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Abstract

As energy costs and energy used by server farms increase, so does the desire to implement energy-aware
policies. Although under some metrics, optimal policies for single as well as multiple server systems are
known, a number of metrics remain without sufficient knowledge of corresponding optimal policies. We
describe and analyse a model to determine an optimal policy for on/off single server systems under a broad
range of metrics that are based on expected response time, expected energy costs, and expected wear and
tear costs. We leverage this model in the problem of routing jobs to one of two servers to show a range of
non-trivial optimal routing probabilities and server configurations when energy concerns are a factor.
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1. Introduction

The relative as well as absolute energy consumed by servers have been steadily increasing in North
America and has become a problem of considerable interest [4]. As systems grow and expand, energy
concerns become a major factor for server farm managers from both environmental and economic viewpoints.
However, the task of creating feasible optimal or near optimal policies is a daunting problem due to the sheer
complexity these systems exhibit. Even for single server systems, when energy is a factor, optimal policies
remain unknown for a number of metrics considered in the literature. We focus on developing a model in
the context of and using tools and results from queueing theory, that allows one to determine an optimal
policy for a single server system under a broad range of metrics. In particular, we consider cost functions
constructed from the expected response time of a job in the system (E[R]), the expected energy consumed
by the system (E[E]), and the steady state rate that the server cycles between two states, i.e. turning off
and on (E[C]), where the expected cycle rate can be thought as the expected wear and tear on the server.
This paper extends the work [13].

By now, the field of green computing has a rich literature. We will focus our discussion on work which is
concerned with moving servers to different energy states to increase (or decrease) performance. For example,
the work in [2, 14, 18] looked at determining the optimal configuration of a server farm when the job sizes
are known at arrival, and the decision to turn servers off or keep them on is made at discrete time intervals.
This is then formulated as an optimization problem and solved. The article [2] was the first to appear and
accounts for wear and tear cost on the servers by allowing for a term similar to E[C] in the cost function.
The article [11] added the variation that jobs can be routed to different geographical locations where energy
costs may differ. The work in [14] took a different viewpoint where customers pay a cost, based on a function
of the response time of that job. The work of [15] looked at a similar problem where jobs are routed to
separate on/off queues, and the problem was solved using Markov Decision Processes (MDPs). In this field
the issue of speed scaling also arises, where one can use more energy to improve the performance (response
time) of the system. This is examined in [18, 19]. While these frameworks use stochastic models and results,
our model puts much heavier emphasis on analysing these systems in a queueing theory context.

When analysing these systems as continuous time Markov chains (CTMCs), they can often be viewed
as or reduced to some form of a vacation model, where a vacation is interpreted as the server being off.
Many of these models are considered in [1, 5, 17]. It will be seen that our work has elements that are of
a similar spirit, i.e. the decomposition of system metrics. The work of [20] looked at specialised vacation
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models capturing multi-server behaviours, although this is done for specific policies which in general do not
capture the optimal policy. To the best of our knowledge, the vacation model which most closely relates to
the model analysed in this work is that described in [3]. In general the vacation model presented there is not
optimal under the previously mentioned metrics. However, due to a higher coupling to the arrival process,
our model allows one to describe the optimal policy.

While all previously mentioned work is related to this paper, the research which is most similar is
[6, 7, 8, 9, 16]. They model these systems as CTMCs in both the single server and multi-server settings
and analyse them under the specific metric which they refer to as the Energy Response Product (ERP),
which unsurprisingly is defined to be the product of the expected response time, and expected energy
consumed. With several new techniques (such as the RRR technique described in [6]) and observations,
they are often able to arrive at closed form expressions even for multi-server systems, albeit under specific
policies. Furthermore, they are able to arrive at the optimal policy for single server systems, however this
is due to some convenient properties of the ERP cost function.

Our contributions offer a deeper understanding of the optimal policy for single server energy-aware
systems, and are as follows.

• We perform our analysis under a large family of cost functions, based on the expected response time,
expected number of jobs in the system, expected energy used, the expected turn-off rate of the server,
and also the expectations of the product of these metrics. Furthermore, our analysis allows one to
determine the optimal policy under any of these previously mentioned cost functions.

• We give an explicit solution to the underlying CTMC for our model. To the best of our knowledge,
this CTMC has not been previously solved.

• We extend our analysis to considerable generality with respect to the underlying distributions. That is,
we offer closed form solutions for all of our cost function metrics, under completely general server setup
times, and job processing time distributions. We also offer several insightful observations pertaining
to these metrics and how different system configurations relate to them.

• We offer several applications of our model. This includes applying our results to a multi-server system
with random routing to show that in general when energy concerns are a factor, classical load balancing
may be far from optimal.

The organization of this paper is as follows. In Section 2 a formal model of the system is presented.
We continue by giving a detailed analysis of this model in Section 3. We firstly impose the assumption
that all underlying distributions are exponential and therefore the model can be analysed as a CTMC. We
progressively relax these assumptions and analyse the model under almost complete generality, offering a
variety of insights and results. Section 4 gives several applications of our model while Section 5 shows how
the model can be applied to a two server random routing setting.

2. Model

We wish to capture the behaviour of a single server system, where the server can be dynamically set to
a low or high state. Furthermore, we wish to add the restriction that jobs may only be processed when the
server is in its higher state. Such a system is modelled as being in one of four energy states: LOW, SETUP,
BUSY, or IDLE. Each of these energy states has a corresponding rate of energy consumption ELow, ESetup,
EBusy, and EIdle, respectively. For simplicity of analysis and understanding, if ELow = 0, we rename LOW
to OFF. We will see that optimal policies typically depend on the ratios of the energy costs rather than
the values themselves. Therefore, we take these ratios with respect to EBusy, and denote them as rLow,
rSetup, and rIdle, where rIdle < 1. For the remainder of this paper we will often refer to moving to a higher
or lower state as turning the server on or off, respectively. For further ease of reading, we often abuse our
nomenclature for the energy states. For example we may refer to the server or system being IDLE, OFF
etc., where we implicitly mean that the server or system is in the energy state IDLE, OFF etc.
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Figure 1: M/M/1 ◦ {M,M, k} queue Markov Chain

Jobs arrive to a FIFO queue according to a Poisson process of rate λ. If the system is LOW/OFF when a
job arrives, it checks how many jobs are currently waiting in the queue. If the number in the queue plus the
arriving job is equal to a given threshold k, the system moves into SETUP. This corresponds to the server
turning on. The time it takes to make this transition is exponentially distributed with rate γ. Once the
server has completed making its transition, it leaves SETUP and becomes BUSY. Once BUSY, the server
begins to process the accumulated jobs. The job processing times are exponentially distributed with rate
µ. When a job is completed and no jobs remain in the queue, the system becomes IDLE. Once IDLE, the
system begins to accumulate idling time, since the last time it was turned on. If no job arrives to the system
once the server has accumulated a given amount of idling time, the system becomes LOW/OFF. If a job
arrives while the system is IDLE, it becomes BUSY. The amount of idling time which will be accumulated
before the system becomes LOW/OFF, is exponentially distributed with rate α. It is important to note
that the time spent in IDLE before transitioning to OFF is not the time which it takes for a server to turn
off, but rather the amount of time it is willing to wait before deciding to turn off. For the purpose of our
model, we assume that the time taken for the system to move from its high to low state is negligible, i.e. the
transition occurs instantaneously. It is thought that the manager in charge of such a system has no control
over λ, µ, and γ, but is free to choose α and k.

