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Abstract. Motivated by a data center setting, we study the problem
of joint dispatching and server sleep state control in a system consisting
of two queues in parallel. Using the theory of Markov decision processes
and a novel lookahead approach, we explicitly determine near-optimal
control policies that minimize a combination of QoE costs, energy costs,
and wear and tear costs due to switching. Guidelines are provided as to
when these combined policies are most effective.
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1 Introduction

Server clusters comprise the core of modern data centers and cloud computing
systems. Stochastic queueing models, such as multiserver systems with a central
queue or distributed systems consisting of multiple parallel servers with their own
queues, are suitable for the performance analysis of such systems [11]. Traditional
mechanisms for their control include job scheduling and dispatching (a.k.a. task
assignment). In a distributed system, the dispatcher decides to which server an
arriving job is routed, and the local scheduler decides on how the service capacity
of the server is dynamically shared among its jobs.

When optimizing the control of such queueing systems, an important measure
is the response time, i.e., the total delay of a job. Typical objectives related
to the delay performance are minimization of the mean response time or its
tail probability. However, in current computing systems, a significant additional
factor is energy efficiency [1]. It is not enough to optimize the delay performance,
but one should also take into account the energy aspect. Both dispatching and
scheduling decisions affect not only the delay performance but also the energy
efficiency. An additional dimension in this joint control problem is related to the
sleep states of servers. One should decide on when to put a server into a sleep
mode and when to wake it up again. While sleeping tends to reduces energy
costs, it has a negative effect on the delay performance, since, after the wake-up,
there is typically a relatively long setup time before the server is back in full
operation. In addition, the more often a server is switched on and off, the more
vulnerable to failures it becomes.
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In this paper, we consider distributed systems consisting of multiple parallel
servers with their own queues. The servers are assumed to apply the First Come
First Served (FCFS) scheduling policy. Our goal is to develop near-optimal joint
control policies for dispatching and sleep state control of servers when the trade-
off between delay performance and energy efficiency is described by a composite
objective function. Our approach is based on the theory of Markov decision
processes (MDPs) [25]. More precisely said, we apply the policy improvement
method and combine it to a lookahead technique [13]. We demonstrate that
the combination of these control mechanisms can yield significant savings, in
particular when the system is under moderate load.

2 Related Work

While queueing theory has been applied for decades to evaluate the performance
of computing systems, Chen et al. [2] and Sledgers et al. [26] were the first to use
queueing models to study the problem of energy-aware control of server clusters.
Since then, energy-aware multiserver systems with a central queue have been
analyzed in many papers [6, 5, 19, 4, 20, 23, 18, 24]. However, the optimal control
problem in such energy-aware multiserver systems has proved difficult. Exact
solutions have been found for the single server case [5, 16, 8–10], but with multiple
servers only structural properties of the optimal policy are obtained [17].

For static dispatching policies (such as Random Routing), the analysis of
energy-aware distributed systems consisting of multiple parallel servers with
their own queues is straightforward, since the parallel queues can be analyzed
separately. However, dynamic policies (such as Join the Shortest Queue) are
mathematically tractable only under restrictive assumptions. Moreover, exact
optimality results are scarce, being available only for some specific setups. Near-
optimal solutions for dispatching problems have been developed by applying the
policy iteration approach from the theory of Markov decision processes [25, 28,
12]. Such an approach has been utilized for composite objective functions that
take into account the performance-energy trade-off [22, 14, 15].

With respect to sleep state control in a multiserver setting, it has been ob-
served in [5, 7] that putting servers to sleep aggressively can be harmful. If a
server is turned off e.g., immediately when it becomes idle, energy costs may be
saved in the short term, but significant response time degradation may result,
in particular when setup times are significant. They suggest that an idle server
waits a period of time before being put to sleep. They choose a state-independent
timer for this wait and design a dispatching policy that takes this sleep state con-
trol mechanism into account. In [21], it is shown that dispatching and sleep state
control of this form is optimal (simultaneously minimizes mean response time
and energy costs) in a many-servers asymptotic regime. In contrast, we allow the
sleep state control to be state dependent, considering the joint control problem
in an MDP framework. Consistent with [5, 7, 21], we see that gains can be made
by conscious turn off decisions, but for the small system that we consider, we
further identify system parameters under which such gains are significant.



