
The McMaster Grid Scheduling Testing Tool
User Manual

1 Preparation of Servers

In this phase the execution layer should be prepared. The Puller.jar executable should be
running, by executing the following command: java -jar Puller.jar.

2 User Interface

The User interface of the software is divided into the tool bar (where the most used actions
have short cuts), the menu bar (where system functions can be invoked) and the main tabs.
Each main tab is responsible for one phase of the test or a particular functionality and has
several sub tabs. The remaining sections discuss these tabs in detail.

3 Definition Phase

This phase is done through the main tab labelled Definitions. In this phase the tester should
define the parameters of the system, including:

• General Parameters (e.g time units in minutes or scheduling policy to be used)
• Job classes
• Servers
• Server Availability

3.1 General Parameters

These parameters are accessed under the main tab Definitions and the sub tab General.

• Time Unit in Minutes: this parameter defines the length of the time unit used in a test in
minutes. A time unit is a hypothetical time unit used as the unit of all time quantities in
the system. (e.g. The units of execution rates and arrival rates are task per time unit)

• Mean Time to Repair: this parameter defines the mean length of the failure periods for
all the servers when the artificial failures option is enabled.

• Mean Time to Failure: this paramter defines the mean length of the up-time periods for
all the servers when the artificial failures option is enabled.

• Mapping Scheme: this parameter determines the scheduling policy used in a test.
• Time Resolution: This parameter is Tsystem. Please refer to section 8.1.2 of the thesis.
• Artificial Failures and T/O (Time-out): Artificial failures can be simulated to study the

effects of failures. This parameter determines whether the artificial failures option is
enabled or not.

• Time-out: Every job has an estimated execution time. If a server failure occurs while
executing a job, the completion notification will not reach the mapper. The mapper waits

for that job to be completed for n times the expected execution time, where n is the
“Time-out after” parameter. Then the mapper invokes the handleTimeOut method of the
active scheduling scheme.

After the user has set all of the parameters, they should click on the Apply button.

3.2 Job Classes

The job classes are defined in this phase. Every job class has an ID, execution time and
arrival rate. The ID of a job class is the number of the column which represents this job class in
the mue matrix (Section 3.1 of the thesis). The execution time of a job class is the mean time in
milliseconds in which the job will be executed. The arrival rate is the mean number of jobs that
will arrive to the system per time unit under an exponential interarrival time distribution. To
add a job, click on the plus button and fill the iterations and the arrival rate. Then click on the
Submit button (Figure B.2). The classes will be added in order. To delete a job, select it and
then click the minus button.

3.3 Servers

The servers are defined in this phase. There are many ways that this can be done.
Obviously, the servers to be defined should be the ones set up in the Preparation of Servers
phase. One way of adding servers is to click the plus button and insert the information related
to the server. The full canonical hostname should be inserted as the hostname. The servers will
be added in order. The ID of a server is its order in the mue matrix (Section 3.1 of the thesis).

For convenience, a file can be prepared where each line corresponds to the hostname of
one server. The file extension should be srs.

To delete a server, it should be selected and then the minus button should be clicked.

Processing Rates

To modify or view the processing rates of a server, the user should select the server by
clicking on it. The Processing Rates tab will appear on the right side. The real rates (second
column) are those which the software estimated using the execution times given by the tester.
The assumed rates (third column) can be changed. The Assumed Rate column for a server with
ID i tis the ith column in the mue matrix. To change an assumed rate, the user has to click on the
appropriate cell and type a new number and press enter. For convenience, the tester can import
all of the processing rates of a setting using the Import Mue button. The file should be a text file
with the extension MUE. The file format should be similar to the mue matrix but entries are
separated by commas.
ex.
2.2, 7, 10.25, 1
1.95, 7.05, 9.78, 0.95
 2, 7.25, 10.02, 0.98
Sets the assumed rates for three job classes(3 lines) on four servers(4 rates per line).

Failure Periods

In the case that the artificial failure option is enabled, the artificial failure of a server can
be viewed by clicking on a server, and then selecting the Failure Periods sub tab. To generate
new failure traces for all the servers, the button Fill Traces should be clicked. The actual mean
up-time and the mean failure period of a server are viewed at the bottom. To change these
values for each server individually, the user has to change values in the text fields and click on
Apply.