Due to the exponential assumptions, this system can be modelled as a CTMC and is depicted in Figure 1,
where the system state (n1, n2) means that the server is off when n1 = 0, on when n1 = 1, and there are n2

jobs in the system. One should note that the four previously defined energy states can be seen as a complete
and disjoint set of the system states, (n1, n2). This interpretation is seen explicitly as:

OFF =

k−1⋃
i=0

{(0, i)}, SETUP =

∞⋃
i=k

{(0, i)}, BUSY =

∞⋃
i=1

{(1, i)}, IDLE = {(1, 0)}.

To denote these systems we use a composition of two sets of parameters i.e. {} ◦ {}. The first set of
parameters is given in classical Kendall notation to describe the non-energy-aware portions of the system.
The set of parameters listed after the composition symbol are all parameters which are incorporated due
to energy concerns. The first of these parameters is the setup time distribution of the server, the second
is the idling time distribution, and the last is the number of jobs allowed to accumulate before the server
begins to turn on. For example, the queue in Figure 1 is an M/M/1 ◦ {M,M, k} system while if the job
processing times along with the server setup times follow general distributions, the system would be an
M/G/1 ◦ {G,M, k}. The reason for denoting the systems in this way, as we will show later, is that their
metrics can often be written as a decomposition where one of the terms will be the corresponding metric of
the non-energy-aware counterpart (the first set of parameters).

2.1. Justification of Assumptions and Parameter Summary

The model includes several assumptions in order to be tractable. Firstly, arrival times, setup times,
processing times, and idling times are initially all assumed to be exponentially distributed. The assumptions
on the arrival and processing times are quite standard for approximating systems of this kind. It will be
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shown later that the exponential assumption for the idling times is mitigated by properties of the optimal
policies. However, in general, the assumption that the setup times of the servers as well as the job processing
times are exponentially distributed can be problematic in practical settings. Later in our analysis we relax
these assumptions on the distributions and analyse the system under general settings.

There are several constraints imposed on the model to ensure stability and that the model is non-trivial:

0 < λ < µ, 0 < γ, 0 ≤ α, 1 ≤ k.

The parameters of the model are summarized in Table 1.

Table 1: Parameter Summary

Parameter(s) Explanation

ELow, ESetup, The energy costs associated with the different
EBusy, EIdle energy states.
rLow, rSetup, The ratios between the energy costs and EBusy.

rIdle
λ The arrival rate of jobs to the system.
µ The server’s processing rate.
γ The rate at which the server turns on
α The rate at which a server waits in energy state

IDLE before moving to energy state OFF.
The number of jobs the system allows to

k accumulate in the queue while in energy state OFF,
before moving to energy state SETUP.

3. Analysis

The goal of our analysis is to arrive at closed form expressions for a range of system metrics. Namely,
we wish to solve for the expected number of jobs in the system, the expected response time of a job, the
expected energy cost of the system, and the steady state rate of cycling between the low and high states
(rate of turning off/on). We denote these quantities as E[N ], E[R], E[E], and E[C], respectively. Once we
derive these expressions, we can solve for optimal values of the parameters which the system manager has
control over, α and k.

3.1. Set of Optimal Policies

We first define what we mean by an optimal policy. We define our cost to be a function of M weighted
terms each containing E[R], E[E], E[C], each raised to given powers. We leave out the system metric E[N ]
since we can always obtain it by weighting E[R] by 1/λ via Little’s Law. Formally, our cost function f(β,w)
is,

f(β,w) =

M∑
i=1

βiE[R]wR,iE[E]wE,iE[C]wC,i , (1)

where ∀i. 0 ≤ βi, wR,i, wE,i, wC,i are of the appropriate units. Our model makes two assumptions about the
optimal policies.

• The decision to start transitioning between OFF and SETUP is made at the moment a job arrives to
the system.

• It is never optimal to transition to the energy state OFF, while the server is BUSY, i.e. it is never
optimal to turn the server off if there are jobs in the system.
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The first assumption is made without loss of generality due to the memoryless property of the arrival
stream (the same decision would be made at any point in time between arrivals). The second assumption
is a property of the optimal policy due to the nature of the cost function. If the system were to turn the
server off while a job(s) remains in the system, E[R] will increase, since the job(s) that was in the system
when it turned off must now wait until the system turns on before it can be completed. At the same time,
the system does not gain any benefit with respect to the E[E] component since it will still have to expend
energy to complete the job(s) in the system at some point in the future. So, as the weights in the cost
function are positive we know that in the optimal policy the server will only be turned off while the server
is idling. Similar assumptions are made in the model used in [7]. Knowing that these two assumptions are
valid, we know that any optimal policy can be instantiated using the model we have described, under the
model’s assumptions.

Similar to the argument made to justify the servers beginning to turn on only when an arrival occurs to
the system, the decision to turn a server off or keep it on is made when a job departs the system and leaves
it idle. This would imply that in our model, in any policy which minimizes the cost, α = 0 or α→∞. We
leave α as part of our model for several reasons. Firstly, it gives us insight on how scaling between these
two extremes affects the system. Secondly, it allows us to easily determine where in the parameter space
the optimal policy switches between α = 0 and α→∞. Thirdly, it allows for easier extensions of the model
where this property may not necessarily hold. For example, this property does not hold when the arrivals do
not follow a Poisson process, or in a multi-server setting. Lastly when optimizing under different conditions,
i.e. minimizing a linear function of E[E] with a constraint on E[R], the optimal α could lie anywhere on the
positive real line.

3.2. Steady State

Theorem 1. The steady state distribution for an M/M/1 ◦ {M,M, k} queue, depicted by the Markov chain
in Figure 1 is given by the set of equations (2)-(6).

π0,n = π0,0 (0 ≤ n < k) (2)

π0,n = π0,0

(
λ

λ+ γ

)n−(k−1)

(k ≤ n) (3)

π1,n = π0,0

(
λ

α
ρn +

λ

µ− λ
(1− ρn)

)
(0 ≤ n < k) (4)

π1,n = π0,0

[(
λ

α
− λ

µ− λ

)
ρn +

1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]
(k ≤ n) (5)

π0,0 = (1− ρ)
αγ

kαγ + αλ+ λγ
(6)

Proof. Each row of the Markov chain depicted in Figure 1 is partitioned into two sections according to
n < k, or n ≥ k. The balance equations used to solve for the four different sections of the Markov chain are:

π0,n = π0,0 (n < k)

(λ+ γ)π0,n = λπ0,n−1 (n ≥ k)

µπ1,n = λπ1,n−1 + λπ0,n−1 (0 < n < k)

(µ+ λ)π1,n = λπ0,n−1 + γπ0,n + µπ1,n+1 (n ≥ k)
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where πn1,n2 denotes the steady state probability of being in state (n1, n2). We also have the boundary and
normalization conditions:

π1,0 =
λ

α
π0,0 and

∞∑
n1=0

∞∑
n2=0

πn1,n2
= 1.

