
Noname manuscript No.
(will be inserted by the editor)

Guidelines for Selecting Hadoop Schedulers based on System
Heterogeneity

Aysan Rasooli · Douglas G. Down

Received: date / Accepted: date

Abstract Hadoop has been developed as a solution for performing large-scale data-
parallel applications in Cloud computing. A Hadoop system can be described based
on three factors: cluster, workload, and user. Each factor is either heterogeneous or
homogeneous, which reflects the heterogeneity level of the Hadoop system. This pa-
per studies the effect of heterogeneity in each of these factors on the performance
of Hadoop schedulers. Three schedulers which consider different levels of Hadoop
heterogeneity are used for the analysis: FIFO, Fair sharing, and COSHH (Classifi-
cation and Optimization based Scheduler for Heterogeneous Hadoop). Performance
issues are introduced for Hadoop schedulers, and experiments are provided to evalu-
ate these issues. The reported results suggest guidelines for selecting an appropriate
scheduler for Hadoop systems. Finally, the proposed guidelines are evaluated in dif-
ferent Hadoop systems.

Keywords Hadoop System · Scheduling System · Heterogeneous Hadoop

1 Introduction

Hadoop [20] is a data-intensive cluster computing system, in which incoming jobs are
defined based on the MapReduce [1] programming model. MapReduce is a popular
paradigm for performing computations on BigData in Cloud computing systems [26].
A Hadoop system consists of a cluster, which is a group of linked resources. Orga-
nizations could use existing resources to build Hadoop clusters - small companies
may use their available (heterogeneous) resources to build a Hadoop cluster, or a
large company may specify a number of (homogeneous) resources for setting up its
Hadoop cluster. There can be a variety of users in a Hadoop system who are differ-
entiated based on features such as priority, usage, guaranteed shares, etc. Similarly,

A. Rasooli, D. G. Down
Department of Computing and Software
McMaster University, L8S 4K1, Hamilton, Canada
E-mail: {rasooa, downd}@mcmaster.ca

2 Aysan Rasooli, Douglas G. Down

workload in the Hadoop system may have differing numbers of users’ jobs and cor-
responding requirements. Therefore, a Hadoop system can be specified using three
main factors: cluster, workload, and user, where each can be either heterogeneous or
homogeneous.

There is a growing demand to use Hadoop for various applications [2], which
leads to sharing a Hadoop cluster between multiple users. To increase the utilization
of a Hadoop cluster, different types of applications may be assigned to one cluster,
which leads to increasing the heterogeneity level of workload. However, there are
situations where a company assigns a Hadoop cluster to specific jobs as the jobs are
critical, confidential, or highly data or computation intensive. Accordingly, the types
of applications assigned by different users to a Hadoop cluster define the heterogene-
ity level of workload and users in the corresponding Hadoop system. Similarly, the
types of resources define the heterogeneity of Hadoop clusters.

Schedulers play a critical role in achieving desired performance levels in a Hadoop
system. However, the heterogeneity level of each factor potentially has a significant
effect on performance. It is critical to select a scheduling algorithm by considering
the Hadoop factors, and the desired performance level. A scheduling algorithm which
performs well in one Hadoop system, may not work well for a system that differs in
these factors. In [3], the authors introduced a hybrid method for selecting scheduling
algorithms based on the scalability level of the Hadoop system. This study provides
guidelines for selecting scheduling algorithms based on Hadoop factors, and their
heterogeneity level.

In this paper, we first provide a specification for the Hadoop factors and their
possible settings (Section 2). Then, performance issues for Hadoop schedulers are
introduced (Section 3). The performed analysis and proposed guidelines are based on
three Hadoop schedulers: FIFO, Fair Sharing [4], and COSHH [27]. The FIFO and
Fair Sharing algorithms are the two best known and most widely used Hadoop sched-
ulers. FIFO does not take into account heterogeneity in any Hadoop factor, while Fair
Sharing considers user heterogeneity. The COSHH algorithm (introduced by the au-
thors of this article), is a Hadoop scheduler which considers the heterogeneity in all
three Hadoop factors.

To reduce the dimensionality of the space of heterogeneity factors, this paper per-
forms a categorization of Hadoop systems, and experimentally analyzes the sched-
ulers’ performance in each category (Section 4). Sections 5 and 6 provide the exper-
imental results and analysis for homogeneous and heterogeneous Hadoop environ-
ments, respectively. Finally, using the experiments and discussions, Hadoop sched-
uler selection guidelines are proposed in Section 7. The guidelines are evaluated us-
ing different Hadoop systems. Related work is discussed in Section 8, and Section 9
provides a conclusion.

2 Hadoop System

Heterogeneity in Hadoop is defined based on the level of heterogeneity in the follow-
ing Hadoop factors:

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 3

– Cluster: is a group of linked resources, where each resource (R j) has a computa-
tion unit and a data storage unit. The computation unit consists of a set of slots,
where each slot has a given execution rate. In most Hadoop systems, each CPU
core is considered as one slot. Similarly, the data storage unit has a given capacity
and data retrieval rate. Data in the Hadoop system is organized into files, which
are usually large. Each file is split into small pieces, which are called slices. Usu-
ally, all slices in a system have the same size.

– User: submits jobs to the system. Hadoop assigns a priority and a minimum share
to each user based on a particular policy (e.g. the pricing policy in [6]). The user’s
minimum share is the minimum number of slots guaranteed for the user at each
point in time.

– Workload: consists of a set of jobs, where each job (Ji) has a number of map tasks
and reduce tasks. A map task performs a process on the slice where the required
data for this task is located. A reduce task processes the results of a subset of a
job’s map tasks. The value m(Ji,R j) defines the mean execution time of job Ji on
resource R j. Investigations on real Hadoop workloads show that it is possible to
classify these workloads into classes of “common jobs” [7]. We define the class
of jobs to be the set of jobs whose mean execution times (on each resource) are
in the same range.