Availability

Every machine has a puller module running on it. To set up the module a message has to
be sent to it. In this phase the messages (and hence the settings) of the puller modules (i.e
servers) are prepared and sent.

One or more servers are selected from the table on the left, then the properties are set in
the right side. The properties are:

• Availability is the aj value (Section 3.2 of the thesis).
• Availability Mode is what method of availability prediction is used (Section 3.2 of the

thesis). There are three different modes. Choosing different modes will be followed by
the inserting of parameters related to that mode.

After preparing the messages, they can be sent to the servers using the Servers menu in
the menu bar or the Start Servers button in the toolbar. In addition, the servers can be paused,
pinged, or killed. All of these actions can be found under the Servers menu in the menu bar.
After pausing a server it must be started again to function properly. Pinging can be used to
make sure the server is turned on. After killing the server, the puller executable must be run on
that server (using java -jar Puller.jar) to restart it, as the kill signal makes the puller.jar process
exit.

LP

In this phase the LP allocation can be solved. To solve the LP allocation, the solve button
should be clicked. The resulting matrix will be displayed.

After the completion of the definitions, you can save them to a file using the Save
definitions button. Saved definitions can be restored using the Load definitions button. All the
information in the definition is saved except for the Scheduling scheme chosen which should
be determined before every test.

Monitoring

After the completion of the definition phase, the experiment can be started by clicking
on the Start button in the tool bar or Action in the menu bar. Under the Monitoring tab, there are
two items to monitor: the Jobs Table and the Available Servers. In the Jobs Table sub tab, jobs
can be monitored. This table is updated whenever an event occurs. Under the Available Servers
sub tab, the available servers can be monitored. To see the currently available servers, the
Update button must be clicked to see the changes.

Statistics

To obtain statistics about the tests, the main tab Statistics is used. This main tab has three
sub tabs:

• General sub tab which shows the general statistics such as: the start time of the test, the
time units elapsed and the response time.

• Job Classes sub tab which shows statistics about each job class. Such statistics include
the average response time, average waiting time, total number of jobs arrived, desired
arrival rate and actual arrival rate

• Processing Rates sub tab which shows the mue matrix and the actual processing rates
per machine per job class.

All these statistics can be saved into files. This can be done using the Tables menu in the
menu bar. A save dialogue appears on the screen. The user can browse to the target folder and
then type the name of the test (e.g. LPAS). As a result four files will be saved (e.g.
LPAS_classesStats.txt, LPAS_jobs.txt, LPAS_mue.txt, LPAS_systemStats.txt). The four files
can be opened with spread sheet applications.

To Add a New Mapping Scheme

If the tester wishes to add a new mapping scheme, the scheme must extend the
MappingScheme.java class located in the mapping package. This scheme must define several
different methods including the method which starts and stops the scheme, the actual mapping
of a job to a server, and how the scheme handles servers being down or jobs failing. Complete
details are included in the comments in the MappingScheme.java class.

Next, in order for the scheme to appear in the drop down menu the following must be
added to the class SystemLevelParametersJPanel.java:

• A private static int for your scheme, this corresponds to its position in the combo box.
Find the existing indices at the start of the class and add your scheme at the end

• In the constructor public SystemLevelParametersJPanel(Mainframe frame) add your
scheme in the mappingSchemeCB.addItem section

• Finally, in the applyInput() method, add your scheme in the //What mapping scheme to
use, section

There are also options to add new arrival generators, probability distributions and execution
layers if it is desired. The abstract classes for these are located in their respective packages and
each contains comments on which methods need to be created.

To change the arrival generator, simply import your generator in the
generating.JobsGenerator.java class and then set it as the arrival generator in the public
JobsGenerator(JobClass jobClass, Mapper mapper) class.

To change the mapper side executer, import your executer in the mapping.Mapper.java class
and then set it as the executer in the public Mapping() class.

To change the puller side executer, import your executer in the pulling.Puller.java class and
then set it as the executer in the public static void main(String[] args) class.