3 Joint Control Problem

Consider a distributed computing system consisting of two parallel FCFS servers
with their own queues. The servers are assumed to be homogeneous, i.e., they
have the same service rate. Service times of jobs, denoted by X, are assumed
to be independent and generally distributed with finite first two moments. Jobs
arrive according to a Poisson process with rate Λ. The load per server is denoted
by ρ = ΛE [X] /2. For stability, we assume that ρ < 1. Each job is dispatched to
one of the two servers upon its arrival. The dispatching decisions are assumed
to be dynamically controllable, i.e., they may depend on the state of the system.

The servers are assumed to be energy-aware, and there are four different
operational states for the servers: (i) busy, (ii) idle, (iii) off, and (iv) set up. A
server is busy when it is processing jobs. As soon as the service of all available
jobs is completed, the server becomes idle. The server remains idle as long as
one of the following events takes place. Either a new job is dispatched to it, in
which case the server becomes again busy and starts serving the new job, or the
switch-off timer (associated with the idle server) expires, in which case the server
is immediately switched off. The length of the switch-off timer, denoted by τ ,
is assumed to be dynamically controllable. If the switch-off timer expires, the
server remains off until a new job is dispatched to it, at which time the server
is switched on (set up). After a setup time, the server becomes again busy and
starts serving the jobs waiting in its queue. Setup times of servers, denoted by
D, are assumed to be independent and generally distributed with finite first two
moments. In particular, we are, however, interested in the case where the setup
times are deterministic, D = d. When busy or set up, the power consumption of
a server is e [watts], but when idle, its power consumption is ε [watts], which is
assumed to be less than e, i.e., ε = γe, where γ < 1. In the sequel, we will use e
as our power unit. When off, a server does not consume any power. In line with
[5], such an energy-aware server is called DelayedOff. Special cases are NeverOff
(τ →∞) and InstantOff (τ = 0).

The cost structure comprises both QoE and system specific cost components
including both energy and switching costs. The QoE metric in our model is the
mean response time E [T ]. Note that, due to the well-known Little’s formula,
minimizing the mean response time is equivalent to minimizing the mean total
number of jobs in the system, E [N ] = ΛE [T ]. Energy costs are related to the
mean total power consumption E [P ], and switching costs take into account wear
and tear costs of switching a server off and on. More precisely, we assume that
the mean cost rate of the whole system is given by

r = rT + rP + rS = E [N ] · cT + E [P ] · cP + ΛS · cS , (1)

where ΛS denotes the aggregate switch-on (and off) rate of the two servers. The
constants (cT , cP , cS) map each component to a common unit.

Now the problem is to find a joint dispatching and sleep state control that
minimizes the mean cost rate (1). Dispatching decisions are made when new
jobs arrive, and the sleep states are controlled when a server becomes idle or a



new job arrives. We allow dynamic control that is based on the current state of
the system, together with the service time of the arriving job if we are about to
make a dispatching decision. We assume that the state of a server is described by
its virtual backlog, switch-off timer value, and energy state. The virtual backlog
u refers to the time needed to complete the service of all jobs currently in the
system (without any new arrivals). If the server is busy, the virtual backlog is
just the ordinary backlog, i.e, the sum of remaining service times, but if the
server is in set up, it also includes the remaining setup time. For an off or idle
server, the virtual backlog equals 0. The current value of the switch-off timer,
t, refers to the time that the server has been (continuously) idle, 0 ≤ t ≤ τ .
In the following section, we tackle this optimal control problem by the policy
improvement method combined with the lookahead technique.

4 Policy Improvement and Lookahead

For the policy improvement method, we need a basic control policy that can
be analyzed explicitly. Such a policy is attained if we apply random routing
to dispatching and deterministic switch-off timers for the sleep state control.
In this paper, we choose uniform routing probabilities (1/2 for each server) so
that the load is balanced, which is a reasonable basic dispatching policy. As a
result, there are two independent single-server queues with Poisson arrivals at
rate λ = Λ/2. We need to derive (for each queue i) the so-called relative value
function vi(ui, ti)− vi(0, 0), which gives the difference in the mean accumulated
costs if the system starts from states (ui, ti) and (0, 0), respectively, where ui
refers to the virtual backlog and ti the switch-off timer value of server i. Formally,
the value function is defined as

vi(ui, ti) := lim
t→∞

E [Ci(ui, ti, t)− rit] , (2)

where Ci(ui, ti, t) denotes the costs queue u incurs during time (0, t) when ini-
tially in state (ui, ti), and ri is the mean cost rate of queue i. The relative value
function for the DelayedOff M/G/1-FCFS queue is derived in Sect. 5. In ad-
dition, we assume that the sleep state control of the basic policy is such that
server 1 is an ordinary NeverOff server (τ1 →∞) and server 2 is an energy-aware
InstantOff server (τ2 = 0), which is a reasonable compromise for all traffic load
situations.

