
Design Principles for Flexible Systems

Abstract

A fundamental aspect of designing systems with dedicated servers is identifying and

improving the system bottlenecks. We extend the concept of a bottleneck to networks

with heterogeneous, flexible servers. In contrast with a network with dedicated servers,

the bottlenecks are not a priori obvious, but can be determined by solving a number

of linear programming problems. Unlike the dedicated server case, we find that a bot-

tleneck may span several nodes in the network. We then identify some characteristics

of desirable flexibility structures. In particular, the chosen flexibility structure should

not only achieve the maximal possible capacity (corresponding to full server flexibility),

but should also have the feature that the entire network is the (unique) system bottle-

neck. The reason is that it is then possible to shift capacity between arbitrary nodes

in the network, allowing the network to cope with demand fluctuations. Finally, we

specify when certain flexibility structures (in particular chaining, targeted flexibility,

and the “N” and “W” structures from the call center literature) possess these desirable

characteristics.

1 Introduction

In this paper, we are concerned with the problem of deciding how to cross-train a collection

of servers to perform a set of tasks. Absent additional constraints, we would like to identify

fundamental properties of the set of skills that each server should have. We are in general

interested in which sets of skills are needed to approach the same throughput performance as

that of full flexibility (i.e., all servers are trained for all tasks) while also being adaptable to

changes in the environment, manifested by perturbations in arrival and/or service rates. We

would like to do this in a very general setting, so that the system topology is general, there

can be many different demand types, and the servers are heterogeneous in their capabilities.

1

Our goal is to allow a designer to quickly evaluate candidate flexibility structures, leading

to a smaller number of desirable structures that may then be further examined using more

detailed analysis (simulation or other techniques, see the concluding remarks of this paper

for more on the latter).

We perform our studies using queueing network models (our insights apply to more

general systems). To illustrate our approach, consider the following queueing model. We

have K tasks in parallel, with customers for each task arriving at rate λk. There are M

flexible servers, where server j is capable of working (if trained) on customers from task k

at rate µj,k. (The main results in the paper are for more general network topologies.)

Consider a system with full flexibility in that each server is trained to work on all tasks.

This flexibility structure is depicted in Figure 1, where an arrow from a server to a task

indicates that the server has been trained for that task. This flexibility structure is desirable

in that it is both efficient (it maximizes capacity) and robust (it can deal with fluctuations

in demand and processing rates via server reassignment). However, it is costly in that it

involves the maximal possible server training (each server is trained to work on all tasks).

This raises the question of whether it is possible to achieve the benefits of full flexibility in

a less costly manner (i.e., with fewer server skills).

Tasks	
 Servers	

Figure 1: Full flexibility

Tasks	
 Servers	

Figure 2: Candidate flexibility structure

2

Suppose now that we are presented with the flexibility structure in Figure 2. We would

like to identify guidelines as to whether this is a good flexibility structure or not. Here,

what we mean by good is that the system is both efficient and robust, and hence achieves

the benefits of full flexibility (in a first order sense). We will show that efficiency is easily

checked by solving two linear programs (LPs) and that robustness can be verified by solving

at most another K LPs.

An important notion in our work is that of a system bottleneck, which generalizes the

notion of a bottleneck for a system with dedicated servers. Just as in the dedicated server

case, we find that one can make initial design decisions by simply doing a bottleneck analysis.

However, when the servers are flexible, then their time can be divided between stations in

the network, and the overall load at each station or set of stations depends on how much

time the servers capable of working at those stations in fact spend working there (rather than

simply on the number of servers allocated to each station and their respective service rates).

Consequently, it is no longer sufficient to consider only individual stations when determining

what “bottleneck” bounds the capacity of the system. In other words, the bottleneck set

may be a set of stations, rather than a single station.

We show that in addition to achieving the maximum possible capacity, it is desirable for

the unique bottleneck to consist of all of the stations in the network. When this is true, the

network is robust with respect to the assumptions that it is derived under. In particular, if

demands increase or service rates decrease, capacity from within the system can be shifted

to compensate for these changes. We will refer to flexibility structures possessing these two

properties as “capacity effective,” while recognizing that a manager may also be interested

in other objectives or constrained by other considerations, a point that is discussed further

in Section 4.

3

A key notion that has appeared in the literature is that of chaining (see Figure 3 for an

example), introduced in the seminal paper of Jordan and Graves [21] and further developed

by, amongst others, Bassamboo et al. [7], Graves and Tomlin [11], Gurumurthi and Benjaafar

[12], Hopp et al. [17], Iravani et al. [20], and Sheikzadeh et al. [24]. Our results reinforce the

insight in [21] (and further developed in Chou et al. [9]) that chaining is desirable in homo-

geneous environments, but also indicate that other flexibility structures often show better

performance in heterogeneous settings. A similar observation was made by Gurumurthi and

Benjaafar [12] who present numerical results showing that other flexibility structures could

be better than chaining (with throughput as the performance measure of interest). Using

simulation studies for a specific system where workers sharing the same role are identical,

Jordan et al. [22] discuss the robustness of chaining to errors in estimating system parameters

(see Section 3.3 in particular), which is in the spirit of our notion of effectiveness.

Tasks	
 Servers	

Figure 3: 2-chain

Tasks	
 Servers	

Figure 4: Single task

Tasks	
 Servers	

Figure 5: Single server

Our general results are used to identify when various flexibility structures are capacity

effective. For example, while prior works provide insights about when chaining is desirable,

we use the notion of a system bottleneck to identify explicit conditions guaranteeing that

chaining is capacity effective. This is done for systems of arbitrary size when there is structure

4

in the service rates (the servers are generalists in that their service rates are products of two

terms, one dependent only on the server and one dependent only on the task). For systems

with three servers and three tasks, we identify a sufficient condition for when chaining is

capacity effective for arbitrary service rates. While the resulting conditions are somewhat

complicated, they do demonstrate how our approach yields explicit conditions. We then

proceed to specify when targeted flexibility, in which all servers are trained for one task (see

Figure 4) or one server is trained for all tasks (see Figure 5), is capacity effective. As for

chaining, this is done for systems of arbitrary size with generalist servers and for systems

with three tasks and three servers for arbitrary service rates. We also provide explicit results

for the “N” and “W” flexibility structures that have arisen in the call center literature.

The organization of this paper is as follows. Section 2 gives details of the queueing model

under study. Section 3 demonstrates how to locate the system bottleneck and discusses

the connections between determining the bottleneck and stability properties of the queueing

system. Section 4 then discusses how the bottleneck can be used to characterize capacity ef-

fective flexibility structures. Section 5 examines when specific flexibility structures (including

chains) are capacity effective. Section 6 provides concluding remarks. Finally, a discussion

of how our work relates to the literature on complete resource pooling is contained in the

Appendix. Proofs of most of our results can be found in an online companion.

