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Abstract

In this paper we study a traffic intersection with vehicle-actuated traffic signal control. Traffic
lights stay green until all lanes within a group are emptied. Assuming general renewal arrival
processes, we derive exact limiting distributions of the delays under Heavy Traffic (HT) condi-
tions. Furthermore, we derive the Light Traffic (LT) limit of the mean delays for intersections with
Poisson arrivals, and develop a heuristic adaptation of this limit to capture the LT behaviour for
other interarrival-time distributions. We combine the LT and HT results to develop closed-form
approximations for the mean delays of vehicles in each lane. These closed-form approximations
are quite accurate, very insightful and simple to implement.

Keywords: delays, intersection, vehicle-actuated traffic signals, polling, light traffic, heavy traf-
fic, approximation

1 Introduction

Traffic signals play an important part in the infrastructure of towns and cities all over the world, and
waiting before a red traffic light has become an unavoidable nuisance in everyday life. It is obvious
that it is important to find optimal settings, i.e. green and red times, for signalised intersections. When
evaluating the quality of traffic signal settings, the most commonly used criterion for optimality is a
weighted average of the expected vehicle delays. Surprisingly, however, the most commonly used
formulas for calculating the mean delays are based on major simplifications of the actual situation
encountered in reality (see, e.g., [8, 33]). On the other hand, for most realistic cases hardly any
good alternatives exist. Typical traffic lights settings can be divided into three strategies: fixed cycle,
vehicle-actuated, and traffic-actuated signals. The fixed-cycle policy for signalised intersections is
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the oldest strategy, defining fixed red, amber and green times. Vehicle-actuated traffic signals have
flexible green phases with minimum and maximum green times. Detectors gather information about
the presence of vehicles at the different traffic flows and use this information to determine whether
the best option is to stay green, or switch to an all-red phase. Traffic-actuated signals are much like
vehicle-actuated signals, with the additional possibility that actual queue lengths are determined. The
combined information about all queue lengths can be used to create more sophisticated traffic signal
settings. In the present paper we study a signalised intersection with vehicle-actuated, exhaustive
traffic control. The policy is exhaustive, because a green phase ends as soon as no vehicle is present in
any flow that faces a green light. The main advantage of an exhaustive control policy is its efficiency,
due to the fact that the traffic lights do not turn red until all vehicles in the corresponding flows
have left. This implies that the exhaustive policy minimises the mean total amount of unprocessed
work in the system, i.e., the total time required by all vehicles present at the intersection to discharge
at the corresponding saturation flow rates. Newell [26] argues that, for isolated intersections, an
exhaustive control policy should be preferred over alternative strategies. Nevertheless, a well-known
disadvantage of the exhaustive control policy is its unfairness with respect to vehicles in flows where
relatively few vehicles arrive. For this reason, in practice often time-limited control policies are used.

Although the model in the present paper is vehicle-actuated, we will give a short literature review
about fixed-cycle traffic signals first. Intersections based on a fixed cycle have been studied since a
long time. One of the first, and perhaps still the most influential and practically applied papers, is
written by Webster [40] who analyses a fixed-cycle traffic-light queue. Although more sophisticated
analyses have appeared throughout the years (cf. [18, 23, 24, 37]), his formula for the mean delay is
still used in most traffic engineering manuals. The present paper does not focus on settings based on
a fixed cycle or on traffic-actuated signals, but on vehicle-actuated traffic signal control. Considering
this is the most commonly used control type nowadays, it is surprising how little mathematical liter-
ature is available to analyse a typical, realistic vehicle-actuated signalised intersection. The earliest
literature on vehicle-actuated systems dates from the early 1960s when Darroch et al. [12] analysed
a system consisting of two intersecting Poisson traffic streams that are served exhaustively. A model
with two lanes that does not assume Poisson input has been studied by Lehoczky [19], who uses an
alternating priority queueing model. Newell [25] analyses an intersection with two one-way streets
using fluid and diffusion queueing approximations. In [27], Newell and Osuna study a four-lane in-
tersection where two opposite flows face a green light simultaneously. A variation of the two-lane
intersection is introduced by Greenberg et al. [16], who analyse mean delays on a single rail line that
has to be shared by trains arriving from opposite directions. This model is extended by Yamashita
et al. [42], who study alternating traffic crossing a narrow one-lane bridge on a two-lane road. In
many of the discussed papers traffic is modelled as fluid passing through the road. These types of
approximations are fairly accurate when the traffic intensity is relatively high, but do not perform very
well if there is a lot of variation in the arrival or departure processes. Vlasiou and Yechiali [39] use a
different approach, modelling a traffic intersection as a polling system, consisting of multiple queues
with an infinite number of servers visiting each queue simultaneously. A disadvantage that all of the
aforementioned papers have in common, is that the methods can be applied only to situations that are
significant simplifications of modern intersections encountered in practice. Most of the papers focus
on two or four lanes only, and Newell and Osuna [27] have written one of the few papers studying an
intersection where multiple flows of vehicles can receive a green light simultaneously. Haijema and
Van der Wal [17] study a model that allows for multiple groups of different flows, but their approach
uses a Markov Decision Problem (MDP) formulation, which does not lead to closed-form, transpar-
ent expressions for the mean delay that can be used for optimisation purposes. Summarising, in the
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literature on vehicle-actuated traffic signals, either the models are very simplified versions of reality,
or the resulting algorithm or expression to determine the mean delays is so complex that it cannot be
implemented for real-life intersections. Additional advantages, apart from the comprehensiveness, of
a closed-form expression for the mean delay, is that it is perfectly suitable for optimisation purposes,
and that it can easily be adapted to extensions of the model discussed in the present paper.

The goal of this paper is to provide a comprehensive, novel analysis for traffic intersections with a
vehicle-actuated, exhaustive control policy. The model in the present paper is more realistic than
most vehicle-actuated models, in the sense that we allow combinations of multiple flows to receive a
green light simultaneously, we take more types of randomness into account (e.g., in interarrival times
and interdeparture times), and we do not limit ourselves to Poisson arrivals. The main contribution
of the paper is twofold. Firstly, we capture the limiting behaviour of the model under Light Traffic
(LT) and Heavy Traffic (HT) conditions. The HT results give insight into the system behaviour when
the intersection becomes saturated, which makes them very usable by themselves. The LT results
describe the system when it is hardly exposed to any traffic at all. These results are mostly interesting
because they form an essential building block for the second main contribution of the paper, a closed-
form approximation for the mean delay. This approximation is created using an interpolation between
the LT and HT limits, which results in a comprehensive expression that is very insightful, simple to
implement, and suitable for optimisation purposes.

We use a polling model to describe the traffic intersection. A polling model is a queueing system
with multiple queues of customers, served by a single server in a cyclic order. The switch of the
server from one queue to the next requires some (possibly random) time, and is called a switch-over
time. An advantage of using a polling model, with customers representing the vehicles, is that we can
model randomness in the interarrival times, but also in the service times, corresponding to the times
between two successive vehicles as they pass the stop line. When considering the features of a polling
model, it seems like the natural way to model a traffic intersection. However, traffic intersections do
exhibit features that have not been studied in the polling literature before, which impels us to consid-
erably extend the queueing analysis of these systems. In particular, the feature that multiple queues
(corresponding to the different traffic flows) should be allowed to receive service simultaneously has
not been investigated yet in the huge literature on polling systems (for good surveys on polling sys-
tems and their applications, see, for example, [3, 20, 31, 38]). The main reason why it is difficult to
analyse a polling system with simultaneous service of multiple queues, is that the system loses the
so-called branching-property. We do not discuss this property in more detail here, but we just men-
tion that Resing [30] and Fuhrmann [14] have shown that for polling models satisfying this property,
performance measures like cycle time distribution and waiting time distributions can be obtained. If
this branching property is, however, not satisfied, the corresponding polling model defies an exact
analysis except for some special (two-queue or symmetric) cases. In the present paper we show that,
despite the fact that the branching property is not satisfied, the delays can still be studied under LT
and HT conditions. Furthermore, using these LT and HT results we propose an accurate closed-form
approximation of the mean delay for a signalised intersection with vehicle-actuated, exhaustive traffic
control.

The structure of the present paper is as follows. In the next section we present an outline of the model
and describe in more detail how a traffic intersection can be modelled using a polling model with
simultaneous service of multiple queues. The notation required for the remainder of the paper is also
introduced in Section 2. In Section 3 we study the distribution of the delays under Heavy Traffic
conditions. This means that we increase the arrival intensities and, hence, the load of the system until
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it reaches the point of saturation. In Section 4 we study the behaviour of the system under Light
Traffic conditions. It goes without saying that this situation is rather opposite to the previous section,
and mean delays of vehicles in an (almost) empty system are analysed. Using the mean delays under
LT conditions, and the mean delays under HT conditions, we develop interpolations between these two
limits in Section 5. These interpolations can be used as approximations for the mean delay under any
system load. In Section 6 we discuss the accuracy of the approximations and show numerical results
for three intersections, located in The Netherlands. We finish with some conclusions and topics for
further research.

2 Model description and notation

We model the traffic intersection as a polling system. A typical polling system consists of N queues
attended by a single server in a cyclic order. Each flow of vehicles, sometimes referred to as stream,
corresponds to a queue in the polling system. Note that traffic approaching the intersection from the
same direction, sharing one lane, but with different destinations (e.g., flow 9 in Figure 1), is modelled
as one single queue, whereas the same situation with two different lanes (e.g., flows 1 and 2) is
modelled as two separate queues. The main contribution of the present paper is that we extend the
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Figure 1: An example of an intersection with traffic approaching from four directions.

standard polling model by dividing the queues into groups that are served simultaneously, which turns
out to complicate the queueing analysis significantly. We impose the restriction that each flow can
be part of only one group. Note that the Highway Capacity Manual 2000 (HCM, [33]) often does
not use the terms “flow” or “stream”, but prefers lane group, defined as a set of lanes established
at an intersection approach for separate capacity and level-of-service analysis. We will not adopt
this terminology, except for a few times in this section, because it might be confused with a group
(or combination) of non-conflicting flows that receive a green light simultaneously. A cycle consists
of multiple phases, where groups of non-conflicting flows receive the right-of-way simultaneously.
The switch-over times in the polling model correspond to the all-red times of a traffic intersection.
Adopting the terminology used in the polling literature, we refer to the green periods as visit times,
i.e., the times that the server visits a group of queues. Similarly, the red period of a group of flows may
be referred to as intervisit time of that group. In the present paper we assume that the control policy,
which is called service discipline in polling literature, is exhaustive service. Since multiple queues are
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served simultaneously, exhaustive service implies that a green period only ends when all queues in the
corresponding group are empty. The N flows of the intersection are divided into a number of groups,
denoted by M . Each group, say group g = 1, . . . ,M , consists of Ng nonconflicting flows of vehicles.
We assume that each flow belongs to exactly one group, so

∑M
g=1 Ng = N . Denote by Rg the all-red

time starting at the end of the green period of group g, denoted by Gg. The total all-red time in a cycle,
denoted by R, equals R =

∑M
g=1 Rg. Throughout this paper, we assume that the all-red times Rg are

independent random variables. In reality, all-red times are generally deterministic, which simplifies
many results obtained in this paper.

