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Abstract

This paper considers the problem of routing Poisson arrivals toN parallel servers under the condition

that the system is heavily loaded. We propose a scheme in which a proportion of arrivals are routed ran-

domly, while the others are routed to one of two neighbouringqueues using load information. We show that

this scheme, which exploits a limited amount of load information and takes into account locality consid-

erations, achieves performance close to that of a routing policy which requires complete load information.

In addition, we show that this scheme has a diffusion scaled queue length process that is the same as if all

of the servers were pooled with a single queue (in other words, no routing decision need be made). Our

insights provide an additional option in load balancing, complementing the related work on the power of

two choices.
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1 Introduction

There has been a significant amount of work over the past several years on the “power of two choices”

for various load balancing problems (see Mitzenmacher et al. [6] for an overview of existing results and

implications). In our work, we concentrate on the problem ofdynamically assigning tasks to servers, where

tasks arrive sequentially and must be routed to a server on arrival. If we consider the case where all servers

are identical, and we are interested in minimizing a task’s mean waiting time, then it seems reasonable that

we would like to assign an arriving task to the least loaded server, i.e., to join the shortest queue (JSQ).

Winston [11] gives optimality properties for such a policy if the service times are exponentially distributed

and the local service discipline is first-come-first-serve (FCFS). Weber [9] gives similar results for service

times with non-decreasing hazard rates. Unfortunately, such a policy may not be scalable, as gathering com-

plete load information of all servers may be very expensive due to such issues as message passing overhead.

On the other hand, no system state information would be required if arriving tasks were simply randomly

assigned to a server. While this latter option may be attractive from an information gathering viewpoint,

there is usually an unacceptable gap between random assignment and using full system information to make

routing decisions.

In [5], Mitzenmacher proposed a load balancing algorithm, which is somewhere between complete ran-

dom routing and JSQ routing. (We denote it as JSQ-d/N .) Suppose a system consists ofN identical servers

(service times exponentially distributed with mean one, FCFS discipline) and a Poisson arrival process with

rateNλ. If each arrival choosesd servers independently and uniformly at random from theN servers and

joins the one with the shorter queue, then the limiting behaviour of such choice leads to exponential im-

provements in the expected waiting time in the system for anyd ≥ 2 overd = 1. To be specific, letTd(λ)

denote the expected time an arrival spends in the limiting system (N → ∞) for d ≥ 2, then the asymptotic

improvement as the system approaches unity load is

lim
λ→1

Td(λ)

log T1(λ)
=

1

log d
, (1.1)

whereT1(λ) is the expected waiting time for anM/M/1 queue with arrival rateλ and service rate 1.

For example, when the system is in heavy traffic,T2(1) ≈ 3 log T1(1) implies that JSQ-2/N will achieve

exponential improvement over complete random routing. This remarkable result falls under his “power of

two choices” label.

In the concluding remarks of [5], the problem of dealing withlocality is suggested as an interesting

issue, i.e. rather than randomly choosing queues, one may want to constrain the choices of which queues

may be chosen together. Insight into this problem is given inByers et al. [1]. They showed that whenn

items are placed atn servers withd choices per item, when nearest neighbours are chosen, the maximum

number of items assigned to a server is a constant factor larger than a system where thed choices are made

randomly.

In this work, we explore similar issues in the context of server load balancing, where Poisson arrivals

occur to a number of parallel servers (we begin with the servers being identical, later examining the het-

erogeneous case). We propose a policy that provides arrivals with either no choice or the choice of two

neighbouring queues, for which they join one of the two queues with the shorter expected waiting time. We



Load Balancing - Limited Choice and Locality 2

show that this policy yields a diffusion scaled queue lengththat is the same as one in which arrivals join a

single queue in front of all of the servers and are served in FCFS order. This type of behaviour has been

termedcomplete resource pooling(coined in Harrison and López [4]). We are able to apply recent work by

Stolyar [8] that gives conditions for complete resource pooling to hold for a class of models that has ours

as a special case. These conditions are relatively straightforward to check for our proposed policy. We then

proceed to give evidence that other policies (including that in [5]) should behave in a similar manner. All of

these policies share the feature that a fraction of the incoming workload may be shifted from any queue to

any other queue in the system, which we believe is the mechanism that leads to the significant performance

improvement.

We believe that this paper makes several contributions. Thefirst is the one just mentioned, as it suggests

that in designing good routing policies, it is key to allow incoming workload to be freely shifted between

queues. Furthermore, the fact that the choice may be severely limited (a proportion of arrivals may have no

choice) demonstrates (at least in heavy traffic) that not allof the arriving workload needs to be capable of

being shifted. In other words, if a small proportion of arrivals can be routed using load information while

the remaining arrivals are randomly routed without any loadinformation, the system performance is close to

that achieved by a load balancing policy which requires complete load information. This complements the

insights given in [1, 5], in particular those in [1]. The framework that we employ also allows us to address

generally distributed service times. Finally, we also examine heterogeneous servers.

The organization of the paper is as follows. Section 2 gives the model in detail and describes the

diffusion approximation method that we use to analyze routing policies. Section 3 shows that for a system

with identical servers, our proposed policy has a diffusionscaled queue length process that is identical to

that for a system where no routing decision need be made. Section 4 extends the main results to the case

of heterogeneous servers. Section 5 provides a discussion of how our main results should apply to other

policies (including that in [5]). Section 6 provides a few numerical results and Section 7 provides some final

thoughts. For the paper to be self-contained, Appendix A includes some existing results that will be used in

our study.

2 Model

Define a finite setJ = {1, ..., N} (N ≥ 2). The base system that we study hasN parallel single-server

queues. Let{vj,m : m ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random

variables, which are formed by the service times at queuej, j ∈ J . We assume

E[vj,m] = µ−1, var[vj,m] = β2, ∀j ∈ J,

for allm ≥ 1. Also, for all j ∈ J , the sequences{vj,m} are assumed mutually independent. Service at each

queue is First Come First Served (FCFS). The single arrival stream of tasks follows a Poisson process with

finite rateNλ. A task must be assigned to one of the servers immediately upon arrival. Our performance

goal is to minimize a task’s mean waiting time, or equivalently by Little’s law, to minimize the mean total

number of tasks in the system.
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We propose a routing policy as follows. With probabilityp/N (0 ≤ p < 1), an arrival is randomly routed

to one of theN identical queues. We call such arrivalsdedicatedarrivals. With probability(1 − p)/(N − 1),

an arrival is routed to one of two neighbouring queuesj andj+1, j ∈ {1, ..., N −1}, which has the shorter

queue length. We call theseflexiblearrivals.