2 Queueing Model

We consider a system with N mutually independent renewal arrival (demand) streams, with

rates λi > 0, i = 1, . . . , N . Arrivals from stream i will be called type i customers. There are

K ≥ N queues in the system. A (possibly random) sequence of tasks must be performed on

each arriving customer. We will call customers stored in queue k task k customers, and we

5

define i(k) to be the corresponding type of task k customers. The set of tasks Ki contains

all tasks with type i customers, i.e., Ki = {k : i(k) = i}. We assume that Ki
⋂
Kj = ∅

when i 6= j and that
⋃
iKi = {1, . . . , K}. This can be thought of as separating different

customer types into different queues (so that i(k) yields a unique type), allowing the types

to be treated separately, if desired. Type i arrivals from outside are routed to task k ∈ Ki

with probability p0,k. Upon completion of task k, a customer becomes a task k′ customer

with probability pk,k′ and leaves the system with probability 1−
∑

k′∈Ki(k)
pk,k′ . In a parallel

system of queues, K = N , Ki = {i} for all i, and p0,k = 1 for all k. As another example,

suppose that type 1 customers first have task 1 performed, followed by either task 2 or task

3 with equal probability, after which they leave the network. Type 2 arrivals first have task

4 performed, followed by task 5, after which they leave the network. Here, K1 = {1, 2, 3},

K2 = {4, 5}, p0,1 = p0,4 = 1, the internal routing probabilities are p1,2 = p1,3 = 1/2, p4,5 = 1,

and all other values pk,k′ are zero.

There are M servers. A server j has a potential service rate of µj,k for task k customers.

Thus the server may or may not be trained to work on task k customers, and if the server is

trained to work on task k, the service times form an independent and identically distributed

(i.i.d.) sequence with rate µj,k. Servers can either work in parallel at a task, or work together

on a customer, in which case their service rates are additive. Without loss of generality, we

assume that
∑K

k=1 µj,k > 0 for each server j = 1, . . . ,M . Let fj,k = 1 if server j is trained for

task k and 0 otherwise. By varying the number and location of the ones in the set {fj,k}, we

can examine different flexibility structures. It is worthwhile to note here that we can extend

our results to unreliable servers. This will be discussed briefly near the end of Section 4.

6

3 Determining the Bottleneck

Let ak be the expected number of visits by a type i(k) customer to task k. To determine ak,

k = 1, . . . , K, we need to solve the following set of traffic equations for each customer type

i and all tasks k ∈ Ki visited by that customer type:

ak = p0,k +
∑
k′∈Ki

ak′pk′,k.

We assume that (I − P ′)−1 exists, where P is a K by K matrix with (i, j) entry pi,j and

′ denotes transpose. This is equivalent to assuming that all arrivals eventually leave the

network, and, in particular, that ak is finite for k = 1, . . . , K.

Because there are multiple arrival streams, the notion of capacity is complicated, due

to the tradeoff over how much capacity to give to each demand type. We approach this

by measuring capacity with respect to how much a particular set of arrival rates for the K

demand types can be inflated (or needs to be deflated) in order to ensure the stability of the

system. In other words, we are maximizing the total capacity under the constraint that the

fraction of the total capacity that is given to each demand type remains unchanged. This

can be viewed as treating the demand types “fairly,” and is certainly appropriate when there

is just one demand type. Keeping the relative demands fixed is useful because otherwise we

would have to look at a polytope of achievable demands, rather than a single number.

To accomplish this, we consider the following allocation LP, where Γ ⊆ {1, . . . , K} is a

subset of the set of all tasks. The decision variables are {δj,k} and γ, and we will denote the

7

optimal value of the LP by γ∗(Γ). We maximize γ subject to

M∑
j=1

δj,kµj,kfj,k ≥ γakλi(k), k ∈ Γ; (1)

K∑
k=1

δj,k ≤ 1, j = 1, . . . ,M ; (2)

δj,k ≥ 0, j = 1, . . . ,M, k = 1, . . . , K. (3)

The above LP determines the optimal assignments {δ∗j,k} of servers to the tasks in Γ if we

increase the demands to the point of instability while keeping the relative demands fixed.

The constraint (1) guarantees that the service capacity allocated to task k is at least the

arrival rate. Constraint (2) prevents overallocation of a server, while (3) prevents negative

server allocations.

We call any set Γ satisfying γ∗(Γ) = γ∗({1, . . . , K}) a bottleneck set . This is a natural

definition, as the bottleneck sets determine the maximum load, which is consistent with the

conventional use of the term “bottleneck.” If {1, . . . , K} is the unique bottleneck set, we will

say that the entire system is the unique bottleneck . Note that in the traditional (dedicated

server) setting, servers are uniquely identified with tasks, so the set of bottleneck servers is

identical to the set of bottleneck tasks. In our flexible server setting, there is similarly a

correspondence between the sets of bottleneck servers and tasks, but this connection is less

immediate. In particular, the set of bottleneck servers is composed of all servers capable

of serving a task in minimal sets of bottleneck tasks (these servers are highly utilized as

any such server has constraint (2) tight). In the traditional setting, the performance of

the system is improved by enhancing the capacity of the bottlenecks. In our setting, as the

potential service rates {µj,k} of the servers are given, we will not be enhancing the capacity of

highly utilized servers, but will instead enhance the capacity of bottleneck tasks by training

under-utilized servers to work there. This explains why the system bottlenecks are more

8

naturally defined as sets of tasks, rather than sets of servers, in our setting.

We will use the allocation LP above to identify capacity effective flexibility structures.

However, we first make precise the notion that γ∗({1, . . . , K}) is a measure of the stability

of the network. Let Qk(t) ≥ 0 be the queue length at task k at time t (including customers

in process, if any) and let Q(t) be a vector whose kth entry is Qk(t). The norm |Q(t)| is

defined as
∑K

k=1Qk(t). The following result has been shown for N = 1, see Theorem 1 of

Andradóttir et al. [4], and here it is extended to an arbitrary number of demand types. The

proof is in an online companion.

Proposition 1 (i) For any set of arrival processes with rates γλi, i = 1, . . . , N , where

γ < γ∗({1, . . . , K}), there exists a server scheduling policy such that the distribution of the

queue length process {Q(t)} converges to a steady-state distribution ϕ as t→∞.

(ii) For any set of arrival processes with rates γλi, i = 1, . . . , N , where γ > γ∗({1, . . . , K}),

P (|Q(t)| → ∞) = 1 for any server scheduling policy.

An immediate corollary indicates whether the system with the given arrival processes

can be stabilized.

Corollary 1 (i) If γ∗({1, . . . , K}) > 1, then for the set of arrival rates {λi}, a server

scheduling policy exists such that the queue length process {Q(t)} converges to a steady-state

distribution ϕ as t→∞.

(ii) If γ∗({1, . . . , K}) < 1, then for the set of arrival rates {λi}, P (|Q(t)| → ∞) = 1 for any

server scheduling policy.

