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Abstract

Desktop Grids are rapidly gaining popularity as a cost-
effective computing platform for the execution of applications
with extensive computing needs. As opposed to grids and clus-
ters, these systems are characterized by having a non-dedicated
infrastructure. These unique characteristics need to be consid-
ered in developing resource management strategies for Desktop
Grids. Several frameworks for the performance evaluation of
resource management strategies have been suggested for grids.
However, similar projects for Desktop Grids are still lacking.
This paper presents MGST, the first performance testing frame-
work for Desktop Grids. We discuss the design of the tool and
show how it can be used to analyze and improve the perfor-
mance of an existing Desktop Grid scheduling policy.

1. Introduction

Desktop Grids have emerged as an important methodology
to harness the idle cycles of a large number of desktop PCs con-
nected over the Internet or an enterprise’s local area network.
Such systems allow the development of applications to solve
large problems and sustain throughputs far exceeding those
of much more expensive supercomputers. These systems are
characterized by the non-dedication of their machines. Grids
and clusters, on the other hand, have a dedicated infrastructure
whose size is much smaller than what has been achieved with
Desktop Grids. Desktop Grids have recently received a lot of
attention because of the success of several popular applications
such as SETI@home [23].

A Desktop Grid employs a scheduling policy responsible for
assigning tasks to resources in order to optimize certain per-
formance requirements. Several scheduling policies have been
suggested for Desktop Grids (see Choi et al. [10]). A scheduling
policy for Desktop Grids must support systems with a very large
number of machines. Also, the policy needs to cope with the
high volatility and non-dedication of resources. Further adding
to the complexity of scheduling for Desktop Grids is the in-
herent heterogeneity of such systems. Addressing these issues
presents unique challenges to the design of effective scheduling
policies for Desktop Grids.

This paper presents the McMaster Grid Scheduling Testing
(MGST) framework for the performance evaluation of Desktop

Grid scheduling policies. To the best of our knowledge, MGST
is the first performance testing framework developed specifi-
cally for Desktop Grids. Other frameworks, such as Grench-
Mark [13] and DiPerF [22], are designed specifically for grids
and do not incorporate the unique characteristics of Desktop
Grids.

A testing framework for such systems should aim to sim-
plify and automate performance testing. The testing framework
should provide mechanisms for reproducing experiments, gen-
erating required workloads, replaying realistic traces and an-
alyzing results. Furthermore, the framework should be easily
deployed on top of a distributed testbed allowing for realistic
testing. Extensibility, automation, ease-of-use, flexibility and
accuracy are a set of non-functional requirements on the frame-
work design.

Performance testing over a distributed testbed is complicated
due to several factors [22]. Issues such as clock synchroniza-
tion, heterogeneity of resources, scalability, and resource coor-
dination make it a difficult task to do automated performance
testing. MGST, as an alternative, simplifies and automates the
process and saves the tester the burden of worrying about such
details.

Deploying MGST on a distributed testbed enables realistic
performance testing, far more effective than the use of simula-
tion. Given the potential size and diversity of today’s Desktop
Grids, simulation suffers from scalability issues. Furthermore,
simulation is prone to error, and may not capture the complex
dynamic behaviour present in such systems. As a case study,
we use MGST to study and analyze the performance of the
LPAS DG policy (Al-Azzoni and Down [2]), a scheduling pol-
icy for Desktop Grids whose performance has to date only been
analyzed using simulation. The LPAS DG policy is described
in Section 4.1. We use the results from the MGST deployment
to make several recommendations for the practical application
of the LPAS DG policy.

The paper is organized as follows. Section 2 defines the
workload model used by the current implementation of MGST.
In Section 3, we give an overview of the MGST design. In
Section 4.2, we use MGST to analyze the performance of
the LPAS DG policy. The literature related to this work is dis-
cussed in Section 5. Section 6 concludes the paper and outlines
future research work.



2. Desktop Grid Model

In our model for a Desktop Grid, there is a dedicated sched-
uler for assigning incoming tasks to the requesting machines.
The tasks are assumed to be independent and atomic. In the
literature, parallel applications whose tasks are independent are
sometimes referred to as Bag-of-Tasks applications (BoT) (as
in Anglano et al. [4]) or parameter-sweep applications (as in
Casanova et al. [8]). Such applications have been observed to
be the predominant applications in large-scale distributed com-
puting systems, such as Desktop Grids (see Iosup et al. [15]).