While the first three balance equations can be solved with respect to π0,0 via simple recursions, the fourth
equation requires more effort. However, after solving the non-repeating portion of the Markov chain, we
note that we can apply similar methods to those used in [2]. We are able to arrive at a closed form solution
as follows. For n > k, we fit the steady state distribution to be of the form,

π1,n = Aρn−(k−1) +B

(
λ

λ+ γ

)n−(k−1)

where with the use of the boundary equations we find that,

B = π0,0
λ+ γ

µ− λ− γ

and

A = π0,0

[(
λ

α
− λ

µ− λ

)
ρk−1 − µγ

(µ− λ)(µ− λ− γ)

]
.

With the balance equations solved we use some algebra to yield the steady state distribution for our
system model. A full detailed derivation of the steady state distribution can be found in [12].

3.3. System Metrics

With the steady state distribution of our model in hand, we wish to arrive at closed form expressions
for the system metrics, namely E[N ], E[R], E[E], and E[C]. Determining these expectations will allow us to
build expressions for our cost function and in turn allow us to arrive at optimal values for α and k.

The simplest expression to solve for is E[C], the steady state rate at which the server turns off. The only
energy state from which the server turns off is IDLE, which has steady state probability π1,0. Therefore the
expected cycle rate is just the rate out of IDLE going to OFF.

E[C] = απ1,0 = (1− ρ)
αλγ

kαγ + αλ+ λγ
(7)

The general form of this expression is not unexpected. Firstly, the direct relationship to (1− ρ) is quite
intuitive as a heavily loaded system would rarely turn off. Secondly, k only appears in the denominator,
giving E[C] an inverse relationship to k. This is also expected as allowing k jobs to build up slows down
the turn on rate of the server as k increases, and the expected turn on rate is equal to the expected turn off
rate.

We solve E[E] by viewing it as a sum of being in energy states OFF, IDLE, SETUP, and BUSY weighted
by the corresponding energy costs. We sum the states using equations (2)-(6), and exploit our assumption
that ELow = 0 while the server is OFF.

E[E] = EBusy

∞∑
n=1

π1,n + ESetup

∞∑
n=k

π0,n + EIdleπ1,0

= EBusy

[
ρ+

(1− ρ)λ

kαγ + αλ+ λγ
(rIdleγ + rSetupα)

]
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Letting E[EM/M/1] denote the expected energy cost in an M/M/1 queue, and observing that E[EM/M/1] =
EBusyρ+ EIdle(1− ρ) leads to:

E[E] = E[EM/M/1] + EBusy
(1− ρ)α

kαγ + αλ+ λγ
(λrsetup − (λ+ kγ)ridle).

This gives us the true expected energy cost of the system, however since the E[E] term in in our cost function
is weighted by a constant β, we can absorb the constant EBusy, and derive a new metric normalized by this
weight:

E[EN ] =
E[E]

EBusy
= E[ENM/M/1] +

(1− ρ)α

kαγ + αλ+ λγ
(λrsetup − (λ+ kγ)ridle). (8)

We arrive again at a decomposition, the terms here are scaled by ρ or (1−ρ). As we would expect there is an
rbusyρ term present (contained within the term E[ENM/M/1]), since based on our model assumptions rbusyρ
is a lower bound for the expected normalized energy cost. We also note that letting α = 0 simply leaves
us with E[ENM/M/1], the expected normalized energy consumption in an M/M/1 queue, as anticipated. How
the rest of the terms arise is at this point not intuitively clear, but in the next section we give a different
point of view on E[E] which allows us to gain much more insight.

To solve for E[R], we use the traditional method of solving first for E[N ] by weighting the steady state
distribution and then applying Little’s Law. After quite a bit of algebra we are able to write:

E[N ] = E[NM/M/1] +
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)
+

kαγ(k − 1)

2(kαγ + αλ+ λγ)
.

Applying Little’s Law gives us:

E[R] = E[RM/M/1] +
1

γ

α(λ+ kγ)

kαγ + αλ+ λγ
+
k − 1

2λ

kαγ

kαγ + αλ+ λγ
. (9)

Both terms yield convenient decompositions. We would expect to find some form of the M/M/1 queue
embedded within the M/M/1 ◦ {M,M, k} queue since many of its metrics are optimized when their be-
haviours are equivalent, that is when α = 0. As a sanity check, letting α = 0 in the expressions for E[N ] and
E[R] reduces to exact M/M/1 expressions, as we would expect. Furthermore, E[NM/M/1] and E[RM/M/1]
are lower bounds for E[N ] and E[R], respectively.

To analyse the second term of (9), it is easier to first allow k = 1, which eliminates the third term.
With k = 1 and letting α approach ∞, our system reduces to that of the system described in [7], where
E[R] = E[RM/M/1]+1/γ. We can see from (9) that our result agrees. So the expected response time of a job
is bounded below by E[RM/M/1] and bounded above by E[RM/M/1] + 1/γ, when k = 1. Moving α along the
positive real line scales E[R] between these two bounds. When k > 1 the behaviour is similar, as k appears
in both the numerator and denominator, scaled by the same coefficient. Therefore, the second term still
adds a value between 0 and 1/γ. However, when k > 1 the third term no longer equals 0, so E[RM/M/1] is
no longer bounded above by E[RM/M/1] + 1/γ.

The third and last term of (9) quantifies the effect imposed on the response time when k jobs are allowed
to accumulate. As k increases, we see a linear increase in the third term. While no clear intuition is available,
we can see that the third term is weighted by k−1

2λ , which is the expected amount of time spent OFF after
a single job has arrived.

Viewing equations (7), (8), and (9) together, one begins to understand the trade-offs when optimizing a
given cost function by choosing α and k. Each individual metric prefers α and k to be either set to their
respective upper or lower bounds, but unfortunately they pull in different directions, as seen in Table 2.
Note that to minimize E[E], α = 0 when

ridle <
λ

kγ + λ
rsetup
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Table 2: Optimal Parameters of Metrics

Optimal Values of
Metric α k

E[R] 0 1
E[E] 0 or →∞ →∞
E[C] 0 →∞

and α→∞ otherwise.
The impact that the decision variables, k and α, have on a given metric can further be examined with

some interesting results. Primarily, we wish to inspect how the choice of k affects the expected response
time. While the other metrics are also interesting, as will be seen later these can be looked at in a much more
general setting. Furthermore, while the choice of α highly impacts the metric, we know that the arrivals
follow a Poisson process, any given cost function is minimized when α = 0 or when α→∞. We also know
that if α = 0, then the choice of k is irrelevant, since in steady state the server will never turn off. Due to
these observations, we can look at (9) as α→∞,

E[R] = E[RM/M/1] +
1

γ
+
k − 1

2λ

(
kγ

kγ + λ

)
. (10)

Figure 2 shows the relationship that E[R] has to k under several configurations. The reader is reminded
that while k is shown on a continuous range (to better understand the mathematical relationship it has to
these systems), in practice it must take on discrete values. Here one can see a somewhat counter intuitive
result, where as k increases, the expected response time for heavily loaded systems becomes less than that
of a lightly loaded system. This leads to our first observation.