The times between two consecutive vehicles (in the same flow) crossing the stop line are generally
called departure headways and will be denoted by Bi , i = 1, . . . , N . In the polling model, these
headways correspond to service times of customers, but in the literature on traffic signals it is more
common to use the reciprocal, 1/E[Bi ], which is referred to as discharge rate or saturation flow rate.
An advantage of adopting a polling model, is that it allows for randomness in the headways, which
is generally ignored in the literature on traffic signals. This randomness enables us to distinguish
between slow and fast, or between big and small vehicles. An important aspect of our model, is
that we make a distinction between the headways of queued vehicles, and vehicles approaching the
intersection without queue in front of them. If a queue clears before the green period terminates, all
vehicles that arrive during the remainder of this visit period pass through the system and experience
no delay whatsoever. This assumption is quite common in the literature on traffic light queues to
distinguish between headways of cars that need to accelerate and cars that arrive at full speed (see, e.g.,
[34, 37]), but it is not common in the polling literature. Furthermore, we assume that the headways
Bi are independent of each other and of all other random variables in the model. This assumption is
generally not satisfied in practice, because the first few vehicles might require a slightly longer time
to accelerate. However, this can be circumvented by incorporating any systematic, additional delay
of the first cars crossing the intersection after an all-red phase in the preceding all-red time (Rg−1 for
vehicles belonging to group g = 1, . . . ,M).

We assume that the interarrival times of vehicles, corresponding to customers in the polling system,
are independent, generally distributed random variables Ai , i = 1, . . . , N . The arrival rates are
denoted by λi = 1/E[Ai ], i = 1, . . . , N . The main performance measures of interest in the present
paper are the delays Wi of vehicles in flow i . Note that for a queued vehicle, the delay is the waiting
time plus Bi , whereas vehicles approaching a clear intersection during a green period experience no
delay at all. We study the delay as a function of the total traffic load offered to the system, denoted
by ρ. The load of a particular flow, say flow i , is the product of the arrival rate and the mean departure
headway: ρi = λiE[Bi ]. The total load is the sum of the loads of the different flows: ρ =

∑N
i=1 ρi .

The HCM refers to ρi as the flow ratio of lane group i , being the ratio of the actual flow rate (λi ) to
the saturation flow rate (1/E[Bi ]) for lane group i at an intersection. Since, starting from the next
section, we consider the delay as a function of ρ, the total amount of traffic offered to the system, we
have to specify in more detail how the scaling takes place. The traffic intensity is varied by keeping
the headways Bi fixed, and scaling the interarrival times Ai (or arrival rates λi ). We denote unscaled
quantities by putting a hat on the scaled quantities. The settings that we call “unscaled” correspond
to the situation where ρ̂ =

∑N
i=1 ρ̂i = 1, which has the advantage that ρ̂i can be interpreted as the

fraction of the total traffic load that is routed to flow i . This means that, if the total load equals ρ, the
actual flow ratio of flow i is ρi = ρ̂i × ρ. Hence, the unscaled interarrival times Âi are the interarrival
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times that lead to a system with load 1:

N∑
i=1

ρ̂i =

N∑
i=1

λ̂iE[Bi ] =

N∑
i=1

E[Bi ]

E[ Âi ]
= 1.

The other scaled/unscaled quantities follow from the relation Ai = Âi/ρ. Another interesting quantity
is the departure headway of an arbitrary vehicle (in any flow), denoted by B. Since an arbitrary vehicle
arrives in flow i with probability λi/

∑N
j=1 λ j , we have

E[B] =
1∑N

j=1 λ j

N∑
i=1

λiE[Bi ] =
ρ∑N

j=1 λ j
=

1∑N
i=1 λ̂i

.

In the remainder of the paper, we use the subscripts {g, j} for flow j within group g. Without loss of
generality, we order the flows within a group according to their flow ratios: ρg,1 > ρg,2 ≥ · · · ≥ ρg,Ng .
For example, supposing that in Figure 1 flows 4 and 9 are part of group 1, and flow 4 has a higher
flow ratio than flow 9, we use the notation B1,1 = B4, and B1,2 = B9. The flows with the highest
flow ratios, flows {g, 1} for g = 1, . . . ,M , are called dominant flows, or critical lane groups in the
HCM. Since we study the limiting behaviour of the intersection as it becomes saturated, the stability
condition is an important issue for our analysis.

Theorem 2.1 The system is stable (i.e., the intersection is undersaturated) if and only if

M∑
g=1

ρg,1 < 1.

Proof:
The proof is provided in Appendix A. �

Note that only the dominant flows play a role in this stability condition. We study the steady-state of
stable systems only, so throughout the paper we assume that

0 ≤ Lρ < 1,

where L =
∑M

g=1 ρ̂g,1, i.e., the total relative load of the dominant flows. The quantity Lρ is called
the critical volume-to-capacity ratio in the HCM, defined as the proportion of available intersection
capacity used by vehicles in critical lane groups. Sometimes it is more comprehensive to use Lρ
instead of ρ, because its value is always between 0 and 1, for all stable intersections. It turns out to
be convenient to introduce ρg,• =

∑Ng
j=1 ρg, j as the load of group g, and λg,• =

∑Ng
j=1 λg, j as the total

arrival rate of group g.

Finally, the (equilibrium) residual length of a random variable X is denoted by X res, with E[X res
] =

E[X2
]/2E[X ]. See, e.g., [7], pp. 108 – 115, for more information.

3 Heavy traffic

In the present section we study an intersection with exhaustive control policy under Heavy Traffic
conditions. This means that we increase the load of the system until it reaches the point of satura-
tion. From Theorem 2.1 we learn that the critical load for which the point of saturation is reached,
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is completely determined by the dominant flows in each group: the system becomes saturated as∑M
g=1 ρg,1 → 1, which is equivalent to Lρ → 1. As the total load of the system, ρ, increases, the

green times, the cycle times and waiting times become larger and will eventually grow to infinity. For
this reason, we scale them appropriately and consider the scaled versions. Since we consider finite
all-red times, they become negligible compared to the waiting times as the load is increased. Polling
systems under HT conditions have been studied by Coffman et al. [5, 6], and by Olsen and Van der
Mei [28, 29]. The key observation in these papers, is the occurrence of a so-called Heavy Traffic Aver-
aging Principle (HTAP). When a polling system becomes saturated, two limiting processes take place.
Let V denote the total workload of the system. As the load offered to the system, ρ, tends to 1, the
scaled total workload (1− ρ)V tends to a Bessel-type diffusion. However, the work in each queue is
emptied and refilled at a faster rate than the rate at which the total workload is changing. This implies
that during the course of a cycle, the total workload can be considered as constant, while the loads
of the individual queues fluctuate like a fluid model. The HTAP relates these two limiting processes
and provides expressions for the stationary distributions of the scaled cycle times, switch-over times,
and waiting times. In order to derive the HT limits for traffic intersections, we introduce and analyse
a novel fluid model. Subsequently, we adapt and extend the HTAP to relate the results of this fluid
model with the original traffic intersection model.

We introduce a fluid model, with work flowing in at constant rate limρ→1/L ρg, j = ρ̂g, j/L for flow
{g, j}. The all-red times are not considered in the fluid model, because under HT conditions they be-
come negligible. A graphical illustration of the fluid model is presented in Figure 2. On the horizontal

ρ̂g,1
L − 1 ρ̂g,1

L

ρ̂g,2
L − 1

ρ̂g,2
L

ρ̂g,1
L

(
1− ρ̂g,1

L

)
c

ρ̂g,2
L

(
1− ρ̂g,1

L

)
c

ρ̂g,1
L

c
(
1− ρ̂g,1

L

)
c

︸ ︷︷ ︸
c

Figure 2: Heavy traffic fluid limits.

axis, the course of a cycle with length c is plotted. On the vertical axis, the scaled workloads in flows
{g, 1} and {g, 2} are plotted. Because the length of the green periods is determined by the dominant
flows, the system becomes saturated as

∑M
g=1 ρg,1 = Lρ → 1. A formal proof of this statement is

provided in Appendix A. For the total load offered to the system, this translates to ρ → 1
L . We (arbi-

trarily) start the cycle at the moment that the traffic lights for the flows in group g turn green. For now,
during the first part of the analysis, we assume that the amount of work at the beginning of a cycle
is fixed. This implies that the length of a cycle, denoted by c, is also fixed because it is determined
by the amount of work present at the beginning of the cycle. Throughout the cycle, work arrives with
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intensity 1/L and a fraction ρ̂g, j is directed to flow {g, j}. During the green periods, work flows out of
each stream at rate 1 as long as it is not empty. As soon as the stream is empty, it stays empty (hence,
the work flows out at rate ρ̂g, j/L) until the end of the green period. As a consequence, although the
total amount of work in the system at the end of a cycle is back to the level of the beginning of a cycle,
it varies throughout the cycle. However, if we consider the workload in dominant flows only, the total
workload remains constant, because it flows out at rate 1, and flows in at rate

∑
g ρ̂g,1/L = 1. This

result follows directly from the observation that in the fluid model, the non-dominant flows do not
contribute to the cycle length and, hence, do not influence the total workload in the dominant flows.

From the viewpoint of fluid in flow {g, j}, a cycle of length c consists of three parts. During the first
part, starting at the moment that the lights turn green, fluid starts to drain out of the system until flow
{g, j} is empty. The second part is the time between the emptying of flow {g, j} and the moment that
the dominant flow of the group, {g, 1} becomes empty and traffic lights turn red. The third part is the
red period of group g. It is easily seen that the length of this third part is

(
1− ρ̂g,1/L

)
c, and the length

of the first two parts together (the green period of group g) is ρ̂g,1
L c. Using Figure 2 we see that the

length of the first part, with flow {g, j} being non-empty, is ρ̂g, j
L

1−ρ̂g,1/L
1−ρ̂g, j /L c. We denote the lengths of

the three parts respectively by Pj , P1, and PR . The probability distribution of the delay of an arbitrary
fluid particle arriving in flow {g, j}, denoted by W fluid

g, j , can now be computed.