9

4 Capacity Effective Flexibility Structures

Let γ̄ be the largest possible value of γ∗({1, . . . , K}), which occurs under full flexibility when

fj,k = 1 for j = 1, . . . ,M , k = 1, . . . , K. We are interested in identifying fundamentally sound

structural properties for a given set {fj,k} that are explicitly verifiable given the system’s

parameters. In particular, we would like to choose {fj,k} such that

γ∗({1, . . . , K}) = γ̄ (4)

and

γ∗(Γ) > γ∗({1, . . . , K}) for all strict subsets Γ of {1, . . . , K}. (5)

As discussed in the Introduction, the first property (4) indicates that we would like the

flexibility structure to be efficient , i.e., it can handle the same load on the queues as full

flexibility. The physical interpretation of the entire set of tasks being the unique bottleneck

(5) is that it is possible to shift excess capacity from any task to any other task, which should

aid in alleviating both long-term and short-term workload imbalances. Thus the flexibility

structure is robust with respect to the assumptions it is derived under. This is discussed in

more detail below. Properties (4) and (5) are likely to be appealing to a manager in that (4)

ensures optimal performance in the present environment, while (5) establishes the ability to

rapidly adapt to changes, and is hence aimed at future performance. Also, note that (5) is

satisfied under full flexibility when µj,k > 0 for all j, k, so flexibility structures satisfying (4)

and (5) can be said to offer the benefits of full flexibility (in a first order sense). We call

such structures capacity effective.

Note that if (4) and (5) are satisfied but the wrong scheduling policy is chosen, an

artificial bottleneck may develop at demand rates much less than optimal. Fortunately,

avoiding this situation is always possible, see Proposition 1. Thus we can decouple the

10

question of how to design a flexible system in terms of choosing skills for the available

servers from the question of how to identify a scheduling policy to ensure a given level of

throughput performance. From this point on, we will be concerned only with the issue of

choosing a flexibility (skill) structure. Using numerical results, Gurumurthi and Benjaafar

[12] also show that performance can be policy dependent for Markovian systems (optimal

policies are not identified).

In general, the conditions (4) and (5) must both be checked. Consider a system with

M = 3 servers and N = K = 3 tasks in parallel, with arrival rates λ1 = λ2 = λ3 = λ. Let

µ1,1 = µ1,2 = µ2,2 = µ2,3 = µ3,1 = µ3,3 = µ and µ1,3 = µ2,1 = µ3,2 = 2µ. Then, the (chaining)

flexibility structure f1,1 = f1,2 = f2,2 = f2,3 = f3,1 = f3,3 = 1 and fj,k = 0 otherwise satisfies

(5), but γ∗({1, . . . , K}) = µ/λ < γ̄ = 2µ/λ, so (4) is not satisfied. On the other hand, the

(dedicated) flexibility structure f1,3 = f2,1 = f3,2 = 1 and fj,k = 0 otherwise satisfies (4), but

not (5) (γ∗({k}) = γ∗({1, 2, 3}) for k = 1, 2, 3).

On the computation side, we do not need to evaluate (5) for all Γ, as if Γ ⊆ Γ′, γ∗(Γ) ≥

γ∗(Γ′) (see (1)). This implies that we need only check (5) for at most all subsets of Γ

consisting of K − 1 tasks. Thus, in order to check the conditions, we need to solve at most

K+2 LPs (one for the given flexibility structure, one for full flexibility, and K with one task

removed).

To make the notion of being able to shift capacity more precise, we see that (5) implies

the following more formal result. The first part of Theorem 1 states that if the entire system

is the unique bottleneck, and there is a change in the underlying environment such that

a demand λi decreases, then the system can accommodate increased demand for all other

customer types i′ 6= i. Flipping this around, if there is a change in the underlying environment

such that a demand increases, any other demand may be decreased to compensate (at least

11

in part). The second part shows that we cannot shift capacity into a bottleneck set from

outside. For example, this implies that increases in demand within the bottleneck set can

only be compensated for by decreases in other demands within the bottleneck set.

Theorem 1 (i) Suppose that (5) holds. For any i ∈ {1, . . . , N}, if λi is decreased, then

γ∗({1, . . . , K}) is increased.

(ii) Suppose that (5) does not hold for some strict subset Γ of {1, . . . , K}. Then, for all i

such that Ki ∩ Γ = ∅, if we decrease λi by any amount, γ∗({1, . . . , K}) remains unchanged.

Proof. Let {δ∗j,k} be the solution for the allocation LP (1)-(3) under the original arrival

rates. If we decrease λi, then for any task k ∈ Ki, (1) is not tight.

From (5), γ∗({1, . . . , K} \ Ki) > γ∗({1, . . . , K}). This implies that there exists a server

j1 and tasks k ∈ Ki, k1 /∈ Ki satisfying δ∗j1,kµj1,kfj1,k > 0 and µj1,k1fj1,k1 > 0. Hence, we can

decrease δ∗j1,k and increase δ∗j1,k1 , without reducing γ∗({1, . . . , K}), so that (1) is not tight

for any k′ ∈ Ki ∪ {k1}.

Since γ∗({1, . . . , K} \ (Ki ∪ {k1})) > γ∗({1, . . . , K}), there exists a server j2 and tasks

k ∈ Ki ∪ {k1} and k2 /∈ Ki ∪ {k1} such that δ∗j2,kµj2,kfj2,k > 0 and µj2,k2fj2,k2 > 0. Hence, as

for j1 and k1, we can decrease δ∗j2,k and increase δ∗j2,k2 , without reducing γ∗({1, . . . , K}), so

that (1) is not tight for any k′ ∈ Ki ∪ {k1, k2}.

It is clear that if we proceed in this manner, eventually (1) is not tight for any k′ ∈

{1, . . . , K}, and hence if we define γ̃∗({1, . . . , K}) to be the optimal solution of the LP with

λi decreased, we have γ̃∗({1, . . . , K}) > γ∗({1, . . . , K}).

Part (ii) follows immediately as Ki ⊆ Γc and (5) not holding imply that Γ and Γc do

not have a server j in common such that δ∗j,kµj,kfj,k > 0 and µj,k′δj,k′ > 0 where k ∈ Γc and

k′ ∈ Γ. ♦

12

It may also be worthwhile to express our results about the sensitivity of system perfor-

mance to changes in the service rates. The interpretation of Theorem 2 below is similar to

that of Theorem 1, with the uncertainty addressed being in the service rates rather than the

arrival rates.

Theorem 2 (i) Suppose that (5) holds. Fix j ∈ {1, . . . ,M} and k ∈ {1, . . . , K} such that

δ∗j,k > 0. If we increase µj,kfj,k, then γ∗({1, . . . , K}) is increased.

(ii) Suppose (5) does not hold for some strict subset Γ of {1, . . . , K}. Fix k /∈ Γ. If we

increase µj,kfj,k by any amount, then γ∗({1, . . . , K}) remains unchanged.