There are various Hadoop schedulers, where each scheduler may consider dif-
ferent levels of heterogeneity in making scheduling decisions. Moreover, schedulers
are differentiated based on different performance metrics (e.g., fairness, minimum
share satisfaction, locality, and average completion time) that they address. However,
to the best of our knowledge there is no scheduling algorithm which simultaneously
considers all of these performance metrics. In some cases, optimizing one metric can
result in significant degradation in another metric. For instance, a scheduler which
optimizes fairness may need to repeatedly switch the processor between different
jobs. This can add significant overhead, which can result in larger average comple-
tion times.

To analyze the behaviour of schedulers at different levels of heterogeneity, this
paper uses three Hadoop scheduling algorithms: FIFO, Fair Sharing, and COSHH.
The FIFO and Fair Sharing algorithms are used as the basis of a majority of Hadoop
schedulers [4, 6, 8, 9]. The COSHH algorithm was first introduced in [5], and consid-
ers system parameters and state information in making scheduling decisions. These
algorithms are selected as representatives of schedulers which consider heterogeneity
at different levels. The FIFO scheduler does not consider heterogeneity in its schedul-
ing decisions. However, the Fair Sharing and COSHH algorithms are representatives
of schedulers with partial, and full consideration of heterogeneity, respectively.

– FIFO: is the default Hadoop scheduling algorithm [1]. It orders the jobs in a
queue based on their arrival times, ignoring any heterogeneity in the system. The
experience from deploying Hadoop in large systems shows simple algorithms
like FIFO can cause severe performance degradation; particularly in systems that
share data among multiple users [4].

4 Aysan Rasooli, Douglas G. Down

– Fair Sharing: is a Hadoop scheduler introduced to address the shortcomings of
FIFO, when dealing with small jobs and user heterogeneity [4]. This scheduler
defines a pool for each user, where each pool has a number of map and reduce
slots on a resource. Each user can use its pool to execute her jobs. If a pool
of a user becomes idle, the slots of the pool are divided among other users. This
scheduler aims to assign a fair share to users, which means resources are assigned
to jobs such that all users receive, on average, an equal share of resources over
time. Therefore, the Fair Sharing algorithm only takes user heterogeneity into
account.

– COSHH1: is a Hadoop scheduler which considers cluster, workload, and user
heterogeneity in making scheduling decisions [5]. Using the parameters and state
information, COSHH classifies the jobs and finds a matching of the resulting job
classes to the resources based on the requirements of the job classes and features
of the resources. This algorithm solves a Linear Programming problem (LP) to
find an appropriate matching. At the time of a scheduling decision, the COSHH
algorithm uses the set of suggested job classes for each resource, and considers
the priority, required minimum share, and fair share of users to make a scheduling
decision. Therefore, this algorithm takes into account heterogeneity in all three
Hadoop factors that we have introduced.

3 Performance Issues

This section analyzes the main drawbacks of each scheduler for various heterogeneity
levels in the Hadoop factors.

1. Small Jobs Starvation: Let us assume a heterogeneous Hadoop system, which will
be referred as System A includes four different resources and three users with the
following characteristics. The choice of system sizes in this system is only for
ease of presentation, the same issues arise in larger systems.

– Task1, Task2, and Task3 represent three heterogeneous task types with the
following mean execution times. The execution time of each job on each re-
source depends on various factors such as the computation and storage fea-
tures of the resource and the job’s data and computation requirements. Here,
mt(Ti,R j) is the execution time of task Ti on resource R j.

mt =

2.5 2.5 10 10
2.5 2.5 5 5
10 10 2.5 2.5

– Three users submit three jobs to the system, where each job consists of a

number of similar tasks. Jobs arrive to the system in the order: Job1, Job2,
and Job3.

– Users are homogeneous with zero minimum share and priority equal to one.
Each user submits one job to the system as follows:

1 While the name COSHH was not introduced in [5], we have since adopted it.

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 5

User1: Job1 (consists of 10 Task1)
User2: Job3 (consists of 10 Task3)
User3: Job2 (consists of 5 Task2)

Figure 1 shows the job assignments for the FIFO, Fair Sharing, and COSHH
schedulers. The completion time of the last task in each job is highlighted to
show the overall job completion times.

Fig. 1: Job assignment by a) FIFO, b) Fair Sharing, and c) COSHH schedulers, and their average
completion times in System A.

The FIFO algorithm assigns incoming jobs to the resources based on their arrival
times (Figure 1a). Consequently in the FIFO scheduler, execution of the smaller
job (Job2) will be delayed significantly. In a heterogeneous Hadoop workload,
jobs have different execution times. For such workloads, as the FIFO algorithm

6 Aysan Rasooli, Douglas G. Down

does not take into account job sizes, it has the problem that small jobs potentially
get stuck behind large ones.
The Fair Sharing and the COSHH algorithms do not have this problem. Fair Shar-
ing puts the jobs in different pools based on their sizes, and assigns a fair share
to each pool. As a result, the Fair Sharing algorithm executes different size jobs
in parallel. The COSHH algorithm assigns the jobs to resources based on the job
sizes and the execution rates of resources. As a result, it can avoid this problem.

2. Sticky Slots: Figure 1b shows the job-resource assignment for the Fair Sharing
algorithm in System A. As the users are homogeneous, the Fair Sharing scheduler
goes through all of the users’ pools, and assigns a slot to one user at each heart-
beat. Upon completion of a task, the free slot is assigned to a new task of the same
user to preserve fairness among users.
Resource2 is an inefficient choice for Job3 with respect to completion time, but
the Fair Sharing scheduler assigns this job to this resource multiple times. There is
a similar problem for Job1 assigned to Resource3 and Resource4. Consequently,
the average completion time will be increased.
This problem arises when the scheduler assigns a job to the same resource at
each heartbeat. This issue is first mentioned in [4] for the Fair Sharing algorithm,
where the authors considered the effect of this problem on locality. However, our
example shows Sticky Slots can also significantly increase average completion
times, when an inefficient resource is selected for a job.
The FIFO algorithm does not have this problem because it only considers arrival
times in making scheduling decisions. The COSHH algorithm has two levels of
classification, which avoids the Sticky Slot problem. Even when the same re-
source is assigned for a job in different rounds, the optimizations in the COSHH
algorithm guarantee an appropriate selection of resource for the corresponding
job.