The scheduler applies a pull-based scheduling policy (see
Choi et al. [9, 10]). In pull-based scheduling, when a machine
becomes available, it sends a request to the scheduler in order to
be assigned a new task for execution. Using pull-based schedul-
ing is necessary due to the property that the machines are not
dedicated in Desktop Grids. One of the results of using pull-
based scheduling is that tasks queue at the scheduler side. There
is no queueing at the machines; in fact, in Desktop Grids, one
machine executes at most one task at a time without preemp-
tion (see [10], Domingues et al. [11], and Kondo et al. [18]).
Also, in pull-based scheduling, the scheduler makes a decision
as soon as it receives a request from a machine [10].

In Desktop Grids, machines can fail (or become unavailable)
at any time without any advance notice [4]. If a machine fails
while executing a task, then that task needs to be resubmitted
to the scheduler. We assume that the Desktop Grid is mainly
used to execute short-lived applications [18]. Hence, in such
systems, we do not consider fault tolerant scheduling mecha-
nisms such as checkpointing, migration and replication, due to
their overhead.

One of the basic properties of Desktop Grids is the non-
dedication of machines. When a machine is available, it may
also run local jobs (i.e., jobs submitted by a local user). The
machines’ local jobs are always given higher priority. When a
machine is busy with local jobs, the result is a slowing down of
the execution of the Desktop Grid tasks submitted by the sched-
uler to the machine. As in [4, 18], we assume that once a task is
submitted to a machine, the task can not be resubmitted unless
a failure occurs.

To describe the availability and dedication of a machine for
the execution of the Desktop Grid tasks, we distinguish between
machine and CPU availability (see Kondo et al. [19] and Nurmi
et al. [21]). The former is a binary value that indicates if the ma-
chine is reachable. Examples of machine unavailability include
power failure or machine reboot. The latter is a percentage value
that quantifies the fraction of the CPU that can be exploited by
Desktop Grid applications.

3. The MGST Tool

In this section we discuss MGST, first stating the objectives
and usage of the tool and then illustrating the design. The tool
was introduced in [17].

3.1. Objectives and Usage

Scheduling schemes are based on a specific workload model
and a set of assumptions. Performance is typically predicted
using mathematical analysis and/or simulation-based experi-
ments. The actual performance, however, can be quite different.
There are two reasons for that; the first one is the fact that the
assumptions made during the design phase are usually incorpo-
rated in the simulation tool developed by the researchers to test
the schemes. The second reason is that some factors that are
not taken into consideration in the theoretical models can have
considerable impact on the performance of the scheme.

MGST was developed to serve as a test bed for schedul-
ing schemes. As opposed to simulation tools, MGST provides
testers with realistic conditions.

Having such a testing environment allows researchers to:

• Verify that a scheduling policy can be implemented.

• Verify that the scheduling policy is behaving as it was
intended to.

• Verify that the assumptions made actually hold and are
reasonable.

• Determine potential areas for improvement of a particular
scheduling policy.

To conduct an experiment, a collection of networked com-
puters is used. One of these computers is chosen to be the cen-
tral machine (the mapper) that will run the MGST tool. The re-
maining machines (servers) run only the server module (puller)
of the MGST software.

An experiment is initiated on the mapper using the MGST
interface, and the mapper starts mapping jobs to the servers.
Servers execute the jobs, returning the results back when com-
pleted. During an experiment, the MGST software at the map-
per records the events. The tester is also able to monitor the
experiment using the monitoring capabilities of the MGST. For
example, during an experiment testers can view the current jobs
queued on the mapper, the job status and various system-level
parameters such as average waiting time for a specific class of
jobs. When the experiment is completed, MGST can produce
files readable by spread sheet programs. Figure 3.1 shows a
screen shot of the MGST.