Like JSQ-2/N (i.e., Mitzenmacher’s Two Choices [5]), our policy is more scalable than JSQ, as the

dedicated arrivals need no state information, while the flexible ones need information on the state of only

two servers. A large value of the flexibility levelp implies a small amount of state information is required

in making routing decisions. Unlike JSQ-2/N , our policy addresses the problems where (1) not all arrivals

need to be flexible for dynamic choice, (2) even for flexible arrivals, not all can afford complete random

choice of all servers: the choice may be very limited due to locality constraints or personal preference of

the arrivals. Therefore, our proposed policy provides another option to JSQ-2/N , in the case where a more

constrained routing choice for arrivals is attractive.

To analyze the behaviour of our policy and compare it with other policies, we adopt the diffusion ap-

proximation method. Rather than give a long list of references on this method, we refer to the monograph

of Chen and Yao [2] for an overview. The main idea is to establish the diffusion limit for the queueing

process of interest (e.g., the queue length process or the waiting time process). To identify the diffusion

limit, a sequence of queueing systems is considered. The motivation comes from the fact that the queue

length process has a stationary distribution only when the system loadρ is strictly less than one, while its

diffusion limit is zero whenρ < 1. So the queueing system we are interested in is assumed to be an element

in a sequence of systems whose traffic intensities approach one. Once the limit is obtained, it can be used to

approximate the queue length process of a stable system by appropriate scaling. Therefore, we can compare

diffusion scaled queue length processes for different routing schemes. In contrast with the techniques in [5],

we will study a fixed, finite set of queues, as the load on the system approaches unity. We will show that the

diffusion scaled total queue length is the same as that of anM/G/N queue in heavy traffic. The limiting

process is independent of the flexibility levelp, which means even a small proportion of flexible arrivals

should yield significant improvement in system performancein heavy traffic.

3 Main Results

We consider a sequence of the identical server systems indexed byn. For then-th system, the arrivals

follow a Poisson process with rateNλ(n); service times have meanµ−1 and varianceβ2. Assume that the

following conditions hold

lim
n→∞

λ(n) = λ, (3.1)

and

sup
n≥1,j∈J

E

[

(

v
(n)
j,1

)2+ǫ
]

<∞ (3.2)

for someǫ > 0 (i.e., the first and second moments of the service times are assumed finite). In addition, let

µ̃ = Nµ, the heavy traffic condition

lim
n→∞

√
n
(

Nλ(n) − µ̃
)

= c <∞ (3.3)
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is assumed to be true for some finite constantc. Let ρ = Nλ/µ̃ be the system load. Sincec > −∞
corresponds toρ = 1, then by (3.1) and (3.3), we let the system go to heavy traffic by increasing the arrival

rate while fixing the processing time distribution.

In our main result, we will consider three different routingpolicies, each operating on the same sequence

of systems. These are our proposed policy, JSQ, and one in which there is a single queue and no routing (so

the result is an M/G/N system). Let the total queue length processes for these policies be given byQ(n)
B (t),

Q
(n)
JSQ(t), andQ(n)

M (t), respectively (we assume that these are all equal to zero at time zero). We form the

diffusion scaled queue length processes as follows:

Q̂
(n)
B (t) =

1√
n
Q

(n)
B (nt), (3.4)

with Q̂(n)
JSQ(t) andQ̂(n)

M (t) defined in the same manner.

To state our main results, we need a few more definitions. Let
w−→ denote weak convergence (or con-

vergence in distribution for processes in the standard Skorohod space of right continuous functions with

left hand limits, see Appendix A.1) and RBM(θ, σ2) denote a reflected Brownian motion with driftθ and

varianceσ2. The following is our main result:

Theorem 3.1.

(i) The diffusion scaled total queue length process of the base system,̂Q(n)
B (t), converges weakly to a one-

dimensional reflected Brownian motion̂QB which is independent ofp, p ∈ [0, 1). That isQ̂(n)
B (t)

w−→
Q̂B = RBM

(

c,Nλ
(

1 + µ2β2
))

, asn→ ∞.

(ii) For JSQ,Q̂(n)
JSQ

w−→ Q̂B .

(iii) For M/G/N , Q̂(n)
M (t)

w−→ Q̂B .

Before we prove the theorem we comment on its implications. First, the theorem justifies the claim that

for a stable system with load close to one, the distribution of the scaled queue length process is close to that

of the RBM. Therefore, given the system loadρ < 1, we can choose the indexn = 1/
√

1 − ρ and obtain

the approximation of the unscaled queue length process

QB(t) ≈ Q̂B

(

t(1 − ρ)2
)

/(1 − ρ).

The mean of the distribution of̂QB(t) is close toNλ
(

1 + µ2β2
)

/2|c|, which is the mean of the stationary

distribution of the RBM.

Next, it is noted that if two unscaled sequences of processesresult in the same diffusion limit for their

corresponding diffusion scaled processes, the differencebetween them is of the ordero(
√
n). Thus, we

are unable to capture, for example the fact that there could be a constant difference between the unscaled

sequences of processes. However, it does suggest that the performance of the systems should be relatively

close (in particular, for high loads). Theorem 3.1 part(i) implies a small amount of flexibility should give

close to the performance improvement given by 100 percent flexibility. Part (ii) implies that using our

proposed policy should have performance close to that of JSQunder heavy loads. Part(iii) shows that our

proposed policy should have performance close to that of a system where no routing decision is required

(such a system clearly provides a lower bound on achievable performance).
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Proof of Theorem 3.1.

(i) For the base system considered, define the setsI1 = {1, ..., N}, I2 = {N + 1, ..., 2N − 1}, I =

I1 ∪ I2. The arrivals can be viewed as consisting of|I| types, each typei having arrival rate

λi =







pλ, if i ∈ I1, the dedicated types,

Nλ(1−p)
N−1 , if i ∈ I2 , the flexible types.

