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Abstract

For tandem queues with no buffer spaces and both dedicated and flexible servers, we study how

flexible servers should be assigned to maximize the throughput. When there is one flexible server

and two stations each with a dedicated server, we completely characterize the optimal policy. We

use the insights gained from applying the Policy Iteration algorithm on systems with three, four,

and five stations to devise heuristics for systems of arbitrary size. These heuristics are verified

by numerical analysis. We also discuss the throughput improvement, when for a given server

assignment, dedicated servers are changed to flexible servers.
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1. Introduction

Consider a tandem queueing network with N ≥ 2 stations, M ≥ 1 dedicated servers, and F ≥ 1

flexible servers. At any given time, each station can be assigned multiple servers and each server

can work only on one job, and a job may have at most one server assigned to it. Assume that the

service times of each job at station i ∈ {1, . . . , N} are independent and identically distributed with

rate µi, i.e. the service rate of each server at the ith station is only dependent on the station.

In the above system, we assume that dedicated servers are already assigned to the stations. We

are interested in determining the dynamic assignment policy for flexible servers that maximizes the

long-run average throughput. For simplicity, we assume the travel times for jobs to progress and

also the travel times for flexible servers to move between stations are negligible. We also assume

there is an infinite supply of jobs in front of the first station and infinite space for jobs completed
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at the last station. There are no buffer spaces between stations.

We introduce the concept of “hand-off” for flexible servers. Hand-off happens when a flexible

server passes the job it is serving to a dedicated server at the same station. Although it is possible

to perform hand-off at any time, we let it occur only in the following two cases. When a station has

a busy flexible server and a free dedicated server, the flexible server can pass its job to the dedicated

server and become free. When a station has a busy flexible server and a blocked dedicated server,

jobs can be swapped between the two servers. In either of the two cases, we say a hand-off has

taken place.

Any allocation policy should define appropriate actions when blocking or starvation occurs.

In cases where there are multiple blocked or starved servers, policies should prioritize resolving

blocking or starvation of the involved servers. We will show that when workloads (i.e. the ratio of

the mean service time to the number of dedicated servers for a station) are equal, a near-optimal

policy is one that clears blocking from the end of the line to the beginning and avoids starving

servers. With different workloads, a near-optimal policy prioritizes clearing blocking for stations

with higher mean service times.

An instance of the application of the problem described above is the bed management problem

from the healthcare domain. Bed management deals with optimizing patient flow into and out of

beds, so that waiting times are reduced (Department of Health and Aged Care (1999)). A patient

arriving at a hospital might need to go through a sequence of units. For example, the patient

might go through, in order, the emergency, express, medicine, surgery, recovery, and complex

units. The role of the express unit is to accommodate the patient until a bed becomes available

in the medicine unit. A number of beds, called express beds, are shared between the emergency,

express, and medicine units to move patients between these units. However, sharing is performed in

an ad-hoc manner and is limited to these three units only. Several questions arise, including: how

much is the throughput improvement, if beds are shared among the units? How should the shared

beds be allocated dynamically to the units? If we need to take a number of dedicated beds from

the units and share them, which units should be chosen? While we do not model this application

directly, our results are a first step in an analytic approach to such problems.

There is a rich literature on the assignment of flexible servers in tandem queues. Most of the

papers in this domain focus on minimizing holding costs. Iravani (1997) considers tandem queues
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attended by a moving server with holding and switching costs. As a basic model, he shows that for

two-stage tandem queues, the policy which minimizes the total discounted and long run average

holding and switching costs is a greedy and exhaustive policy in the second stage. The first stage

could then follow static, gated-limited, or double-threshold policies.

Ahn et al. (2002) consider the optimal control of two parallel servers in a two-stage tandem

queueing system with two flexible servers and holding costs. They examine both collaborative and

non-collaborative cases. In the collaborative case, servers may collaborate to work on the same job

at the same time, while in the non-collaborative case each job can be served by at most one server at

a time. They provide simple conditions under which it is optimal to allocate both servers to station

1 or 2 in the collaborative case. In the non-collaborative case, they show that the same condition as

in the collaborative case guarantees the existence of an optimal policy that is exhaustive in station

1. However the condition for exhaustive service at station 2 to be optimal does not carry over.

Pandelis (2008) considers a two-station tandem line with both dedicated and flexible servers

where all servers have time-varying rates. Servers can work collaboratively. With a given probabil-

ity, jobs can leave the system after completion in the first station. The optimal policy to minimize

holding costs is described.