3. Resource and Job Mismatch: In a heterogeneous Hadoop system, resources can
have different features with respect to their computation or storage units. More-
over, jobs in a heterogeneous workload have different requirements. To reduce
the average completion time, it is critical to assign the jobs to resources by con-
sidering resource features and job requirements.
The FIFO and the Fair Sharing algorithms both have the problem of resource
and job mismatch, as they do not consider heterogeneity in the scheduling. On
the other hand, the COSHH algorithm has the advantage of appropriate matching
of jobs and resources, applying the following process (Figure 1c). The COSHH
algorithm classifies the jobs into three classes: Class1, Class2, and Class3, which
contain Job1, Job2, and Job3, respectively. This scheduler solves an LP to find
the best set of suggested job classes for each resource, as follows.

Resource1: {Class1, Class2}
Resource2: {Class1, Class2}
Resource3: {Class2, Class3}
Resource4: {Class2, Class3}

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 7

After computing the suggested sets, the COSHH scheduler considers fairness
and minimum share satisfaction to assign a job to each resource. Although the
COSHH algorithm assigns Job1 exclusively to Resource1 (Sticky Slot Problem),
it does not increase the completion time of Job1. This is one of the main advan-
tages of the COSHH algorithm over FIFO and Fair Sharing in a heterogeneous
system.

4. Scheduling Complexity: Let us assume a homogeneous Hadoop system, which
will be referred as System B includes four homogeneous resources and three users
with the following characteristics.

– There is one task type, and one job class, where each job consists of 10 tasks.
Tasks are homogeneous, and they have mean execution time of 1 second on
all resources.

– There are three homogeneous users similar to System A.
– Users submit three jobs to the system, where each job consists of a number of

similar tasks. Jobs arrive to the system in this order: Job1, Job2, and Job3.
The scheduling and completion times for the schedulers are presented in Figure
2. Figures 2a, 2b, and 2c show the job assignments in the FIFO, Fair Sharing, and
COSHH schedulers, respectively.
In a fully homogeneous Hadoop system, a simple algorithm like FIFO, which
quickly multiplexes jobs to resources, leads to the best average completion time
compared to the other, more complex algorithms (Figure 2a). As the users are
homogeneous, at each heartbeat the Fair Sharing algorithm assigns a task of a
user to the current free resource (Figure 2b). In the case of the Fair Sharing
scheduler, at each heartbeat there is the overhead of comparing previous usage
of resources to make a fair assignment. Finally, for the COSHH scheduler, as the
system is homogeneous, and there is only one job class (i.e., jobs have similar
features), solving the LP suggests all job classes for all resources. In this system,
the scheduling decisions of the COSHH algorithm are identical to those of the
Fair Sharing algorithm (Figure 2c). However, its scheduling complexity is greater
than the Fair Sharing algorithm. The complexity of scheduling algorithms can re-
sult from different features, such as gathering more system parameters and state
information, and considering various factors in making scheduling decisions. In
a homogeneous system such as System B, a simple and fast algorithm like FIFO
can achieve better performance.

4 Evaluation: Settings

Reported analysis on several Hadoop systems found their workloads extremely het-
erogeneous with very different execution times [10]. However, due to privacy issues,
most companies are unable or unwilling to release information about their Hadoop
systems. Therefore, reported information about heterogeneity in Hadoop may be only
partial. This paper considers various possible settings of heterogeneity for the Hadoop
factors to provide a complete performance analysis of Hadoop schedulers in terms of

8 Aysan Rasooli, Douglas G. Down

Fig. 2: Job assignment by a) FIFO, b) Fair Sharing, and c) COSHH schedulers, and their average
completion times in System B

system heterogeneity. This section defines the experimental environment and perfor-
mance metrics.

4.1 High-level Description

In a Hadoop system, the incoming jobs can be heterogeneous with respect to various
features such as number of tasks, data and computation requirements, arrival rates,
and execution times. Also, Hadoop resources may differ in capabilities such as data
storage and processing units. The assigned priorities and minimum share require-
ments may differ between users. Moreover, the type and number of jobs assigned by
each user can be different. As the mean execution time for a job, m(Ji,R j), reflects the
heterogeneity of both workload and cluster factors, this paper considers four possible
cases of heterogeneity of users and mean execution times, as follows.

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 9

– Homogeneous System: both the workload and cluster are homogeneous, and the
users can be either homogeneous or heterogeneous. In these systems, the job sizes
can significantly affect the performance of the Hadoop schedulers. Therefore, two
case studies are defined for this category:

– Homogeneous-Small (all jobs are small).
– Homogeneous-Large (all jobs are large).

– Heterogeneous System: both the workload and cluster are heterogeneous, and
users are either homogeneous or heterogeneous. In this system, the challenging
issue for the schedulers is the arrival rates of different size jobs. This issue moti-
vated us to define three case studies in this category:

– Heterogeneous-Small (higher arrival rate for small jobs).
– Heterogeneous-Equal (equal arrival rates for all job sizes).
– Heterogeneous-Large (higher arrival rate for large jobs).

Overall, five case studies are defined which are evaluated in Sections 5 and 6.

4.2 Experimental Environment

The general settings of the Hadoop factors in our experiments are defined as follows:

1. Workload: jobs are selected from Yahoo! production Hadoop MapReduce traces,
presented in [7]. The trace is from a cluster at Yahoo!, covering three weeks in late
February/early March 2009. It contains a list of job submission and completion
times, data sizes of the input, shuffle and output stages, and the running time for
the map and reduce functions. The research discussed in [7] performed an analysis
of the trace, which provides classes of “common jobs” using k-means clustering.
The details of the workloads used for evaluating schedulers are provided in Table
1. It should be clarified that the sizes of jobs are defined based on their execution

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Small jobs 60 114 174 MB 73MB 6MB 412 740
Fast aggregate 2100 23 568 GB 76GB 3.9GB 270376 589385
Expand and aggregate 2400 10 206 GB 1.5T B 133MB 983998 1425941
Transform expand 9300 5 806 GB 235GB 10T B 257567 979181
Data summary 13500 7 4.9 TB 78GB 775MB 4481926 1663358
Large data summary 30900 4 31 TB 937GB 475MB 33606055 31884004
Data transform 3600 36 36 GB 15GB 4.0GB 15021 13614
Large data transform 16800 1 5.5 TB 10T B 2.5T B 7729409 8305880

Table 1: Job categories in the Yahoo! trace. Map time and Reduce time are in Task-seconds, e.g., 2 tasks
of 10 seconds each is 20 Task-seconds [7].

times reported in [7]. Wherever it is not defined explicitly, by “small jobs” and
“large jobs” we mean the “Small jobs” and “Large data summary” classes in the
Yahoo! workload. The default number of jobs is 100, which is sufficient to contain
a variety of the behaviours in our Hadoop workload.