Theorem 3.1

W fluid
g, j

d
=

{
0 w.p. P1/c,
U × PR, w.p. (Pj + PR)/c,

(3.1)

where U is a uniformly distributed random variable on the interval [0, 1].

Proof:
We condition on the arrival epoch of an arbitrary fluid particle in flow {g, j}. With probability PR/c,
the arrival takes place during the red period. The probability that the arrival takes place during the first
part of the green period, when there is still other fluid present in flow {g, j}, is Pj/c. If the particle
arrives during the second part of the green period, when there is no fluid present in flow {g, j}, its
delay is 0. This happens with probability P1/c. So we can write:

W fluid
g, j

d
=


0 w.p. P1/c,
W green

g, j w.p. Pj/c,
W red

g, j w.p. PR/c.

A particle arriving during the first part of the green period (with length Pj ) has to wait until all the
fluid in front of it has left the system. Let the uniform random variable UG denote the fraction of Pj

that has elapsed at the arrival epoch of this particle. Then the amount of fluid left in flow {g, j} is
(1− ρ̂g, j/L)× (1−UG)Pj =

ρ̂g, j
L

(
1− ρ̂g,1/L

)
(1−UG)c. Hence,

W green
g, j

d
=
ρ̂g, j

L
(1−UG)

(
1− ρ̂g,1/L

)
c. (3.2)

The delay of a particle arriving during the red period can be analysed similarly. Let the uniform
random variable UR denote the fraction of the red period that has elapsed at the arrival epoch of this
particle. Then the amount of fluid present in flow {g, j} is ρ̂g, j

L × UR PR . The arriving particle has
to wait for this amount of fluid to drain, after it has waited for the residual red period (1 − UR)PR .
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Hence, we have

W red
g, j

d
=

(
ρ̂g, j

L
UR + (1−UR)

) (
1− ρ̂g,1/L

)
c. (3.3)

If we study (3.2) and (3.3) more carefully, we see that W green
g, j is uniformly distributed on the interval

[0, ρ̂g, j
L PR] and W red

g, j is uniformly distributed on the interval [ ρ̂g, j
L PR, PR]. Recall that W fluid

g, j
d
=W green

g, j

with probability Pj/c =
ρ̂g, j /L

1−ρ̂g, j /L PR/c =
ρ̂g, j

L (Pj + PR)/c, and W fluid
g, j

d
=W red

g, j with probability PR/c =(
1− ρ̂g, j

L

)
(Pj + PR)/c. This implies that W fluid

g, j is uniformly distributed on [0, PR] with probability
(Pj + PR)/c, and it is 0 otherwise. �

Now that we have established the distribution of the delay of a particle in the fluid model, we can find
the distribution of the scaled delay of a vehicle in the original model for the traffic intersection, under
HT conditions.

Original model. For ordinary polling models, the link between the fluid model and the polling
model under HT conditions is the Heavy Traffic Averaging Principle. This principle states that the
work in each queue is emptied and refilled at a rate that is so much faster than the rate at which the
total workload is changing, that during the course of a cycle, the total workload can be considered as
constant, while the loads of the individual queues fluctuate like a fluid model. A novel contribution
of the present paper is the adaptation and extension of the HTAP for polling systems to the traffic
intersection model. Also in this model, when the system becomes saturated, the diffusion limits of the
total workload process and the workload in the individual flows can be related using the HTAP. The
main difference is that in the fluid model for the traffic intersection, the total workload does not remain
constant, but the total workload in the dominant flows does. From the fluid model it has become clear
that the non-dominant flows do not play a role in the length of the green periods, because the dominant
flow in each group will always be the last flow that becomes empty. For this reason, we can ignore the
non-dominant flows temporarily and focus on the workload in the dominant flows only. This turns our
traffic light model into an ordinary polling model with exhaustive service. First, we define a random
variable with a Gamma distribution as a random variable with probability density function

f (t) =
1

0(α)
e−µtµαtα−1, t ≥ 0,

where 0(α) =
∫
∞

0 e−t tα−1 dt . The positive parameters α and µ are respectively the scale and rate
parameter.

When the load ρ approaches 1/L , the system becomes overloaded and the queue lengths and waiting
times tend to infinity. For this reason, we consider the scaled delay (1 − Lρ)Wg, j , which stays finite
for ρ → 1/L . Before we can formulate the main result of this section, the distribution of the scaled
delay as the HT limit is approached, we need some lemmas. Note that the proofs of these lemmas all
rely on the conjectures posed in [29]. Although these conjectures are widely accepted to be true, they
have only been proven for systems consisting of two queues (cf. [5, 6]), systems with Poisson arrivals
(cf. [28]), or for the means rather than the complete distributions (cf. [36]).

Lemma 3.2 Denote by V•,1 the amount of work in the dominant flows of the intersection, at the
beginning of a cycle. For ρ → 1/L , (1 − Lρ)V•,1 has a Gamma distribution with parameters α =

2E[R]δ/σ 2
+1 andµ = 2/σ 2, where δ =

∑M
g=1

ρ̂g,1
L (1−

ρ̂g,1
L )/2, and σ 2

=
∑M

g=1
λ̂g,1

L

(
Var[Bg,1] + ρ̂

2
g,1Var[ Âg,1]

)
.
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Proof:
By the HTAP, the total workload in the dominant flows of the system may be regarded as unchanged
over the course of a cycle. So if we regard the system with dominant flows only, Lemma 3.2 follows
directly from Olsen and Van der Mei [29], Conjecture 1. More specifically, we use the special case
of cyclic, exhaustive service to obtain the distribution of the scaled amount of work in the dominant
flows. �

Before continuing, it is important to realise the interpretation of δ. Assume, just like in Figure 2, that c
is the length of a cycle, starting at the beginning of green period Gg. Then the workload in flow {g, 1}
at the beginning of the cycle is ρ̂g,1

L

(
1− ρ̂g,1

L

)
c. The flow is empty at the moment that a fraction ρ̂g,1

L of
the cycle has passed, and at the end of the cycle it has reached the same level as at the beginning. The
mean workload in flow {g, 1} during this cycle is 1

2
ρ̂g,1

L

(
1 − ρ̂g,1

L

)
c. A summation over all dominant

flows shows that δc is the mean total workload of the dominant flows during the course of one cycle
of length c

Given the scaled amount of work in the dominant queues at the start of a green period of group g, we
can derive the distribution of the scaled cycle time (1−Lρ)C . In fact, we consider the length-biased (or
time-averaged) scaled cycle time (1− Lρ)C . If a random variable X has probability density function
FX (x), then we define the length-biased random variable X as a random variable with probability
density function fX(x) = x fX (x)/E[X ]. From renewal theory, we know that the length-biased cycle
length accounts for the fact that an arbitrary arriving vehicle arrives with a higher probability during
a long cycle, than during a short one. The length of a cycle depends on the amount of work at the
beginning of that cycle. Denote by C(x) the length of a cycle, given that a total amount of x work is
present in the dominant flows. We are now ready to formulate the second lemma, needed to find the
distributions of the scaled delays under HT conditions.

Lemma 3.3 Denote by Ig the length-biased red-time (or intervisit time) of group g, g = 1, . . . ,M .
For ρ → 1/L , we find that (1−Lρ)Ig converges in distribution to a random variable having a Gamma
distribution with parameters α = 2E[R]δ/σ 2

+ 1 and µg := 2δ/
(
σ 2(1− ρ̂g,1/L)

)
.

Proof:
The proof proceeds along the same lines as the argument given to support Conjecture 2 in [29]. It
uses Lemma 3.2 and the fact that, due to the averaging principle, the scaled workload in the dominant
flows remains effectively constant. In steady-state, we have the following relation:

δC(x) = x .

This relation can easily be verified graphically from Figure 2, because the total amount of work in
the dominant queues remains constant throughout the course of a cycle. Given a cycle length of c,
the total amount of work in the dominant queues is

∑M
g=1

ρ̂g,1
L

(
1 − ρ̂g,1

L

)
c/2 = δc. Hence, given

an amount of work x in the dominant flows, the cycle time is C(x) = x/δ. Now we use Lemma
3.2, which states that, in the HT limit, the scaled workload in the dominant flows has a Gamma
distribution with parameters α and µ. This implies that for ρ → 1/L , the scaled, length-biased cycle
time (1− Lρ)C follows a Gamma distribution with, again, scale parameter α, but with rate parameter
µδ. The distributions of the scaled length-biased intervisit times, denoted by (1 − Lρ)Ig for group
g = 1, . . . ,M , can now be determined. The intervisit time of group g is the time that the signals in
group g are red. Given that x is the amount of work present at the dominant queues at the beginning
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of a cycle, the intervisit time conditioned on x is obviously

Ig(x) = C(x)
(
1−

ρ̂g,1

L

)
.

The limiting distribution of (1−Lρ)Ig now readily follows from the limiting distribution of (1−Lρ)C .
�

Finally, we formulate the main result of the present section.

Theorem 3.4 As ρ ↑ 1/L , the scaled delay is 0 with probability ρ̂g,1−ρ̂g, j
L−ρ̂g, j

, and it is the product of a
uniformly distributed random variable on [0, 1], denoted by U , and a random variable 0I having the
same distribution as the limiting distribution of (1− Lρ)Ig, with probability 1−ρ̂g,1/L

1−ρ̂g, j /L :

(1− Lρ)Wg, j
d
→

{
0 w.p. ρ̂g,1−ρ̂g, j

L−ρ̂g, j
,

U × 0I , w.p. 1−ρ̂g,1/L
1−ρ̂g, j /L ,

(3.4)

for ρ → 1/L .

Proof:
A combination of Theorem 3.1 and Lemma 3.3 yields the desired result. The scaled intervisit time (1−
Lρ)Ig converges in distribution to a random variable having a Gamma distribution with parameters α
and µg. The HTAP states that we can simply replace PR , the deterministic red time in the fluid model,
in (3.1) by the scaled, length-biased red time in the original model, (1 − Lρ)Ig, because the random
variables U and Ig are independent. �

For the approximations developed in Section 5, the mean scaled delay for ρ → 1/L will be used.