For a two-class queueing system with one dedicated server, one flexible server, and no exogenous

arrivals, Ahn et al. (2004) characterize the server assignment policy that minimizes the expected

total holding cost incurred until all jobs initially present in the system have departed.

Andradóttir et al. (2007) consider tandem queues having both flexible and dedicated servers

with finite or infinite buffers between stations. They study the dynamic assignment of servers,

in the collaborative case, such that the long-run average throughput is maximized. They assume

that the service requirements of jobs at stations are exponentially distributed. For 2 stations and

3 servers (both flexible and dedicated) the allocation of the flexible servers is of threshold type.

Multiple thresholds are used to express allocation policies and the thresholds are specified.

Wu et al. (2008) consider the notion of dedicated and flexible servers to determine the allocation

of flexible servers that minimizes holding cost in a clearing system with two queues in tandem and

in which dedicated servers are subject to failure. Wu et al. (2006) extend the problem considered

by Wu et al. (2008) to more general serial lines with external arrivals under discounted and average

cost criteria.
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Andradóttir et al. (2001, 2003), consider the dynamic assignment of servers to maximize the

long-run average throughput in queueing networks with flexible servers. They consider tandem

queues with two stations and flexible servers with a finite buffer between the stations. Servers work

collaboratively. They use Policy Iteration to show that with less than three servers, a policy which

avoids blocking at the first station and starvation at the second station, is optimal. Andradóttir

and Ayhan (2005) study the same system with three servers. Assuming server 1(2) is more efficient

than server 2(3) for serving jobs at the second station, they prove that the optimal policy has three

mandates: (i) server 1 works at station 1, unless the station is blocked; (ii) server 3 works at station

2, unless it is starved; (iii) server 2 is a roving server, it works at station 1 if the buffer is low and

works at station 2 when the buffer level is high.

Hasenbein and Kim (2011) also consider the system introduced in the last paragraph. They

prove that the conjecture proposed by Andradóttir and Ayhan (2005) for generic numbers of servers,

is indeed true. They use general properties of the bias of the optimal policy to show that a threshold

policy on buffer levels exists that relies on ordering of server efficiency at stations. They further

determine the threshold values. They also prove that restricting the buffer size decreases the

maximum achievable throughput.

Kırkızlar et al. (2012) analyze a tandem line which is understaffed, i.e. there are more stations

than servers. They consider tandem queues with three stations, two servers, different flexibility

structures, and either deterministic service times and arbitrary buffers or exponential service times

and small buffers. In the deterministic setting, they prove that the best possible production rate

with full server flexibility and infinite buffers can be attained with partial flexibility and zero buffers.

In contrast to works performed by Ahn et al. (2002, 2004); Iravani (1997); Pandelis (2008) which

consider holding costs, we study throughput in our work. The problem explained in Andradóttir and

Ayhan (2005) differs from our work as it studies the collaborative case and includes buffers between

stations. The problem considered by Andradóttir et al. (2001, 2007); Hasenbein and Kim (2011)

encompasses buffer spaces, collaborative servers, assumes heterogeneous service rates for servers,

and allows a single server per station. Note that in a zero-buffer setting, server allocation in tandem

lines with collaborative servers is a different problem than server allocation with non-collaborative

servers. Andradóttir et al. (2003) assume jobs in the system belong to different classes and service

rates are heterogeneous based on server and job class. In this paper, we determine optimal policies
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for dynamic allocation of flexible servers in zero-buffer tandem lines with heterogeneous service

rates for stations. We study the non-collaborative case and our goal is to maximize throughput.

In addition, we report the throughput improvement gained from making dedicated servers flexible.

This paper is organized as follows. In Section 2, the optimality of hand-off and non-idling for

tandem lines with two stations is shown. In Section 3 we use Markov Decision Process theory to

derive the optimal policy for tandem lines with two stations, an arbitrary number of dedicated

servers, and one flexible server. We further show how to employ the Policy Iteration algorithm to

construct the optimal policy. In Section 4 we apply Policy Iteration to larger instances (tandem lines

with 3, 4, and 5 stations) and describe a more generic near-optimal policy. Using the insights gained

from Section 4, in Section 5 we provide heuristics for allocation policies for systems of arbitrary size

and with heterogeneous mean service times. We also study configurations with service times that

are not exponentially distributed. Section 6 studies the effects of increasing the number of flexible

servers on the throughput. Finally, Section 7 concludes the paper and discusses future work. The

proofs of most of our results are included in an online companion.

