring |
N 20
A 199.5
(1) jeqn,.. .Nmy (1,2, ...,20]
(1-p) - 1] 1
Expected waiting timeg 1.90 0.45| 0.44
Improvement 0% 76% | 77%

Finally, we test some cases to see whether the main resuhgsgiaper are valid even for non Poisson
arrivals. Two more inter-arrival time distributions areaexined, Erlang k& and hyperexponential, with
squared coefficients of variation 0.1 and 10, respectivéligure 6 shows the simulation results of the
performance achieved by the three routing structures indgemeous systems, corresponding to those in
Theorem 3.1. The improvement of waiting time is calculatsithig 100 percent random routing € 1) as a
reference. It can be seen that when the system load is higleié (with 100 percent flexible arrivals) and
JSQ-2/N routing structures achieve performance close to that ofrthki-server single queue, which is
the lower bound of the achievable performance. This is aintdl what has been seen in Figure 1, however,
currently we are not able to prove if Theorem 3.1 holds for Rorsson arrivals.

Improvement Improvement

100% 100%

90% *EI;SQEQ/N 90% —Ejéeg_zm

80% | M EK/M/N 80% |—|MHX/M/N

70% ] [ ] 70% |-

60% 60% [ ]
50% 50%

40% | 40%

30% I 30% |

20% | 20% |

10% 10%

0% + 0%

N=4 N=20 N=20

Number of servers Number of servers

(a) (b)

Figure 6: Improvement of expected waiting time vs. routihgictures, 95% loaded, exponential service
times, (a) i.i.d. Erlande inter-arrival times, (b) i.i.d. hyper-exponential intamival times

7 Conclusion

Using diffusion limits we have provided an explanation foe tbenefits of certain limited choice routing
structures for the problem of load balancing in parallebeesystems. In addition to this viewpoint, we
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have also demonstrated that such schemes are effectiverfacestimes with general distributions, as well
as heterogeneous servers. The schemes that we have sdggestempetitive with that in [5], which we
hope gives designers an additional option.

On the methodological side, it is interesting to note thaBettion 6, even at 95 percent load, the
resulting mean queue lengths are small to moderate. Soe wiel techniques presented here are useful
for classifying policies, it may be useful to examine whetthie techniques of Halfin and Whitt [3] yield
limits which allow one to differentiate between variousips in finer granularity (and also give better
approximations). In particular, using such limits shoudgbttire the relation (1.1), which our technique is
unable to do. However, it is not clear how to adapt such teglas to a system where routing decisions
must be made on arrival ([3] has a single queue and many sgrver
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A Mathematical Background

To make this paper self-contained, we provide the mathealabackground on weak convergence and
complete resource pooling.

A.1 Weak Convergence

Let the metric spaceS, m) be endowed with the Borel-field B3(.S) and X be a mapping from a probability
space(Q2, F,P) to (S, B(S)). The distribution ofX is the image probability measufe induced byX on
(S,B(S)), denoted a(A) := P{w € 2 : X(w) € A}), A € B(S). If S is a space ofs-dimensional
real-valued functions which are defined on the subinteli9al” | of the real line and are right-continuous
with left limits, X is a K-dimensional stochastic process. The correspondingibumspace is denoted as
D. Let{X,, : n > 1} be a sequence of stochastic processes, all defined on trebpitybspace((2, F, P).
Let P and P,, be the distributions oX and X,,, respectively. We say that, converges weakly t@ if for
every bounded and continuous functiron D,

lim fdp, = / fdP.

n—ee Jp D
In other words,X,, converges weakly t& (or X,, converges toX in distribution), denoted by,, — X,
if and only iflim,, .. E [f(X,,)] = E[f(X)], for every f.

A.2 Complete Resource Pooling

We follow [8] to introduce the mathematical definition of themplete resource pooling (CRP) condition.