Corollary 3.5

lim
ρ→ 1

L

(1− Lρ)E[Wg, j ] =

(
1− ρ̂g,1/L

)2

1− ρ̂g, j/L

(
E[R]

2
+
σ 2

δ

)
, (3.5)

where δ =
∑M

g=1
ρ̂g,1

L (1−
ρ̂g,1

L )/2, and σ 2
=
∑M

g=1 λ̂g,1

(
Var[Bg,1] + ρ̂

2
g,1Var[ Âg,1]

)
.

Proof:
The result immediately follows from (3.4). �

Note that any possible variations in the all-red times Rg have no influence on the mean scaled delay
under HT conditions.

Remark 3.6 For Poisson arrivals σ 2 can be simplified to σ 2
=

E[B2
•,1]

E[B•,1] , where B•,1 =
∑M

g=1 λ̂g,1 Bg,1∑M
g=1 λ̂g,1

is

the headway of an arbitrary vehicle arriving in a dominant flow.

Remark 3.7 (Convergence to the HT limit) Although the distribution of the scaled delay in the HT
limit ρ ↑ 1/L is exact, it is interesting to know how fast this limiting distribution is approached. Un-
fortunately, the analysis does not provide any insight in the speed at which the scaled delay converges
to this limiting distribution, so we have to resort to simulations. Denote by pg, j the steady-state prob-
ability that flow {g, j} is the flow from which the last departure takes place before the corresponding
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green phase Gg ends. This probability depends on ρ, the total load of the system. We have shown in
this section that, in the limiting situation, the dominant flow of each group is always the last flow to
become empty in this group. For ρ < 1/L , the fraction of green periods in which the last departure
indeed takes place from the dominant flow becomes smaller. In fact, in the LT limit one can easily
calculate the exact value of pg, j . In LT, the probability that the last vehicle in group g departs from
flow {g, j} is proportional to the arrival rates of the flows in this group. Summarising:

lim
ρ↑1/L

pg, j =

{
1 if j = 1,
0 if j > 1,

lim
ρ↓0

pg, j =
λ̂g, j

λ̂g,•
.

This implies that we can regard pg, j as a measure for how close the distribution of the scaled delay is
to the limiting distribution. In Figure 3 we show an example that illustrates how pg, j might depend
on ρ. The specific intersection chosen for this figure, has two groups of three flows each. The traffic
intensities of the flows within each group are relatively close to each other. In this situation, it takes
rather long before the probabilities pg, j converge to their limiting values for ρ → 1/L . For example,
in Figure 3 one can see that at Lρ = 0.9, the probability p2,1 (corresponding to flow 6) is less than
0.7. The fact that this value is still quite different from its limiting value 1, has a direct impact on the
distribution of the scaled delay. The (simulated) mean scaled delay (1 − Lρ)E[W2,1] at Lρ = 0.9 is
4.5, whereas limLρ↑1(1 − Lρ)E[W2,1] = 3.5. For this reason, one has to be careful when applying
the results for ρ ≈ 1/L to situations with smaller loads. In Section 6, we continue the discussion on
the numerical accuracy. For more information about the intersection which is used for Figure 3, see
Scenario V in Example 1.

Flow 1

Flow 2

Flow 3

0.0 0.2 0.4 0.6 0.8 1.0
L Ρ0.0

0.2

0.4

0.6

0.8

1.0

Group 1

Flow 4
Flow 5
Flow 6

0.0 0.2 0.4 0.6 0.8 1.0
L Ρ0.0

0.2

0.4

0.6

0.8

1.0

Group 2

Figure 3: Simulated fractions of the green periods where the corresponding flows have been the last
in their groups from which a vehicle departs before the traffic lights turn red.

4 Light traffic

In the present section we study the delay of vehicles arriving at the traffic intersection under Light
Traffic conditions, i.e., for ρ ↓ 0. In the first part of the section, we find an expression for the mean
delay of vehicles, assuming Poisson arrivals. Subsequently, we heuristically adapt this expression to
find an approximation for the mean delay for intersections with general renewal arrivals. The analysis
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of the present section follows the lines of [4], where the derivation of the LT limit of mean waiting
times for polling systems is discussed, with modifications for the specific traffic intersection model.

For the first part in this section we assume that the arrival processes in all flows are Poisson. Under
this assumption, the LT limit of the mean delay can be determined by conditioning on the arrival
epoch of an arbitrary vehicle in, say, flow {g, j}. By the LT limit of E[Wg, j ], we mean the expression
for E[Wg, j ] as a function of the load in the system, ρ, up to O(ρ) terms for ρ ↓ 0. In the following
theorem we formulate the main result for the system with Poisson arrivals.

Theorem 4.1 Under the assumption of Poisson arrivals, the LT limit of the mean delay of an arbitrary
type {g, j} vehicle is

E[W LT,Poisson
g, j ] = ρg, j

(
E[Bres

g, j ] + E[Bg, j ]
)
+

g−1∑
m=g−M+1

Nm∑
k=1

ρm,k

(
E[Bres

m,k] +

g−1∑
l=m

E[Rl] + E[Bg, j ]

)

+

g−1∑
m=g−M

E[Rm]

E[R]

(
E[Rres

m ]

(
1− ρ + 2

g−1∑
k=m+1

ρk,• + ρg, j

)
+

m−1∑
k=g−M

E[Rk]

( g−1∑
l=m+1

ρl,• + ρg, j

)
+

g−1∑
k=m+1

E[Rk]

(
1− ρ +

g−1∑
l=m+1

ρl,•

)
+ (1− ρ)E[Bg, j ]


+O(ρ2). (4.1)

Proof:
The proof is essentially a Mean Value Analysis (MVA) that ignores all O(ρ2) terms, and focusses
mainly on the amount of work instead of number of vehicles. The first step is to condition on the
arrival epoch of a vehicle in flow {g, j}. A cycle consists of the green phases Gg and all-red phases Rg,
for g = 1, . . . ,M . At the beginning of green time Gg, the probability that one vehicle has arrived in
any of the flows in group g during the preceding red time (or: intervisit time) Ig, is λg,•E[Ig]+O(λ2

g,•).
The probability that more than one vehicle has arrived in any flow of group g is O(λ2

g,•) and therefore
negligible in LT analysis. Therefore, we have that

E[Gg] =

Ng∑
j=1

ρg, jE[Ig] +O(ρ2
g, j ) =

Ng∑
j=1

ρg, jE[R] +O(ρ2). (4.2)

The mean cycle time is

E[C] =
M∑

g=1

E[Gg] + E[R] = E[R] (1+ ρ)+O(ρ2). (4.3)

Now we can find the LT limit of E[Wg, j ] by conditioning on the arrival epoch of an arbitrary customer.
The probability that an arbitrary vehicle arrives during the all-red phase Rk , for k = 1, . . . ,M , is

P(arrival during Rk) =
E[Rk]

E[C]
=

E[Rk]

E[R]
(1− ρ)+O(ρ2).

The probability that an arbitrary vehicle arrives during the green phase Gk , for k = 1, . . . ,M , is

P(arrival during Gk) =
E[Gk]

E[C]
=

E[Gk]

E[R]
(1− ρ)+O(ρ2) =

Nk∑
l=1

ρk,l +O(ρ2).
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If a vehicle arrives during Gk , the vehicle crossing the intersection at that moment is a type {k, l}
vehicle with probability ρk,l

ρk,•
, for l = 1, . . . , Nk . This means that we can formulate the mean delay of

a type {g, j} vehicle as follows.

E[Wg, j ] =

M∑
k=1

(
E[Rk]

E[R]
(1− ρ)E[W (Rk )

g, j ] +

Nk∑
l=1

ρk,lE[W
(Gk,l )

g, j ]

)
+O(ρ2), (4.4)

where E[W (Rk )
g, j ] is the mean delay of a {g, j} vehicle that arrives during Rk , and E[W (Gk,l )

g, j ] is the
mean delay of a {g, j} vehicle that arrives during the service of a {k, l} vehicle. We will study these
conditional mean delays in more detail.

Firstly, we note that the mean delay of a {g, j} vehicle arriving while another vehicle of the same type
is crossing the intersection, is simply the residual headway of the crossing vehicle, plus the departure
headway of the vehicle itself:

E[W (Gg, j )

g, j ] = E[Bres
g, j ] + E[Bg, j ] +O(ρ), g = 1, . . . ,M; j = 1, . . . , Ng. (4.5)

The O(ρ) terms are of no interest in (4.5), because the probability of an arrival during a green period
is an O(ρ) term itself. Secondly, a {g, j} vehicle arriving while another vehicle of the same group, but
not of the same flow, is crossing the intersection experiences no delay at all, because the probability
that another vehicle of the same type is present at the intersection is O(ρ):

E[W (Gg,l )

g, j ] = 0+O(ρ), g = 1, . . . ,M; j = 1, . . . , Ng; l 6= j. (4.6)

The mean delay of a {g, j} vehicle arriving while a vehicle of another group is crossing the inter-
section, is composed of the mean residual headway of that other vehicle, plus all subsequent all-red
times until the vehicle itself can start crossing the intersection, plus its own headway. Note that the
intermediate green times are negligible, because their total length is O(ρ).

E[W (Gk,l )

g, j ] = E[Bres
k,l ] +

g−1∑
i=k

E[Ri ] + E[Bg, j ] +O(ρ), g 6= k. (4.7)

Note that the sum in (4.7) has to be taken cyclic over the all-red periods between the green times of
groups k and g. The mean delay of vehicles arriving during all-red times is slightly more complicated.
We have to include all O(ρ) terms now, because the probability of an arrival during an all-red period
is not O(ρ). The mean delay of a {g, j} vehicle arriving during all-red period Rm consists of the
residual all-red period Rres

m , plus the green and all-red periods between group m and group g. In more
detail, the mean delay is composed of:

1. The departure headways of all vehicles that arrive in groups m+1, . . . , g−1 and in flow {g, j}
during the all-red times Rg, . . . , Rm−1, and the elapsed part of Rm at the arrival epoch, denoted
by Rpast

m ;
2. The residual red time Rm , denoted by Rres

m , plus the headways of all vehicles arriving in groups
m + 1, . . . , g − 1 during this residual red time;

3. The all-red times Rm+1, . . . , Rg−1 plus the headways of the vehicles that arrive during these
all-red times and will be served between Rm and the green period of group g;

4. The headway of the arriving vehicle itself.
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Note that Rpast
m is the same, in distribution, as Rres

m . This leads to the following expression for
E[W (Rm )

g, j ], where the terms (4.8)− (4.11) correspond to items 1− 4:

E[W (Rm )
g, j ] =

 m−1∑
k=g−M

E[Rk] + E[Rpast
m ]

( g−1∑
l=m+1

ρl,• + ρg, j

)
(4.8)

+ E[Rres
m ]

(
1+

g−1∑
l=m+1

ρl,•

)
(4.9)

+

g−1∑
k=m+1

E[Rk]

(
1+

g−1∑
l=m+1

ρl,•

)
(4.10)

+ E[Bg, j ]. (4.11)

Combining Equations (4.2)–(4.11) completes the proof of Theorem 4.1. �

Remark 4.2 Equation (4.6) will turn out to be the only place in the LT analysis where the assumption
that an empty flow stays empty during the remainder of the green period plays a role. Without this
assumption, we would have that E[W (Gg,l )

g, j ] = E[Bg, j ] + O(ρ) for l 6= j . The HT analysis in the
previous section would not change at all. This means that the assumption, perhaps surprisingly, does
not have much impact at all on the real and the approximated mean delays. In Section 6, Example 3,
we discuss in more detail the impact of the assumption that vehicles arriving at an empty flow during
a green phase do not experience any delay.