(3.5)

A graphG is constructed which has nodes being arrival typei (i ∈ I) and queuej (j ∈ J ), and arcs

(ij) being the routing activities. To representG, we use a matrixΦ = (φi,j)|I|×|J | with non-negative

elements, whereφi,j is the average rate at which serverj’s time is allocated to serve typei customers,

in the long run (so the total utilization of serverj is ρj =
∑

i∈I φi,j). For the base system, we have

Φ =

[

Φ1

Φ2

]

=































φ1,1

. . .

φN,N

φN+1,1 φN+1,2

φN+2,2
. . .
. . . φ2N−2,N−1

φ2N−1,N−1 φ2N−1,N































(2N−1)×N

(3.6)

where the diagonal matrixΦ1 represents the routing structure of the dedicated arrivals; the bi-diagonal

matrixΦ2, the flexible arrivals. Then the linear system
∑

j∈J

µφi,j = λi, ∀i ∈ I and
∑

i∈I

φi,j = 1, ∀j ∈ J , (3.7)

has the unique solution

φi,j =



















p, i ∈ I1, j = i,

(1 − p)N−j
N−1 , i ∈ I2, j = i(modN),

(1 − p) j−1
N−1 , i ∈ I2, j = i(modN) + 1.

(3.8)

When0 ≤ p < 1, φi,j > 0 for i ∈ I2 andφi,j ≥ 0 for i ∈ I1. The uniqueness ofΦ satisfying (3.7)

impliesG is a connected tree (i.e., all of the queues are connected through the positive elements inΦ2).

Therefore, from Theorem A.1 in Appendix A.2, the so-called complete resource pooling (CRP) condi-

tion holds for the vector~λ = (λi)1×|I| with componentsλi defined in (3.5). When the CRP condition

is satisfied, in the heavy traffic limit the parallel queue system effectively forms a single pool of service

capacity and the state space of the system information collapses into one dimension, typically making

the system much easier to analyze.

Define

bi =







cp
N
, if i ∈ I1,

c(1−p)
N−1 , if i ∈ I2,

(3.9)
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so that
∑

i∈I bi = c. From (3.5) and (3.7), we haveλ = µ. Then, using (3.3), we have

lim
n→∞

√
n
(

λ
(n)
i − λi

)

= bi. (3.10)

Let ξj be the workload contribution of serverj andνi be the workload contribution of typei arrivals.

(For the precise definitions of the vectorsξ andν, see Appendix A.2. We do not go into detail here, as

we will see shortly that these values do not appear in our finalexpressions.) In addition, letQ(n)
B,i,j(t)

be the number of typei arrivals at queuej at timet andQ̂(n)
B,i,j(t) = Q

(n)
B,i,j(nt)/

√
n. Given (3.1), (3.2)

and (3.10), a direct application of Theorem A.2 (in AppendixA.2) yields
∑

j∈J

ξj
∑

i∈I

µ−1Q̂
(n)
B,i,j(t)

w−→ RBM(θ, σ2), asn→ ∞,

where

θ =
∑

i∈I

νibi, σ2 =
∑

i∈I

ν2
i



λi +
∑

j∈J

µφi,j(µβ)2



 . (3.11)

From (A.2) (in Appendix A.2), we have

ξj = max
i
µνi, νi = min

j
ξj/µ,

which implies that∀i ∈ I, νi is equal to some constanta (which, for our purpose, is not necessary to

calculate) and∀j ∈ J , ξj = aµ. This, with (3.7), implies that

Q̂
(n)
B (t)

w−→ RBM
(

c,Nλ
(

1 + µ2β2
))

, asn→ ∞,

which is clearly independent ofp.

(ii) The JSQ policy is a special case of Stolyar’s MinDrift(Q) policy (see Appendix A.3). Letξj = 1/J ,

then Theorem A.2 yields the result. We note that by applying Theorem 3.1 from Zhang and Hsu [12],

the same result can be obtained.

(iii) A direct application of Theorem 5 in [7] yields the result.

At this point, we make the observation that the routing structure given by (3.8) suggests that the intuition

behind Theorem 3.1 is that congestion at a particular queue can be alleviated by shifting a sufficient amount

of incoming workload from that queue to other queues. The fact that the tree structure for the routing of

flexible arrivals allows a fraction of the incoming workloadto be shifted anywhere in the system leads to

complete resource pooling, i.e. all of the queues are “connected” through the tree structure. What may be a

bit surprising is that an arbitrarily small amount of flexibility is enough to achieve this.

4 Extensions

We can extend our policy to cope with heterogeneous servers.This will require a non-uniform choice for

the routing probabilities. Let{vj,m : m ≥ 1} be a sequence of i.i.d. random variables formed by the service

times at queuej and assume

E[vj,1] = µ−1
j , var[vj,1] = β2

j .
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Also, for all j ∈ J , the sequences{vj,m} are assumed mutually independent. The service discipline at each

queue is still FCFS. The single arrival stream remains a Poisson process with rateNλ.

It is known from Appendix A.3 that the “join the shortest expected waiting time” (JSEW) policy, i.e.,

route an arrival of typei to queuej satisfying

j ∈ arg min
j∈J

∑

iQij(t)

µj
,

exhibits complete resource pooling for appropriate routing structures. HereQij(t) is the number of typei

arrivals in queuej at timet andJ is the set of servers that can serve typei arrivals. Thus, for this section

we will use JSEW routing (note that JSEW routing is simply JSQif the servers are identical).

We modify our policy as follows. Let̃µ =
∑N

j=1 µj. With probabilitypµj/µ̃ (0 ≤ p < 1), a (dedicated)

arrival is routed to one of theN queues. With probability(1− p)(µj + εj)/µ̃ (with constantεj), a (flexible)

arrival is routed to join one of two neighbouring queues,j andj + 1, j ∈ {1, ..., N − 1}, which has the

shorter expected waiting time. That is, the routing probability is proportional to the mean service rate of the

neighbour on the left.