Below we show how to improve this static (i.e., state-independent) basic pol-
icy by developing a dynamic control policy that utilizes the state information.
We start from the dispatching decisions. For the sleep state control, we con-
sider separately two different cases: first the case when a server becomes idle,
and thereafter the case when a server is already off and a new job arrives. For
simplicity, the results in this section are given for deterministic setup times d.

4.1 Improving Dispatching Decisions

Recall first that the basic policy assumes that server 1 is NeverOff (τ1 → ∞)
and server 2 InstantOff (τ2 = 0). Thus, the state of server 1 is completely



described by the virtual backlog u1 (which, in this case, is the same as the
ordinary backlog). From Prop. 1 (presented and justified in Sect. 5), we get its
relative value function:

v1(u1)− v1(0) =
λu21

2(1− ρ)
cT + u1(1− γ)cP . (3)

On the other hand, to describe the state of server 2, it is enough to specify the
virtual backlog u2 and indicate whether the server is switched off (s) or running
(r), i.e., in set up or busy. From Prop. 1, we again get the corresponding relative
value function:

v
(r)
2 (u2)− v(s)2 (0) =

λu22
2(1− ρ)

cT +
u2

1 + λd

[
cP − λcS −

λd(2 + λd)

2(1− ρ)
cT

]
. (4)

The dispatching decisions of the static basic policy can be improved by choos-
ing the server i for which the expected admission costs ai(ui, x) are minimized,
where x denotes the service time of the arriving job. The expected admission
costs can be calculated as follows. For server 1, we have

a1(u1, x) = (u1 + x)cT + v1(u1 + x)− v1(u1)

=

(
u1 + x+

λx(2u1 + x)

2(1− ρ)

)
cT + x(1− γ)cP ,

and, for server 2, we have

a
(r)
2 (u2, x) = (u2 + x)cT + v

(r)
2 (u2 + x)− v(r)2 (u2)

=

(
u2 + x+

λx(2u2 + x)

2(1− ρ)

)
cT +

x

1 + λd

(
cP − λcS −

λd(2 + λd)

2(1− ρ)
cT

)
,

and a
(s)
2 (0, x) = cS + a

(r)
2 (0, d+ x), obviously, as one switching cost is saved. In

each case, it is easy to identify the immediate cost consisting of the response
time of the new job and the possible switching cost cS .

4.2 Lookahead for Server Switch-Off

The static decision to switch server 2 off whenever it becomes idle is obviously
suboptimal. Next we apply the lookahead technique to tackle this [13].

Suppose that server 1 has backlog u1 when server 2 becomes idle. By default,
we would switch server 2 off at this point. However, we can consider the following
two alternative actions:

A: Switch server 2 off immediately and route the next job, given it arrives before
time τ , to server 1.

B: Keep server 2 running idle for time τ hoping that a new job arrives soon,
which would then be routed to server 2.



In both cases, after time τ , we return back to the default routing and switch-off
policies. In general, τ is a free parameter less than u1.

With these, one can compute in closed-form the expected cost of the alter-
native actions, denoted by dA and dB , respectively,

dA =

∫ τ

0

Λe−Λt
[
(cP − r)t+ (u1 − t+ E [X])cT + E [v1(u1 − t+X)] + v

(s)
2 (0)

]
dt

+ e−Λτ ((cP − r)τ + v1(u1 − τ) + v
(s)
2 (0)),

dB =

∫ τ

0

Λe−Λt
[
((1 + γ)cP − r)t+ E [X] cT + v1(u1 − t) + E

[
v
(r)
2 (X)

]]
dt

+ e−Λτ (((1 + γ)cP − r)τ + v1(u1 − τ) + v
(s)
2 (0)).

Then we choose to keep server 2 idle if that action yields a smaller expected
cost, dA − dB > 0.