10 Aysan Rasooli, Douglas G. Down

2. Clusters: have different configurations for the heterogeneous and homogeneous
case studies. In experiments with heterogeneous resources, a cluster of six re-
sources is used (Table 2). The bandwidth between the resources is 100Mbps.
Experiments with a homogeneous cluster use a cluster consisting of six R3 re-
sources.

Resources Slot Mem
slot# execRate Capacity RetrieveRate

R1 2 5MHz 4T B 9Gbps
R2 16 500MHz 400KB 40Kbps
R3 16 500MHz 4T B 9Gbps
R4 2 5MHz 4T B 9Gbps
R5 16 500MHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

Table 2: Resources in the heterogeneous cluster

3. Users: have two different settings in these experiments. In both settings, each
user submits jobs from one of the job classes in Table 1. The heterogeneous users
are defined with different minimum shares and priorities (Table 3). The minimum
share of each user is defined to be proportional to its submitted job size. There-
fore, the minimum share of U2 (who is submitting the smallest jobs) is defined to
be zero, and the minimum share of U8 (who is submitting the largest jobs) is set
to the maximum amount.

User MinimumShare Priority
U1 5 1
U2 0 2
U3 10 2
U4 15 1
U5 10 1
U6 15 2
U7 10 1
U8 15 1

Table 3: Heterogeneous Users

The priorities and the minimum shares of users are usually defined by the Hadoop
provider. Finally, in the case of homogeneous users, there are eight users, each
with zero minimum share, and priority equal to one.

A MapReduce simulator, MRSIM [11], is used to simulate a Hadoop cluster and
evaluate the schedulers. The Hadoop block size is set to 128MB, which is the default
size in Hadoop 0.21. Also, the data replication number is set to the default value of
three in all algorithms. In the experiments, we use the version of the Fair Sharing
algorithm presented in [13]. The pools and weights are set based on the users and the
priority of the users. The preemption is set to be off, and there can be multiple tasks
assigned to slots of one resource in each heartbeat.

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 11

4.3 Performance Metrics

There is a range of performance metrics that are of interest to both users and Hadoop
providers. Five Hadoop performance metrics are used for evaluating the schedulers
in this paper, including:

1. Average Completion Time: is the average completion time of all completed jobs.
2. Dissatis f action: measures how much the scheduling algorithm is successful in

satisfying the minimum share requirements of the users.
3. Fairness: measures how fair a scheduling algorithm is in dividing the resources

among users.
4. Locality: is defined as the proportion of tasks which are running on the same

resource as where their stored data are located.
5. Scheduling Time: is the total time spent for scheduling all of the incoming jobs.

This measures the overhead of each Hadoop scheduler.

Detailed definitions of these performance metrics are provided in [27]. To calcu-
late the execution time of the jobs, we used the Task Scheduling Process component
defined in [27], which uses the algorithm introduced in [29].

5 Evaluation: Homogeneous Hadoop System

This section includes the performance analysis of three schedulers on a homogeneous
Hadoop system. An example of the these systems is the use of storage and computing
power from Amazon Web Services to convert 11 million public domain articles in the
New York Times archives from scanned images into PDF format [12].

5.1 Case Study 1: Homogeneous-Small

This case study analyzes the performance of Hadoop schedulers for a homogeneous
cluster and workload, where all the jobs are of small size. The workload consists of
100 “Small jobs” as defined in Table 1. We ran two experiments. In the first exper-
iment the users are heterogeneous, while in the second they are homogeneous (as
defined in Section 4.2).

In this homogeneous environment, the average completion times of all sched-
ulers are almost equal. As the cluster and workload are homogeneous, the COSHH
algorithm suggests all resources as the best choice for all job classes. Therefore, its
performance is similar to the Fair Sharing algorithm. Moreover, due to the homo-
geneity in users, the Fair Sharing algorithm defines similar job pools for all users,
where each job pool uses the FIFO algorithm to select a job. Therefore, despite the
heterogeneity of users, the average completion time of all the algorithms are almost
the same (around 98.8 seconds).

The scheduling overheads in the homogeneous-small Hadoop system are pre-
sented in Figure 3. The Scheduling Complexity problem in the COSHH algorithm
leads to higher scheduling time and overhead. This is caused by the classification

12 Aysan Rasooli, Douglas G. Down

Fig. 3: Scheduling time - Homogeneous-Small

and LP solving processes. As the job sizes are small, the scheduling overhead of the
COSHH algorithm does not lead to a significant increase in its average completion
time. The total scheduling overhead here is less than a second, which is negligible
compared to the processing times.

Tables 4 and 5 present the fairness, dissatisfaction, and locality when the users are
heterogeneous and homogeneous, respectively. As the main goal of the Fair Sharing
algorithm is to improve the fairness and minimum share satisfaction, it leads to better
fairness and dissatisfaction.

Metrics FIFO Fair COSHH
Dissatisfaction 8.615 0.801 0.824
Fairness 4.004 2.043 2.198
Locality (%) 97 97 97

Table 4: Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH
Fairness 0.447 0.447 0.447
Locality (%) 97 97 97

Table 5: Fairness and locality - homogeneous users

5.2 Case Study 2: Homogeneous-Large

Here we ran an experiment in a homogenous cluster and workload in which all the
jobs are of large size. A workload consisting of 100 “Large data summary” jobs was
used (Table 1) . The evaluation was performed for both homogeneous and heteroge-
neous users.