To determine the routing probability for the flexible arrivals, the constants{εj} are chosen as

εj =







ε ∈
(

0,min
(

ε̄,
µN+µN−1

N−2

))

, j ∈ {1, ..., N − 2},

µN − (N − 2)ε, j = N − 1,
(4.1)

with

ε̄ = min
j∈{2,...,N−1}

µj

j − 1
. (4.2)

Now consider a sequence of the heterogeneous server systemsindexed byn. For then-th system, the

arrivals follow a Poisson process with rateNλ(n); the service times at thej-th server have meanµ−1
j and

varianceβ2
j . Conditions (3.1)–(3.3) are still assumed to be true. For the same sequence of systems, we

consider three different routing policies: our modified policy, JSEW, and an M/G/Nh queue (i.e. a system

with a single queue forN heterogeneous servers, service being FCFS). Let the total queue length processes

for these policies be given byQ(n)
B (t), Q(n)

JSEW (t), andQ(n)
M (t), respectively. For each of these, we again

need their diffusion scaled counterparts defined in the samemanner as (3.4). Then we have the following

result:

Theorem 4.1.

(i) The diffusion scaled total queue length process,Q̂
(n)
B (t), converges weakly to a one-dimensional

reflected Brownian motion̂QB which is independent of bothp ∈ [0, 1) and εj , j ∈ {1, . . . , N − 1}.

That isQ̂(n)
B (t)

w−→ Q̂B = RBM
(

c,Nλ+
∑

j∈J µ
3
jβ

2
j

)

, asn→ ∞.

(ii) For JSEW,Q̂(n)
JSEW (t)

w−→ Q̂B.

(iii) For M/G/Nh, Q̂(n)
M (t)

w−→ Q̂B .
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Theorem 4.1 says that our policy should have heavy traffic performance close to that in which no rout-

ing decision is made, so the suggested choice of routing probabilities should lead to good performance in

general.

Proof of Theorem 4.1.

(i) We use the same setsI1, I2 andI defined in the proof of Theorem 3.1 and define the arrival rate

vector~λ = (λi)1×|I| with components

λi =







pµj, i ∈ I1, j = i,

(1 − p)(µj + εj), i ∈ I2, j = i(modN),
(4.3)

whereεj is given in (4.1).

The routing structure matrixΦ is the same as (3.6). Then the linear system (3.7) has the unique solution

φi,j =























p, i ∈ I1,j = i,

1−p
µj

·
(

µj −
∑j−1

k=1 εk

)

, i ∈ I2, j = i(modN),

1−p
µj

· ∑j−1
k=1 εk, i ∈ I2, j = i(modN) + 1.

(4.4)

Given0 ≤ p < 1 and (4.1), we haveφi,j > 0 for i ∈ I2. Again, the uniqueness ofΨ implies that the

associated graphG is a connected tree. So from Theorem A.1, the CRP condition holds for the arrival

rate vector defined in (4.3).

Let

bi =







cpµj/µ̃, i ∈ I1, j = i

c(µj + εj)/µ̃, i ∈ I2, j = i(modN),

so that
∑

i∈I bi = c. From (4.3) and (3.7), we havẽµ =
∑

i∈I λi = Nλ. Then, using (3.3), we have

lim
n→∞

√
n
(

λ
(n)
i − λi

)

= bi. (4.5)

Let Q̂(n)
B,j(t) be the diffusion scaled queue length process at thej-th server, Theorem (A.2) yields that

∑

j∈J

(ξjµ
−1
j )Q̂

(n)
B,j(t)

w−→ RBM(θ, σ2), asn→ ∞,

where

θ =
∑

i∈I

νibi, σ2 =
∑

i∈I

ν2
i



λi +
∑

j∈J

µjφi,j(µjβj)
2



 .

Again from (A.2), we have

ξj = max
i
µjνi, νi = min

j
ξj/µj ,

which implies thatνi is equal to some constanta andξj = aµj . This, with (3.7), implies that

Q̂
(n)
B (t)

w−→ RBM



c,Nλ+
∑

j∈J

µ3
jβ

2
j



 , asn→ ∞. (4.6)
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(ii) JSEW is also a special case of the MinDrift(Q) policy (see Appendix A.3). Letξj = µj/µ̃, then a

direct application of Theorem (A.2) yields the result.

(iii) A direct application of Theorem 5 in [7] yields the result.

5 Rings and Supermarkets

Motivated by the observation at the end of Section 3, if the mechanism for good performance is that a

sufficient proportion of incoming workload can be shifted from any server to any other server through the

routing structure, then there are two natural choices that should intuitively lead to better performance (while

still keeping the number of choices to be at most two). One of these is to extend our policy so that there

is an additional stream of flexible arrivals that is allowed to join the shorter of queuesN and 1. This

would allow incoming workload to be shifted bidirectionally, rather than unidirectionally. We will call such

a routing structure a “ring” structure, as opposed to the “tree” structure of our original policy. Another

obvious choice is the JSQ-2/N policy, as it can spread incoming workload over many different queues, so it

seems reasonable that it would also have better performance(which would be consistent with observations

in [1] for the assignment of a fixed number of tasks). Like the tree structure, the ring structure provides an

option to JSQ-2/N , where dynamic routing choice is more constrained. Unfortunately, as seen below, the

CRP condition does not hold for both the ring structure and JSQ-2/N , but we suggest a means to make a

comparison. As the JSQ-2/N policy has only been defined in the homogeneous servers case,for the rest of

this section we stick to that setting.

5.1 Ring Routing Structure

The difficulty in analyzing the ring structure is that the corresponding arrival rate vector[λ1, ..., λ2N ], which

has elements

λi =

{

pλ, if i ∈ {1, ..., N},

(1 − p)λ, if i ∈ {N + 1, ..., 2N},
(5.1)

does not satisfy the CRP condition, because the routing structure matrix

Φ =





























φ1,1

. . .

φN,N

φN+1,1 φN+1,2

. . . . . .

φ2N−1,N−1 φ2N−1,N

φ2N,1 φ2N,N





























(5.2)
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has a cycle in the corresponding graph. This means that thereare multiple solutions of the linear system

φN+1,1 + φN+1,2 = λN+1/µ (5.3)
...

φ2N,N + φ2N,1 = λ2N/µ

φ2N,1 + φN+1,1 = 1 − λ1/µ

...