As time passes without an arrival, u1 gets smaller, and the benefits from
keeping server 2 running idle become smaller. This suggests that we can consider
a differential time step. In particular, we find that

f(u1) := lim
τ→0

dB − dA
τ

=
λ

1− ρ

(
(ρd(2 + λd))

1 + λd
+ 2u1

)
cT +

2λρ(d cP + cS)

1 + λd
− (1 + 2ρ)γ cP ,

and then solving f(u1) = 0 yields the critical backlog above which server 2 can
be kept idle instead of being switched off,

u∗1 =
1 + ρ− 2ρ2

2λcT
γ cP −

ρ(2(1− ρ)(d cP + cS) + d(2 + λd)cT )

2cT (1 + λd)
.

Note that u∗1 depends only on the first moment of the service time distribution.
Moreover, the second term is always negative, and therefore if ε = 0, i.e., γ = 0,
then u∗1 < 0, which suggests that it is preferable to keep server 2 on, which of
course makes sense if idling incurs no energy costs.

Alternatively, one can determine the critical energy cost denoted by c∗P above
which server 2 should be switched off.

c∗P =
λ

γ(1 + 2ρ)(1 + λd)− 2ρλd

(
2ρcS +

2u1(1 + λd) + dρ(2 + λd)

1− ρ
cT

)
,

and in the special case of ε = e, i.e., γ = 1, we have

c∗P =
λ

1 + λd+ 2ρ

(
2ρcS +

2u1(1 + λd) + dρ(2 + λd)

1− ρ
cT

)
.

Numerical Example Let us next assume unit service time, E [X] = 1, unit re-
sponse time cost, cT = 1, unit setup delay, d = 1, and no switching costs, cS = 0.



Moreover, the energy cost in busy/setup states is cP = 1, and in the idle state
γcP , where γ ∈ {0.5, 1}. Server 1 has backlog u1, and server 2 becomes empty.
Then we vary the offered load ρ and evaluate when one should keep server 2
running. The results are depicted in Figure 1(a). We can see that as the load
increases, the critical backlog decreases eventually becoming zero, i.e., if the sys-
tem is heavily loaded, then the response time costs starts to dominate (cf. the
knee in the response time curve).
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Fig. 1. Dynamic switch-off policies when cP = 1, cT = 1, cS = 0 and γ ∈ {0.5, 1}
(left). Dynamic switch-on policy resulting from the lookahead analysis (right).

4.3 Proactive Switch-On of Servers

A similar lookahead analysis can be performed for a system in state (u1, 0),
where server 2 has been switched off. As u increases, at some point it may be
beneficial to switch server 2 back on, as the next job most likely ends up there.
Perhaps the most elementary lookahead action to consider in this case is the
action that switches server 2 on and routes the next job there unconditionally.
This is a simple decision, and, e.g., server 1 may empty meanwhile and we keep
then both servers running idle until the next job arrives. Carrying out a similar
analysis and solving for the critical energy cost rate, we get

c∗P =
λ
(
e−2λd − (2− ρ)

)
(γ − (1− γ)λd) (e−2λd + ρ) + 2λd

cS +

(1 + λd)
(
λd
(
e−2λd + ρ

)
+ e−2λu1 − 1 + 2λu1

)
− λd (1− ρ) + 1− e−2λd

2(1− ρ) ((γ − (1− γ)λd) (e−2λd + ρ) + 2λd)
cT .

Numerical Example Figure 1(b) shows the keep running and proactive switching
on decisions for with E [X] = 1, ε = 1, cS = 0, d = 1, cT = 1 and u1 = 5.

5 Value function for an energy-aware single server queue

In this section, we consider a generic DelayedOff M/G/1-FCFS queue with ar-
rival rate λ, generally distributed service times X, deterministic switch-off timer



τ , and generally distributed setup times D. We assume a stable system, i.e.,
ρ = λE [X] < 1.

Our purpose is to derive the relative value function v(u, t) − v(0, 0), where
u refers to the current virtual backlog and t the current value of the switch-off
timer, 0 ≤ t ≤ τ . Thus, either u, t, or both are zero. The reference state is the
renewal point when the server becomes idle and the switch-off timer starts to
count towards τ .