2. Optimal Policy Properties

In this section we introduce and prove two properties of the optimal policy for tandem lines with

two stations. By optimal we mean that the policy maximizes throughput, which we equivalently

consider that the policy leads to the highest number of departures (at every point in time) from the

first station. These properties are the optimality of hand-off and of non-idling of flexible servers.

As a result, the state and action spaces when modelling the system with Markov Decision Processes

are constrained so that any states or actions which do not perform hand-off or idle flexible servers

can be excluded. This fact becomes helpful when search spaces are big, i.e. for systems with a large

number of stations or servers. In Theorems 1 and 2 there is one dedicated server at each station

and one flexible server that can work at either station. In Section 2.4, Corollary 1 extends the

theorems and shows that Theorems 1 and 2 hold for systems with arrivals and for clearing systems.

Also, Corollary 2 shows that the results hold for systems with arbitrary numbers of dedicated and

flexible servers.

2.1. Hand-off property

In this subsection, we state and prove Theorem 1 on the optimality of hand-off.
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Theorem 1: The optimal policy performs hand-off whenever possible.

Proof : There are only two scenarios under which hand-off is possible:

1. A dedicated server becomes blocked in the same station where a flexible server is working

(for N = 2, this can only happen in the first station). Hand-off is used to clear blocking.

2. A dedicated server becomes available in the same station where a flexible server is working

(for N = 2, this can only happen in the second station). Hand-off is used to avoid a flexible

server working at a station where there is an idle dedicated server.

Let ω and ω′ be policies that always perform hand-off, with the only exception that ω′ does not

perform a hand-off at one of the times when a hand-off is possible.

We define the property ahead(n) as follows. Comparing the system under policies ω and ω′

when n jobs have departed from the first station under ω, ahead(n) holds if any of the following

hold for each job at a station: i) the same job is being served with identical time spent in the

system; ii) the same job is being served with less residual service time under ω; iii) ω is serving a

job that ω′ has not yet admitted. Note that when there are two jobs in a station, more than one

of the above situations (i.e. i), ii), and iii)) can hold. Both stations must satisfy these conditions.

The proof is structured as follows:

For the first scenario, Lemma 1 states that if the nth departure happens sooner under ω than

ω′ and ahead(n) holds, then the n+1 st departure under ω′ will not occur sooner under ω.

For the second scenario, Lemma 2 states that if the nth departure happens sooner under ω

and ω′ and ahead(n) holds, then the n+1 st departure under ω′ will not occur sooner under ω.

For both scenarios, Lemma 3 completes the proof by showing that given a system with m > 1

departures from the first station that satisfies ahead(m), Lemmas 1 or 2 can be applied iteratively

on the system to satisfy ahead(m+ 1).

Given Lemmas 1, 2, and 3, a simple induction argument follows. Define Dω(n) to be the time

at which the nth departure from the first station occurs under ω. We use induction to show

∀n,m.(Dω(n) ≤ Dω′
(n) ∧m > n)⇒ (Dω(m) ≤ Dω′

(m)).

(Theorem 1) �

Lemma 1: For the first scenario, ∀n . (Dω(n) ≤ Dω′
(n)∧ahead(n))⇒ (Dω(n+1) ≤ Dω′

(n+1)).

Lemma 2: For the second scenario, ∀n . (Dω(n) ≤ Dω′
(n)∧ahead(n))⇒ (Dω(n+1) ≤ Dω′

(n+1)).

Lemma 3: ∀m > 2 . ahead(m)⇒ ahead(m+ 1).
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2.2. Proof of Lemmas 1, 2, and 3

In all the lemmas below, the following labelling convention is used. The labelling Case l1. . . . .lk−1.lk

means that all of the assumptions made in cases l1 to l1. . . . .lk−1 hold for this case, in addition to

the assumption introduced in lk. Case l1. . . . .lk−1.lk and Case l1. . . . .lk−1.l
′
k where lk 6= l′k refer to

two different branches of l1. . . . .lk−1 that differ only in the assumptions introduced in lk and l′k.