φ2N−1,N + φ2N,N = 1 − λN/µ,

which is of the same form as (3.7). For0 < |ǫ| < min(i,j) φi,j, define a perturbed matrixΦ′ which has

elements

φ′i,j =

{

φi,j − ǫ, if i = N + j,

φi,j + ǫ, if i(modN) = j − 1.

Then (5.3) becomes

(φN+1,1 − ǫ) + (φN+1,2 + ǫ) = λN+1/µ (5.4)
...

(φ2N,N − ǫ) + (φ2N,1 + ǫ) = λ2N/µ

(φ2N,1 + ǫ) + (φN+1,1 − ǫ) = 1 − λ1/µ

...

(φ2N−1,N + ǫ) + (φ2N,N − ǫ) = 1 − λN/µ,

which means that ifΦ is a solution of (5.3), we can perturb theφi,j ’s along the arcs of the cycle so as to

produce a matrixΦ′ 6= Φ, such thatΦ′ also satisfies (5.3). From Theorem A.1, the CRP condition does not

hold in this case, so we cannot directly make conclusions similar to Theorem 3.1.

However, as we shall see below, this does not imply that the ring routing structure will have performance

worse than the tree routing structure. (Remember that our intuition suggests that it should be better.) To

see this, we modify the ring structure so that the flexible arrivals which join the shorter of queues1 andN

instead join each of those two queues with equal probability. Then the arrival rate vector[λ̃1, ..., λ̃2N−1] for

this modified system has elements

λ̃i =



















1+p
2 λ, if i ∈ Ĩ1,

pλ, if i ∈ Ĩ2,

(1 − p)λ, if i ∈ Ĩ3,

(5.5)

where the sets̃I1 = {1, N}, Ĩ2 = {2, ..., N − 1}, Ĩ3 = {N + 1, ..., 2N − 1} andĨ1 ∪ Ĩ2 ∪ Ĩ3 = I.
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The corresponding routing structure matrixΦ̃ has the same form as (3.6) and as a result the linear system

(3.7) has the unique solution

φ̃i,j =























1+p
2 , i ∈ Ĩ1, j = i,

p, i ∈ Ĩ2, j = i,

1−p
2 , i ∈ Ĩ3.

(5.6)

When0 ≤ p < 1, φ̃i,j > 0 for i ∈ Ĩ1 ∪ Ĩ3 andφ̃i,j ≥ 0 for i ∈ Ĩ2. From Theorem A.1, the CRP condition

holds for the arrival rate vector defined in (5.5).

Consider a sequence of these modified systems where conditions (3.1)– (3.3) are assumed true. Let

bi =



















c(1+p)
2N

, if i ∈ Ĩ1,

cp
N
, if i ∈ Ĩ2,

c(1−p)
N

, if i ∈ Ĩ3,

(5.7)

and as before, we see
∑

i∈I bi = c. Thus, using (3.3), (3.10) is satisfied.

Let Q̃R,j(t) be the number of tasks in queuej at timet. By applying Theorem3.1(i), we have

1√
n

∑

j∈J

Q̃
(n)
R,j(nt)

w−→ RBM
(

c,Nλ
(

1 + µ2β2
))

, asn→ ∞. (5.8)

This means that the system in which the modified version of thering routing structure is applied, has the

total queue length process achieving the same RBM limit as that of the original tree model.

At this point, we suggest a relationshipLR ≤ L̃R, whereLR and L̃R are the mean numbers in the

system with the original and modified ring structures, respectively. While we are unable to provide a proof,

the intuition is that if at the two end queues, queue 1 has a much higher workload than queueN , the original

ring structure enables the incoming workload to be shifted directly from queue 1 to queueN , while the

modified structure only allows sequential shifting throughqueues 2 toN − 1. Apparently, congestion is

alleviated more quickly in the original ring structure thanthe modified one. It would be useful to prove this

relationship. This, together with (5.8) and Theorem 3.1(iii) suggest that the ring routing structure will also

perform very well.

We conjecture that although the total queue length process of the ring structure does not collapse into

a one-dimensional RBM in an arbitrarily long time range (since the CRP condition does not hold), a linear

combination of its queue length processes collapses, at each point of time, into a one-dimensional RBM and

achieves the same limit as that of the original tree model. Ithas been noticed that given the routing structure

matrix in (5.2), there are multiple solutions ofφi,j ’s to the linear system

∑

j∈J

µφi,j = λi, ∀i ∈ IR and
∑

i∈IR

φi,j = 1, ∀j ∈ J , (5.9)

whereIR = {1, ..., 2N} andλi is defined in (5.1). SupposeΦ = (φi,j)2N×N andΦ′ = (φ′i,j)2N×N are two
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of the solutions. Recalling (3.11) in the proof of Theorem 3.1(i), let

σ2 =
∑

i∈IR

ν2
i



λi +
∑

j∈J

µφi,j(µβ)2



 ,

σ′2 =
∑

i∈IR

ν2
i



λi +
∑

j∈J

µφ′i,j(µβ)2



 ,

whereν2
i is the workload contribution of typei arrivals. Using (5.9), we have

σ2 = σ′2 =
∑

i∈IR

ν2
i λi

(

1 + µ2β2
)

. (5.10)

If at two different points in time, the system characterizedby Φ andΦ′ respectively followed an RBM limit

and the limit was characterized by the correspondingσ2 andσ′2, (5.10) implies the two limits would be

identical.

5.2 JSQ-2/N

In the supermarket model, there areN (N > 2) parallel single-server queues, where the service times are

i.i.d.and exponentially distributed with meanµ−1. The single arrival stream follows a Poisson process with

rateNλ. With probability1/N , queuej is selected and with probability1/(N − 1), queuej′ is selected,

j, j′ ∈ J , j 6= j′. An arrival chooses to join the shorter of queuesj andj′.

Define the setI = {1, ..., N(N − 1)/2}, so the arrivals consist of|I| flexibletypes, each with rate

λi =
2λ

N − 1
, i ∈ I. (5.11)

Again, however, the arrival rate vector does not satisfy theCRP condition, because the routing structure

matrix

Φ =





































φ1,1 φ1,2

...
. . .

φN−1,1 φN−1,N

φN,2 φN,3

...
. . .