Observation 1. Given any two M/M/1 ◦ {M,M, k} queues where one has a higher load than the other,
there exists a value k∗ such that for all values of k > k∗, the expected response time of the lighter loaded
queue, is greater than that of the heavier loaded queue.

(a) µ = 1, γ = 0.1 (b) µ = 1, γ = 0.01 (c) µ = 1, γ = 0.001

Figure 2: M/M/1 ◦ {M,M, k} expected response time vs k for varying γ values

At first this may seem surprising, as a lighter load is often associated with a lower expected response
time, but it is in fact quite intuitive. Consider the system when the server is turned off and there are no
jobs in the system, i.e. in the system state (0, 0). The next k − 1 jobs which arrive will have to wait for
the server to turn on, as well as the remaining time for the server to decide to begin turning on. That is,
the jobs will have to wait for the server to move through the energy states OFF and SETUP. While the
expected time the system spends in SETUP is completely independent of k and λ, this is not the case for
the time spent OFF. In fact, the expected amount of time the system spends OFF is the expected amount
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of time it takes for k jobs to arrive, which equals k/λ. For a lightly loaded system this takes a much longer
time compared to a heavily loaded one, and part of this extra time is added to the response time for all k−1
jobs which arrived during that period. This can further be seen in the third term of (10) which captures this
behaviour. This result illustrates the value of carefully choosing k, since it could have surprisingly negative
effects. Especially since at first glance it may be appealing to turn the server off and keep it off for a longer
period, if the load is light.

3.4. Regeneration Period Analysis

Here we approach the analysis of our system from a different angle. This method allows us to relax
several of our assumptions while still arriving at closed form expressions, as well as allowing us to gain
deeper insight and intuition into the system behaviour.

Theorem 2. The proportion of time spent in the energy states of an M/G/1◦{G,G, k} queue is insensitive
to the distributions themselves (beyond the means). As a result,

E[EN ] = ρ+ (1− ρ)
λ

kαγ + αλ+ λγ
(rIdleγ + rSetupα),

E[C] = (1− ρ)
αλγ

kαγ + αλ+ λγ
,

and for any single server system if ridle <
λ

kγ+λrsetup, then it is always optimal to leave the server on.

Proof. We view the system using the rate at which “regeneration periods” complete. Let S0,0 denote the
state of the system where the server is off and there are 0 jobs in the system, and let P0,0 denote the
proportion of time the system spends in S0,0 in steady state. We define our regeneration period to start at
system state S0,0, moving through energy state OFF into energy state SETUP. Once the server has turned
on, it continues to move between energy states BUSY and IDLE a number of times before it lastly moves
from IDLE back to S0,0. The reader is reminded that in our model, during a regeneration period the total
time spent idling is accumulated when moving between the energy states BUSY and IDLE. Once the system
moves back to state S0,0 the idling time is reset. Since for every regeneration period the system visits state
S0,0 exactly once, the rate at which regeneration periods occur in the system is the rate out of state S0,0.
When in state S0,0, the rate out is simply the arrival rate to the system, λ. Therefore in steady state the
regeneration period rate is λP0,0.

We also make the observation that the expected proportion of time which the system spends in energy
states OFF, SETUP, BUSY and IDLE (denoted POff , PSetup, PBusy, and PIdle respectively) over just one
of its regeneration periods, is equal to the proportion of time the system spends in those energy states, in
steady state. This is a consequence of the renewal reward theorem and the observation that the system
regenerates each time it enters state S0,0 (since in S0,0 all active events are exponentially distributed, i.e. the
interarrival times). For each regeneration period the server turns on a single time, therefore PSetup equals
the product of the regeneration process rate and the expected setup time of the server, i.e. (λ/γ)P0,0. This
same argument can be used for POff , which is the time it takes for k jobs to arrive to the system multiplied
with the regeneration period rate, λ(k/λ)P0,0 = kP0,0. We know that the rate into state S0,0 must equal the
rate out which implies P1,0 = (λ/α)P0,0. However, once again this is also just the product of the expected
idling time and the regeneration period rate of the system. Finally, we get the proportion of time the system
spends BUSY for free since we know it must be ρ. Putting it all together we have:

1 = ρ+
λ

α
P0,0 +

λ

γ
P0,0 + kP0,0.

This analysis has been done without imposing assumptions on any of the distributions, except for the arrival
stream. This assumption was used when we calculated the rate out of state S0,0 to be λP0,0, as well as
when invoking the renewal reward theorem. Isolating and solving for P0,0 we find it is equal to π0,0 from
our previous analysis, and the same can be said for the expected energy used by the system, that is the
expected energy used in an M/M/1 ◦ {M,M, k} system equals that of an M/G/1 ◦ {G,G, k} system.

9



(a) µ = 1, γ = 0.01, k = 1 (b) µ = 1, γ = 0.25, k = 1 (c) µ = 1, γ = 1, k = 1

(d) µ = 1, γ = 0.1, k = 2 (e) µ = 1, γ = 0.1, k = 5 (f) µ = 1, γ = 0.1, k = 10

Figure 3: Expected energy consumption vs α under varying γ and k

It may be counter intuitive for the proportion of time spent in different energy states to be independent
of the underlying distributions of the processing and setup times. However, this is similar to the fact that an
M/G/1 queue is BUSY and IDLE with probabilities ρ and (1− ρ), respectively. Here one can see why the
exact analysis on the effects which the system parameters have on E[E] and E[C] was previously deferred,
since here we can perform the analysis in greater generality.

Figure 3 shows the relationship of the expected energy versus α for several configurations with varying
values of ρ, γ, and k. Here ridle = 0.6 and rsetup = 1. As was seen in Table 2, E[E] is the only metric
which can be minimized when α = 0 or when α → ∞. The transition between optimal values can be seen
graphically in Figures 3-(a)-(c). When the setup times are high, it is optimal to always leave the server
on, even for lightly loaded systems. As the setup time for the server decreases, the optimal configuration
becomes immediately turning the server off when it becomes idle. This transition occurs firstly in lighter
loaded systems, as seen in Figure 3-(b), but eventually also occurs in the heavily loaded systems. This
relation is also seen in Figures 3-(d)-(f) as k increases, while other parameters are held constant. This
interchangeable effect of changes in γ and k can be seen mathematically as well, and leads to an interesting
observation.

Observation 2. The expression for the expected energy consumed by a single server system where the server
instantly turns off when it idles, i.e. (8) as α→∞, is symmetric in k and γ.