We start by giving the mean number of jobs E [N ], the mean power consump-
tion E [P ], and the mean switch-off rate λS for this DelayedOff M/G/1-FCFS
queue, which are derived, e.g., in [8]:

E [N ] = ρ+
λ2 E

[
X2
]

2(1− ρ)
+
λ(2E [D] + λE

[
D2
]
)

2 (λE [D] + eλτ )
, (5)

E [P ] =

(
λE [D] + ρeλτ

)
+ γ(1− ρ)

(
eλτ − 1

)
λE [D] + eλτ

, (6)

λS =
λ(1− ρ)

λE [D] + eλτ
. (7)

Similarly as for the whole system in (1), the mean cost rate for the single server
queue consists of three terms,

r = rT + rP + rS = E [N ] · cT + E [P ] · cP + λS · cS . (8)

The value function v(u, t) is also a composite function consisting of three
corresponding terms,

v(u, t) = vT (u, t) + vP (u, t) + vS(u, t). (9)

Proposition 1. For a DelayedOff M/G/1-FCFS queue, the components of the
relative value function v(u, t)− v(0, 0) are as follows:

vT (u, t)− vT (0, 0) =
1

2(1− ρ)

(
λu2 −

(2E [D] + λE
[
D2
]
)
(
λu+ 1− eλt

)
λE [D] + eλτ

)
cT ,

vP (u, t)− vP (0, 0) =

(
(1− γ)eλτ + γ

)
λu− (γ − λE [D] (1− γ))

(
eλt − 1

)
λ (λE [D] + eλτ )

cP ,

vS(u, t)− vS(0, 0) = − λu+ 1− eλt

λE [D] + eλτ
cS .

Proof. 1◦ Let us start with the response time related costs. By (5) and (8), we
get

rT = E [N ] · cT =

(
ρ+

λ2 E
[
X2
]

2(1− ρ)
+
λ(2E [D] + λE

[
D2
]
)

2 (λE [D] + eλτ )

)
cT . (10)

1.1◦ Assume first u > 0 and t = 0 so that the server is busy or in set up.
Let Bu denote the length of the resulting “busy period”, i.e., the time needed



to decrease the virtual backlog from u to 0. In addition, let Nu denote the total
number of jobs that arrived during that time, and E [T1 + . . .+ TNu

] the sum
of their expected response times. By considering a separate M/G/1 queue with
arrival rate λ where the service time of the first customer of each busy period
equals u but for the other customers the service time follows the distribution of
X, we get easily (see, e.g., [27])

E [Bu] =
u

1− ρ
, (11)

E [T1 + . . .+ TNu
] =

1

2(1− ρ)

(
λu2 + 2ρu+

λ2 E
[
X2
]
u

2(1− ρ)

)
.

Now, for the value function at state (u, 0), from (2), we have

vT (u, 0) = E [T1 + . . .+ TNu
] cT − E [Bu] rT + vT (0, 0),

which implies, by (10) and the previous expressions, that

vT (u, 0)− vT (0, 0) =
1

2(1− ρ)

(
λu2 −

(2E [D] + λE
[
D2
]
)λu

λE [D] + eλτ

)
cT .

1.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ so that the server is idle or off.
For the value function at state (0, 0), we clearly have

vT (0, 0) = E
[∫ t

0

λe−λs (−srT +XcT + vT (X, 0)) ds

]
+ e−λt(−trT + vT (0, t))

= −1− e−λt

λ
rT + (1− e−λt)(E [X] cT + E [vT (X, 0)]) + e−λtvT (0, t).

By (10) and the result of 1.1◦, we get, after some manipulations,

vT (0, t)− vT (0, 0) =
(2E [D] + λE

[
D2
]
)
(
eλt − 1

)
2(1− ρ)(λE [D] + eλτ )

cT .

2◦ Let us now consider the energy related costs. By (6) and (8), we get

rP = E [P ] · cP =

(
λE [D] + ρeλτ

)
+ γ(1− ρ)

(
eλτ − 1

)
λE [D] + eλτ

cP . (12)

2.1◦ Assume again first that u > 0 and t = 0. Let Bu denote the same “busy
period” as in 1.1◦ so that (11) holds. For the value function at state (u, 0), we
have

vP (u, 0) = E [Bu] (cP − rP ) + vP (0, 0),

which implies, by (12) and the previous expression, that

vP (u, 0)− vP (0, 0) =

(
(1− γ)eλτ + γ

)
u

λE [D] + eλτ
cP .



2.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ . For the value function at state
(0, 0), we clearly have

vP (0, 0) = E
[∫ t

0

λe−λs (s(γcP − rP ) + vP (X, 0)) ds

]
+ e−λt(t(γcP − rP ) + vP (0, t))

=
1− e−λt

λ
(γcP − rP ) + (1− e−λt)E [vP (X, 0)] + e−λtvP (0, t).