φ2N−3,2 φ2N−3,N

. ..

φN2−N
2

,N−1
φN2−N

2
,N





































(5.12)

has multiple cycles in the corresponding graph. These multiple cycles reflect the mechanism by which the

JSQ-2/N policy shifts the workload among the queues, i.e. the workload is shifted not just to the neighbour-

ing queues, but to all of the other queues without consideration of locality constraints. Thus our intuition

suggests that the JSQ-2/N policy should perform even better than the ring structure.

To see this, we can modify the JSQ-2/N policy such that the modifications produce the tree routing

structure, by making some of the arrivals dedicated. It follows from the facts that (1) if each flexible arrival
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can join only two out ofN queues and the routing structure matrix for the flexible arrivals is a connected

tree, then it must have the same form asΦ2 in (3.6), i.e., there are exactly(N − 1) flexible types; (2) the

number of dedicated types is at mostN , which is equal to the number of queues.

The arrival streams that choose between queuesj andj + 1, j = 1, . . . , N − 1 are unchanged. For all

of the other streams, we convert them to dedicated arrivals by the following manner: if a stream is choosing

between queuesk and ℓ (k < ℓ, ℓ 6= k + 1), then it is modified to randomly join queuesk andℓ, with

equal probability. Using the same reasoning as at the end of Section 5.1, it is reasonable that this makes

the performance of the system worse. Thus there is now a dedicated arrival stream to each queue of rate

(N − 2)λ/N .

The routing structure matrix thus has the same form as (3.6) and as a result the linear system (3.7) has

the same unique solution as (3.8), withp = (N − 2)/N . Now we can apply Theorem 3.1 and deduce that

the modified system has the same diffusion limit as an M/G/N queue. As the modifications have degraded

the performance, then JSQ-2/N should also exhibit good performance under high loads (see Figures 1 and

6).

6 Simulation

In our simulation work, we try to give some idea of the performance improvement that can be achieved using

different routing policies, as one backs away from heavy traffic (but still keeping the system heavily loaded).

Five simulation models are compared. Each model has a singlePoisson arrival stream with rateNλ andN

identical servers, each with rateµ = 1. Models 1 to 4 have the same topology: servers work in parallel and

each server maintains its own queue with a buffer of infinite size. But they adopt different routing structures.

In Model 1, an incoming task is randomly routed to one of the identical queues, with equal probabilities. So,

Model 1 is equivalent toN M/G/1 queues. Models 2, 3 and 4 use the tree structure, ring structure and JSQ-

2/N , respectively. Model 5 is anM/G/N queue, so no routing is needed. We compare the performance of

Models 2 to 5, using Model 1 as a reference. All statistics have an accuracy no worse than 5 percent at a 95

percent confidence level.

We begin with exponential service times. UsingN M/M/1 queues (each being 95% loaded) as a

reference, we first compare the mean number in system of the tree structure (our original policy) and study

the impact of the proportion of flexible arrivals,(1−p). The performance improvements of the tree structure

with different levels of flexibility are shown in Table 1.

Several observations can be made from Table 1. First, for thetree structure under high load, there is

a significant improvement for even a very small level of flexibility (about 20 percent improvement at 3

percent flexibility, around 40 percent improvement at 10 percent flexibility). Also, at 30 percent flexibility,

the amount of improvement is about 80 percent of that with 100percent flexibility. Thirdly, at 100 percent

flexibility, the improvements increase as the number of queuesN increases. The first two observations

are consistent with Theorem 3.1, in that (1) in heavy traffic,the performance of the tree structure should

approach that of anM/M/N queue, which obviously outperformsN M/M/1 queues, (2) such performance

improvement will be independent of the flexibility level under very high load. The third observation supports

the intuition behind Theorem 3.1, in that shifting incomingworkload from one queue to the other queues
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Table 1: Total mean queue lengths vs. the proportion of flexible arrivals, i.i.d. exponential service times,

95% loaded

Model N×M/M/1 Tree

λ 0.95 0.95

µ 1 1

(1 − p) – 0.03 0.1 0.3 0.5 1

N = 4

Total queue length 76.00 59.74 47.16 36.14 31.20 26.87

Improvement 0% 22% 38% 53% 59% 65%

N = 20

Total queue length 380.00 293.34 226.70 161.46 137.55 115.79

Improvement 0% 23% 41% 58% 64% 70%

N = 100

Total queue length 1900.00 1500.41 1135.10 766.11 627.97 469.98

Improvement 0% 21% 40% 60% 67% 75%

plays an important role in making performance improvement.When the system size grows, more candidate

queues are available for shifting workload and each queue isless congested. Actually, it can be seen that the

average queue length at each queue is shorter in a larger system.

Next, in Figure 1, we compare the performance of the tree, ring and JSQ-2/N structures with an

M/M/N queue, using the improvement of expected waiting time (overModel 1). The tree and the ring

structures are at 100 percent flexibility. It is noted that the improvements for the three routing structures

appear to be of the same order of magnitude. This is consistent with our observations in Section 5, and com-

bined with the observations in [5] that giving each arrival two choices yields an exponential improvement

(over one choice, i.e., Model 1), this would suggest that allof these routing policies are roughly equivalent

in terms of giving a significant improvement. As suggested inSection 5, the JSQ-2/N policy would be pre-

ferred if implementable, an observation supported by the simulation results. Note that our results are also

consistent with the observation in [1] that for the static assignment problem, using nearest neighbour poli-

cies gives only a constant degradation of performance (in terms of maximum queue length) over completely

random assignment.

Thirdly, we study the effects of changing the traffic load. Welet each queue be 70% and 85% loaded in

the reference model (N ×M/M/1). Figure 2 shows that the improvements under moderate traffic load are

relatively less than those under heavy traffic (so are the improvements of theM/M/N queues, see Figure 3).