Figure 4 presents the average completion times for this system. Because the jobs
are large, the scheduling complexity problem in the COSHH and the Fair Sharing

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 13

Fig. 4: Average completion time - Homogeneous-Large

Fig. 5: Scheduling time - Homogeneous-Large

algorithms leads to increases in their average completion times. The scheduling over-
heads are presented in Figure 5. As the COSHH algorithm suggests all job classes as
the best choice for each resource, and all jobs are large, the sort and search spaces are
large. Therefore, the scheduling time of the COSHH algorithm is higher compared to
COSHH for the small homogeneous workload. This leads to an increase in average
completion time for the COSHH algorithm.

Tables 6 and 7 present the fairness, dissatisfaction, and locality of the large ho-
mogeneous Hadoop cluster for heterogeneous and homogeneous users, respectively.
The results show the competitive performance of the Fair Sharing and the COSHH
algorithms for these metrics.

Metrics FIFO Fair COSHH
Dissatisfaction 8.345 5.470 6.954
Fairness 4.183 1.753 1.870
Locality (%) 97 97 96

Table 6: Dissatisfaction, fairness, and locality - heterogeneous users

14 Aysan Rasooli, Douglas G. Down

Metrics FIFO Fair COSHH
Fairness 0.278 0.247 0.322
Locality (%) 97 97 97

Table 7: Fairness and locality - homogeneous users

6 Evaluation: Heterogeneous Hadoop System

In this section, experimental results are provided to analyze the performance of sched-
ulers in more heterogeneous environments. In these experiments we use a cluster of
six heterogeneous resources as presented in Table 2. Each experiment is performed
for both heterogeneous and homogeneous users.

6.1 Case Study 3: Heterogeneous-Small

This case study evaluates the schedulers when the system is heterogeneous, and the
proportion of small jobs is high. This workload is similar to the Yahoo! workload,
where the arrival rates of small jobs are higher. Figure 6 presents the average comple-
tion times for this system when the users are either homogeneous or heterogeneous.

Fig. 6: Average completion time - Heterogeneous-Small

As the Fair Sharing algorithm does not have the problem of Small Jobs Starva-
tion, we expect better average completion time for this scheduler than for the FIFO
algorithm. However, in the case of heterogeneous users, because the minimum shares
are defined based on the job sizes, and the Fair Sharing algorithm first satisfies the
minimum shares, it executes most of the small jobs after satisfying the minimum
shares of the larger jobs. Therefore, the completion times of the small jobs (the ma-
jority of the jobs in this workload) are increased. As the COSHH algorithm solves the
Resource and Job Mismatch problem, it leads to 74.49% and 79.73% improvement
in average completion time over the FIFO algorithm, and the Fair Sharing algorithm,
respectively.

In the case of homogeneous users, where there is no minimum share defined,
the Fair Sharing algorithm achieves better average completion time than the FIFO

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 15

Fig. 7: Scheduling time - Heterogeneous-Small

algorithm. The Fair Sharing algorithm achieves a 37.72% smaller average comple-
tion time than the FIFO algorithm, and the COSHH algorithm reduces the average
completion time of the Fair Sharing algorithm by 75.92%.

The overhead of the scheduling algorithms is presented in Figure 7. Because most
of the jobs in this workload are small, and they have fewer tasks, the scheduling
overheads are low. Fairness, dissatisfaction, and the locality of the algorithms are
presented in Tables 8 and 9 for heterogeneous and homogeneous users, respectively.
The results show that the Fair Sharing algorithm has the best performance in these
metrics, and the COSHH algorithm has the second best performance.

Metrics FIFO Fair COSHH
Dissatisfaction 8.618 7.16E −04 1.209
Fairness 4.974 0.965 2.779
Locality (%) 95.6 97.4 96.5

Table 8: Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH
Fairness 1.032 0.504 0.856
Locality (%) 94.9 97.9 98.1

Table 9: Fairness and locality - homogeneous users

6.2 Case Study 4: Heterogeneous-Large

In this case study, we evaluate the schedulers in a heterogeneous cluster with a greater
proportion of large jobs. In this workload, the number of jobs from larger size Yahoo!
classes (classes 4 and higher in Table 1) is greater than the number from the smaller
size job classes. Figure 8 presents the average completion times for heterogeneous
and homogeneous users. When the users are heterogeneous, the Fair Sharing algo-
rithm achieves the best average completion time. The reason is that this algorithm
satisfies the minimum shares first, where the minimum shares are defined based on

16 Aysan Rasooli, Douglas G. Down

the job sizes. As a result, minimum share satisfaction helps to reduce the average
completion time. The COSHH algorithm has the second best average completion
time as a result of addressing the Resource and Job Mismatch problem. In this sys-
tem, the Fair Sharing algorithm reduces the average completion time of the FIFO and
the COSHH algorithms by 47% and 22%, respectively.

Fig. 8: Average completion time - Heterogeneous-Large

However, when the users are homogeneous, and no minimum share is defined,
the average completion time of the Fair Sharing algorithm becomes higher than the
COSHH algorithm. As the Fair Sharing algorithm does not have the problem of Small
Jobs Starvation, it achieves better average completion time than the FIFO algorithm.
Based on the simulation results, the COSHH algorithm reduces the average comple-
tion time of the FIFO and Fair Sharing algorithms by 86.18% and 85.17%, respec-
tively.

Fig. 9: Scheduling time - Heterogeneous-Large

As the job sizes of this workload are larger than for the workload in Section
6.1, the scheduling times in Figure 9 are correspondingly higher. When the users
are homogeneous the scheduling overhead of the COSHH algorithm is lower, as the
classification and LP solving processes are shorter. When there is no minimum share

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 17

defined, the Fair Sharing algorithm has to spend more time on computing the fair
shares, and sorting the jobs accordingly. This leads to higher scheduling times.

Metrics FIFO Fair COSHH
Dissatisfaction 8.223 3.12E −04 0.141
Fairness 6.523 1.651 0.697
Locality (%) 93.5 97.4 97.6

Table 10: Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH
Fairness 2.152 1.264 0.605
Locality (%) 95.3 98.0 98.1

Table 11: Fairness and locality - homogeneous users
Tables 10 and 11 present the dissatisfaction, fairness, and locality when the users

are heterogeneous and homogeneous, respectively. The COSHH algorithm has com-
petitive performance with the Fair Sharing algorithm with respect to all three metrics.