Log files, that are produced, record all of the events of a con-
ducted experiment. The tool also generates various parameters
characterizing the performance of a policy. The Log files are
produced by the software running on the mapper. The results
are stored in text files that can be read by spread sheet programs.
MGST is currently limited to Macintosh-based computers. Ex-
tending the support for more architectures is one of our future
plans.

3.2. Design

Extensibility was the main software quality desired in the
tool and therefore was the main design goal. The notion of ex-
tensibility in the case of MGST is that the tool and its features
can be extended by adding scheduling schemes to be tested in an
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Figure 1. General Screen Shot

easy manner or by adding features or introducing modifications
based on researchers’ needs.

Certain software qualities such as simplicity and modular-
ity were maintained leading to the design of an extensible tool.
The tool was divided into seven modules each having a defined
responsibility.

Adjuster: The purpose of this module is to impose artificial
properties on the system. It is used to impose heterogeneity.

Mapper: As its name indicates, this module does the actual
mapping of the jobs.

Job Generator: This module is responsible for generating
jobs and sending them to the Mapper module.

Logger: This module keeps a record of the events that hap-
pen during the course of a test.

Executer: This module is responsible for executing and man-
aging the tasks on assigned machines.

Puller: Unlike all of the other modules, this module is de-
ployed at the servers. The Puller is responsible for maintaining
availability information and sending it to the central Mapper no-
tifying it when servers become available. In addition, the Puller
notifies the Mapper when a job is completed.

User Interface: This module is responsible for providing the
graphical user interface to users.

In addition, four forms of documentation were introduced
to aid future developers in modifying and extending the tool.
These forms of documentation are Javadoc for the implemented
classes, comments throughout the code, a design document and
a user manual.

4. Experimental Results

In this section we use MGST to analyze the performance of
the LPAS DG policy, a dynamic scheduling policy for Desktop
Grids [2]. First, we give a brief overview of the policy.

4.1. The LPAS DG Policy

The Linear Programming Based Affinity Scheduling policy
for Desktop Grids (LPAS DG) is designed for heterogeneous
Desktop Grids that execute multiple applications. In such sys-
tems, one can think of an application (or, a class) as consisting
of tasks whose expected execution times on a given machine
are the same. Let µ′i,j be the nominal execution rate for tasks of
class i at machine j, hence 1/µ′i,j is the mean nominal execu-
tion time for class i tasks at machine j. Assume that there are
N classes of tasks. Tasks that belong to the same class i have
arrival rate αi. Let α be the arrival rate vector, the ith element
of α is αi. Let the number of machines in the system be M .

In addition to the arrival and execution rates, the policy ex-
ploits information on CPU availabilities. The policy assumes
that when a machine becomes available, it sends a request for a
new task to the scheduler. As in [4], we assume that the machine
also supplies the expected proportion of time that it is going to
spend in executing the Desktop Grid tasks during its coming
availability period (i.e., its CPU availability). Thus, we can de-
fine the effective execution rate µi,j for the submitted tasks as:

µi,j = µ′i,j × aj

where aj represents the fraction of machine j’s capacity that is
available for executing the Desktop Grid tasks during its coming
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availability period. Also, let µ be the effective execution rate
matrix, having (i, j) entry µi,j .

The policy requires solving the following allocation LP (An-
dradóttir et al. [3]) at each machine availability/unavailability
event, where the decision variables are λ and δi,j for i =
1, . . . , N , j = 1, . . . ,M . The variables δi,j are to be interpreted
as the proportional allocation of machine j to class i.

max λ

s.t.
M∑

j=1

δi,jµ
′
i,j ≥ λαi, for all i = 1, . . . , N, (1)

N∑
i=1

δi,j ≤ aj , for all j = 1, . . . ,M, (2)

δi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . ,M.
(3)

The left-hand side of (1) represents the total execution capacity
assigned to class i by all machines in the system. The right-
hand side represents the arrival rate of tasks that belong to class
i scaled by a factor of λ. Thus, (1) enforces that the total capac-
ity allocated for a class should be at least as large as the scaled
arrival rate for that class. The constraint (2) prevents overallo-
cating a machine and (3) states that negative allocations are not
allowed.

Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be an opti-
mal solution to the allocation LP. The allocation LP always has
a solution, since no lower bound constraint is put on λ. Let δ∗

be the machine allocation matrix where the (i, j) entry is δ∗i,j .
Whenever a machine becomes available or unavailable, the

scheduler solves the allocation LP to find {δ∗i,j} , i = 1, . . . , N ,
j = 1, . . . ,M . If a machine j becomes unavailable, then aj

= 0. In this case, δ∗i,j = 0 for i = 1, . . . , N . On the other
hand, if a machine j becomes available, aj is equal to the pre-
dicted CPU availability for machine j during its next expected
machine availability period.

The LPAS DG policy is defined as follows. When a machine
j requests a task, let Sj denote the set of task classes i such
that δ∗i,j is not zero (Sj = {i : δ∗i,j 6= 0}). Let Di(t) be the
waiting time (sojourn time) of the head of the line class i task
at the time t of making the scheduling decision. The scheduler
assigns machine j the longest-waiting (head of the line) class i
task such that

µi,jδ
∗
i,j > 0 and i ∈ arg max

i
µi,jDi(t).

Note that the LPAS DG policy does not use the actual values
for {δ∗i,j}, beyond differentiating between the zero and nonzero
elements. Regardless, we must solve the allocation LP to know
where the zeros are.

4.2. Experimental Results

We used MGST to an-
alyze the performance of the LPAS DG policy under realistic
conditions. We tested the scheme on several systems. Each test
was conducted two times, once using the simulation tool used

in [2] and once with MGST. The metric used in the simulations
and experiments is the average response time, including average
communication delay for the MGST experiments. The commu-
nication delay is the difference between the time a job is sent to
be executed and the time it begins execution. This delay occurs
mainly due to network communication delays, but it could also
be caused by the software layer responsible for the distribution
and execution of the tasks.

The experiments were conducted on four categories of sys-
tems depending on machine and job heterogeneity. Machine
heterogeneity refers to the average variation in the rows of
the execution matrix µ. On the other hand, job heterogeneity
refers to the average variation of the columns. Based on Arm-
strong [5], we define the following categories for heterogeneity:

• High job heterogeneity and high machine heterogeneity
(HiHi).

• High job heterogeneity and low machine heterogeneity
(HiLo).

• Low job heterogeneity and high machine heterogeneity
(LoHi).

• Low job heterogeneity and low machine heterogeneity
(LoLo).

Two to four experiments were conducted on each category.
In some experiments failures were enabled meaning that ma-
chines can fail while executing jobs. Machines were in some
experiments fully dedicated (aj = 1 for all j), where their full
resources were used exclusively by the desktop grid. In other
experiments only a percentage of the resources were available
for the grid. We will use the following acronyms to express
these properties in the experiments: FE, FD, MFD, MPD for
failures enabled, failures disabled, machine fully dedicated and
machines partially dedicated respectively. We will also use Mn
to denote the nth machine (e.g. M1 is machine 1). Similarly,
we define Gn for groups of machines.

4.2.1 HiHi

The experiments in this category were conducted on 6 ma-
chines and 4 classes of jobs. Table 1 shows the execu-
tion rates. The arrival rates of the job classes were: α =[

2.25 4.50 7.20 12.60
]
.

Class M1 M2 M3 M4 M5 M6
1 2.0 2.0 2.0 2.0 2.0 2.0
2 1.0 20.0 3.7 7.1 2.4 8.7
3 1.0 20.0 9.4 3.7 7.2 2.7
4 1.0 20.0 2.8 5.9 4.4 6.3

Table 1. Execution Rates of Setting HiHi

The average response time for each class of jobs and the over
all average response time are shown in Table 2. The simulation
results in this and all the following tables are at a 95% confi-
dence interval.
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MFD/FD MPD/FD MFD/FE MPD/FE
Class Sim MGST Sim MGST Sim MGST Sim MGST

1 (0.56, 0.57) 0.58 (0.97, 0.98) 0.99 (0.61, 0.61) 0.61 (1.10, 1.11)) 1.03
2 (0.33, 0.34) 0.34 (0.22, 0.22) 0.37 (0.35, 0.35) 0.45 (1.10, 1.11) 0.50
3 (0.18, 0.18) 0.22 (0.27, 0.27) 0.29 (0.19, 0.20) 0.20 (0.32, 0.32) 0.46
4 (0.11, 0.11) 0.17 (0.16, 0.16) 0.43 (0.13, 0.13) 0.15 (0.26, 0.27) 1.36