This result is quite surprising, as the parameters k and γ have no true equivalence in any intuitive sense.
The higher the value of k the longer the system will wait before beginning to turn on, while the higher the
value of γ the quicker the server turns on. Furthermore, the feasible domain of both variables is not even
equal, as k ∈ N, while γ ∈ R+. While this relationship of course does not hold with respect to other system
metrics such as E[E], the impact which k and γ have on E[C] remains interesting.

Similar to the preceding discussion of energy costs, Figure 4 shows the relationship which the expected
cycle rate, E[C], has for various configurations. As expected, E[C] is minimized when α = 0, since the server
will never turn off, and therefore never turn on in steady state. But as α → ∞, E[C] begins to exhibit
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(a) µ = 1, γ = 0.01, k = 1 (b) µ = 1, γ = 0.5, k = 1 (c) µ = 1, γ = 1, k = 1

(d) µ = 1, γ = 1, k = 2 (e) µ = 1, γ = 1, k = 5 (f) µ = 1, γ = 1, k = 10

Figure 4: Expected cycle rate vs α under varying γ and k

some unexpected behaviour. We note that in Figures 4-(a)-(c), as γ increases, the cycle rate for a lightly
loaded system (ρ = 0.2) begins to fall below that of a more heavily loaded system (ρ = 0.4). Since in these
figures k = 1, one may expect that the lightly loaded system will always have a higher cycle rate since
the busy period is much shorter. However, this is not what we observe. This effect is further seen as k is
also increased in Figures 4-(d)-(f). Not only do more heavily loaded systems begin to overtake more lightly
loaded systems, but certain curves seem to be converging to the same value. In particular the curves where
ρ = 0.2, 0.8 and ρ = 0.4, 0.6 approach the same values as α, k, and γ increase, giving us another unexpected
observation.

Observation 3. As α, γ, and k increase, the expected cycle rate in an M/G/1 ◦ {G,G, k} for systems with
loads equidistant from 0.5 approach equal values, and furthermore the greater the value of |ρ− 0.5| the lower
the cycle rate will be.

This observation has quite a bit of intuition behind it. Firstly, it is clear that as ρ → 0 or as ρ → 1,
E[C]→ 0 since the server will either never be busy, or never be idle. Furthermore, as we slightly move away
from these two extremes, E[C] must increase as opportunities for the server to turn on and off begin to arise.
Secondly, in a lightly loaded system with a large enough k, the time the server waits before turning on is
significantly larger than for a heavily loaded system, as was discussed earlier. On the other hand, the time
spent clearing an arbitrary number of jobs out of the system once the server turns on can take significantly
longer in a heavily loaded system compared to a lightly loaded one. By extending the time of a regeneration
period, both of these effects lower the expected cycle rate. Thinking about the system in this way allows us
to see why heavily and lightly loaded systems have a lower expected cycle rate. However, it does not offer
any direct intuition why a symmetry arises around ρ = 0.5, nor why ρ = 0.5 gives the highest expected cycle
rate as α, γ and k grow.

With energy and cycling analysed, to move forward in our analysis in an attempt to solve for the expected
response time under less restrictive assumptions than those for the previously solved M/M/1 ◦ {M,M, k}
system. While the energy and cycle metrics can be solved in almost complete generality (M/G/1◦{G,G, k}),
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the response time is harder to arrive at. We therefore again impose exponential assumptions upon the idling
times of the system, but still allow for general distributions for the processing and setup times. Some
generality is lost, but we argue that the exponential assumptions on the idling and interarrival times are
not nearly as limiting. For many applications, modelling the arrivals as a Poisson process is a reasonable
assumption, while as we have stated before, having the server setup times and job processing times being
exponentially distributed can be problematic. We also know that if the arrivals do follow a Poisson process
then α is either 0 or approaches ∞, meaning the actual distribution has little impact. With this in mind,
we analyse the M/G/1 ◦ {G,M, k} queue with the goal of determining E[R].

Theorem 3. For an M/G/1 ◦ {G,M, k} queue, the expected number of jobs in the system and the expected
response time for a job are given by:

E[N ] = E[NM/G/1] + α
γ(k − 1) + λ

kαγ + αλ+ λγ

[
1

2
− ρ− ρ α

α+ λ

(
γ(k − 1) + λ

γ

)
− 1

2

α

α+ λ
Γ

]
+ ρ

α

α+ λ

(
γ(k − 1) + λ

γ

)
+

1

2

α

α+ λ
Γ,

where letting V ar(G) denote the variance of the setup time distribution,

Γ = (k − 1)2 + (2k − 1)
λ

γ
+ λ2V ar(G),

and

E[R] =
E[N ]

λ
.

Proof. We tackle the problem by examining an embedded Markov chain, as is traditionally done for the
M/G/1 queue. We define Nn to be a random variable denoting the number of jobs left in the system as the
nth job departs. As in the M/G/1 analysis,

Nn+1 =

{
Nn +An+1 − 1 Nn ≥ 1;

An+1 Nn = 0,

where An+1 denotes the number of arrivals which occurred between the departure of the nth and (n+ 1)th

jobs, not counting the (n+ 1)th if it arrived during that period. For our model, we have to condition An+1

on Nn,

An+1 =

{
AS,n Nn ≥ 1;

AS,n +XOff,n(k − 1 +AΓ,n) Nn = 0,

where AS,n is a random variable denoting the number of jobs which arrive while the nth job is being
processed. AΓ,n is a random variable denoting the number of jobs which arrive to the system during the
server’s setup time, given the (n+ 1)th job is the first to arrive once the server has turned off. XOff,n is an
indicator variable that is 1 when the system is IDLE and the next energy state it moves to is OFF and 0 if
the next energy state it moves to is BUSY, given that the nth job to depart leaves behind an empty system.
We note that the distributions for all three of these random variables are independent of n, and from here
on refer to them simply as AS , AΓ, and XOff . We can now rewrite the expressions for Nn+1 and An+1 with
the use of the Heaviside step function.

Nn+1 = Nn − U(Nn) +An+1

An+1 = AS + (1− U(Nn))XOff (k − 1 +AΓ)

⇒ Nn+1 = Nn − U(Nn) +AS

+ (1− U(Nn))XOff (k − 1 +AΓ) (11)

12



If we let n→∞ and then take the expectation of both sides, the Nn and Nn+1 terms cancel out. We also
exploit the fact that XOff is independent from AΓ, since AΓ is dependent only on the interarrival and setup
times. After some algebra we are left with an expression for E[U(N)].

E[U(N)] =
E[AS ] + E[XOff ](k − 1 + E[AΓ])

1 + E[XOff ](k − 1 + E[AΓ])

This should not give us any new information about the system, as for an M/G/1 queue this would yield
E[U(N)] = ρ. Of course the interpretation of E[U(N)] is the steady state probability there is at least one
job in the system. From our previous analysis on the proportion of time in the energy states, we know this
to be:

1− P0,0 − P1,0 = ρ+ (1− ρ)α
γ(k − 1) + λ

kαγ + αλ+ λγ
.