The main result of this section is an adaptation of (4.1), which can be used as an approximation for
the LT limit of the mean delay for general renewal arrivals.

Corollary 4.3 An approximation for the LT limit of the mean delay for vehicles in flow {g, j} for a
traffic intersection with general renewal arrivals and deterministic all-red times is:

E[W LT
g, j ] ≈ ρg, j

(
E[ Âg, j ]ĝg, j (0)− 1

)
E[Bres

g, j ])+ ρE[B
res
] + E[Bg, j ] −

∑
k 6= j

ρg,k
(
E[Bres

g,k] + E[Bg, j ]
)

+
1
2
(1+ ρ + ρg, j − 2ρg,•)R. (4.12)

We derive approximation (4.12) by adapting (4.1) to create an LT approximation for the case of general
renewal arrivals. This adaptation is similar as in [4], based on the observation that the first term in
(4.1), ρg, jE[Bres

g, j ], is the LT limit of the mean waiting time (excluding the service time) in an M/G/1
queue in isolation:

E[WM/G/1] = ρE[Bres
] +O(ρ2). (4.13)

We obtain an approximation for the mean waiting time for general renewal arrivals by replacing this
term with the LT limit for the G I/G/1 queue from Whitt [41]:

lim
ρ↓0

E[WG I/G/1]

ρ
=

1+ cv2
B

2
E[ Â]ĝ(0)E[B], (4.14)

where cv2
B is the Squared Coefficient of Variation (SCV) of the service times, and ĝ(t) is the density

of the interarrival times Â at ρ = 1. Our approximation is based on the approximative assumption that
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the Fuhrmann-Cooper decomposition (cf. [15]) holds for our system with general renewal arrivals.
The Fuhrmann-Cooper decomposition for the waiting times of customers in queue i of a polling
system with Poisson arrivals and exhaustive service in queue i states that the waiting time of an
arbitrary type i customer is the sum of two independent random variables. One of these random
variables is the waiting time of a customer in the corresponding M/G/1 queue in isolation (as if it
would not have been part of a polling system), and the other random variable is the residual intervisit
time of queue i :

Wi
d
=Wi,M/G/1 + I res

i .

If we combine this Fuhrmann-Cooper decomposition with (4.1), (4.13), and (4.14), we obtain the fol-
lowing approximation for the mean delay (i.e., waiting time plus headway) of a vehicle in flow {g, j}
for an intersection with general renewal arrivals:

E[W LT
g, j ] ≈ ρg, j

(
E[ Âg, j ]ĝg, j (0)E[Bres

g, j ] + E[Bg, j ]

)
+

g−1∑
m=g−M+1

Nm∑
k=1

ρm,k

(
E[Bres

m,k] +

g−1∑
l=m

E[Rl] + E[Bg, j ]

)

+

g−1∑
m=g−M

E[Rm]

E[R]

(
E[Rres

m ]

(
1− ρ + 2

g−1∑
k=m+1

ρk,• + ρg, j

)
+

m−1∑
k=g−M

E[Rk]

( g−1∑
l=m+1

ρl,• + ρg, j

)
+

g−1∑
k=m+1

E[Rk]

(
1− ρ +

g−1∑
l=m+1

ρl,•

)
+ (1− ρ)E[Bg, j ]

 .
(4.15)

This expression can be written into a more compact form. After some straightforward (but tedious)
rewriting, it can be shown that (4.15) reduces to:

E[W LT
g, j ] ≈ ρg, j

(
E[ Âg, j ]ĝg, j (0)− 1

)
E[Bres

g, j ] + ρE[B
res
] + E[Bg, j ] −

∑
k 6= j

ρg,k
(
E[Bres

g,k] + E[Bg, j ]
)

+ (1− ρ + ρg, j )E[Rres
] + (ρ − ρg,•)E[R] +

1
E[R]

g−1∑
m=g−M

( g−1∑
k=m+1

ρk,•

)
Var[Rm]. (4.16)

For deterministic all-red times, we have E[Rres
] = R/2 and Var[Rg] = 0 for g = 1, . . . ,M . Carrying

out these substitutions in (4.16) leads to expression (4.12).

Remark 4.4 A simplification can be made to replace the expression E[ Âg, j ]ĝg, j (0). In [4, 41] it is
shown that a good approximation for this term is

E[ Âi ]ĝi (0) ≈

2
cv2

Ai
cv2

Ai
+1

if cv2
Ai
> 1,(

cv2
Ai

)4 if cv2
Ai
≤ 1,

where cv2
Ai

is the squared coefficient of variation of Ai (and, hence, also of Âi ). Note that this sim-
plification results in an approximation that requires only the first two moments of each input variable
(i.e., headways, all-red times, and interarrival times).

Remark 4.5 (Convergence to the LT limit) In this paragraph we study the convergence of the mean
delays to their LT limiting values, similarly to what we have done for the HT limit in the previous
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section. Although the LT limit of the mean delay (4.15) has been obtained in a rather heuristical way,
it turns out to be very accurate. In contrast to the HT limit, expression (4.15) is not exact when the
arrival processes are not Poisson, because the correction term ρg, j

(
E[ Âg, j ]ĝg, j (0)− 1

)
E[Bres

g, j ]) is
based on a decomposition of the mean delay (see [4] for more details) which is known not be true in
general. Nevertheless, when comparing the approximated delays with simulated delays, results show
that the approximation is very accurate (see Section 6). We have also been able to test the accuracy
of the LT limit for small intersections (4 flows) by comparing it to exact results under the assumption
that all the departure headways, interarrival times and switch-over times are exponentially distributed.
This has provided much insight in the behaviour of the delay as a function of the load ρ. Expression
(4.15) captures the LT behaviour very well, except for some cases where the behaviour exposes more
curvature. To illustrate this, we consider a simple intersection with four flows, divided into two
groups, each having a saturation flow rate of 1800 vehicles per hour. The mean all-red times are 6
seconds each. The relative loads are ρ̂1 = ρ̂3 = 0.1, and ρ̂2 = ρ̂4 = 0.4. We assume exponentially
distributed headways, interarrival times and all-red times, because this enables us to model this system
as a Markov chain. In order to solve this system numerically, we need a finite state space, so we take
a maximum queue length of 6 vehicles per flow. This is sufficient since we are only focussing on
LT behaviour. Figure 4 shows the mean delays for flows 1 and 2 (and, because of symmetry, also
of flows 3 and 4) as a function of ρ, the total load in the system. These pictures illustrate that the
derivative at ρ = 0 of the mean delay indeed equals the LT expression. But Figure 4(a) also illustrates
that the actual behaviour may be non-linear, which can lead to deviations between the approximation,
developed in the next section, and the actual mean delay.
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Figure 4: The exact mean delays of flow 1 (left) and flow 2 (right) and the LT limits of the example in
Section 4.

5 Interpolations

In the previous two sections we have given expressions for the mean delay in the extreme cases where
the system is either hardly exposed to traffic, or completely saturated. In the present section we use
these results to develop interpolations between these two cases that give an approximation for the
mean delay for any load, as long as the system is not oversaturated (cf. [4]). In fact, we develop
two different interpolations. At the end of this section we discuss the conditions under which each
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interpolation should be preferred.

E[W app1
g, j ] =

K ′0,g, j + K ′1,g, jρ

1− Lρ
, g = 1, . . . ,M; j = 1, . . . , Ng. (5.1)

E[W app2
g, j ] =

K0,g, j + K1,g, jρ + K2,g, jρ
2

1− Lρ
, g = 1, . . . ,M; j = 1, . . . , Ng. (5.2)

De denominator 1 − Lρ is required to capture the HT behaviour of the system, as discussed in Sec-
tion 3. The numerator is a polynomial of first or second degree. The constants K ′0,g, j and K0,g, j

(which will turn out to be the same) follow from the requirement that (5.1) and (5.2) should result in
the same mean delay for ρ = 0 as the LT limit (4.15). We find K ′1,g, j and K2,g, j by imposing that the
HT limit of the approximation is equal to the HT limit of the exact mean delay. Finally, the constant
K1,g, j is found by adding the requirement that also the derivative with respect to ρ, taken at ρ = 0,
of our approximation is equal to the derivative of the LT limit. A more formal definition of these
requirements is presented below:

E[W app1
g, j ]

∣∣
ρ=0 = E[W LT

g, j ]
∣∣
ρ=0,

lim
ρ↑1/L

(1− Lρ)E[W app1
g, j ] = lim

ρ→1/L
(1− Lρ)E[Wg, j ],

and for approximation (5.2),

E[W app2
g, j ]

∣∣
ρ=0 = E[W LT

g, j ]
∣∣
ρ=0,

d
dρ

E[W app2
g, j ]

∣∣
ρ=0 =

d
dρ

E[W LT
g, j ]
∣∣
ρ=0,

lim
ρ↑1/L

(1− Lρ)E[W app2
g, j ] = lim

ρ→1/L
(1− Lρ)E[Wg, j ],

using (4.12) for E[W LT
g, j ] and (3.5) for limρ→1/L(1−Lρ)E[Wg, j ]. This leads to the following constants:

K ′0,g, j =
R
2
+ E[Bg, j ], (5.3)

K ′1,g, j = L

((
1− ρ̂g,1/L

)2

1− ρ̂g, j/L

(
R
2
+
σ 2

δ

)
− K ′0,g, j

)
, (5.4)

K0,g, j =
R
2
+ E[Bg, j ], (5.5)

K1,g, j = ρ̂g, j

(
E[ Âg, j ]ĝg, j (0)− 1

)
E[Bres

g, j ] + E[Bres
] − L E[Bg, j ] −

∑
k 6= j

ρ̂g,k
(
E[Bres

g,k] + E[Bg, j ]
)

+
1
2
(1− L + ρ̂g, j − 2ρ̂g,•)R, (5.6)

K2,g, j = L2

((
1− ρ̂g,1/L

)2

1− ρ̂g, j/L

(
R
2
+
σ 2

δ

)
− K0,g, j

)
− L K1,g, j , (5.7)

18



where δ =
∑M

g=1
ρ̂g,1

L (1 −
ρ̂g,1

L )/2, and σ 2
=
∑M

g=1 λ̂g,1

(
Var[Bg,1] + ρ̂

2
g,1Var[ Âg,1]

)
. In the above

expressions, we have assumed that the all-red times are deterministic, as is usually the case. Sections 3
and 4 give insight in how to adapt these constants if randomness is involved in (some of) the all-red
times.