In all figures in the lemmas below, the top label is the time stamp of the configuration, ovals

represent stations, the first row shows ω and the second shows ω′. Within each oval are job

numbers, in each station the top job is served by a dedicated server and the bottom job by a

flexible server. The notation below the stations shows the residual service time of a job appearing

in the same station under both policies when residual service times are different. In some cases, a

hand-off is shown by two configurations in a row separated by a vertical line.

The following notation is used throughout the following lemmas. Let Xp,i
n,t be the residual service

time of job n at time t served by server X that works in station i ∈ {1, 2} under policy p ∈ {ω, ω′}.

X can be replaced by d or f , representing a dedicated or a flexible server, respectively. The residual

service time for a job is the time remaining to complete the job’s service. Dropping any of the indices

of Xp,i
n,t means that the dropped index can take any value. Also note that the service time of job n

is independent of its admission time, the server being dedicated/flexible, and the policy used, i.e.

Xi
n = dp,in,t = fω

′,i
n,t′ . To clarify, dω,in,t is the residual service time of job n at time t which is being

served by a dedicated server at station i under policy ω. Finally, to refer to a server working at

station i, we use σiX , where X ∈ {d, f} as above.

In all of the following lemmas, let t0 be the hand-off time at which the two policies make a

different choice. We give part of the proof of Lemma 1 here (to give a flavour of how the proof

proceeds), the remainder is in Appendix A. The proofs of Lemmas 2 and 3 are given in Appendix

B.

Lemma 1: For the first scenario, ∀n.(Dω(n) ≤ Dω′
(n) ∧ ahead(n))⇒ (Dω(n+ 1) ≤ Dω′

(n+ 1)).

Proof : The two primary steps of the proof (basis and inductive steps) are shown in the following.

Basis step:

If time t0 is not reached, both systems remain the same and there is nothing to prove in the basis

step. Otherwise, start the system from the empty state and let the first departure from the first

station (Dω(1) = Dω′
(1)) occur. If d1

2,t0
< min{f1

3,t0
, d2

1,t0
}, the system follows the first scenario.
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σ1
d is serving job 2, σ1

f is serving job 3, and σ2
d is serving job 1. Up until time t0, the two policies

are the same. When time t0 is reached, the following cases are possible.

Case 1: Assume d2
1,t0

> f1
3,t0

, meaning that the flexible server completes its service before the

dedicated server. Let t1 = f1
3,t0

. ω′ waits t1 time units until σ1
f completes job 3 and sends the

server to the second station with fω
′,2

3,t0+t1
as residual service time. ω performs a hand-off at t0 and

sends the flexible server to the second station with a residual service time of fω,22,t0
. Therefore at

t0 + t1, Dω(2) < Dω′
(2).

Case 2: Assume d2
1,t0
≤ f1

3,t0
, meaning that the dedicated server completes its service before the

flexible server. Let t1 = d2
1,t0

. ω′ waits t1 time units until σ2
d becomes available. So at time t0 + t1,

the blocked job goes to the second station with dω
′,2

2,t0+t1
as residual service time. ω performs a

hand-off at t0 and sends the flexible server to the second station with a residual service time of fω,22,t0

(here the residual service time is equal to the service time). Therefore at t0 + t1, Dω(2) < Dω′
(2).

Inductive step:

If t0 has occurred in the basis step, Lemma 3 shows that for each case considered in the inductive

step, the system respects the ahead property. Hence ω′ will not have departures occurring sooner

than ω. If time t0 is not reached, the two systems remain the same and there will be nothing to

prove at this stage.

If time t0 occurs after the n− 1st departure but before the nth departure, consider this config-

uration: a dedicated blocked server (serving job k) and a flexible busy server (serving job k+ 1) at

the first station and a dedicated busy server (serving job p) at the second station.