As a sanity check this is what E[U(N)] evaluates to when,

E[AS ] = ρ, E[XOff ] =
α

λ+ α
, and E[AΓ] =

λ

γ
.

To arrive at E[N ], we use the usual approach: square both sides of (11), let n→∞, take expectations and
exploit the following equalities.

U2(N) = U(N)

NU(N) = N

N(1− U(N)) = 0

U(N)(1− U(N)) = 0

E[XOffAS ] = E[XOff ]E[AS ]

E[XOffAΓ] = E[XOff ]E[AΓ]

Substituting those equations into (10) after squaring both sides yields,

2(1− E[AS ])E[N ] = E[U(N)][1 + 2E[AS ](1− E[XOff ](k − 1 + E[AΓ]))] + E[A2
S ]E[XOff ](k − 1 + E[AS ])

+ (1− E[U(N)])E[XOff ]((k − 1)2 + 2(k − 1)E[AΓ] + E[A2
Γ]).

After some algebra, we are able to arrive at a relatively clean expression for the expected number of jobs in
the system.

Again we see this recurring decomposition of the energy-aware system into its classical queue counterpart
plus additional terms. We would expect to see this result for the same reasons discussed when we solved
the M/M/1 ◦ {M,M, k} queue. Combining Theorem 2 and Theorem 3 now gives us the tools to optimize
M/G/1 ◦ {G,M, k} systems under any metric of the form given in (1).

With the expected response time solved under general distributional assumptions for the processing and
setup times, we take this opportunity to gain a deeper insight into this metric than provided in Section 3.3.
Figure 5-(a)-(c) shows the relationship which E[R] has under different system configurations, as well as
different processing time variance values. The results here are not surprising as E[R] can be seen as a
decomposition, and the only place the variance of the processing times is present is in the E[RM/G/1] term,
which is well understood. Looking at the impact which the setup time variance has on E[R] is a different
story.

Observation 4. Although E[R] is dependent on the setup time variance in an M/G/1 ◦ {G,M, k} system,
it is relatively insensitive to it.
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(a) µ = 1, γ = 0.1, k = 1, V ar(G) =
0.01

(b) µ = 1, γ = 0.5, k = 2, V ar(G) =
0.05

(c) µ = 1, γ = 1, k = 5, V ar(G) = 1

(e) µ = 1, γ = 0.1, k = 1, V ar(S) = 1 (f) µ = 1, γ = 0.1, k = 1, V ar(S) = 5 (g) µ = 1, γ = 0.1, k = 1, V ar(S) = 10

Figure 5: Variance effects: expected response time vs p

This can be seen in Figures 5-(e)-(g) and for the most part is good news for a system manager. This
parameter is likely not to be initially known, and due to this low sensitivity, making an assumption or
approximation may be a reasonable choice. The reason for this low sensitivity is not exactly clear, but we
do note that during a single regeneration period, there is only one corresponding random variable for the
setup times. While in contrast, there could be many invocations of of the processing time distribution (at
least k).

3.5. Expectation of Products

While (1) encapsulates a large family of cost functions, there is another class of relevant cost functions
which previous analysis fails to cover. Cost functions of the form (1) can be instantiated as the product
of expectations, for example E[R]E[E]E[C], but cannot be instantiated as the expectation of products, for
example E[R·E ·C]. This section extends our set of valid cost functions, and shows that, perhaps surprisingly,
many of these cost functions are minimized under trivial configurations.

The new set of cost functions is defined as follows,

f(w) = E[Rw1 · Ew2 ·Nw3 · Cw4 ], (12)

where, ∀i.wi ≥ 0. Note that unlike in (1), N is included, since in this form Little’s law can no longer be
applied to make the term redundant.
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Theorem 4. Cost functions of the form E[Rw1 · Ew2 · Nw3 · Cw4 ], where w1, w2, w3, and w4 are positive
integers, are all trivially minimized when the server always remains on, expect for cost functions of the form
E[Rw1 · Ew2 ] which are minimized when the server always remains on, if ridle <

λ
kγ+λrsetup for an optimal

value of k.

Proof. Firstly, we observe that if w4 > 0 then the cost function is trivially minimized, as keeping the server
always on guarantees that C = 0.

We secondly inspect the cost function E[E ·N ], and show this also leads to a trivial solution. From the
definition of the state space we know that,

E[N · E] = ESetup

∞∑
n=k

nπ0,n + EBusy

∞∑
n=0

nπ1,n.

Substituting (3)-(6) into the previous equations and simplifying, we arrive at,

E[N · E] = E[(N · E)M/M/1] + ESetup(1− ρ)
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)
+ EBusyρ

αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)
. (13)

One should note that since we invoked the steady state equations, we have assumed underlying exponential
distributions, and therefore are performing this analysis for an M/M/1 ◦ {M,M, k} system. However, this
assumption will later be relaxed. The optimal value of α can be obtained by taking the the partial derivative
of (13) and setting it equal to 0. Taking said derivative yields,

∂

∂α
E[N · E] = (ρ+ rSetup(1− ρ))

λ(λ+ kγ)

γ

(
λγ

(kαγ + αλ+ λγ)2

)
.

This expression does not equal 0 for any value of α. This implies that the optimal value lies at one of the
bounds for the feasible range of α. Furthermore, the derivative is always positive. Taking these two facts
together, we know that E[N ·E] is always minimized when α = 0. In other words, when E[N ·E] is the cost
function, the optimal policy is one where the server always remains on.

With regards to the “always on” property of the E[E · N ] cost function, this becomes intuitively clear
after several observations, and in fact can be generalized to E[Ew2 ·Nw3].

1. It is known that in a stable system there is no avoiding being BUSY for a proportion of time equal to
the system utilization, ρ. Therefore, the energy cost of the system must equal EBusy for a proportion
ρ of the time.

2. It is observed that the expected number in the system while in BUSY given that it transitioned from
IDLE, is less than or equal to the expected number of jobs in the system while in BUSY given that it
transitioned from SETUP. This is due to the fact that transitioning from IDLE implies there is only
one job in the system (at the time of the transition), while when transitioning from SETUP there are
at least k jobs, as well as whatever jobs arrived during the setup time (mean number λ/γ).

3. Due to the two observations immediately preceding this, ignoring the addition of terms to E[N · E]
when the system is IDLE, OFF, and in SETUP, one cannot achieve a lower E[N · E] than the policy
which always keeps the server on.

4. It is noted that when the system is IDLE, N = 0, which implies N · E = 0. Therefore from the third
and fourth observation, one can conclude the policy which will always minimize E[N ·E] is the policy
which always keeps the server on.

Furthermore, this reasoning can be extended to general underlying distributions and therefore, this always
on property for E[Ew2 ·Nw3] also holds in the M/G/1 ◦ {G,G, k} system.
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From our previous observation of C in (12), we inspect cost functions of the form E[Rw1 · Ew2 · Nw3 ].
If w2 = 0 it is obvious that keeping the server on will be optimal. Also, if w1, w2, w3 > 0 the same trivial
solution also arises, due to reasons mentioned before, specifically, when the server is idle the cost function
is 0. Reducing the set of cost functions (12) by removing all trivial cases leaves us with

E[Rw1 · Ew2 ].