Overall (0.20, 0.21) 0.24 (0.27, 0.27) 0.42 (0.23, 0.23) 0.25 (0.35, 0.36) 0.94

Table 2. Results of Experiment on HiHi Setting

In the MPD/FD and MPD/FD experiments M4, M5 and M6
had availability aj = 0.5. The remaining machines were fully
dedicated (aj = 1). In the MPD/FE and MPD/FE experiments
each machine failed at the rate 0.05 per time-unit and the mean
fault time was 2 time-units. The periods were exponentially
distributed.

In experiment MPD/FD the actual performance of the
LPAS DG policy was worse than the simulation had predicated.
The reason is discussed in Section 4.3.

4.2.2 LoHi

This setting was constructed from 21 machines and 4 job
classes. This setting was from category HiLo. There were
seven groups of machines. Members of the same group have
the same execution rates. Machines in group 1 are machines
1, 8 and 15, machines in group 2 are machines 2, 9 and
16, etc. The arrival rates of the job classes were: α =[

22.5 22.5 18.0 18.0
]
.

Class G1 G2 G3 G4 G5 G6 G7
1 2.20 7.00 10.25 1.00 5.70 0.50 12.00
2 1.95 7.05 9.78 0.95 5.65 0.56 11.85
3 2.00 7.25 10.02 0.98 5.75 0.67 11.80
4 2.05 6.75 9.99 1.02 5.82 0.49 12.05

Table 3. Execution Rates of Setting LoHi

The average response time for each class of jobs and the over
all average response time are shown in Table 4.

MFD/FD MPD/FD
Class Sim MGST Sim MGST

1 (0.22, 0.22) 0.31 (0.24, 0.24) 0.36
2 (0.12, 0.12) 0.22 (0.13, 0.13) 0.26
3 (0.30, 0.30) 0.37 (0.37, 0.37) 0.44
4 (0.29, 0.29) 0.35 (0.35, 0.35) 0.47

Overall (0.22, 0.22) 0.31 (0.26, 0.27) 0.37

Table 4. Results of Experiment on LoHi Setting

In the MPD/FD experiment M2, M11 and M19 the availabil-
ity aj = 0.5. M3, M12, M20 had availability aj = 0.75. The
remaining machines were fully dedicated (aj = 1).

The average response times obtained by MGST were within
a reasonable range from the results obtained by simulation. The
average response times of the MGST experiment were slightly
higher due to the fact that actual processing rates were slower.
This is discussed in Section 4.3.

4.2.3 HiLo

This setting was constructed from 21 machines and 4 job classes
divided into seven groups in the same way machines in the set-
ting LoHi were divided. Execution rates are shown in Table 5.
G1 to G7 are group 1 to group 7. The arrival rates of the job
classes were: α =

[
10.50 21.00 26.25 26.25

]
.

Class G1 G2 G3 G4 G5 G6 G7
1 2.00 2.50 2.25 2.00 2.20 1.75 2.25
2 4.50 4.0 4.20 4.00 3.80 3.90 3.95
3 6.00 6.20 6.25 6.00 5.75 5.90 6.05
4 10.00 10.25 10.50 9.50 10.25 10.25 10.00

Table 5. Execution Rates of Setting HiLo

The average response time for each class of jobs and the over
all average response time are shown in Table 6. The availabili-
ties of machines were as in Table 6.

MFD/FD MPD/FD
Class Sim MGST Sim MGST

1 (0.49, 0.49) 0.50 (0.79, 0.80) 1.22
2 (0.28, 0.28) 0.31 (0.42, 0.42) 0.77
3 (0.24, 0.24) 0.32 (0.27, 0.27) 0.53
4 (0.14, 0.14) 0.35 (0.19, 0.19) 0.73

Overall (0.25, 0.25) 0.35 (0.35, 0.35) 0.74

Table 6. Results of Experiment on HiLo Setting

In the MPD/FD experiment M2, M11 and M19 had avail-
ability aj = 0.5. M3, M12, M20 had availability aj = 0.75.
The remaining machines were fully dedicated (aj = 1).