Case 1: Assume d2
p,t0 > f1

k+1,t0
, meaning that the flexible server completes its service before the

dedicated server. Let t1 = f1
k+1,t0

, assume σ1
d is holding the kth job, and n− 1 departures from the

first station have occurred. ω′ waits t1 time units until σ1
f completes service and sends the server to

the second station with fω
′,2

k+1,t0+t1
as residual service time. (To simplify the argument, we assume

that at t0 + t1 a hand-off occurs and the kth job is sent to the second station instead of the k+ 1st

job and hence σ2
f should serve a job with service time f2

k,t0+t1
. This can be done as the jobs are

indistinguishable). ω performs a hand-off at t0 and sends the flexible server to the second station

with a service time of fω,2k,t0
. Therefore at t0 + t1, Dω(n) < Dω′

(n).

Considering the system at t0 + t1, the following cases can happen. Note that σ1
d is blocked at t0 + t1

under both policies, holding job k + 1.

8



Case 1.1: Assume fω,2k,t0
− t1 < d2

p,t0+t1 < fω
′,2

k,t0+t1
. Then Dω(n + 1) = t0 + t1 + fω,2k,t0

− t1 and

Dω′
(n + 1) = t0 + t1 + dω

′,2
p,t0+t1

. Therefore Dω(n + 1) < Dω′
(n + 1). Figure 1 illustrates this

case.

Figure 1: Case 1.1

Case 1.2: Assume d2
p,t0+t1 < fω,2k,t0

− t1. Let t2 = d2
p,t0+t1 . Therefore Dω(n+ 1) = Dω′

(n+ 1) =

t0 +t1 +t2. At t0 +t1 +t2, σ1
d is serving job k+2 and σ2

d is serving job k+1 under both policies.

Under ω the residual service time of job k is fω,2k,t0
− t1 − t2 and under ω′ it is fω

′,2
k,t0+t1

− t2.

Figure 2 illustrates this case. We further divide this case.

Figure 2: Case 1.2

Case 1.2.1: Assume d1
k+2,t0+t1+t2

< min{d2
k+1,t0+t1+t2

, fω,2k,t0
− t1− t2}. We divide this case

further.

Case 1.2.1.1: Further assume fω,2k,t0
− t1− t2 < d2

k+1,t0+t1+t2
. Assumption 1.2.1 implies

that job k+ 2 is blocked at time (t0 + t1 + t2 + d1
k+2,t0+t1+t2

). Therefore Dω(n+ 2) <

Dω′
(n+ 2).

Case 1.2.1.2: Now assume d2
k+1,t0+t1+t2

< fω,2k,t0
− t1 − t2. Let t3 = d2

k+1,t0+t1+t2
.

Therefore Dω(n+ 2) = Dω′
(n+ 2) = t0 + t1 + t2 + t3. At t0 + t1 + t2 + t3, under both

policies, σ1
d is serving job k + 3 and σ2

d is serving job k + 2. Under ω the residual

service time of job k is fω,2k,t0
− t1 − t2 − t3 and under ω′ it is fω

′,2
k,t0+t1

− t2 − t3. Figure

3 illustrates this case. This is similar to Case 1.2. Although this reference seems
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circular, the fact that job k + 2 eventually leaves the system avoids this.

Figure 3: Case 1.2.1.2

Case 1.2.1.3: Now assume d2
k+1,t0+t1+t2

= fω,2k,t0
− t1 − t2. This is similar to Case

1.2.2.1, discussed below.

The remaining cases in the inductive step are provided in Appendix A.

(Lemma 1) �

2.3. Non-idling property

In Theorem 1 we proved that an optimal policy uses hand-off whenever possible. Now in

Theorem 2, we aim to show that an optimal policy avoids idling the flexible server. In the proof

of Theorem 2, we will use the results of Theorem 1, i.e. the two policies used in the proof perform

hand-offs whenever possible. Having said that, we only claim non-idling to be a property of an

optimal policy if hand-off is employed. Otherwise there might be cases where non-idling leads to

better results.

For example, assume at time t0, jobs k and k + 1 are being served by dedicated servers at

the first and second stations, respectively, and that policies do not perform hand-off. At t0, a

non-idling policy assigns the flexible server to the first station to serve job k + 2. An idling

policy lets the flexible server idle at t0. Now assume σ1
d completes serving its job sooner than the

other servers. At t0 + d1
k,t0

, under the non-idling policy σ1
d (job k) becomes blocked. Under the

idling policy the flexible server is assigned to the second station to admit job k and σ1
d admits job

k + 2. Hence, assuming there have been n − 1 departures from the first station for both policies,

Didling (n) < Dnon-idling (n) which means idling the flexible server leads to better results. As a

direct result of such a mechanism, our proof of Theorem 2 below would not go through.