Noting that R = S +W where S denotes the processing time and W denotes the waiting time allows us to
rewrite the previous equation as

E[(S +W )w1 · Ew2 ] = E
[(w1−1∑

i=0

(
w1

i

)
Ww1−i · Si + Sw1

)
· Ew2

]
. (14)

Before completing the next step we note that due to W = 0 while the server is idle, we can conclude
that all cost functions of the form E[Ww1 · Ew2 ] are also trivially solved using the same argument for
that of E[Nw1 · Ew2 ]. Next we let T equal all terms in (14) except for Sw1 · Ew2 . We also note that
the processing time of the next job to be processed is independent from the energy used, and therefore
E[Sw1 · Ew2 ] = E[Sw1 ] · E[Ew2 ]. Substituting this observation and T into (14) gives us,

E[Rw1 · Ew2 ] = E[T ] + E[S]E[E].

We know that T is a sum of terms of the form Wm ·En and is therefore minimized when the server remains
on. We also know from Theorem 2 that E[E] is minimized by leaving the server on, when ridle <

λ
kγ+λrsetup.

Therefore it is optimal to keep the server on when ridle <
λ

kγ+λrsetup under the cost function E[Rw1 ·Ew2 ].

4. Applications

In this section, we derive optimal values for the parameters under popular optimization criteria, as well as
demonstrating how these results can be used in other settings. We revert back to our model with exponential
assumptions for simplification of calculations, however all methods used are still applicable in the general
setting.

4.1. Weighted Sum Cost Function

One of the more popular metrics used is a weighted sum of the three system metrics, E[R] + β1E[E] +
β2E[C] [2, 15, 16, 19]. Often E[C] is ignored (β2 = 0) and the weights β1 and β2 appropriately scale the
units of the overall function. This means of course that E[R] must be scaled by a unit constant. We take
the partial derivatives first with respect to α.

∂

∂α
E[R] =

λ(λ+ kγ)

(kαγ + αλ+ λγ)2
+

γ2k(k − 1)

(kαγ + αλ+ λγ)2

∂

∂α
E[EN ] = (1− ρ)λγ

rsetupλ− ridle(λ+ kγ)

(kαγ + αλ+ λγ)2

∂

∂α
E[C] = (1− ρ)

λ2γ2

(kαγ + αλ+ λγ)2

As expected, α only appears in the denominators. As was previously mentioned, this means that when
we take the weighted sum of the derivatives, there is no value of α to make the sum evaluate to 0. In other
words, the optimal value of α occurs at one of its bounds, α = 0 or α → ∞. However, we already knew
this from our previous observation on the Poisson process. What this yields that we did not have before is
the point where the preference of α switches. From our cost function we can see that when the following
inequality holds, the optimal value is to have α→∞, while it is 0 otherwise.

β1(1− ρ)λγridle(kγ + λ) ≤ λ(λ+ kγ) + γk(k − 1) + β1(1− ρ)λ2γrsetup + β2(1− ρ)λ2γ2 (15)
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When solving for the optimal value of k, we can simplify by initially having α → ∞ since we know that
if α = 0 the choice of k is irrelevant since the server never shuts off. Taking the partial derivatives of the
metrics with α→∞ gives us,

∂

∂k
E[R] =

γ

2λ

k2γ + 2kλ− λ
(λ+ kγ)2

,

∂

∂k
E[EN ] = −(1− ρ)

λγrsetup
(λ+ kγ)2

,

∂

∂k
E[C] = −(1− ρ)

λγ2

(λ+ kγ)2
.

Setting the weighted sum of the above three terms equal to 0, we arrive at the following quadratic,

0 =
γ2

2λ
k2 + γk − (λ+ (1− ρ)λγ(β1rsetup + β2γ)). (16)

Solving (16) and substituting into (15), one can determine the optimal values of the system parameters. If
there exists a solution, k∗, for (16) on the constrained range of k, due to the convexity of our metrics with
respect to k, one would just need to check both dk∗e and bk∗c to see which yields the best result.

4.2. Optimization with SLA Constraints

Here we consider a constrained optimization problem. We find that the optimal value of α is not
necessarily at the bounds of its range. Imagine a server where for simplicity k is fixed at 1 and there is a
service level agreement (SLA) that the expected response time for a job must be less than or equal to some
constant T , where 1

µ−λ ≤ T ≤ 1
µ−λ + 1

γ , and we wish to minimize the expected energy consumed by the

system under the assumption that ridle <
λ

λ+γ rsetup. We set (9) equal to T and solve for α:

α =
λγ2

λ+ γ

T − E[RM/M/1]

1− γ(T − E[RM/M/1])
.

Using this value for α will minimize the expected energy used by the system. This value is optimal due to
our assumption on rIdle, which implies E[E] decreases as α increases.

4.3. Sleep States

Modern servers usually have several different discrete sleep settings which they can be set to. While in
these sleep states, the server consumes a lower amount of energy than being idle but it cannot process jobs.
We define a class of policies P, which exhibit very similar behaviour to the polices we have been considering.
Policies of class P wait for k jobs to accumulate in the queue while in a lower energy state before beginning
to turn on. Once turned on the system processes jobs until it becomes idle. If the system idles for a certain
amount of time before a new job arrives, it moves to the same lower energy state that it started in, and
repeats its behaviour. The key difference here is now we have different lower energy states (the sleep states),
and we allow the server to only use one of them. We show that our model can be used to find the optimal
policy contained in P.

We add the following variation to our previous model: the system now has I different sleep states it can
be set to, where each of the i sleep states is denoted by SLEEP i. As stated before, jobs cannot be processed
while the server is in state SLEEP i, ∀i : 0 < i ≤ I. For each state SLEEP i, there is a corresponding energy
cost, denoted ESleep,i (along with an energy ratio with respect to EBusy, rSleep,i), as well as a corresponding
setup time, with rate γi. Typically, ∀i : 0 < i < I.ESleep,i ≤ ESleep,i+1 and γi ≤ γi+1.

Our original model can describe a system where instead of turning off after a given idling time, it instead
transitions to some state SLEEP i. Here the steady state probabilities of πi0,0 to πi0,k−1 now correspond to
the steady state probabilities of being in state SLEEP i rather than OFF, and γ is replaced with γi. To
analyse this system, we must also replace each instance of γ in our equations for E[R], E[EN ], and E[C]
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by γi as well as make a slight addition to the expression for E[EN ], (8), to account for energy now being
consumed in the sleep state,

E[ENSleep,i] = E[EN ] + (1− ρ)
kαγi

kαγi + αλ+ λγi
rSleep,i.