6.3 Case Study 5: Heterogeneous-Equal

In this case study an equal number of jobs are submitted from each of the Yahoo!
classes. Figure 10 shows the average completion times when the users are homo-
geneous and heterogeneous. As the jobs and resources are all heterogeneous, it is
important to consider the Resource and Job Mismatch problem in making scheduling
decisions.

Fig. 10: Average completion time - Heterogeneous-Equal

The COSHH algorithm achieves the best average completion time. Because the
arrival rates of all job classes are similar, the Sticky Slot problem in the Fair Shar-
ing algorithm happens with higher frequency. Therefore, the Fair Sharing algorithm
has larger average completion time than the FIFO algorithm. The COSHH algorithm
reduces the average completion time of the FIFO and Fair Sharing algorithms by

18 Aysan Rasooli, Douglas G. Down

49.28% and 65.24%, respectively. In the case of homogeneous users, where no min-
imum shares are assigned, the Fair Sharing algorithm has the highest average com-
pletion time, which is caused by the Sticky Slot problem. When the users are ho-
mogeneous, the COSHH algorithm reduces the average completion time of the FIFO
and Fair Sharing algorithms by 90.28% and 97.29%, respectively. When the users
do not have minimum shares, the COSHH algorithm has just one class. Therefore,
its overhead is reduced, which leads to a greater reduction in the average completion
times.

The overheads in Figure 11 show that the improvement of average completion
time in the COSHH scheduler is achieved at the cost of increasing the overhead of
scheduling. The additional 10 second overhead for the COSHH algorithm, compared
to the improvement for average completion time (which is around 200K seconds) is
negligible. Further studies in [3] show that even if the number of resources in the
Hadoop cluster scales up, the COSHH algorithm still can provide a similar level of
improvement in the average completion time. Because both the Fair Sharing and the
COSHH algorithms search over the users and jobs to satisfy the minimum shares and
fairness, they both have higher scheduling time than the FIFO algorithm.

Fig. 11: Scheduling time - Heterogeneous-Equal

Metrics FIFO Fair COSHH
Dissatisfaction 8.287 0.0158 0.0247
Fairness 5.961 2.939 2.309
Locality (%) 93.7 95.2 87.6

Table 12: Dissatisfaction, fairness, and locality - heterogeneous users

Metrics FIFO Fair COSHH
Fairness 1.195 1.127 1.085
Locality (%) 92.5 97.7 98.6

Table 13: Fairness and locality - homogeneous users

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 19

Tables 12 and 13 present the dissatisfaction, fairness, and locality when the users
are heterogeneous and homogeneous, respectively. The COSHH algorithm has com-
petitive performance with the Fair Sharing algorithm in improving the fairness and
dissatisfaction. Further detailed analysis of these Hadoop schedulers is provided in
the first author’s PhD thesis [28].

7 Guidelines for Scheduler Selection

The provided experimental results and analysis show that a scheduler should be se-
lected based on the heterogeneity levels of the Hadoop factors.

Figure 12 presents guidelines suggested by our observations. The main perfor-
mance metric used for determining these guidelines is the average completion time.
However, the selected algorithms are also either competitive or better than the other
schedulers with respect to the other performance metrics. To determine small size
jobs, a threshold is defined based on the mean job execution times on resources and
the time between heartbeats from the system. In these experiments, if the execution
time of a job is less than the interval between two heartbeats, the job is considered
to be small. However, the threshold can be customized for different Hadoop systems.
How to do this (and which features are important to take into consideration) would
be a useful topic for further work.

Fig. 12: Suggested schedulers. Here αl and αs are the arrival rates for large and small jobs, respectively.

To evaluate the proposed guidelines, we used another real Hadoop workload, pre-
sented in Table 14. The workload contains 100 jobs of a trace from a cluster at Face-
book (FB), spanning six months from May to October 2009. In the evaluation, there
are 10 homogeneous users with zero minimum shares, and equal priorities. More-
over, there are 10 heterogeneous users as presented in Table 15. Each user submits

20 Aysan Rasooli, Douglas G. Down

jobs from one category in Table 14. The experimental environment is defined similar
to that in Section 4.

Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10 KB 0 4.2GB 26321 0
Large data load 4200 10 405 KB 0 447GB 66657 0
Huge data load 18300 3 446 KB 0 1.1T B 125662 0
Fast aggregate 900 10 230 GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9 TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418 GB 2.5T B 45GB 1076089 974395
Data transform 2100 14 255 GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6 TB 51GB 104KB 4843452 853911

Table 14: Job categories in Facebook trace. Map time and Reduce time are in Task-seconds [7].

User MinimumShare Priority
U1 5 1
U2 0 2
U3 0 2
U4 5 1
U5 10 2
U6 15 1
U7 4 2
U8 10 1
U9 10 1
U10 15 1

Table 15: Heterogeneous Users in FB workload

7.1 Homogeneous Hadoop

Figures 13-15 show the average completion time and the scheduling overhead in two
case studies of homogeneous Hadoop systems. As the average completion time of
all the algorithms in the Homogeneous-Small case are almost the same (around 98.8
seconds), its corresponding chart is not included in the figures. The results confirm
our observations for the Yahoo! workloads. The guideline selects the FIFO algorithm
when the system is homogeneous in all three factors. When the job size is small
and the users are heterogeneous, the guideline suggests the Fair Sharing algorithm to
improve the fairness.

7.2 Heterogeneous Hadoop

Figures 16-21 show the average completion times and the scheduling times in the
three case studies involving heterogeneous systems. In these experiments, the COSHH
algorithm is the recommended scheduler in the majority of cases.

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 21

Fig. 13: Scheduling time - Homogeneous-Small

Fig. 14: Average completion time - Homogeneous-Large

Fig. 15: Scheduling time - Homogeneous-Large

8 Related Work

Hadoop has gained from rapidly growing applications which rely on Big Data analyt-
ics. However, practical Hadoop applications require considering a variety of perfor-
mance issues and architectural requirements for different components of the deployed
Hadoop ecosystem [17] [18].