When the proportion of flexible arrivals increases, the improvements increase at a speed smaller than that in

heavy traffic. For example in Figure 2, at 30 percent flexibility, the amount of improvement is only around 60

percent of that with 100 percent flexibility. Figure 3 again supports the observations made in Figure 1, while

in moderate traffic the difference between the tree, ring andJSQ-2/N structures becomes smaller. All these

observations are consistent with the fact that as the systembacks further off the heavy traffic conditions, the

performance of the three policies goes further away from thelower bound of the achievable performance

that is indicated by Theorem 3.1.
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Figure 1: Improvement of expected waiting time vs. routing structures, i.i.d. exponential service times, 95%

loaded

Fourthly, we examine the effects of changing the service time variance. Two more service time dis-

tributions are applied. One is an Erlang-k distribution with rate one and variance 0.1. The other is a

hyper-exponential distribution with rate one and variance10.0. The results are shown in Figures 4 and 6.

In addition to the observations made for the exponential service times setting, we see that all three policies

(tree, ring, JSQ-2/N ) have larger improvement in systems with larger service time variance than in those

with small variance. This is probably not too surprising, asit follows from the observation that when the

service time variance is small, the performance is less sensitive to the policy, i.e., for small service time

variance if some policy balances the load over long time scales, it is highly likely to also balance the load

under shorter time scales. For example, in the extreme of constant service times, an optimal routing policy

would be round robin. On the other hand, with large service time variance, load imbalances may occur over

short time scales due to the variability in service times, soit becomes more desirable to be able to shift the

incoming work between queues.

Fifthly, we look at three models with heterogeneous servers. Each model has 20 parallel queues. The

service time distribution at queuej is exponential with rateµj. Let the service rate vector be[1, 2, ..., 20]

and the single Poisson arrival stream have rateλ̃ = 199.5, so thatλ̃/
∑20

j=1 µj = 0.95. For the system

with 20 M/M/1 queues, the arrivals are routed to queuej at rate0.95µj , so the mean number at each

queue is the same and the mean waiting time is calculated by the total mean number in system divided by

λ̃. In Table 2, we can see that both the tree and ring routing structures yield similar improvements as those

seen in the homogeneous server case. Actually, we know from Theorems 3.1 and 4.1 that in the case of

exponential service times, both the homogeneous and the heterogeneous systems have the same reflected

Brownian motion limit (when the CRP condition is satisfied),so this observation is not surprising.



Load Balancing - Limited Choice and Locality 16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Flexibility (1-p)

Improvement

85% load (N=100)

85% load (N=20)

85% load (N=4)

70% load (N=100)

70% load (N=20)

70% load (N=100)

Figure 2: Improvement of total mean queue lengths vs. systemload, i.i.d. exponential service times
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Figure 3: Improvement of expected waiting time vs. routing structures, i.i.d. exponential service times, (a)

85% loaded, (b) 70% loaded,
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Figure 4: Improvement of total mean queue lengths vs. the proportion of flexible arrivals, 95% loaded, (a)

i.i.d. Erlang-k service times, (b) i.i.d. hyper-exponential service times

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N=4 N=20 N=100

Number of servers

Improvement

Tree

Ring

JSQ-2/N

M/Ek/N

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N=4 N=20 N=100

Number of servers

Improvement

Tree

Ring

JSQ-2/N

M/Hx/N

(a) (b)

Figure 5: Improvement of expected waiting time vs. routing structures, 95% loaded, (a) i.i.d. Erlang-k

service times, (b) i.i.d. hyper-exponential service times
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Table 2: Expected waiting times, heterogeneous servers, exponential service times

Model Nh
× M/M/1 Tree Ring

Nh 20

λ̃ 199.5

(µj)j∈{1,...,Nh} [1, 2, ..., 20]

(1 − p) – 1 1

Expected waiting times 1.90 0.45 0.44

Improvement 0% 76% 77%

Finally, we test some cases to see whether the main results ofthis paper are valid even for non Poisson

arrivals. Two more inter-arrival time distributions are examined, Erlang−k and hyperexponential, with

squared coefficients of variation 0.1 and 10, respectively.Figure 6 shows the simulation results of the

performance achieved by the three routing structures in homogeneous systems, corresponding to those in

Theorem 3.1. The improvement of waiting time is calculated using 100 percent random routing (p = 1) as a

reference. It can be seen that when the system load is high, the tree (with 100 percent flexible arrivals) and

JSQ−2/N routing structures achieve performance close to that of themulti-server single queue, which is

the lower bound of the achievable performance. This is similar to what has been seen in Figure 1, however,

currently we are not able to prove if Theorem 3.1 holds for nonPoisson arrivals.
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Figure 6: Improvement of expected waiting time vs. routing structures, 95% loaded, exponential service

times, (a) i.i.d. Erlang-k inter-arrival times, (b) i.i.d. hyper-exponential inter-arrival times

7 Conclusion

Using diffusion limits we have provided an explanation for the benefits of certain limited choice routing

structures for the problem of load balancing in parallel server systems. In addition to this viewpoint, we
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have also demonstrated that such schemes are effective for service times with general distributions, as well

as heterogeneous servers. The schemes that we have suggested are competitive with that in [5], which we

hope gives designers an additional option.

On the methodological side, it is interesting to note that inSection 6, even at 95 percent load, the

resulting mean queue lengths are small to moderate. So, while the techniques presented here are useful

for classifying policies, it may be useful to examine whether the techniques of Halfin and Whitt [3] yield

limits which allow one to differentiate between various policies in finer granularity (and also give better

approximations). In particular, using such limits should capture the relation (1.1), which our technique is

unable to do. However, it is not clear how to adapt such techniques to a system where routing decisions

must be made on arrival ([3] has a single queue and many servers).
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A Mathematical Background

To make this paper self-contained, we provide the mathematical background on weak convergence and

complete resource pooling.

A.1 Weak Convergence

Let the metric space(S,m) be endowed with the Borelσ-fieldB(S) andX be a mapping from a probability

space(Ω,F ,P) to (S,B(S)). The distribution ofX is the image probability measureP induced byX on

(S,B(S)), denoted asP (A) := P({ω ∈ Ω : X(ω) ∈ A}), A ∈ B(S). If S is a space ofK-dimensional

real-valued functions which are defined on the subinterval[ 0, T ] of the real line and are right-continuous

with left limits, X is aK-dimensional stochastic process. The corresponding function space is denoted as

D. Let {Xn : n ≥ 1} be a sequence of stochastic processes, all defined on the probability space(Ω,F ,P).

Let P andPn be the distributions ofX andXn, respectively. We say thatPn converges weakly toP if for

every bounded and continuous functionf onD,

lim
n→∞

∫

D
fdPn =

∫

D
fdP.