Compared to simulation, LPAS DG performed poorly in the
MGST experiment. The reason is that the ideal overall load on
the machines was fairly high (86.4%), but the different sources
of errors and overhead caused the actual load to be close to
100%. The sources of errors are higher overall arrival rates,
over estimation for processing rates and communication over-
head coupled with the scheduling delay. See Section 4.3 for
more details.

4.2.4 LoLo

This setting was constructed from 21 machines and 4 job classes
divided into seven groups in the same way machines in the set-
ting LoHi were divided. Execution rates are shown in Table 7.
G1 to G7 are group 1 to group 7. The arrival rates of the job
classes were: α =

[
18.00 20.25 15.75 22.50

]
.

Class G1 G2 G3 G4 G5 G6 G7
1 5.00 5.05 4.95 4.98 4.70 5.20 5.25
2 5.25 5.09 4.90 4.92 5.00 5.13 5.14
3 4.45 5.00 4.90 4.45 4.90 5.00 5.10
4 5.02 4.95 5.00 5.02 5.25 4.75 5.00

Table 7. Execution Rates of Setting LoLo

This experiment included machine failures. The mean up-
time was 50 time units and the mean failure period was 2 time
units. The periods were exponentially distributed.
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The mean response time for each class of jobs and the over
all response time are shown in Table 8.

MFD/FD MPD/FD MFD/FE MPD/FE
Class Sim MGST Sim MGST Sim MGST Sim MGST

1 (0.25, 0.25) 0.27 (0.28, 0.28) 0.39 (0.25, 0.25) 0.35 (0.31, 0.31) 0.52
2 (0.23, 0.23) 0.28 (0.30, 0.30) 0.39 (0.24, 0.24) 0.34 (0.32, 0.32) 0.63
3 (0.23, 0.23) 0.28 (0.27, 0.27) 0.35 (0.24, 0.24) 0.33 (0.32, 0.32) 0.57
4 (0.21, 0.22) 0.25 (0.32, 0.32) 0.36 (0.24, 0.24) 0.29 (0.34, 0.34) 0.52

Overall (0.23, 0.23) 0.27 (0.30, 0.30) 0.37 (0.24, 0.24) 0.33 (0.32, 0.32) 0.56

Table 8. Results of Experiment on LoLo Setting

In the MPD/FD and MPD/FD experiments M2, M11 and
M19 had availability aj = 0.5. M3, M12 and M20 had avail-
ability aj = 0.5. The remaining machines were fully dedicated
(aj = 1). In the MPD/FE and MPD/FE each machine failed at
the rate 0.05 per time-unit and the mean fault time was 2 time-
units. The periods were exponentially distributed.

The response times in the results of our experiment were sig-
nificantly higher than the simulation results. The reason behind
this is the high load coupled with failures and over estimation
of the execution rates (the assumed execution rates were higher
than the actual ones in this experiment). See Section 4.3.

4.3. Analysis

4.3.1 Modifications

The LPAS DG scheduling policy was implemented for the first
time in our testing environment. Here we give a few remarks
regarding the implementation of this policy. The MGST tool
allowed us to study implementability (To Do), a value (To Do)
and of itself.

The LPAS DG policy is silent on how to choose a server if
there is more than one available to serve a job. For simplicity,
in our first implementation we chose the FCFS policy to choose
servers, but this resulted in performance degradation. The per-
formance is affected because the scheduling process might be
blocked when the head of the available servers queue is a server
capable of executing a limited number of job classes and none
of the currently queued jobs belong to any of these classes. The
FCFS implementation was modified to remove the head of the
server queue and insert it at the back of the queue, if there
are jobs in the jobs queue but this server is not able to exe-
cute any of them. However, we believe that the performance of
the LPAS DG can be further improved by employing a suitable
policy to choose servers from the available servers queue, espe-
cially in the case of a low or medium load on the system. We be-
lieve that further research must be conducted to come up with a
suitable policy. However, we recommend the LPAS scheduling
policy for clusters (Al-Azzoni and Down [1]) to be considered
as a possible solution, since this policy is suitable for choosing
servers for jobs in heterogeneous environments. This modifica-
tion is not necessary but could improve the performance under
medium to low loads.