Proof. The proof follows that of Theorem 1, with Ki replaced by {k}. ♦

Theorem 2 bears some resemblance to work on “complete resource pooling” in the diffu-

sion limit literature, even though the questions being addressed are different. For the sake

of continuity, the discussion of connections between that body of work and ours is included

in Appendix A.

Our results are easily extended to unreliable servers. If the proportion of time server j

is up is given by uj, then we can simply replace µj,k by ujµj,k in the preceding development,

so that capacity effective flexibility structures that account for server failures would simply

be based on the effective rates ujµj,k. One could also extend these results to more complex

failure models (allowing for task failures and dependencies), but one would have to examine

a similar generalization of the allocation LP given by (4)-(6) in [5].

Finally, while we believe (4) and (5) provide valuable insights and guidelines for design-

ing desirable flexibility structures, they are certainly not the final word on this subject. For

example, our observations are specific to throughput as the performance measure, the situa-

tion becomes more complex for performance measures such as mean waiting times or holding

13

costs. Also, while our results give guarantees as to when changes in demand or processing

rates may be accommodated, a manager may also be interested in flexibility that targets

sources of variability. Moreover, we have not considered constraints on server flexibility

(e.g., certain tasks may not be performed by the same server, while other tasks may require

a dedicated server) or on cost. Such constraints may lead one to make lower investments

than recommended here (e.g., if the return on investment is not sufficient), or additional in-

vestments. More detailed analysis would need to be performed for such additional concerns.

5 Specific Flexibility Structures

In this section, we examine specific flexibility structures with the goal of identifying when

they are capacity effective (in the sense of equations (4) and (5)). We start by considering

chains, which have been suggested as desirable flexibility structures in the literature (see

Section 1). We by no means claim to be the first to explore this issue, but with the pio-

neering work of [21] as a starting point, we endeavor to identify explicit conditions under

which chaining is and is not capacity effective, for specific systems. This is the subject of

Sections 5.1 and 5.2. Section 5.3 examines when targeted flexibility (where all flexibility is

concentrated on either one task or one server) is capacity effective. In both Sections 5.1 and

5.3, we present results for systems of arbitrary size and structured service rates, while in

Sections 5.2 and 5.3, we present results for three tasks and three servers for arbitrary service

rates. Finally, Section 5.4 discusses when two popular structures (the “N” and “W” struc-

tures from the call center literature) for small systems are capacity effective (for arbitrary

service rates). The proofs of all results in this section are provided in an online companion.

Define λ̃k = akλi(k). In the remainder of this section, our insights depend only on the

values of λ̃k, and hence will hold for all network topologies that give rise to the same values

14

of λ̃k. Just to give one small example, let K = 3. The following three systems all give rise

to λ̃1 = λ̃2 = 1.0 and λ̃3 = 0.5.

1. The three tasks are in parallel (with N = 3, λ1 = λ2 = 1 and λ3 = 0.5, K1 = {1},

K2 = {2}, K3 = {3}, p0,1 = p0,2 = p0,3 = 1, and pk,k′ = 0, k, k′ = 1, 2, 3).

2. The three tasks are in tandem (with N = 1, λ1 = 1, K1 = {1, 2, 3}, p0,1 = p1,2 = 1,

p2,3 = 0.5, and p2,1 = p2,2 = p3,1 = p3,2 = p3,3 = 0).

3. The three tasks are in tandem with feedback (with N = 1, λ1 = 0.5, K1 = {1, 2, 3},

p0,1 = p1,2 = 1, p2,1 = p2,3 = 0.5, and p3,1 = p3,2 = p3,3 = 0).

Much of the literature is based on the parallel server model (in particular [11] and [21] base

their insights on such a model). In addition, the literature on call centers is concerned with

such models. For excellent overviews of the vast literature in this area, see Aksin et al. [1, 3]

and Gans et al. [10]. Hopp et al. [17] and Iravani et al. [20] examine the balanceability

of tandem and parallel servers, respectively, under chaining flexibility structures. Here, our

insights are for more general systems, but include the systems above as special cases.

5.1 Chains with structured service rates

Let µj,k = µ = 100, K = M = 10, and λ̃ = [64, 53, 123, 99, 78, 118, 82, 84, 117, 132], where

the kth entry in the vector λ̃ is the arrival rate λ̃k. Now, consider the “2-chain” flexibility

structure fj,j = fj,j+1 = 1 for j = 1, . . . , 9, f10,10 = f10,1 = 1, and fj,k = 0 otherwise (see

Figure 3 for a “2-chain” with M = K = 5). One can verify that this structure satisfies (4)

and (5) with γ̄ = 1.0526, and thus Theorem 1 (i) holds and the system is stable. Suppose

that the servers are “generalists” in the sense that µj,k is given by βjµk for j = 1, . . . ,M

and k = 1, . . . , K. Here, βj characterizes the intrinsic speed of server j and µk captures

15

the inherent difficulty of task k. Also, let Γi,n be the set of consecutive tasks starting at i

and containing n tasks, where K and 1 are also considered consecutive tasks. For example,

Γi,1 = {i} and ΓK−1,3 = {K − 1, K, 1}. Finally, define Γ0,n = ΓK,n.

Proposition 2 If K = M , µj,k ≡ βjµk > 0 for all j, k, and∑
j∈Γi−1,n+1

βj∑
k∈Γi,n

λ̃k/µk
>

∑M
j=1 βj∑K

k=1 λ̃k/µk
, (6)

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, is capacity effective.

The condition (6) states that the offered load due to any subset consisting of adjacent

tasks in isolation must be less than the overall system load. It may be useful to note that

(6) automatically holds for n ∈ {K − 1, K} and all i = 1, . . . , K.

To further illustrate under what circumstances 2-chaining is capacity effective, we exam-

ine three special cases. We first consider the case where the servers are identical. For the

following corollary, define the average arrival rate (over all tasks) as λ̄ =
∑K

k=1 λ̃k/K.

Corollary 2 If K = M , µj,k ≡ µ, for all j, k, and

∑
k∈Γi,n

λ̃k < (n+ 1)λ̄, (7)

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, is capacity effective.

The condition (7) requires the arrival rates to be balanced in an appropriate manner. In

particular, it limits to what degree groups of neighboring arrival rates can differ from the

average, and also limits the maximum arrival rate to be less than twice the average (λ̄). One

particular example where (7) trivially holds is if λ̃k = λ̃ for k = 1, . . . , K.

16

Suppose that in the above setting λ̃k ≡ λ̃ and µj,k = µk for all j, k (i.e., the service rates

depend only on the task, a common assumption in the literature). Similar to Corollary 2,

(6) translates into a condition which requires groups of neighboring mean service times to

be close to the average mean service time, given by m̄ =
(∑K

k=1 1/µk

)
/K.

Corollary 3 If K = M , λ̃k ≡ λ̃, for all k, µj,k = µk for all j, k and

∑
k∈Γi,n

1/µk < (n+ 1)m̄,

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, is capacity effective.