From here we can analyse the system, and obtain the optimal values of α and k. Substituting these values
into our optimization metric gives us some value, denoted opti. Once we have these I optimal values as well
as the optimal value for the server turning off, we can take the minimum of them and design our policy to
always transition to the corresponding energy state OFF, or SLEEP i.

Although accounting for the sleep states of the server allows us to determine improved policies than if we
were to ignore them, we can no longer claim that our model can describe the optimal policy of the server,
i.e. the optimal policy may not be contained in P. This is due to the fact that the optimal policy may
have the server be in some sleep state until k1 jobs accumulate, then move to a higher sleep state where it
waits for k2 jobs to accumulate before turning on. However, when the optimal values of k are low for any
individual sleep state under our analysis, we conjecture that the policy will be close to optimal. For a more
in depth analysis of this model under multiple sleep states, we refer the reader to [10].

5. Random Routing

Here we present an application of our model in a random routing setting, where we leverage our single
server solutions. Imagine a system with two M/M/1 ◦ {M,M, k} queues. When a job arrives to the system,
it is sent to the first queue with probability p and is sent to the second queue with probability (1 − p). If
we wish to optimize for some metric, we now have five decision variables, α1, α2, k1, k2, and p, where the
subscripts 1 and 2 denote the values for the first and second server, respectively. We know that the values
for α1 and α2 will be either set to 0 or approach ∞, which breaks the problem set into three cases (due
to symmetry) where we instead look to optimize against k1, k2 and p and then take the lowest value from
among the three cases. We classify the cases as follows. The first is α1 = α2 = 0, the second is α1 → ∞
and α2 = 0, and the third is α1 →∞ and α2 →∞.

We wish to minimize E[N ] + βE[E]. This falls within our class of cost functions, as E[N ] is a scaled
version of E[R] (by Little’s Law). We know that for the first case since the servers will always be on and

each server will be BUSY for pλ
µ and (1−p)λ

µ proportion of time respectively, that the optimal configuration
in that case is to set p = 0.5, i.e. balance the loads. As we will see, the other cases provide non-trivial
optimal values for p.

Observation 5. In multiple server systems where energy provisioning is a concern, traditional load balancing
in general is not optimal.

Figure 6 shows several examples under different parameter configurations of the cost function versus p
in the three different cases where the optimal k values are used, and rIdle and rSetup are both set to 0.8. In
Figure 2(a), we see a medium loaded system where either server could accept all of the arrivals and still be
stable. Here we can see that the optimal server configuration is to have a server which is always on which
takes the majority of the system load (89.5%), while a server which turns off when it becomes idle takes
a small portion of the system load (10.5%). This means that a lot of the time, the server that turns off
will just remain off with up to four jobs waiting in the queue. This may seem unfair to the jobs which are
“unlucky” enough to be put into this queue but this is an unfortunate side effect of the cost function being
considered.

In Figure 6-(b), we see a lightly loaded system and get a result that is not surprising. The optimal
configuration is still one server that remains on and one that turns off. However, the server which turns
on and off is completely ignored. In other words, the configuration which optimizes the random routing
problem is simply an M/M/1 queue. This is somewhat expected since the load on the system is so light it
is not advantageous to use the second server.
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(a) µ = 2, λ = 1.9, γ = 0.2, β = 22, k1 =
5, k2 = 7

(b) µ = 2, λ = 1, γ = 0.2, β = 15, k1 =
1, k2 = 4

(c) µ = 2, λ = 3, γ = 0.5, β = 15, k1 =
3, k2 = 2

(d) µ = 2, λ = 1.9, γ = 3, β = 15, k1 =
1, k2 = 2

(e) µ = 2, λ = 1, γ = 1, β = 0, k1 =
1, k2 = 1

(f) µ = 2, λ = 1, γ = 1, β = 100, k1 =
1, k2 = 1

Figure 6: Random routing: cost vs p for three different configurations of a two server system

Figures 6-(c) and (d) show the results for a heavily loaded system where both servers must be used or
the system will be unstable. We can see the curves of the three cases approach similar curvatures. In Figure
2(c), where the setup rate is relatively low (γ = 0.5), the classical load balancing approach gives us the best
configuration with both servers always on and p = 0.5. We notice that as we increase the setup rate of the
server (γ = 3), both servers being on becomes sub-optimal and the case of both servers turning on and off
begins to dominate. In fact, the optimal value is p = 0.505 and not p = 0.5 as one might expect. This is as
we would expect since the faster the server can turn on, the more appealing it is to shut it off.

As we see from Figure 6, simple load balancing is not sufficient to arrive at the optimal configuration
as we have shown non-trivial values of p that optimize the system. Taking a narrower look at the single
case of having both servers able to turn off in Figure 7, shows a similar non-trivial result. Here the graphs
also become asymmetric with respect to p, and even the optimal values of k1 and k2 are not equal. As
in the case of having one server always on, and one server able to turn off, load balancing is not optimal.
It is noted that if load balancing were used in Figure 7-(b), i.e. p = 0.5, the result would be a disaster,
as it is one of the worst configurations possible in this context. Adding energy concerns to these systems
greatly impacts the complexity of the analysis as typical load balancing algorithms are no longer optimal.
This also raises questions on the implications for other multi-server settings such as round robin routing
or in an M/M/c ◦ {M,M, k} queue. Specifically, there is no reason why in general each server should be
homogeneous with respect to the server’s α and k values.
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(a) µ = 2, λ = 1.9, γ = 0.1, β = 15, k1 =
6, k2 = 3

(b) µ = 2, λ = 1.9, γ = 0.1, β = 30, k1 =
3, k2 = 4

(c) µ = 2, λ = 0.5, γ = 0.1, β = 50, k1 =
7, k2 = 1

Figure 7: Random routing: single case (both servers turn off)

6. Conclusion

As energy costs of servers as well as the relative energy consumed by servers increase, we must put
greater emphasis on determining optimal policies. Here we gave a complete analysis of the single server
systems M/M/1 ◦ {M,M, k} and M/G/1 ◦ {G,M, k}, with respect to E[N ], E[R], E[E], and E[C] as well as
analysis for an M/G/1 ◦ {G,G, k} queue with respect to E[E] and E[C]. This gave us an array of tools and
equations to arrive at optimal policies for many single server energy-aware systems under general settings.
This analysis allowed us to make several interesting and unexpected observations which give a greater clarity
to how these systems behave. We also leveraged our analysis in several other applications, such as SLA
optimization, servers with sleep states, and a multi-server systems with random routing. For the latter
we showed that typical load balancing algorithms are not enough to arrive at an optimal configuration.
Furthermore, this context gives a deeper insight into the analysis of these energy-aware multi-server systems
with other routing policies. In particular, heterogeneous servers may be desirable, in contrast to models
where energy costs are not considered.

For our future work we plan on extending some of our analysis methods to multi-server systems in hopes
at arriving at the optimal policy. However, this is a much greater challenge as many trivialities in the single
server system, such as the form of the optimal policy, do not carry over. Specifically, when determining
when it is optimal start a setup or turn a server off, one would need to consider the behaviour of the other
servers, and potential future states the system could transition to.
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