An obvious question that arises now, is which of the two approximations, (5.1) or (5.2), should be
preferred. We can give some (heuristic) arguments, obtained by studying many numerical examples. It
can be shown that the two approximations, (5.1) or (5.2), are both exact for the limiting cases ρ → 0,
ρ → 1/L and E[R] → ∞. The difference between the two interpolation functions, respectively
having a first and second order polynomial in the numerator, is the additional requirement that the
derivative in ρ = 0 of the approximated mean waiting time should be equal to the derivative of the
LT expression (4.15). Since the LT expression is very accurate, using this additional information
generally leads to more accurate approximations. For this reason, (5.2) should be preferred in most
practical cases. However, there are some circumstances under which (5.1) should be preferred, despite
resulting in a derivative at ρ = 0 which is not exact. In more detail, if the actual delay displays a strong
non-linear behaviour for small loads, using the second-order interpolation leads to bigger inaccuracies
for loads around Lρ = 0.7. In most cases, this happens if the derivative in ρ = 0 is very small, or
even negative (see also Figure 4(a)). Studying the LT expression (4.15) shows that the most natural
way for a negative derivative to appear, is when the combined load in all other groups is smaller than
the load of the other flows within the group. In terms of the model parameters: if, for a certain flow
{g, i}, the criterion ∑

m 6=g

ρ̂m,• −
∑
j 6=i

ρ̂g, j < 0, (5.8)

is satisfied, the first-order interpolation (5.1) is preferred over the second-order interpolation (5.2).
Note that this is just a rule of thumb. We show the effect of choosing the wrong interpolation at the
end of Example 2 in the next section.

Remark 5.1 A negative slope at ρ = 0 is possible because of the assumption that the delay of
vehicles approaching an empty flow during a green period experience no delay at all. Under some
circumstances, mostly when Condition 5.8 is satisfied, an increase in traffic may be beneficial for
certain flows that hardly receive any traffic at all. The increase in traffic results in an increase of the
mean green period, which results in a larger number of vehicles that benefit from the green light while
their flow is empty. This might have a positive effect on the mean delay for vehicles in this flow,
although the effect disappears when the load increases further.

6 Numerical results

In the present section, we study typical features of the approximations and assess their accuracies. In
Example 1 we do this by taking an imaginary intersection and simulating several scenarios. For each
scenario we compare the simulated delays to the approximated delays. In Example 2 we take three
real, existing intersections.

Example 1: Accuracy of the approximations

In this example, we analyse an (imaginary) intersection with 6 traffic flows. The ratios of the arrival
rates of the six flows are 1 : 2 : 3 : 4 : 5 : 6. The discharge rates are all equal, 1800 vehicles per hour,
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hence E[Bi ] = 2 seconds. For now, we assume that the SCV of the departure headways is 1. In our
simulation we have used exponentially distributed random variables to achieve this. We will have a
short discussion at the end of this example about other probability distributions. Note that ρ̂i =

i
21 ,

because the mean headways are all equal. The total all-red time R in a cycle is 12 seconds, divided
equally among the individual all-red times. We compare several different scenarios to get insight into
the accuracy of the approximations. The first seven scenarios, shown in Table 1, differ in the choice
of which flows to combine in one group. For each scenario, the mean delays for all queues have been
obtained by simulation, and are being compared to the approximated mean delays (5.1) or (5.2), using
Criterion (5.8) to decide which of the two interpolations is used. The mean delay of each queue, in
each scenario, is obtained for 11 different loads: Lρ = {0.001, 0.1, 0.2, . . . , 0.8, 0.9, 0.99}. Note that
it is convenient to use Lρ instead of ρ, because Lρ takes values between 0 and 1. Furthermore, Lρ
can be interpreted as the level of saturation of the intersection. By comparing all approximated mean
delays to the corresponding simulated values, the relative errors are calculated:

ei (Lρ) =
∣∣∣∣W app

i −W sim
i

W sim
i

∣∣∣∣ × 100%, i = 1, . . . , 6.

In order to compare the scenarios, we introduce two quality measures. The first quality measure,
QM1, which gives insight in the worst performance, is the largest relative error (and the corresponding
queue, and the load at which this error is obtained). The second quality measure, QM2, which provides
a better insight in the overall performance, is the weighted mean relative error. This is computed
by averaging the 11 relative errors for each flow, ei , and subsequently taking the weighted average
proportional to the arrival rates. In more detail:

QM1 = max
i,Lρ

ei (Lρ),

QM2 =
6∑

i=1

λ̂i∑6
j=1 λ̂ j

e j .

Table 1 displays these two quality measures for scenarios I–VII.

Scenario Groups cv2
Ai

cv2
B Interpolation QM1 QM2

orders error flow Lρ
I {1}, {2}, {3}, {4}, {5}, {6} 1 1 2 2 2 2 2 2 0.3% 1 0.7 0.06%
II {1, 2}, {3, 4}, {5, 6} 1 1 2 2 2 2 2 2 21.9% 6 0.9 8.17%
III {1, 4}, {2, 5}, {3, 6} 1 1 2 2 2 2 2 2 4.4% 6 0.7 1.29%
IV {1, 6}, {2, 5}, {3, 4} 1 1 2 2 2 2 2 2 10.3% 5 0.9 3.29%
V {1, 2, 3}, {4, 5, 6} 1 1 2 2 2 1 1 1 12.3% 6 0.9 4.14%
VI {1, 2, 5}, {3, 4, 6} 1 1 2 2 1 1 2 2 11.8% 6 0.7 3.79%
VII {1, 3, 5}, {2, 4, 6} 1 1 2 1 2 2 2 2 9.5% 6 0.7 3.22%

Table 1: Scenarios I–VII used in Example 1, and the corresponding quality measures QM1 and QM2.

We discuss the scenarios I–VII first, later we add some extra scenarios. Scenario I divides the six
signals into six separate groups. This reduces the model to an ordinary polling model with exhaustive
service and Poisson arrivals. Exact results are known for this model, and the approximation developed
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in the present paper simplifies to the expression found in [4]. In [4], this approximation is discovered
to perform very well, especially for systems with more than two queues. Therefore, it is no surprise
that scenario I results in the best approximation accuracy: an average mean error of only 0.06%, and
the worst relative error, 0.3%, is obtained for flow 1 (with the smallest load) at Lρ = 0.7. The next
scenario, Scenario II, has the lowest accuracy, illustrating the greatest drawbacks of the approximation.
The six flows are divided into three groups. The reason why this scenario performs so poorly, is that
the flows in each group have rather similar loads. When the HT limit is reached, the system behaviour
is such that the heaviest loaded flows dominate the groups and determine the lengths of the green
periods. As a result, the approximation converges to the HT limit only very slowly. For Lρ = 0.9
the relative errors ei are approximately 21% for all flows, whereas the errors are back to 7% for
Lρ = 0.99. The overall mean relative error of 8.17% is reasonable, but in the range 0.8 ≤ Lρ ≤ 0.97
all relative errors are greater than 15%. We will have some further discussion on this issue later in this
paper. In Scenario III, the flows are also divided into three groups, but now the best possible choice
(for our approximation) is made, avoiding groups with two flows having similar loads. Therefore,
the results are excellent now, with QM1 = 4.4% and QM2 = 1.29%. Scenario IV might be the
most interesting from a practical point of view, combining good and bad combinations of flows in
the groups. As expected, the performance is better than Scenario II, and worse than Scenario III,
with QM1 = 10.3% and QM2 = 3.29%. Because there is one group (with flows 3 and 4) having
loads relatively close to each other, the relative errors are relatively large for Lρ = 0.9, ranging from
7.5%− 10%, but since the other groups have better combinations of flows, the results are much better
than for Scenario II. We will return to Scenario IV later in this section, when we vary several other
parameters of the model.
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Figure 5: Simulated and approximated mean delays for flow 1 (left) and flow 6 (right) in Scenario V.

Now, we discuss Scenarios V-VII briefly. These scenarios have only two groups, each containing three
flows. Scenario V can be compared to Scenario II, having the worst possible division into groups. An
interesting aspect of this scenario, is that the mean delays of all flows in group 1 are approximated
using the second-order approximation (5.2), whereas the mean delays in group 2 use the first-order
approximation (5.1). The reason to do this, is that the Criterion (5.8) is satisfied for the flows in group
2, because this group contains the three heaviest loaded flows of the intersection. This implies that
the total relative load of group 1, ρ̂1,•, is much smaller than the relative load of any pair of flows
in group 2,

∑
j 6=i ρ̂2, j , for i = 1, 2, 3. Since Criterion (5.8) is satisfied, second order interpolations

would severely underestimate the mean delays in group 2. In fact, if one would take (5.2) instead of
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(5.1) for group 2, the mean relative error for flows in this group would be increased from 4.07% to
15.9%. Figure 5 shows the approximated and simulated mean delays for flow 1 (typical for group 1)
and for flow 6 (typical for group 2) against Lρ. It can be seen that the derivative in Lρ = 0 of the
approximated mean delay for flow 1 is not correct (it is slightly greater than the actual value), but it
does lead to an overall better accuracy. In Scenarios VI and VII, the division into groups is better,
resulting in more favourable results.

Scenarios I− VII illustrate how the accuracy of the approximation depends on the distribution of the
loads among the groups. Numerical experiments indicate that this is the biggest source of variation
in the accuracy. For completeness, we show the effects of different interarrival-time distributions,
and different distributions of the departure headways in Scenario IV. In our simulations we have
fitted phase-type distributions, as suggested in [32], matching the specified SCVs. We can be brief in
discussing the results, displayed in Table 2. The variation in the interarrival times and headways does
not have a major impact on the accuracy of the approximation, but in general it can be concluded that
an increase (decrease) in variation results in a decrease (increase) in the accuracy.