Finally, suppose that λ̃k ≡ λ̃ and µj,k = βj for all j, k (i.e., the service rates depend

only on the server). Similar to Corollary 2, (6) translates into a condition which requires

groups of neighboring mean service rates to be close to the average mean service rate, given

by β̄ =
∑M

j=1 βj/M .

Corollary 4 If K = M , λ̃k ≡ λ̃, for all k, µj,k = βj for all j, k and

∑
j∈Γi,n+1

βj > nβ̄,

for i = 1, . . . , K and n = 1, . . . , K−2, then the “2-chain” flexibility structure fj,j = fj,j+1 = 1,

j = 1, . . . ,M − 1, fj,M = fj,1 = 1, and fj,k = 0 otherwise, is capacity effective.

The results above are consistent with the work of Chou et al. [9], who show that long

2-chains perform well when demand and service rates are homogeneous. Our results quantify

the degree to which demand and service rates may deviate from homogeneity in long 2-chains,

while still being capacity effective.

17

Tasks	

Servers	

Figure 6: Tailored Chaining

Our conditions may also be useful in analyzing structures within which a chain exists.

One example of this is the “tailored chaining” approach of [7]. A particular system that has

this structure is given in Figure 6. For the model in [7], where µj,k ≡ µ and λ̃k ≡ λ̃ for all j, k,

and K arbitrary (M = 2K for this structure), it is not difficult to show that the proposed

“tailored chaining” structure is capacity effective. It is also not difficult to show that the

“tailored pairing” approach of [7] is capacity effective for arbitrary K (M = K+K(K+1)/2

for this structure) under the same assumptions on the arrival and service rates.

We will next discuss when chaining is the minimal capacity effective flexibility structure

(i.e., if any one skill is removed, the structure is no longer capacity effective). For the example

at the beginning of this section, if we “break” the chain by setting f3,4 = 0, we then have

γ∗({1, . . . , K}) = 0.9859, the system is unstable, and (5) does not hold. One general result

that we can show is that, if λ̃k ≡ λ̃ for all k, then chaining is a minimal capacity effective

flexibility structure. This is consistent with the observation on the value of “completing the

chain” in [17, 21].

Proposition 3 Suppose that K = M , µj,k ≡ µ, and λ̃k ≡ λ̃ for all j, k. If for the “2-chain”

structure described in Proposition 2 we change fj,k from 1 to 0 for some j, k, then (5) is

violated.

18

Proposition 2 and Corollaries 2, 3, and 4 illustrate how the order of the tasks and servers

matters. For example, Corollaries 2, 3, and 4 require, respectively, the average adjacent

arrival rates, mean service times, or service rates not to differ too far from their overall

averages λ̄, m̄, and β̄. Thus, some “2-chain” flexibility structures may be capacity effective,

but not others. The third paragraph of Section 4 provides an example with a “2-chain”

structure which satisfies (5) but not (4). The “2-chain” structure f1,3 = f2,1 = f3,2 = f1,2 =

f2,3 = f3,1 = 1 and fj,k = 0 otherwise, is capacity effective.

5.2 Chains with arbitrary service rates

We present a general result for when 2-chaining is capacity effective, in the case when K =

M = 3 and service rates are arbitrary. As far as we know, this is the first explicit result in

such generality, as previous analytic results [9, 21] have been for systems with homogeneous

servers. The conditions in the first part of Proposition 4 quantify the intuition that in

order for 2-chaining to be desirable, no one arrival rate should be too dominant ((8) can

be rewritten to reflect this for task k) and no server should be too dominant (both (9)

and (10) can be rewritten to reflect this for server j). Moreover, the proof of Proposition

4 shows that it is not capacity effective to target all flexibility on a single demand when

condition (8) holds, or on one server when conditions (9) and (10) hold. The conditions are

actually written in terms of service rates normalized by corresponding arrival rates, i.e., we

let µ̄j,k = µj,k/λ̃k for j, k = 1, 2, 3.

The second part of Proposition 4 gives sufficient conditions under which we can choose a

specific 2-chain that is capacity effective for K = M = 3. For all servers j and pairs of tasks

(k, k′), let µj,k/µj,k′ denote the relative ability of server j at task k (relative to the server’s

ability at task k′). Condition (11) of Proposition 4 shows that if each server has the largest

19

relative ability for one pair of tasks (1,2), (2,3), or (3,1) and the smallest relative ability for

another pair, then each server should be assigned to the pair of tasks where his/her abilities

are the most balanced. This chain ensures that the servers never spend time at tasks where

they have the lowest relative ability (relative to any other task).

Proposition 4 Suppose that µj,k > 0 for j, k = 1, 2, 3 and each of the following hold:

1. for all j, j′, j′′ and k, k′, k′′ such that {j, j′, j′′}, {k, k′, k′′} = {1, 2, 3}, and µj,k ≤

min{µj′,k′ , µj′′,k′′}, either

µ̄j′,k′ ≤ µ̄j′′,k′′

(
µ̄j,k + µ̄j′′,k
µ̄j′′,k′′ + µ̄j′′,k

)
or µ̄j′′,k′′ ≤ µ̄j′,k′

(
µ̄j,k + µ̄j′,k
µ̄j′,k′ + µ̄j′,k

)
; (8)

2. for all j, j′, j′′ and k, k′, k′′ such that {j, j′, j′′}, {k, k′, k′′} = {1, 2, 3}, and µj,k ≥

max{µj′,k′ , µj′′,k′′}, either

µ̄j′,k′ ≥ µ̄j,k

(
µ̄j,k′′ + µ̄j′′,k′′

µ̄j,k + µ̄j,k′′

)
or µ̄j′′,k′′ ≥ µ̄j,k

(
µ̄j,k′ + µ̄j′,k′

µ̄j,k + µ̄j,k′

)
; (9)

3. for all j, k = 1, 2, 3, ∑
j′ 6=j

µ̄j′,k ≥
∏

k′ 6=k µ̄j,k′∑
k′ 6=k µ̄j,k′

. (10)

Then a 2-chain flexibility structure is capacity effective. In particular, if

µ2,1

µ2,2
≤ µ1,1

µ1,2
≤ µ3,1

µ3,2
,

µ3,2

µ3,3
≤ µ2,2

µ2,3
≤ µ1,2

µ1,3
,

µ1,3

µ1,1
≤ µ3,3

µ3,1
≤ µ2,3

µ2,1
,

 (11)

then (4) and (5) hold for the 2-chain flexibility structure with the non-zero values of fj,k

being given by f1,1 = f1,2 = f2,2 = f2,3 = f3,3 = f3,1 = 1.

20

5.3 Targeted Flexibility

It is not true that (4) and (5) only hold if the flexibility structure is a chain. Consider the

following example. Let M = K = 2, µj,k = 1 for all j, k and λ̃1 = 1 − 2ε, λ̃2 = 1 − ε for

some 0 < ε < 1/2. Now, for this example the “2-chain” structure and full flexibility are

identical, with γ̄ = 2/(2− 3ε). If we set f2,1 = 0, then (4) and (5) still hold. However, if we

set f1,2 = 0, then γ∗({2}) = γ∗({1, 2}) = 1/(1− ε), and thus both (4) and (5) are violated.