By (12) and the result of 2.1◦, we get, after some manipulations,

vP (0, t)− vP (0, 0) = −
(γ − λE [D] (1− γ))

(
eλt − 1

)
λ (λE [D] + eλτ )

cP .

3◦ Consider finally the switching costs. By (7) and (8), we get

rS = λS · cS =
λ(1− ρ)

λE [D] + eλτ
cS . (13)

3.1◦ As before, assume first that u > 0 and t = 0. Let Bu denote the same
“busy period” as in 1.1◦ and 2.1◦ so that (11) holds. For the value function at
state (u, 0), we have

vS(u, 0) = −E [Bu] rS + vS(0, 0),

which implies, by (13) and the previous expression, that

vS(u, 0)− vS(0, 0) = − λu

λE [D] + eλτ
cS .

3.2◦ Assume now that u = 0 and 0 ≤ t ≤ τ . For the value function at state
(0, 0), we clearly have

vS(0, 0) = E
[∫ t

0

λe−λs (−srS + vS(X, 0)) ds

]
+ e−λt(−trS + vS(0, t))

= −1− e−λt

λ
rS + (1− e−λt)E [vS(X, 0)] + e−λtvS(0, t).

By (13) and the result of 3.1◦, we get, after some manipulations,

vS(0, t)− vS(0, 0) =
eλt − 1

λE [D] + eλτ
cS ,

which completes the proof. �

6 Experiments

In this section, we present the results of a series of simulation experiments de-
signed to evaluate the gains of combining dispatching control (Section 4.1) with



the lookahead policies for switching off and turning on servers (Sections 4.2 and
4.3, respectively). We compare this combined control approach with performing
dispatching control only, to quantify the value of the lookahead policies. In ad-
dition to investigating the potential gains, we also explore the relative benefits
of the two lookahead approaches.

The first experiment (Table 1), serving as a baseline for the remaining ex-
periments, was performed under the following parameter settings: d = 10, X
exponentially distributed with rate 1, and Λ was chosen such that the resulting
loads ρ = Λ/(2µ) in Table 1 were achieved. The cost parameters were e = 10,
γ = 0.6, cS = 100, cT = 10, and cP = 1. The average cost rate with dispatching
control and both lookahead policies is denoted by rLA, while the average cost
rate with dispatching control only is denoted by rD. Simulations were run for
1000000 simulated time units. At the lowest load (ρ = 0.2), adding the lookahead

Table 1. Average cost rates for the first experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.50 22.83 34.46 46.24 55.89 65.98 84.99 140.47

rLA 18.47 22.78 28.31 35.41 45.11 58.78 82.07 137.05

resulted in a higher average cost rate. At first glance, this is counterintuitive, as
additional control possibilities should decrease the cost. The issue here is that
the lookahead for server turnoffs is too aggressive in keeping the server on – the
dispatching control and this lookahead are designed separately and at low loads
they appear to actually counteract each other. This effect was seen in varying
degrees in all of the experiments. The best gain is 30.6 percent at ρ = 0.5.

The second experiment (Table 2) was the same as Experiment 1, but cT was
reduced to 1. Here, the problematic behavior at lower loads seen in the first

Table 2. Average cost rates for the second experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 8.48 10.39 14.58 19.00 21.80 23.66 26.11 32.13

rLA 8.50 15.71 17.34 19.22 21.19 23.19 25.81 31.95

experiment is more pronounced. This is due to energy costs being the dominant
part of the average cost rate. The fact that the lookahead policy often keeps
the server on is even more disadvantageous, as leaving the server on can only
negatively impact the average energy cost rate.

The third experiment (Table 3) was the same as the first, but cT was increased
to 20. The key observation for this experiment is that the most significant gains
are seen at moderate loads (a maximum gain of 41.5 percent at ρ = 0.5). This
can be explained by the fact that at moderate loads, when the server that is
always on is the only server operating, long queue lengths develop so that the
other server is required. However, the server that can be switched off is then
idle at a high frequency. Thus, it appears that both lookahead policies would be
of value. The reality is that the lookahead to turn the server off was the only



Table 3. Average cost rates for the third experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 21.13 35.96 56.04 75.61 92.20 111.80 151.48 258.47

rLA 23.02 30.48 40.35 53.43 71.72 98.90 143.63 261.10

mechanism that was used – the lookahead to turn the server on was used at
most once in each run. This was true of all experiments in this section.