Theorem 2: The optimal policy is non-idling.

Proof : Let π′ and π be non-idling policies, i.e. whenever the flexible server becomes idle, the policy
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assigns it to:

1. the second station, if the first station is blocked;

2. the first station, otherwise.

The only exception is that π′ idles the flexible server once for only t time units starting from t0.

Only two other non-idling policies exist. The first is a policy that assigns the idle flexible server

to the first station, if the first station is blocked. But as hand-off is used, the flexible server performs

a hand-off and takes the blocked job to the second station, resulting in the same behavior as π.

The second policy assigns the idle flexible server to the second station, if the first station is not

blocked. Again, as hand-off is used, the flexible server passes its job to the free dedicated server

in the second station and admits a new job at the first station, leading to the same behavior as π.

Therefore we only need to consider π and π′ throughout the rest of the proof.

There are three scenarios under which idling is possible:

1. a blocked server at the first station and a busy server at the second station

2. two busy servers, one at each station

3. one busy server at the first station

The proof requires explicit, careful, exhaustive evaluation of all possibilities. Due to space

limitations, we do not include the details of the proof for this theorem. However the proof is

similar to the proof of Theorem 1. A lemma is needed for each of the three scenarios above to do

the induction over departures. A fourth lemma is required to show that the ahead property holds

when these three lemmas are used (i.e. after the next departure). The proof of Theorem 2 includes

more cases than Theorem 1. The reason is that in addition to comparing the residual service times

of jobs to each other, we need to compare them at an extra point in time, t0 + t (defined above).

(Theorem 2) �

A natural extension of Theorem 2 is as follows: introducing idling to any non-idling policy,

decreases the throughput, assuming hand-off is used. If hand-off is not used, a non-idling policy

can lead to better results, as discussed at the beginning of Section 2.3. Theorem 2 shows that after

the idling period ([t0, t0 + t]), the system is ahead under the policy which is always non-idling. It

also shows that if a non-idling policy is applied to the system, the ahead property still holds.

To investigate the proposed extension, we could follow an approach similar to the proof of

Theorem 2. Given a policy with idling, we produce another policy by making it non-idling for a
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period of time. Theorem 2 shows that after this period, the system is ahead under the modified

policy. Conceptually, we believe the fact that hand-off can be employed, makes it impossible for

an idling policy to provide a higher throughput than a non-idling policy.

2.4. Extensions

In this subsection, we state that the results of Theorems 1 and 2 can be extended to systems

with arrivals, clearing systems, and systems with additional dedicated or flexible servers. The

proofs of the following corollaries are presented in Appendix C.

Corollary 1: Theorems 1 and 2 hold for i) systems where jobs are waiting at the first station, ii)

systems with arrivals, and iii) clearing systems.

Corollary 2: Theorems 1 and 2 and Corollary 1 hold for arbitrary numbers of dedicated and flexible

servers.

In this section we proved that an optimal policy performs hand-off and does not idle. In the

next section, we model tandem lines with two stations and determine the optimal allocation policy.

The properties proven in Section 2 will be used to reduce the size of the action and state spaces.

3. Markov Decision Process Model

We use a Markov Decision Process (MDP) to model the above problem. For our controlled

continuous-time Markov chain (CTMC), let S,A, and As represent the state space, the action

space, and the action space conditioned on the Markov chain being in state s ∈ S, respectively.

A state s ∈ S denotes a tuple

s = (x1, y1, . . . , xi, yi, . . . , xN ) (1)

where xi is the number of busy servers in station i and yi is the number of blocked servers in station

i. Note that we do not need to include yN in the state, as no servers can be blocked at the last

station. We uniformize the CTMC (see Lippman (1975)) to convert the continuous time problem

to discrete time. The normalization constant that we will employ is denoted by q, and is defined

below.

Constructing the transition matrices is a two stage process. One needs to start from the initial

state (s) and follow possible actions (a) to determine the new states (s′). s′ is an intermediate state

which does not appear in the transition matrix. The transition between s and s′ is immediate. From
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there, it is possible to follow further transitions and reach new states (s′′) with the probabilities

defined in the transition matrix (Pa). We have:

s
a→ s′

Pa→ s′′

that is reflected in the transition matrix as Pa(s, s′′) = µ
q

where q = max
s∈S

∑
s′′∈{S−s}

Pa(s, s′′) and µ

is the transition rate from s′ to s′′.