This discrepancy is due to the unbalanced demand.

The above idea can be generalized to the following result, which can be thought of as the

other extreme from balanced demand. The resulting flexibility structure is in some sense

the opposite of chaining: all servers must be trained for task 1, while M − 1 servers are

each trained for a different one of the remaining tasks (see Figure 4 for an example with

K = M = 5). It is instructive to note that this structure requires fewer skills than the

“2-chain” structure.

Proposition 5 Suppose K = M > 2, µj,k ≡ µ for all j, k, λ̃1 > (M − 1)µ, and
∑K

i=1 λ̃i <

Mµ.

(i) The structure fj,1 = 1, j = 1, . . . ,M , fj,j = 1, j = 2, . . . ,M , and fj,k = 0 otherwise, is

capacity effective.

(ii) The “2-chain” structure described in Proposition 2 does not satisfy (4).

As for the chaining structures in the previous subsections, we can generalize Proposition 5

to arbitrary service rates in the case when there are three servers and tasks. In what follows

we use the convention that 0/0 = 0 and x/0 = ∞ when x > 0. Note that conditions (13)

and (14) imply that server 3 (2) has the largest relative ability at task 3 (2) (relative to

the server’s ability at task 1), and that condition (12) implies that server 2 (3) can cover

21

the work at task 2 (3) while also helping with task 1. Moreover, Proposition 6 is consistent

with Proposition 5 in that when µj,k = µ for all j, k (the case considered in Proposition 5),

conditions (13) and (14) always hold, and condition (12) holds if λ̃1 is large relative to λ̃2, λ̃3.

Proposition 6 If K = M = 3, µ2,1, µ3,1 > 0,

µ̄1,1 + µ̄3,1

µ̄3,1 + µ̄3,3

<
µ̄2,2

µ̄3,3

<
µ̄2,1 + µ̄2,2

µ̄1,1 + µ̄2,1

, (12)

µ3,3

µ3,1

≥ max

{
µ1,3

µ1,1

,
µ2,3

µ2,1

}
, and (13)

µ2,2

µ2,1

≥ max

{
µ1,2

µ1,1

,
µ3,2

µ3,1

}
, (14)

then the flexibility structure

fj,k =

 1 if (j, k) ∈ {(1, 1), (2, 1), (3, 1), (2, 2), (3, 3)},

0 otherwise

in which all servers are trained at task 1 is capacity effective.

We now consider the case where one server dominates. Consider the following example.

Suppose that M = K = 3, λ̃1 = λ̃2 = λ̃3 = 3.5, and the service rates are µ1,k = µ3,k = 1

for all k and µ2,k = 10 for all k. If we set f1,1 = f3,3 = f2,1 = f2,2 = f2,3 = 1 and all

other fj,k = 0, then it is not difficult to show that (4) and (5) hold. If we use the “2-chain”

structure, i.e., f1,1 = f1,2 = f2,2 = f2,3 = f3,3 = f3,1 = 1, and fj,k = 0 otherwise, we see that

(4) and (5) are both violated.

We can generalize this example. If one server is sufficiently dominant in terms of its

service rate, we have the following result, similar in spirit to Proposition 5. In this case, one

should simply train the dominant server for all tasks, with the remaining servers trained for

exactly one task (see Figure 5 for one example of this with K = M = 5). Not only does this

result in a capacity effective flexibility structure, it requires fewer skills than chaining.

22

Proposition 7 Suppose K = M > 2, µj,k = µ, j = 2, . . . ,M , k = 1, . . . , K. In addition,

assume that λ̃i = λ̃, i = 1, . . . , K. If, for some d > K + 1, µ1,k = dµ, k = 1, . . . , K, then

(i) The structure f1,k = 1, k = 1, . . . , K, fj,j = 1, j = 2, . . . ,M , and fj,k = 0 otherwise, is

capacity effective.

(ii) The “2-chain” structure described in Proposition 2 does not satisfy (4).

Note that it is not difficult to relax the condition that K = M > 2 and d > K + 1 to

2K +M ≥ 2 and d > K − 1 in part (i) of Proposition 7.

We can also give the following result for arbitrary service rates, similar in spirit to Propo-

sition 6. Note that conditions (16) and (17) imply that server 2 (3) is relatively better at

task 2 (3) than server 1 (relative to tasks 1,3 (1,2)), and condition (15) implies that server

1 can cover the work at task 1 while also helping with tasks 2 and 3. Moreover, Proposition

8 is consistent with Proposition 7 in that when µ1,k = dµ and µj,k = µ for j = 2, . . . ,M and

all k and λ̃i = λ̃ for all i (the case considered in Proposition 7), conditions (16) and (17)

always hold, and condition (15) holds if d > 1, so that µ1,k is large relative to µ2,k, µ3,k for

all k.

Proposition 8 If K = M = 3, µ1,2, µ1,3 > 0,

µ̄1,1 > max

{
µ̄2,2

(
µ̄1,1 + µ̄1,3

µ̄1,3 + µ̄3,3

)
, µ̄3,3

(
µ̄1,1 + µ̄1,2

µ̄1,2 + µ̄2,2

)}
, (15)

µ3,2

µ3,3

≤ µ1,2

µ1,3

,
µ2,3

µ2,2

≤ µ1,3

µ1,2

, (16)

µ1,1

µ1,2

≥ µ2,1

µ2,2

, and
µ1,1

µ1,3

≥ µ3,1

µ3,3

, (17)

then the flexibility structure

fj,k =

 1 if (j, k) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)},

0 otherwise

in which server 1 is trained at all tasks is capacity effective.

23

The results to this point have given scenarios that suggest either chaining or concentrating

all training on either one demand type or one server. For these extremes, we provide explicit

results for the flexibility structures to be capacity effective. This shows that capacity effective

flexibility structures could range from being balanced like the “2-chain” structure to focusing

all flexibility (beyond satisfying base demand) on one task or on one server. To enumerate all

intermediate possibilities and study their performance is impractical, but one can envision

that anything between these two extremes would be possible, depending on the level of

heterogeneity.

5.4 The “N” and “W” structures

In this subsection, we discuss two other flexibility structures for small, parallel systems that

have been studied in the call center literature. The first is sometimes referred to as the “N”

structure, see Figure 7. It has two servers, two tasks (M = K = 2), and a flexibility structure

Tasks	
 Servers	

Figure 7: The “N” structure

Tasks	
 Servers	

Figure 8: The “W” structure

where one server is trained for both tasks, the other for just one task. Such a structure has

arisen in a number of settings, in particular the bilingual call center model of Stanford and

Grassman [26]. This model has also been studied by Shumsky [25]. The following result

24

generalizes part (i) of Proposition 7 to more general arrival and service rates when there are

two servers and tasks.