LPAS DG makes decisions based the matrix δ∗, which is
produced by solving a linear programming problem (Section
4.1). The δ∗ matrix depends on the values of aj . As a result,
in [2] it is suggested that a new δ∗ matrix must be produced at
every availability/unavailability event (Section 4.1).

Since the matrix δ∗ depends on aj , and the machines’ aj

varies between availability and unavailability events, we think
that δ∗ should be updated every time any aj changes. This solu-
tion is expensive to implement because it is very hard to notify
the mapper of every change to every aj . In addition, this will re-
quire solving the allocation LP frequently, which is also expen-
sive and will raise a scalability problem. To solve this issue, we
assumed a time resolution Tsystem (The mapper could become
the bottleneck). Here, the values of aj are sent to the mapper
periodically, and it solves the allocation LP after receiving the
updated values of aj . The determination of an optimal update
period is open to research. We believe that this modification is
necessary to make LPAS DG scalable.

4.3.2 Robust Modifications

In some experiments the performance of the scheduling
schemes differed from the simulation results due to the ma-
chines experiencing unexpectedly high loads. The different
sources of error that can occur in a real system can significantly
raise the load, even potentially causing instability in the system.
These errors can be caused by:

1. The actual arrival rate being larger than the assumed
one.

2. Overestimation of processing rates.

3. Overhead caused by communication and scheduling
delays. Assume that a server announces its availabil-
ity at time t1, then the mapper learns of the availability
of this server at time t2 and consequently performs the
scheduling and chooses a job at time t3 and then sends
the job. The server then receives the job and starts the
execution at time t4. At time t5 the server finishes exe-
cuting the job but only at time t6 does the mapper learn
that the job is done, obtaining the results at t7. In the
model, the processing time is considered to be t6 − t5,
but in the actual implementation, there is an overhead of
(t5 − t1) + (t7 − t6). This overhead affects the load on
the system if t6 − t5 is small compared to the overhead.

4. Machine failures. Although machines failure can be in-
corporated in the workload models, they can still increase
the effective load due to the fact that it takes time for
the mapper to realize that a server is down. This time
is wasted and effectively increases the load. For example,
when using LPAS DG, suppose that server 3 is the only
server executing jobs from class 1, and the execution time
is 5 minutes. If server 3 fails when executing a particular
job and the “time-out” parameter was set to 3 times (i.e. 3
times the estimated execution time should elapse before
considering the job “timed out”), then the Mapper will
not consider server 3 down until 15 minutes have elapsed
from the moment that the job was sent. These 15 minutes
are essentially lost, with arriving jobs from class 1 accu-
mulating in the queue at the Mapper within that time.

If any or all of the above factors cause a significant increase
in the load, the performance of the scheduling scheme will de-
teriorate. Note that these factors were only discovered upon
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deploying LPAS DG on MGST. They were not discovered in
simulations.

The LPAS DG policy suffered in some cases in the experi-
ments from the above factors due to the aggressive nature of this
policy in minimizing the number of machines to execute each
job class. This results in exclusivity of machines for certain job
classes. When one class can be executed by a small number
of machines, then the performance depends only on these ma-
chines, so the effect of the factors mention above is magnified.
Contrast this with FCFS, where if a machine under performs,
the effect is less obvious since this under performing machine
can get help from other (potentially over performing) machines.
Finally, the scheduling delay can contribute to the time needed
to process jobs, effectively raising the load on machines for all
policies.

As a result of the MGST experiments, we propose the fol-
lowing suggestions to improve robustness of LPAS DG:

1. Arrival rates estimation improvement. Since the
LPAS DG scheme depends on solving the allocation LP
and that in turn depends on values that include arrival
rates of job classes, estimates should be as accurate as
possible. To do so, we propose that the actual arrival
rates should be monitored (a feature that our tool pro-
vides), and check the values against the estimated values
every specific time (Tarrival rate) and resolve the LP if
one of the actual values differs from its estimate by a spe-
cific threshold percentage (Tharrival rate) that depends
on the load and the job class. Tarrival rate could be a spe-
cific time period or a number of job arrivals from a class
(e.g. 10 jobs). We believe that this solution is not com-
putationally costly, since the checking operation requires
O(N) time and O(1) space. We expect the number of
job classes (N ) to be relatively small, so there should be
no scaling issues. An alternative solution is to over esti-
mate the arrival rates of classes, however, caution must be
taken to guarantee that the system is theoretically stable.