Scenario Groups cv2
Ai

cv2
B QM1 QM2

error flow Lρ
IV {1, 6}, {2, 5}, {3, 4} 1 1 10.3% 5 0.9 3.29%

VIII {1, 6}, {2, 5}, {3, 4} 0.5 1 7.8% 5 0.9 1.91 %
IX {1, 6}, {2, 5}, {3, 4} 2 1 14.7% 5 0.9 5.70%
X {1, 6}, {2, 5}, {3, 4} 1 0 5.6% 4 0.9 1.57%
XI {1, 6}, {2, 5}, {3, 4} 1 0.5 8.2% 5 0.9 2.50%
XII {1, 6}, {2, 5}, {3, 4} 1 2 13.1% 5 0.9 4.45%

Table 2: Scenarios IV, VIII–XII used in Example 1, and the corresponding quality measures QM1 and
QM2.

Example 2: Real-life examples

In the present subsection we test the approximation on three real-life situations. We take three intersec-
tions, graphically displayed in Figure 6, and compare approximated mean delays with the simulated
values. The first two intersections are located in Eindhoven, The Netherlands, and data have been
obtained from the local city council. The data for the third intersection are taken from the Dutch
manual for configuration of traffic intersections [8]. Each of these intersections contains several flows
for motorised vehicles, and four bicycle lanes. The exact settings for each intersection can be found
in Appendix B. Table 3 shows the numerical results of the approximated and simulated delays for the
three different intersections. For all of the intersections, but especially for Intersections 1 and 2, the
overall accuracy is quite good, considering the overall mean relative error percentage QM2. But at
the same time, one of the drawbacks becomes apparent. In practice, these intersections have maxi-
mum green times, which are chosen such that the cycle time cannot exceed a specified value. In order
to minimise the maximum cycle time, flows are generally divided into groups such that the busiest
streams are put together in the same group, as long as no conflicts arise. As discussed in the first exam-
ple, our approximation gives very accurate results, as long the loads of the busiest flows in a group are
not too close to each other. However, some of these examples have at least one group with two busy
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Intersection QM1 QM2
error flow Lρ

1 21.3% 2 0.99 6.60%
2 13.6% 6 0.9 4.65 %
3 30.4% 4 0.9 11.62%

Table 3: Performance measures QM1 and QM2 for the intersections in Section 6, Example 2.

flows with similar relative loads. In Intersection 1, in group 4, we have ρ̂4,1 = 0.12 and ρ̂4,2 = 0.11.
In Intersection 3, the highest two relative loads in group 3 are ρ̂3,1 = 0.15 and ρ̂3,2 = 0.14. This
means that the mean waiting time converges to its HT limit (3.5) only very slowly. This explains that
for these two intersections, the approximation gives rather high relative errors (sometimes more than
20%) for high loads (Lρ = 0.9, . . . , 0.98).

We end this example with a final note on the accuracy of the approximations (5.1) and (5.2). As
stated before, the second-order interpolation (5.2) generally gives better results, unless Criterion (5.8)
is satisfied. In Figure 7(a) the mean simulated delay for flow 8 of Intersection 2 is plotted, as well as
the approximations (5.1) and (5.2). We have chosen this particular example, because in Intersection 2
none of the flows satisfy Criterion (5.8), and no group contains more than one flow with a very high
flow ratio. In this situation there is no need to use the first-order interpolation, because it only gives
worse results, as can be seen in Figure 7(a). Figure 7(b) shows the scaled mean delay (1−Lρ)Wi , also
for the simulated delay and the two approximations. Clearly, the first-order interpolation should not
be used here. For flow 3 in Intersection 1, Criterion (5.8) is satisfied. In Figure 7(c) and 7(d) we see
that the non-linearity for small values of Lρ results in an underestimation of the actual delay by the
second-order interpolation. The first-order interpolation is more suitable here. Finally, Figures 7(e)
and 7(f) show why it is sometimes impossible to find a simple polynomial that describes the behaviour
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Figure 7: Three plots of mean waiting times Wi and scaled mean waiting times (1 − Lρ)Wi , taken
from Example 2 in Section 6. Figures (a) and (b) correspond to flow 8 of Intersection 2. Figures (c)
and (d) correspond to flow 3 of Intersection 1. Figures (e) and (f) correspond to flow 2 of Intersection
3.
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of the scaled delay well. These figures, taken from Intersection 3, show that the HT limit is reached
only extremely late (Lρ > 0.99) for flow 2. In fact, for Lρ = 0.99 there is still a gap between the
simulated value and the HT limit. Due to the fact that the HT limit is being approached so slowly, the
approximations are not very accurate in the range 0.8 < Lρ < 0.99, with relative errors greater than
20% for all flows. Neither the first-order interpolation, nor the second-order interpolation is complex
enough to describe the behaviour of (1 − Lρ)Wi . These pictures also indicate that a fitting function
more sophisticated that a first or second order polynomial is required if one wants to obtain a more
accurate closed-form approximation.

Example 3: The impact of the stay-empty assumption

Throughout the paper we have assumed that vehicles arriving during a green period while their flow
is already empty, experience no delay at all because they do not have to accelerate and cross the
intersection at normal speed. This assumption, which we refer to as the “stay-empty assumption”, has
been made because it makes the model more realistic than a standard queueing model with queues
emptying and possibly refilling during the same green period. In this example we study the impact of
this assumption by comparing delays found in the previous example to delays of vehicles in the same
intersections, but assuming that queues do not stay empty. Before we carry out the numerical analysis,
we discuss the model with refilling queues in more detail. The derivation of the LT limit (4.15) uses
the stay-empty assumption only in Equation (4.6). The LT limit of the model with refilling queues is
obtained by replacing (4.6) with E[W (Gg,l )

g, j ] = E[Bg, j ] + O(ρ) for l 6= j . This would, by the way,
slightly simplify the LT limit (4.15) and, hence, also simplify the second-order interpolation (5.2).
Another interesting observation is that the distributions of the scaled delays under HT conditions do
not change at all. Without providing a rigorous proof here, we argue that the HT fluid limits remain
exactly the same if the stay-empty assumption is abandoned. Consequently, the stability condition∑M

g=1 ρg,1 < 1 does not change, which can also be proven by making minor modifications to the
proof in Appendix A. Note that the first-order interpolation for the stay-empty model is exactly the
same as for the model with refilling queues. This means that the stay-empty assumption, perhaps
surprisingly, does not have much impact at all on the simulated and the approximated mean delays.
We show one example of how close the mean delays for the two different models are. In Figure 8 we
study the mean delays of vehicles in flow 3 of Intersection 1 again, just like in Figure 7(c). In Figure 8
the mean delays are plotted against Lρ for the model with and without the stay-empty assumption.
As a reference, the approximated mean values are also shown in the same figure. Since we used
a first-order interpolation for this example, the approximations for the model with and without the
stay-empty assumption are the same. The relative difference between the simulated values for the two
models is at most 7%, for Lρ = 0.98. Summarising, the approximation for the mean delay can be
used for models with and without the stay-empty assumption, although it is recommended to adapt
the LT limit slightly as stated before. However, one should keep in mind that scaled mean delay for
the model with refilling queues converges to the HT limit slower than for the model with flows that
stay empty.

7 Conclusions and topics for future research

Under LT and HT conditions, we managed to accurately describe the behaviour of delay of vehicles
approaching a traffic intersection with an exhaustive control policy. Based on these limiting situations,
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Figure 8: The mean delays for flow 3 of Intersection 1, for the model with and without the stay-empty
assumption, compared to the approximated mean delay.

mean delay approximations have been established for any workload. These approximations are easy
to implement, and have been tested on real-life situations. The performance of the approximations is
good, except when the two greatest flow ratios within a group are very close.

Several extensions of the model considered in the present paper are interesting to study.

• In order to build a better model for intersections that are part of an arterial system, it would be
interesting to allow correlated batch arrivals: groups of vehicles arriving simultaneously. The
studies by Levy and Sidi [21] and Van der Mei [35] on polling systems with correlated batch
arrivals might prove useful in this respect.

• Furthermore, using results on polling systems with priorities (see, e.g., [1, 2]), one could also
analyse conflicting flows receiving a green light simultaneously. The conflicting flows should be
placed in the same lane group and by assigning priority levels to each of the conflicting flows,
the right of way rules can be implemented. Only minor adaptations to the LT and HT limits are
required to introduce the priority levels.

• It may also be possible to extend the distributional approximations for polling systems devel-
oped by Dorsman et al. [13] to traffic intersections. The two required ingredients of such a
distributional approximation are both derived in the present paper. That is, we need an HT
approximation for the waiting-time distribution (as derived in Section 3) in conjunction with a
mean waiting-time approximation for general load (as obtained in Section 5). Subsequently, the
HT distributional approximation should be refined such that its mean coincides with the mean
waiting-time approximation, while the resulting distributional approximation keeps the correct
limiting behavior in HT after refinement.

• From a practical point of view, it would be desirable to have a model that allows flows to
be part of multiple groups, instead of just one. However, this would complicate the analysis
considerably at some points, because it is not straightforward anymore to determine which
flows are dominant in each group.

• Finally, possibly the greatest challenge, is the analysis of intersections with time-limited service.
Although these are by far the most commonly used intersections in practice, hardly any detailed
results are known to reliably estimate the expected delays.
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Appendix

A Proof of stability

In this appendix, we provide a rigorous proof of Theorem 2.1. This theorem states that the stability
condition of an intersection with exhaustive traffic control only depends on the flow ratios of the
dominant flows in each group.

A.1 Model

For each flow {g, j}, g = 1, . . . ,M and j = 1, . . . , Ng, there is an i.i.d. sequence of interarrival
times {Ag, j,k} and an i.i.d. sequence of headways {Bg, j,k}. All sequences are mutually independent.
We assume that each sequence has a finite first moment and define the appropriate rates:

λg, j = 1/E[Ag, j,1],

µg, j = 1/E[Bg, j,1].

We assume that the interarrival time distribution is unbounded and spread-out, in other words P(Ag, j,1 >

T ) > 0 for all T > 0, and for some integer `,

P(Ag, j,1 + · · · + Ag, j,` ∈ dx) ≥ q(x) dx

where ∫
∞

0
q(x) dx > 0.