Proposition 9 Assume that the servers and tasks are labelled such that µ1,1 > 0, µ2,2 > 0,

µ1,2 > 0, µ1,1µ2,2 ≥ µ2,1µ1,2, and λ̃1/µ1,1 < λ̃2/µ2,2. The “N” flexibility structure given by

f1,1 = f1,2 = f2,2 = 1 and f2,1 = 0 is capacity effective.

The interpretation of the above result is quite straightforward. First, to achieve maximum

throughput, server 2 should be at task 2, server 1 at task 1 (unless idle). To be able to shift

capacity in an appropriate manner, the load at task 2 using server 2 only must be greater

than the load at task 1 for server 1 only. Here, server 1 must be able to serve task 2, but

fluctuations in the load at task 1 can be handled by server 1 alone. It is easy to see that the

wrong “N” structure may achieve arbitrarily poor capacity. Fix λ̃1 = λ̃2 = µ2,1 = µ2,2 = 1.

Also, let µ1,1 and µ1,2 go to zero. Here, the assumption λ̃1/µ1,1 < λ̃2/µ2,2 is violated. Then

γ∗({1, 2}) for the “N” structure described above approaches zero, while if we change f2,1 to

1 and f1,2 to 0 (also an “N” structure), then γ∗({1, 2}) goes to 1/2.

The second flexibility structure from the call center literature that we consider is some-

times called the “W” structure, see Figure 8 (see also Saghafian et al. [23] for a detailed study

of the “W” structure). It has M = 2 servers and K = 3 tasks, with each server trained

for two tasks in such a way that all three tasks are covered. Without loss of generality, we

assume that the servers and tasks are labelled such that

µ1,3

µ2,3

≤ µ1,2

µ2,2

≤ µ1,1

µ2,1

. (18)

25

Furthermore, we assume that µ1,1 > 0, µ1,2 > 0, µ2,2 > 0, µ2,3 > 0, and the following

inequalities hold:

λ̃1

µ1,1

<
λ̃2

µ2,2

+
λ̃3

µ2,3

, (19)

λ̃3

µ2,3

<
λ̃1

µ1,1

+
λ̃2

µ1,2

. (20)

In light of (18), this flexibility structure corresponds to training both servers for the task

that has the most balanced rates between servers, and having only server 1 serve task 1 and

only server 2 serve task 3. The assumptions (19) and (20) require the load at each of the

tasks where there is only one server to be strictly less than the load at the remaining two

tasks if served by the other server. This means that the two servers must both work at task

2 at optimal throughput levels. This gives simple sufficient conditions in terms of the system

parameters.

Proposition 10 Let M = 2 and K = 3. Suppose that µ1,1 > 0, µ1,2 > 0, µ2,2 > 0, µ2,3 > 0,

and the service rates satisfy (18)-(20). The “W” structure defined by f1,1 = f1,2 = f2,2 =

f2,3 = 1 and f2,1 = f2,3 = 0 is capacity effective.

Note that an arbitrarily defined “W” structure can be significantly worse than that

described above, so that the labeling of tasks and servers (18) and the assumptions (19)-(20)

are crucial. Let λ̃1 = λ̃2 = λ̃3 = 1 and begin with µj,k = 1 for j, k = 1, 2, 3. If we change µ1,1

to be close to zero, then the capacity will be close to zero. Here, (18) and (19) are violated.

Choosing any other “W” structure that has f1,1 = 0 results in capacity 2/3. If we instead

let µ1,2 be close to zero, then the capacity will be close to 1/2, compared to the capacity of

2/3 for any “W” structure with f1,2 = 0. In this case, (18) is violated.

It appears that it would be quite straightforward to use (4) and (5) to quickly evaluate

other structures.

26

6 Concluding Remarks

We have provided means to identify flexibility structures that are throughput optimal and

adaptable to changes in the environment, manifested by perturbations in arrival and/or

service rates. Our approach is not only intuitive but is also computationally efficient. To

accomplish this, we have introduced the notion of a bottleneck set of tasks to queueing

networks with flexible, heterogeneous servers, so that the bottleneck set may include several

queues and servers. As a result, we have identified minimal conditions that should be required

of any flexibility structure, if possible. We have further specialized these results to obtain

insights for more specific structures, including chains.

Our research yields the following managerial insights:

1. As in a system with dedicated servers, the bottleneck set limits system performance

(in this case throughput and adaptation to changes in the environment). The bottle-

neck set may span several tasks and may not be obvious a priori, however it is easily

determined by solving several associated LPs.

2. It is desirable for the unique bottleneck set to be the entire set of tasks because this

allows capacity to be shifted to compensate for fluctuations in demand and/or service

rates.

3. When demand and service ability are sufficiently balanced, skill chaining is known

to be an effective strategy, but it is suboptimal in more heterogeneous settings. We

have provided explicit criteria for determining precisely when chaining and other cross

training strategies are capacity effective (i.e., throughput optimal and adaptable to

changes in the environment), including the well known “N” and “W” structures defined

in the call center literature.

27

In terms of future work, one obvious question is: given a number of flexibility structures

that are all capacity effective, how could one make a more refined choice? This is a topic of

interest, see in particular the work of Aksin and Karaesmen [2] and Iravani et al. [18, 19, 20].

To this end, we are currently interested in how the work in this paper can be leveraged into

developing metrics that compare flexibility structures. Here, one is typically interested in

performance metrics such as (mean) waiting times, holding costs, etc.

Acknowledgments

This research was supported by the National Science Foundation under Grant CMMI-

0856600. The research of the third author was also supported by the Natural Sciences

and Engineering Research Council of Canada.

References

[1] O.Z. Aksin, M. Armony, and V. Mehrotra. The modern call-center: A multi-disciplinary

perspective on Operations Management research. Production and Operations Manage-

ment, 16:665-688, 2007.

[2] O.Z. Aksin and F. Karaesmen. Characterizing the performance of process flexibility

structures. Operations Research Letters, 35:477-484, 2007.

[3] O.Z. Aksin, F. Karaesmen, and E.L. Ormeci. Workforce cross-training in call centers

from an Operations Management perspective. Chapter 8 in Workforce Cross Training

Handbook, ed. D. Nembhard, CRC Press, 2007.

[4] S. Andradóttir, H. Ayhan, and D.G. Down. Dynamic server allocation for queueing

networks with flexible servers. Operations Research, 51:952-968, 2003.

28

[5] S. Andradóttir, H. Ayhan, and D.G. Down. Compensating for failures with flexible

servers. Operations Research, 55:753-768, 2007.

[6] R. Atar. Scheduling control for queueing systems with many servers: Asymptotic opti-

mality in heavy traffic. Annals of Applied Probability, 15:2606-2650, 2005.

[7] A. Bassamboo, R.S. Randhawa, and J.A. Van Mieghem. A little flexibility is all

you need: On the asymptotic value of flexible capacity in parallel queueing systems.

Preprint, 2011.

[8] M. Bramson and R.J. Williams. Two workload properties for Brownian networks.