LetZ = {1,...,I} be the set of task types agd = {1, ..., J} be the set of servers. Define a matrix
U = (¢;) 1<, With all ¥ ; > 0. Each elemend; ; is the average rate at which seryié time is allocated
to serve type tasks, in the long run. So the total utilization of seryés p; = S°_, v ;. Let u; ; be the
mean service rate of task typeat serverj. The service capacity for typetasks isk; = Z}'le i i -
Given the matrix¥, if tasks of typei are routed upon arrival to queyeat the average ratg:; ;1 ;), then
the total service capacity for typdasks equals the mean arrival rate
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Define vectors\ = [A1,...,A\1], K = [Kk1,...,kr] @andp = [p1,...,ps]. The utilization region is
denoted by/ = {p € R] : k > A}, whereR{ = {z € R/ : z > 0} and the vector comparison is
component-wise. Let the vectet = [T, . .. ,g}]T be the outer normal vector to the convex polyhedion

at the pointl € R”. The inner product of vectogsand¢* is written asp - £*.

Theorem A.1([8], Lemma 3, complete resource poolingThe CRP condition for a fixed vectarholds if
and only if the following two conditions hold.

(i) Vectorl € R’ solves the problem

. *
min .
min P 3

S.t. K> A

(i) The matrix¥ which solves the linear system
A=k, p=1 (A.2)
IS unique.

Let the matrix?* be a solution to (A.1). A graply is constructed with nodes being task typesnd
serversj, arcs(i, j) corresponding to a positive elemefit;, > 0. The CRP condition is equivalent to the
condition that the grap§ is a tree (Corollary 5.4 in [10]).

Define the capacity regioll = {x € R, : p < 1}, whereR, | = {z € R’ : = > 0}. Letthe
vectorv* = [v},...,v; ] be the outer normal vector to the convex polyhedfoat the point\. The CRP
condition also implied - £&* = X - v*. Moreover,£* is related ta* as follows:

&= mZaX/LZ-Jl/;, jeJ and v = mjing;/,um, 1. (A.2)

The component; is called the workload contribution of servgr v/ is the workload contribution of
task typei. By workload, we mean the amount of unfinished processing tfrall tasks in the system.

A.3 Reflected Brownian Motion Limit

Finally, we introduce the diffusion limit of the total weitgld workload process in a system which operates
with Stolyar’s MinDrift(Q) routing rule [8].

Let Q; ;(t) denote the number of typetasks at servej at timet, including the one in service. The
Q-estimated workload at servgis Z;(t) = Zle M;J.lQi,j(t). The total (server) workload of the system is

J
Z(t) = & Z;(1), (A.3)
j=1

which is weighted by the server contributiogis
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Assume that each servgis assigned a convex holding cost function(-), whose first derivativ@'j'(-)
is strictly increasing in its argument. The MinDrift(Q) eutoutes a typé customer at arrival time to a
serverj which satisfies

. _ Ci(Z;(1)
7 € argmin ———.

J€T  Hiyj
Ties are broken arbitrarily. In the special case whiere 1 andy; ; = pforalli € Z, j € J, MinDrift(Q)
reduces to JSQ, if the cost function is of the fol(Z;(t)) = yzf(t), for any positive constant. If
I = 1andy;; = p; forall i € Z, MinDrift(Q) reduces to JSEW, if the cost function is of tharrh
Ci(Z(t)) = u; Z3 (t).

Suppose there is a system equipped with the MinDrift(Q)ingutule and an arbitrary non preemptive,
work-conserving local scheduling rule. Associated arertfean arrival rate vectak which satisfies the
CRP condition, the matrix’*, and the vectorg* andv*. All of the queues are empty at the initial time
t = 0. Consider a sequence of such systems, indexed Bjor then-th system, the inter-arrival times of

task typei have mear(\;” 1)(") and variance(a?)("); the service times at servgifor type i arrivals have

meanui‘j1 and variancer,j. We assume that the following conditions hold
lim (a?)(n) = o (A.4)
n—oo
and
2+4€ (n)
sup E <ui71 ) < 00, (A.5)
n>1,4€l

E [Ui;ﬂ = ¢, (A.6)
for somee > 0 and finite constant; ;. In addition the heavy traffic condition

lim /n (Af_”) - >\Z-> — b, (A7)

n—oo

for some finite constarit; is assumed to be true for ale 7.
Define the scaled processes for (A.3Y48) (t) = Z(™ (nt) /\/n.

Theorem A.2([8], Theorem 2i)). If (A.4)~A.7) hold, then as: — oo, Z( (t) - Z = RBM(6, o2),
where

0= Zﬁbu o = Z(Vz*)z Aai + Z 1/’?,3',“?,3' 223

i€l i€l JjeET