In other words,Xn converges weakly toX (orXn converges toX in distribution), denoted byXn
w−→ X,

if and only if limn→∞E [f(Xn)] = E[f(X)], for everyf .

A.2 Complete Resource Pooling

We follow [8] to introduce the mathematical definition of thecomplete resource pooling (CRP) condition.

Let I = {1, ..., I} be the set of task types andJ = {1, ..., J} be the set of servers. Define a matrix

Ψ = (ψi,j)I×J , with all ψi,j ≥ 0. Each elementψi,j is the average rate at which serverj’s time is allocated

to serve typei tasks, in the long run. So the total utilization of serverj is ρj =
∑I

i=1 ψi,j. Let µi,j be the

mean service rate of task typei at serverj. The service capacity for typei tasks isκi =
∑J

j=1 µi,jψi,j.

Given the matrixΨ, if tasks of typei are routed upon arrival to queuej at the average rate(µi,jψi,j), then

the total service capacity for typei tasks equals the mean arrival rateλi.
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Define vectorsλ = [λ1, . . . , λI ], κ = [κ1, . . . , κI ] andρ = [ ρ1, . . . , ρJ ]. The utilization region is

denoted byU = {ρ ∈ R
J
+ : κ ≥ λ}, whereR

J
+ = {x ∈ R

J : x ≥ 0} and the vector comparison is

component-wise. Let the vectorξ∗ = [ ξ∗1 , . . . , ξ
∗
J ]T be the outer normal vector to the convex polyhedronU

at the point1 ∈ R
J . The inner product of vectorsρ andξ∗ is written asρ · ξ∗.

Theorem A.1 ([8], Lemma 3, complete resource pooling). The CRP condition for a fixed vectorλ holds if

and only if the following two conditions hold.

(i) Vector1 ∈ R
J solves the problem

min
ρ∈U

ρ · ξ∗

s.t. κ ≥ λ.

(ii) The matrixΨ which solves the linear system

λ = κ, ρ = 1 (A.1)

is unique.

Let the matrixΨ∗ be a solution to (A.1). A graphG is constructed with nodes being task typesi and

serversj, arcs(i, j) corresponding to a positive elementψ∗
i,j > 0. The CRP condition is equivalent to the

condition that the graphG is a tree (Corollary 5.4 in [10]).

Define the capacity regionK = {κ ∈ R
I
++ : ρ ≤ 1}, whereR

I
++ = {x ∈ R

I : x > 0}. Let the

vectorν∗ = [ ν∗1 , . . . , ν
∗
I ]T be the outer normal vector to the convex polyhedronK at the pointλ. The CRP

condition also implies1 · ξ∗ = λ · ν∗. Moreover,ξ∗ is related toν∗ as follows:

ξ∗j = max
i
µi,jν

∗
i , j ∈ J and ν∗i = min

j
ξ∗j /µi,j , i ∈ I. (A.2)

The componentξ∗j is called the workload contribution of serverj; ν∗i is the workload contribution of

task typei. By workload, we mean the amount of unfinished processing time of all tasks in the system.

A.3 Reflected Brownian Motion Limit

Finally, we introduce the diffusion limit of the total weighted workload process in a system which operates

with Stolyar’s MinDrift(Q) routing rule [8].

Let Qi,j(t) denote the number of typei tasks at serverj at time t, including the one in service. The

Q-estimated workload at serverj isZj(t) =
∑I

i=1 µ
−1
i,j Qi,j(t). The total (server) workload of the system is

Z(t) =
J

∑

j=1

ξ∗jZj(t), (A.3)

which is weighted by the server contributionsξ∗j .
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Assume that each serverj is assigned a convex holding cost functionCj(·), whose first derivativeC
′

j (·)
is strictly increasing in its argument. The MinDrift(Q) rule routes a typei customer at arrival timet to a

serverj which satisfies

j ∈ arg min
j∈J

C
′

j (Zj(t))

µi,j

.

Ties are broken arbitrarily. In the special case whereI = 1 andµi,j = µ for all i ∈ I, j ∈ J , MinDrift(Q)

reduces to JSQ, if the cost function is of the formCj(Zj(t)) = γZ2
j (t), for any positive constantγ. If

I = 1 andµi,j = µj for all i ∈ I, MinDrift(Q) reduces to JSEW, if the cost function is of the form

Cj(Zj(t)) = µjZ
2
j (t).

Suppose there is a system equipped with the MinDrift(Q) routing rule and an arbitrary non preemptive,

work-conserving local scheduling rule. Associated are themean arrival rate vectorλ which satisfies the

CRP condition, the matrixΨ∗, and the vectorsξ∗ andν∗. All of the queues are empty at the initial time

t = 0. Consider a sequence of such systems, indexed byn. For then-th system, the inter-arrival times of

task typei have mean
(

λ−1
i

)(n)
and variance

(

α2
i

)(n)
; the service times at serverj for type i arrivals have

meanµ−1
i,j and varianceβ2

i,j. We assume that the following conditions hold

lim
n→∞

(

α2
i

)(n)
= α2

i (A.4)

and

sup
n≥1,i∈I

E

[

(

u2+ǫ
i,1

)(n)
]

< ∞, (A.5)

E

[

v2+ǫ
i,j,1

]

≡ ci,j, (A.6)

for someǫ > 0 and finite constantci,j. In addition the heavy traffic condition

lim
n→∞

√
n
(

λ
(n)
i − λi

)

= bi (A.7)

for some finite constantbi is assumed to be true for alli ∈ I.

Define the scaled processes for (A.3) asẐ(n)(t) = Z(n)(nt)/
√
n.

Theorem A.2 ([8], Theorem 2(i)). If (A.4)–(A.7) hold, then asn → ∞, Ẑ(n)(t)
w−→ Ẑ = RBM

(

θ, σ2
)

,

where

θ =
∑

i∈I

ν∗i bi, σ2 =
∑

i∈I

(ν∗i )2



λ3
iα

2
i +

∑

j∈J

ψ∗
i,jµ

3
i,jβ

2
i,j



 .