Queueing Systems, 45:191-221, 2003.

[9] M.C. Chou, G.A. Chua, C.-P. Teo, and H. Zheng. Design for process flexibility: Effi-

ciency of the long chain and sparse structure. Operations Research, 58:43-58, 2010.

[10] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review, and

research prospects. Manufacturing and Service Operations Management, 5:79-141, 2003.

[11] S.C. Graves and B.T. Tomlin. Process flexibility in supply chains. Management Science,

49:907-919, 2003.

[12] S. Gurumurthi and S. Benjaafar. Modeling and analysis of flexible queueing systems.

Naval Research Logistics, 51:755-782, 2004.

[13] I. Gurvich and W. Whitt. Queue-and-idleness-ratio controls in many-server service

systems. Mathematics of Operations Research, 34:363-396, 2009.

[14] J.M. Harrison. Brownian models of open processing networks: Canonical representation

of workload. Annals of Applied Probability, 10:75-103, 2000.

[15] J.M. Harrison. Correction - Brownian models of open processing networks: Canonical

representation of workload. Annals of Applied Probability, 13:390-393, 2003.

29

[16] J.M. Harrison and M.J. López. Heavy traffic resource pooling in parallel-server systems.

Queueing Systems, 33:339-368, 1999.

[17] W.J. Hopp, E. Tekin, and M.P. van Oyen. Benefits of skill chaining in serial production

lines with cross-trained workers. Management Science, 50:83-98, 2004.

[18] S.M.R. Iravani, B. Kolfal, and M.P. van Oyen. Call-center labor cross-training: It’s a

small world after all. Management Science, 53:1102-1112, 2007.

[19] S.M.P. Iravani, B. Kolfal, and M.P. van Oyen. Capability flexibility: A decision support

methodology for parallel service and manufacturing systems with flexible servers. IIE

Transactions, 43:363-382, 2011.

[20] S.M. Iravani, M.P. van Oyen, and K.T. Sims. Structural flexibility: A new perspective

on the design of manufacturing and service operations. Management Science, 51:151-

166, 2005.

[21] W.C. Jordan and S.C. Graves. Principles on the benefits of manufacturing process

flexibility. Management Science, 41:577-594, 1995.

[22] W.C. Jordan, R.R. Inman, and D.E. Blumenfeld. Chained cross-training of workers for

robust performance. IIE Transactions, 36:953-967, 2004.

[23] S. Saghafian, M.P. van Oyen, and B. Kolfal. The “W” network and the dynamic control

of unreliable flexible servers. IIE Transactions, 43:893-907, 2011.

[24] M. Sheikhzadeh, S. Benjaafar, and D. Gupta. Machine sharing in manufacturing sys-

tems: Flexibility versus chaining. International Journal of Flexible Manufacturing,

10:351-378, 1998.

[25] R.A. Shumsky. Approximation and analysis of a queueing system with flexible and

specialized servers. OR Spectrum, 26:307-330, 2004.

30

[26] D.A. Stanford and W.K. Grassmann. Bilingual server call centres. Analysis of Com-

munication Networks: Call Centres, Traffic and Performance, D. R. McDonald and S.

R. E. Turner, editors. Fields Institute Communications, 31-47, 2000.

[27] A.L. Stolyar. Optimal routing in output-queued flexible server systems. Probability in

the Engineering and Informational Sciences, 19:141-189, 2005.

A Relation to Complete Resource Pooling

The allocation LP considered in this paper is closely related to the Static Planning Problem

given in Definition 4.1 of Bramson and Williams [8] (this problem was introduced earlier by

Harrison and López [16] and Harrison [14, 15]). If the inequality in (1) is replaced by an

equality (which can be done without loss of generality), the allocation LP and the Static

Planning Problem can be shown to be equivalent. The analysis in [8] continues under the

assumption of heavy traffic, which by their definition means that the Static Planning Problem

has a unique optimal solution with value 1 (corresponding to γ∗ = 1 for our allocation LP).

They then show that the resulting diffusion scaled workload process has reduced dimension.

If the resulting scaled workload process is one dimensional, it is said that “complete resource

pooling” (CRP) has taken place.

To connect to our results, first note that we do not require a unique solution to the

allocation LP. So, for example, let N = K = 3 (parallel servers), µj,k = 1, and λk = 1 for

j, k = 1, 2, 3. For the flexibility structure, choose the 2-chain f1,1 = f1,2 = f2,2 = f2,3 =

f3,3 = f3,1 = 1, and f1,3 = f2,1 = f3,2 = 0. We have an infinite number of solutions to the

allocation LP such that (4) holds with γ∗ = γ̄ = 1, and (5) also holds. The non-uniqueness

of the solution means that CRP cannot be demonstrated. If we modify this example so that

µ1,3 = µ2,1 = µ3,2 = 2, λ1 = λ2 = 0.95, λ3 = 1.1, and f3,1 = 0, then the allocation LP

31

has a unique optimal solution with γ∗ = 1, so the heavy traffic assumption of [8] holds, and

CRP can be demonstrated. However, here (4) does not hold as γ̄ ≈ 1.95, and hence this

structure does not achieve the maximum possible capacity. From these examples, we see

that in general, (4) and (5) do not imply CRP, and CRP does not imply (4). That CRP

implies (5) is obvious. This is not to say that there are not cases where the two conditions

coincide. If we return to the original service rates of µj,k = 1, j, k = 1, 2, 3, but set λ1 = 2.8,

λ2 = 0.1, λ3 = 0.1, f1,1 = f2,1 = f3,1 = f2,2 = f3,3 = 1, and f1,2 = f3,2 = f1,3 = f2,3 = 0,

we see that γ̄ = γ∗ = 1, so (4) holds. It is also straightforward to check that (5) holds.

The solution to the allocation LP is unique, and from there it is not difficult to see that the

heavy traffic assumption of [8] holds and CRP can be demonstrated.

The observations above are consistent with work in Stolyar [27], where it is shown that for

a system of parallel queues (i.e., N = K), then if there is a unique solution to the allocation

LP with γ∗ = 1 and the graph that has an arc between a node representing server j and a

node representing task k is a fully connected tree (no cycles are permitted), then CRP occurs.

Any flexibility structure satisfying (5) has a subgraph that is a fully connected tree (see the

proof of Theorem 1). In some cases, a tree structure may satisfy (4) and (5) (for one example,

see Proposition 5), but in general it does not (see Proposition 2). Atar [6] and Gurvich and

Whitt [13] show that CRP can occur if the allocation LP does not have a unique solution,

but they both require that all solutions have a tree structure. The additional structure in

our case is due to the desire to protect against changes in the environment (i.e., changes in

the means of the underlying distributions), rather than to protect against variability due to

(unchanging) underlying distributions. The structures satisfying (4) and (5) protect against

both (see Theorems 1 and 2 and also the Introduction, where we discuss that our main goal

is to look at effective design in the face of a changing environment, in the spirit of [22]).

32