The fourth experiment (Table 4) was the same as the first, but cT was in-
creased to 1000. Here, the gain of including lookahead is amplified, as the average

Table 4. Average cost rates for the fourth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 663.03 1290.46 2088.64 2854.21 3559.25 4611.84 6624.41 11992.76

rLA 469.35 787.80 1220.39 1828.96 2683.30 4006.41 6268.40 11946.07

cost rate is almost completely determined by the average holding cost rate. The
maximum gain is 71.1 percent at ρ = 0.4.

The fifth experiment (Table 5) was the same as the first, but X was chosen to
follow a hyperexponential distribution with two phases with means 0.01 and 100
(the overall mean was 1). Here, the maximum gain is 15.7 percent at ρ = 0.5. The

Table 5. Average cost rates for the sixth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 38.12 84.52 185.51 372.18 710.54 1483.53 2899.18 6835.29

rLA 34.34 76.79 171.93 321.70 699.95 1343.16 2797.43 6647.91

presence of very large jobs (high variance of service times) appears to mitigate
the gains. The mechanism for this is not obvious, but one possibility is that as
large jobs can be sent to both servers, the fact that we are using the Random
Routing policy as our base policy for dispatching is problematic – size-aware
routing may be a better choice.

The sixth experiment (Table 6) was the same as the first, but X was chosen
to be constant. Here, the maximum gain is 15.2 percent at ρ = 0.5. The reduced
variance leads to less opportunity for improvement, potentially due to the de-
creased variability of the workload at the server that is always on – there are
no large fluctuations that require the additional control. Combining the obser-
vations from the sixth and seventh experiments, we see that the opportunities
for improvement diminish as the service time variance approaches very small or
very large values.

The seventh experiment (Table 7) was the same as the first, but d was reduced
to 1. The maximum improvement is 13.7 percent at ρ = 0.5. The fact that the
maximum improvement has decreased is not surprising, as the short setup times
mean that the penalty paid for poor turnoff decisions is not as severe.



Table 6. Average cost rates for the seventh experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 12.94 18.94 31.01 47.30 59.55 70.98 86.71 118.52

rLA 12.94 23.63 30.84 41.06 54.01 68.65 86.03 119.54

Table 7. Average cost rates for the eighth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.32 21.17 29.03 36.74 44.46 54.36 71.29 119.26

rLA 14.31 22.12 26.75 32.31 39.29 49.34 66.74 118.88

The eighth experiment (Table 8) was the same as the first, but d was increased
to 100. The maximum gain is 22.2 percent, at ρ = 0.5. The gains are generally

Table 8. Average cost rates for the ninth experiment

ρ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rD 14.50 23.53 49.18 111.34 169.28 212.47 249.52 325.44

rLA 19.81 27.39 44.28 91.15 168.31 212.01 249.41 324.69

lower as the routing control tends to keep the server that can be switched off busy
at all times (thus avoiding the long setup times), so there are less opportunities
for the lookahead to be used.

In summary, the simulation results suggest that:

1. The lookahead for server turnoffs is the mechanism for reducing the cost.
2. The most gain from dynamic switch-off control is made at “moderate” values

of load, service time variability, and setup times. Outside of these values,
dispatching control alone appears to be sufficient.

3. When energy costs are dominant, dispatching control also appears to be
sufficient.

Note that dispatching decisions indirectly control also the energy consumption
due to the assumed default configuration where Server 1 was NeverOff and Server
2 InstantOff, explaining the latter two observations.

7 Conclusions

We considered the joint problem of combining dispatching control and server
sleep state control, computing near optimal policies using one step of policy
iteration for dispatching and lookahead techniques for server sleep state control.
In addition to providing these policies explicitly, we identified when this joint
control approach is most effective. Some issues for future work:

1. Is it possible to quantify the gap between state-dependent and state-independent
sleep state control? This would give insight into the value of state informa-
tion in making these control decisions. The work in [21] suggests that this



value goes to zero in a many server asymptotic regime, but the answer to
this question for finite systems is of interest. Answering this question would
involve characterizing (near) optimal state-independent sleep state control.

2. How does the approach scale? One important related question is determining
which servers are always on.

3. If the servers are not FCFS can similar gains be expected?
4. For high variance service time distributions, it may be useful to consider a

different initial policy for the dispatching control problem. One possibility is
a SITA-like policy [3].
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13. Hyytiä, E.: Lookahead actions in dispatching to parallel queues. Performance Eval-
uation 70, 859–872 (2013)
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