2. Avoiding processing rates overestimation. We propose
that every processing rate entry (for a specific server for
a specific job class) is modified then checked (against the
estimated peer) whenever a job is done, then the LP is
resolved if that entry differs from the estimated one by
a specific threshold percentage (Tprocessing rate) that de-
pends on the load and the job class. This solution requires
O(NM) space andO(1) time. Alternatively, the process-
ing rates can be assumed slower than they are estimated
to be in a manner that guarantees that they can never be
over estimated. However, caution must be taken to assure
that the system is theoretically stable.

3. Lessen the effect of communication and scheduling
delays. Let pi,j be an estimate of the value

1/µi,j

1/µi,j + τj
(4)

where τj is the communication and scheduling delay for
machine j.

In the example mentioned in point 3 in Section 4.3.2 pi,j

would be
t6 − t5
t7 − t1

(5)

We propose that all execution rates must be multiplied by
p before resolving the LP to take this effect into consid-
eration.

4. Lessen the machine failure effect. We propose choosing
a low value for the time out, which will result in allowing
the mapper to quickly detect server failures. The down-
side of this approach is that the mapper might consider a
server failed one when it is not.

We think that the scheduling schemes should be put to test
under realistic conditions after the initial design phase. Our tool
was developed for this very purpose. MGST gave us important
feedback about the LPAS DG policy. We strongly believe that
our tool will aid in improving scheduling schemes in general.

5. Related Work

Our work on developing MGST relates to work on perfor-
mance testing tools for large distributed systems. Recently,
much attention has been given to tools for performance test-
ing in real grids. GrenchMark [13] and DiPerF [22] are two
frameworks developed specifically for the performance testing
of grids. To the best of our knowledge, there is no testing frame-
work specific to Desktop Grids. As a testing framework, MGST
represents the first tool designed specifically for testing perfor-
mance in Desktop Grids.

Several simulators exist to model and analyze performance
in simulated environments. Simulators, such as DGSim [16]
and SimGrid [7], can be used to evaluate performance of
grid resource management systems. For Desktop Grids, there
are several simulators, such as SimBA [24], SimBOINC [6],
and DGShedSim [12]. Such tools enable simulations driven
by workload and availability traces from real Desktop Grids.
While the use of simulators allows the modeling of key at-
tributes of Desktop Grids, simulators do not fully capture the
dynamic behaviour in real Desktop Grids. Furthermore, issues
such as scalability and diversity of Desktop Grids represent key
challenges for the use of simulators.

Several of the tools mentioned above support the use
of workload and availability traces. The Grid Workloads
Archive [14] is a project that aims to provide workload traces
collected from several production grids. The Desktop Grid
Trace Archive [19] provides availability traces collected at four
enterprise Desktop Grid sites. The XtremLab project [20] pro-
vides availability traces collected from large, Internet-based
Desktop Grids. Similar projects are still needed to collect rep-
resentative workload traces of Desktop Grid applications.

6. Conclusion and Future Work

This paper has presented MGST, a framework for the perfor-
mance evaluation of resource management strategies for Desk-
top Grids. The framework can be easily deployed on real dis-
tributed testbeds, and is flexible and extensible. We have shown
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how to use MGST to analyze and improve the performance of
the LPAS DG policy.

We are currently extending MGST with several additions:

• The ability to run real workload traces. Currently, the
tool generates jobs based on configurable probability dis-
tributions. Adding the ability to generate jobs from real
workload traces from actual systems will certainly add
value.

• Broaden the machine types. Currently, the Executer mod-
ule is implemented using an Apple technology called
Xgrid. This constrains the system to use Macintosh-based
computers. We plan on implementing the Executer layer
in a way that will allow us to move to a richer set of plat-
forms.
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