MapReduce is the programming paradigm that allows for massive scalability
across large amounts of data for Hadoop. Zhang et al. [16] propose iMapReduce

22 Aysan Rasooli, Douglas G. Down

Fig. 16: Average completion time - Heterogeneous-Small

Fig. 17: Scheduling time - Heterogeneous-Small

Fig. 18: Average completion time - Heterogeneous-Equal

to speed up the processing time for Hadoop by reducing the overhead of creating
new MapReduce jobs repeatedly as well as allowing asynchronous execution of map
tasks. Similarly, [23] and [25] address optimizing MapReduce tasks on heteroge-
neous clusters. Yang et al. [15] propose a statistical analytics approach to predict the
performance of various workloads under different Hadoop configurations. In addition
to the MapReduce and workload models, the choice of Hadoop impacts the overall
performance of a Hadoop ecosystem.

The scheduler is the centrepiece of a Hadoop system. Thanks to recent develop-
ments, Hadoop implements the ability for pluggable schedulers [19]. Desired per-

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 23

Fig. 19: Scheduling time - Heterogeneous-Equal

Fig. 20: Average completion time - Heterogeneous-Large

Fig. 21: Scheduling time - Heterogeneous-Large

formance levels can be achieved by an appropriate submission of jobs to resources
based on the system heterogeneity. The primary Hadoop schedulers, like FIFO, are
simple algorithms which use small amounts of system parameters and state informa-
tion to make quick scheduling decisions. The FIFO algorithm works well for the first
generation of small Hadoop clusters. However, experience from deploying Hadoop
in large systems shows that simple scheduling algorithms like FIFO can cause se-
vere performance degradation; particularly in systems that share data among multiple
users [13]. To address some of the shortcomings of the FIFO algorithm, additional

24 Aysan Rasooli, Douglas G. Down

schedulers are introduced in [13], where they are collectively known as Fair Shar-
ing. The Fair Sharing algorithm does not achieve good performance with respect to
data locality [4]. Delay Scheduler ([4] and [21]) is a complementary algorithm for
Fair Sharing which improves data locality. However, even Delay Scheduler does not
consider heterogeneity in the system.

The main concern in the most popular Hadoop schedulers is to quickly multiplex
the incoming jobs on the available resources. Therefore, they use less system pa-
rameters and state information, which makes these algorithms an appropriate choice
for homogeneous Hadoop systems. However, a scheduling decision based on a small
number of parameters and state information may cause some challenges such as less
locality, and neglecting the system heterogeneity. Later proposed algorithms, such
as [14], improve scheduling decisions by providing the system parameters and state
information as an input to the scheduler. However, the poor adaptability, and the large
overhead of this algorithm (it is based on virtual machine scheduling), make it an im-
practical choice for our research.

There are a number of Hadoop schedulers developed for restricted heteroge-
neous systems such as Dynamic Priority (DP) [6] and Dominant Resource Fairness
(DRF) [9]. The former is a parallel task scheduler which enables users to interactively
control their allocated capacities by dynamically adjusting their budgets. The latter
addresses the problem of fair allocation of multiple types of resources to users with
heterogeneous demands. Finally COSHH [5] is specifically proposed for heteroge-
neous environments.

This paper evaluates Hadoop schedulers to propose heterogeneity-based guide-
lines. Although COSHH has shown promising results for systems with various types
of jobs and resources, its scheduling overhead can be a barrier for small and homoge-
neous systems. DP was developed for user-interactive environments, differing from
our target systems. The DRF scheduler addresses the problem of how to fairly share
multiple resources when users have heterogenous demands on them. It suggests to
implement a max-min fairshare algorithm over the so-called dominant user’s share.
Dominant share is the maximum share that a user has been allocated of any resource.
Such a resource is then called a dominant resource. Whenever there are available re-
sources and tasks to run, the DRF scheduler assigns a resource to the user with small-
est dominant share. This scheduler considers heterogeneity in terms of user requests
for the resources. However, heterogeneity in terms of various types of resources in
the system, and providing suggestions for matching the jobs with resources based on
their heterogeneity are fully addressed in the DRF scheduler.

9 Conclusion

This paper studies three key Hadoop factors, and the effect of heterogeneity in these
factors on the performance of Hadoop schedulers. Performance issues for Hadoop
schedulers are analyzed and evaluated in different heterogeneous and homogeneous
settings. Five case studies are defined based on different levels of heterogeneity in
the three Hadoop factors. Based on these observations, guidelines are suggested for

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity 25

choosing a Hadoop scheduler according to the level of heterogeneity in each of the
factors considered.

We plan to extend this work in three directions: (i) the proposed guideline will be
evaluated in much larger systems. We plan to scale up the number of jobs, resources,
and users; (ii) the required threshold specifying small versus large jobs will be fur-
ther investigated. The outcome will be a selection function that considers system
parameters including type, number, and complexity of jobs as well as specification
of available resources; (iii) the guidelines will be extended to consider other perfor-
mance metrics. The end result should be that based on a desired performance level in
different metrics, and the system information, the guideline suggests an appropriate
algorithm.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research Council
of Canada. A major part of this work was done while both authors were visiting UC Berkeley. In particular,
the first author would like to thank Randy Katz, Ion Stoica, Yanpei Chen and Sameer Agarwal for their
comments on our research. Also, the authors gratefully acknowledge Facebook and Yahoo! for permission
to use their workload traces in this research.

References

1. J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, Communications of
the ACM 51 (2008) 107–113. doi:http://doi.acm.org/10.1145/1327452.1327492.

2. K. Sankar, S. A. Bouchard, Enterprise Web 2.0, Cisco Press, 2009.
3. A. Rasooli, D. G. Down, A hybrid scheduling approach for scalable heterogeneous Hadoop systems,

in: Proceedings of the 5th IEEE Workshop on Many-Task Computing on Grids and Supercomputers
(MTAGS12), Salt Lake City, Utah, USA, 2012.

4. M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Delay schedul-
ing: A simple technique for achieving locality and fairness in cluster scheduling, in: Proceed-
ings of the 5th European Conference on Computer Systems, Paris, France, 2010, pp. 265–278.
doi:http://doi.acm.org/10.1145/1755913.1755940.