The control policy is to allow flows {1, 1}, . . . , {1, N1} to operate until all of them are empty, then al-
low flows {2, 1}, . . . , {2, N2} to operate until they are all empty and so on, until flows {M, 1}, . . . , {M, NM}

have operated. Then, this cycle is repeated. We assume that when switching for the mth time from
group 1 to group 2, there is an all-red period of R1,m . In general, for the mth switch from group g to
group g + 1 (all group indices are modulo M), the all-red time is given by Rg,m . We assume that for
g = 1, . . . ,M , {Rg,m} are i.i.d. sequences with E[Rg,1] <∞.

Let Eg, j (t) be the number of vehicles arriving to flow {g, j} in (0, t]. Let Sg, j (t) be the potential num-
ber of service completions by flow {g, j} in (0, t], i.e. Sg, j (t) is the number of vehicles that would
have departed from flow {g, j} between times 0 and t if there were no idling of server {g, j}. Let
Ares

g, j (t) be the residual interarrival time at time t for stream {g, j} and let Bres
g, j (t) be the residual head-

way of the vehicle crossing at flow {g, j}. We assume that Ares
g, j (t) and Bres

g, j (t) are right continuous.
Thus we have

Eg, j (t) = max{n ≥ 0 : Ares
g, j (0)+ Ag, j,1 + · · · + Ag, j,n−1 ≤ t},

Sg, j (t) = max{n ≥ 0 : Bres
g, j (0)+ Bg, j,1 + · · · + Bg, j,n−1 ≤ t}.
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where the maximum of an empty set is defined to be zero. Let Tg, j (t) be the cumulative busy time for
server {g, j} in (0, t]. Then the number at server {g, j}, Qg, j (t) at time t , is

Qg, j (t) = Qg, j (0)+ Eg, j (t)− Sg, j (Tg, j (t)), (A.1)

where Tg, j (t) is determined by the control policy. Define

X (t) = (Qg, j (t), Ag, j (t), Bg, j (t), I (t) : g = 1, . . . ,M, j = 1, . . . , Ng),

where I (t) is the group number (1, . . . ,M) that receives a green light at time t (it can be set to an
arbitrary value during the all-red times). Then it is not difficult to see that X = {X (t)} is a Markov
process and has the strong Markov property. The assumption that the interarrival time distribution is
unbounded and spread-out allows us to conclude that the states where Qg, j (t) = 0 are reachable and
to show the existence of a continuous component for X , see Meyn and Down [22].

A.2 Stability of fluid models

Let q =
∑M

g=1
∑Ng

j=1 Qg, j (0). Suppose that the function (Q̄g, j (·), T̄g, j (·) : g = 1, . . . ,M, j =
1, . . . , Ng) is a limit point of

(q−1 Qg, j (qt), q−1Tg, j (qt) : g = 1, . . . ,M, j = 1, . . . , Ng),

when q →∞. When it exists (Q̄g, j (t), T̄g, j (t) : g = 1, . . . ,M, j = 1, . . . , Ng) is called a fluid limit
of the system. Since we have been able to describe the system dynamics in the form (A.1), Dai [10,
Theorem 2.3.2] yields that a fluid limit exists (it may not be unique). Furthermore, each of the fluid
limits is a solution of the following set of conditions, known as the fluid model.

Q̄g, j (t) = Q̄g, j (0)+ λg, j (t)− µg, j T̄g, j (t)

Q̄g, j (t) ≥ 0

T̄g, j (0) = 0 and T̄g, j (·) is non-decreasing

plus additional conditions on T̄g, j (·) due to the control policy. This last condition is usually the most
important, even though it is vague at this point.

The fluid model is said to be stable if there exists a fixed time t0 such that
∑M

g=1
∑Ng

j=1 Q̄g, j (t) = 0,
for all t ≥ t0, for any solution of the fluid model. The fluid model is said to be unstable if for
every solution of the fluid model with

∑M
g=1

∑Ng
j=1 Q̄g, j (0) = 0, there exists a δ > 0 such that∑M

g=1
∑Ng

j=1 Q̄g, j (δ) 6= 0. Thus, stability of the fluid model states that eventually all flows will drain,
and once drained, they remain empty.

The connections between the Markov process and the fluid model are as follows: if the fluid model is
stable, there exists a unique invariant probability for X (Theorem 4.2 of Dai [9]). If the fluid model is
unstable, then X is transient (Theorem 2.5.1 of Dai [10]). If one is interested in finiteness of moments,
then under corresponding assumptions on the underlying random variables, stability of the fluid model
yields finiteness of moments, see Dai and Meyn [11]. For example, assuming finite second moments
on the underlying random variables, stability of the fluid model implies the existence of an invariant
probability and finite mean queue lengths.

For the model under consideration, let ρg, j = λg, j/µg, j and assume without loss of generality that
ρg,1 > ρg,2 > · · · > ρg,Ng for all g = 1, . . . ,M . Then we have the following result.
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Proposition A.1 (i) If
∑M

g=1 ρg,1 < 1, the fluid model is stable and, thus, an invariant probability ϕ
exists for X .
(ii) If

∑M
g=1 ρg,1 > 1, then the fluid model is unstable and X is transient.

Proof:
(i) First, we show that the all-red periods can be ignored in the stability analysis. Suppose that at
time 0, group g has just completed and group g′ = (g + 1) mod M + 1 begins service, where g′ is
such that Q̄g′, j (0) > 0 for some j ∈ {1, . . . , Ng′}. We then have that there exists δ > 0 such that
Q̄g′, j (s) > 0 for s ∈ [0, δ]. In this case, we have

lim
q→∞

Tg, j (δq)
q

= lim
q→∞

max(δq − Rg, 0)
q

= lim
q→∞

(
max

(
δ −

Rg

q
, 0
))

= δ

from which we have d
dt T̄g, j (t)|t=0 = 1 and thus without loss of generality we can assume that the

all-red times are zero.

Next, we show that if we are serving group g at time t and Q̄g, j (t) = 0 for all j ∈ {1, . . . , Ng},
then for any fluid limit, we immediately switch to a new group (unless for all g, j , Q̄g, j (t) = 0).
Note that for group g, queues 1, . . . , Ng operate as Ng stable queues in parallel (until all queues are
simultaneously empty), which is a special case of a stable generalized Jackson network (as ρg, j < 1

for all j). Denote by T
(n1,...,nNg )

0 the time to reach the state when all queues are empty, starting from
the initial condition is that there are ni jobs at queue i . Theorem 3.8 of [22] implies that all queues
being empty is reachable and as

Qg, j (qt)
q

→ 0,

then
T
(Qg,1(qt),Qg,2(qt),...,Qg,Ng (qt))

0

q
→ 0

and thus on the fluid scale, switching away from group g is immediate when all of the queues are
empty (on the fluid scale).

Next, we show that from an arbitrary initial condition for the fluid model (i.e. Q̄g, j (0) = xg, j ≥ 0)
and with the server initially at group 1, we have that group i is switched away from for the first time
at time ti , where ti is given by:

t1 = max
1≤ j≤N1

{
x1, j

µ1, j − λ1, j

}
t2 = t1 + max

1≤ j≤N2

{
x2, j + λ2, j t1
µ2, j − λ2, j

}
...

tM = tM−1 + max
1≤ j≤NM

{
xM, j + λM, j tM−1

µM, j − λM, j

}
.
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Clearly, if λg, j/µg, j < 1 for all g, j , then tM < ∞. However, at this point, by definition, it is clear
that for t ≥ tM ,

Q̄g,1(t)
µg,1

≥
Q̄g, j (t)
µg, j

(A.2)

for all g and j ∈ {2, . . . , Ng}.

Now, consider

V (t) =
M∑

g=1

Q̄g,1(t)
µg,1

.

We trivially see that
∑M

g=1
d
dt T̄g,1(t) = 1 if V (t) > 0, and thus for t ≥ tM and if V (t) > 0, using

(A.2), d
dt V (t) =

∑M
g=1 ρg,1 − 1 < 0. Therefore, there exists a T < ∞ such that V (t) = 0 for all

t ≥ T and again using (A.2), we conclude that for all g, j Q̄g, j (t) = 0 for all t ≥ T .

This completes the proof of (i).

To show (ii), as
∑M

g=1
d
dt T̄g,1(t) ≤ 1, we see that d

dt V (t) ≥
∑M

g=1 ρg,1 − 1, which is strictly positive
and thus the fluid model is unstable. �

B Input settings for Example 2

In this appendix we give the input settings for the intersections discussed in Section 6, Example 2.

Intersection 1
N 9
Vehicle types 5 flows for cars (1, . . . , 5), 4 flows for bicycles (6, . . . , 9)
Arrival processes Poisson
Arrival intensities 280, 930, 700, 120, 240, 60, 60, 60, 60
(cars/bikes per hour)
Saturation flow rates 1800, 1900, 1900, 1700, 1700,
(cars/bikes per hour) 10000, 10000, 10000, 10000

SCVs of the headways cv2
Bi
= 1 for cars (i ≤ 5), and cv2

Bi
= 0 for bikes (i ≥ 6)

Groups {2, 3, 8, 9}, {4}, {6, 7}, {1, 5}
All-red times 2, 8, 4, 5
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Intersection 2
N 11
Vehicle types 7 flows for cars (1, . . . , 7), 4 flows for bicycles (8, . . . , 11)
Arrival processes Poisson
Arrival intensities 263, 344, 332, 381, 148, 442, 258, 60, 60, 60, 60
(cars/bikes per hour)
Saturation flow rates 1950, 1950, 1950, 1800, 1700, 1950, 1700,
(cars/bikes per hour) 10000, 10000, 10000, 10000

SCVs of the headways cv2
Bi
= 1 for cars (i ≤ 7), and cv2

Bi
= 0 for bikes (i ≥ 8)

Groups {1, 3, 9, 11}, {2, 5}, {4, 8}, {6, 7, 10}
All-red times 8, 1, 4, 6

Intersection 3
N 10
Vehicle types 6 flows for cars (1, . . . , 6), 4 flows for bicycles (7, . . . , 10)
Arrival processes Poisson
Arrival intensities 680, 150, 390, 860, 280, 430, 100, 100, 100, 100
(cars/bikes per hour)
Saturation flow rates 1950, 1700, 1850, 1950, 1700, 1850,
(cars/bikes per hour) 10000,10000,10000, 10000

SCVs of the headways cv2
Bi
= 1 for cars (i ≤ 6), and cv2

Bi
= 0 for bikes (i ≥ 7)

Groups {1, 4, 8, 10}, {2, 5}, {3, 6, 7, 9}
All-red times 4, 2, 5
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