5. A. Rasooli, D. G. Down, An adaptive scheduling algorithm for dynamic heterogeneous Hadoop sys-
tems, in: Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative
Research, CASCON ’11, IBM Corp., Toronto, Ontario, Canada, 2011, pp. 30–44.
URL http://dl.acm.org/citation.cfm?id=2093889.2093893

6. T. Sandholm, K. Lai, Dynamic proportional share scheduling in Hadoop, in: Proceedings of the 15th
Workshop on Job Scheduling Strategies for Parallel Processing, Heidelberg, 2010, pp. 110–131.

7. Y. Chen, A. Ganapathi, R. Griffith, R. H. Katz, The case for evaluating MapReduce performance
using workload suites, in: Proceedings of the 19th Annual IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Washington, DC,
USA, 2011, pp. 390–399. doi:http://doi.ieeecomputersociety.org/10.1109/MASCOTS.2011 .12.

8. Apache, Hadoop On Demand documentation, [Online; accessed 30-November-2010] (2007).
URL http://hadoop.apache.org/common/docs/r0.17.2/hod.html

9. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant Resource Fair-
ness: Fair allocation of multiple resource types, in: Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, USENIX Association, 2011, pp. 24–24.
URL http://dl.acm.org/citation.cfm?id=1972457.1972490

10. Y. Chen, S. Alspaugh, R. Katz, Interactive analytical processing in Big Data systems: A cross-industry
study of MapReduce workloads, Proceedings of the International Conference on Very Large Data
Bases (VLDB) Endowment 5 (12) (2012) 1802–1813.
URL http://dl.acm.org/citation.cfm?id=2367502.2367519

11. S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, MRSim: A discrete event based MapReduce
simulator, in: Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD 2010), IEEE, 2010, pp. 2993–2997.

26 Aysan Rasooli, Douglas G. Down

12. D. Gottfrid, Self-service, Prorated super computing fun, http://tinyurl.com/2pjh5n (March
2009).

13. M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Job scheduling for multi-
user MapReduce clusters, Tech. Rep. UCB/EECS-2009-55, EECS Department, University of Califor-
nia, Berkeley (April 2009).
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS -2009-55.html

14. A. Aboulnaga, Z. Wang, Z. Y. Zhang, Packing the most onto your Cloud, in: Proceedings of the First
International Workshop on Cloud Data Management, 2009, pp. 25–28. doi:10.1145/1651263.1651268

15. H. Yang, Z. Luan, W. Li, D. Qian,MapReduce Workload Modeling with Statistical Approach, in:
Journal of Grid Computing, 2012, vol 10, no 2, pp. 279-310, doi:10.1007/s10723-011-9201-4.

16. Y. Zhang, Q. Gao, L. Gao, C. Wang, iMapReduce: A Distributed Computing Framework for Iterative
Computation, in: Journal of Grid Computing, 2012, vol 10, no 1, pp. 47-68, doi:10.1007/s10723-012-
9204-9.

17. B. Rimal, A. Jukan, D. Katsaros, Y. Goeleven, Architectural Requirements for Cloud Computing
Systems: An Enterprise Cloud Approach, in: Journal of Grid Computing, 2011, vol 9, no 1, pp. 3-26,
doi:10.1007/s10723-010-9171-y.

18. J. Shamsi, M. Khojaye, M. Qasmi, Data-Intensive Cloud Computing: Requirements, Expecta-
tions, Challenges, and Solutions, in: Journal of Grid Computing, 2011, vol 9, no 1, pp. 3-26,
doi:10.1007/s10723-010-9171-y.

19. M. Jones, Self-service, Scheduling in Hadoop: An introduction to the pluggable scheduler frame-
work, http://www.ibm.com/developerworks/library/os-hadoop-scheduling/ (Decem-
ber 2011).

20. T. White,Hadoop: The Definitive Guide, Book, Third Edition, O’Reilly Media, ISBN-10:1449311520.
21. K. He-yang, Y. Qun, W. Li-song, D. Xi, Improved delay-scheduler algorithm in homogeneous

Hadoop cluster, in: Application Research of Computers, 2013, issue 5, pp. 1397-1401.
22. Z. Zhang, L. Cherkasova, B. Loo, Performance Modeling of MapReduce Jobs in Heterogeneous Cloud

Environments, in: Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing,
2013, pp. 839-846,doi:10.1109/CLOUD.2013.107.

23. F. Ahmad, S. Chakradhar, A. Raghunathan, T. Vijaykumar, Tarazu: Optimizing MapReduce on Het-
erogeneous Clusters, in: ACM SIGARCH Comput. Architure News, March 2012, vol 40, no 1, pp.
61-74,doi:10.1145/2189750.2150984.

24. K. Morton, A. Friesen, M. Balazinska, D. Grossman, Estimating the progress of MapReduce
pipelines, in: Data Engineering (ICDE), 2010 IEEE 26th International Conference on, 2010, pp. 681-
684,doi:10.1109/ICDE.2010.5447919.

25. M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, Improving MapReduce Performance in
Heterogeneous Environments, in: Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008, pp. 29-42.

26. M. Zaharia, A. Konwinski, A. Joseph, R. Katz, I. Stoica, Big Data Processing with Hadoop MapRe-
duce in Cloud Systems, in: International Journal of Cloud Computing and Services Science (IJ-
CLOSER), 2013, vol 2, no 1, pp. 16-27.

27. A. Rasooli, D. G. Down, COSHH: A classification and optimization based scheduler
for heterogeneous Hadoop systems, to appear in: Future Generation Computer Systems.
http://dx.doi.org/10.1016/j.future.2014.01.002.

28. A. Rasooli, Improving scheduling in heterogeneous Grid and Hadoop systems, Ph.D. thesis, McMas-
ter University, Hamilton, Canada (July 2013).

29. S. Agarwal, I. Stoica, Chronos: A predictive task scheduler for MapReduce,
Tech. rep., EECS Department, University of California, Berkeley, Author1 URL:
http://www.cs.berkeley.edu/∼sameerag/, Author1 email: sameerag@cs.berkeley.edu

(December 2010).