The size of the action space is |A| =
(
F+N−1
N−1

)
. An action a ∈ A is denoted by a tuple

a = (a1, . . . , aj , . . . , aN )

where 0 ≤ aj ≤ F and
N∑
j=1

aj = F . aj is the number of flexible servers assigned to station j.

3.1. Generic MDP

We begin by specializing to the case of N = 2, F = 1, s1 = I, s2 = J . We intend to apply the

Policy Iteration (PI) algorithm to find the optimal policy.

States:

Using the state description in (1), the state space is as follows:

S =
{(I + 1, 0, j), 0 ≤ j < J,
(I + 1, 0, J),
(I, 0, J + 1),
(i, b, J + 1), i, b > 0, i+ b = I,
(i, b, J), i ≥ 0, b > 0, i+ b = I,
(0, I, J + 1)}

Our state space is constrained so that, hand-off is used whenever possible (as we showed in

Theorem 1 that an optimal policy performs hand-off). If we made it optional to employ hand-off,

additional states (such as (I, 1, J) and (i, b, J), i, b > 0, i+ b = I + 1) would need to be introduced.

Actions:

The action space is as follows:

A = {a1, a2}

where ai means moving the flexible server to the ith station. The permissible actions are given by
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As =


{a1, a2} for s = (i, b, J)
{a1} for s = (I + 1, 0, j), (I + 1, 0, J)
{a2} for s = (I, 0, J + 1), (i, b, J + 1), (0, I, J + 1)

where 0 < j < J and i+ b = I.

In the Policy Iteration algorithm, we choose the initial policy (d0) to be:

d0(s) =

{
a1 for s = (I + 1, 0, j), (I + 1, 0, J)
a2 for s = (i, b, J), (I, 0, J + 1), (i, b, J + 1), (0, I, J + 1),

where i, j, and b are constrained so that s is in the state space.

The reward gained from d0 is:

rd0(s) =
1
q


jµ2 for s = (I + 1, 0, j)
Jµ2 for s = (I + 1, 0, J)
(J + 1)µ2 for s = (i, b, J), (I, 0, J + 1), (i, b, J + 1), (0, I, J + 1).

The reward function as stated here is a valid choice for maximizing the throughput, as shown

in Section 3 of Andradóttir et al. (2001).

Transition Probabilities:

The transition probabilities filtered by each of the actions and by the initial policy are as follows:

Pa1(s, s′′) =
1
q



(I + 1)µ1 for s = (I + 1, 0, j), s′′ = (I + 1, 0, j + 1), 0 ≤ j < J

jµ2 for s = (I + 1, 0, j), s′′ = (I + 1, 0, j − 1), 0 < j < J

q − (I + 1)µ1 − jµ2 for s = s′′ = (I + 1, 0, j), 0 ≤ j < J

(I + 1)µ1 for s = (I + 1, 0, J), s′′ = (I, 0, J + 1)
Jµ2 for s = (I + 1, 0, J), s′′ = (I + 1, 0, J − 1)
q − (I + 1)µ1 − Jµ2 for s = s′′ = (I + 1, 0, J)
(i+ 1)µ1 for s = (i, b, J), s′′ = (i, b, J + 1), i ≥ 0, b > 0, i+ b = I

(J + 1)µ2 for s = (i, b, J), s′′ = (i+ 1, b− 1, J), i ≥ 0, b > 0, i+ b = I

q − (i+ 1)µ1 − (J + 1)µ2 for s = s′′ = (i, b, J), i ≥ 0, b > 0, i+ b = I
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Pa2(s, s′′) =
1
q



Iµ1 for s = (I, 0, J + 1), s′′ = (I − 1, 1, J + 1)
(J + 1)µ2 for s = (I, 0, J + 1), s′′ = (I + 1, 0, J)
q − Iµ1 − (J + 1)µ2 for s = s′′ = (I, 0, J + 1)
iµ1 for s = (i, b, J + 1), s′′ = (i− 1, b+ 1, J + 1), i, b > 0, i+ b = I

(J + 1)µ2 for s = (i, b, J + 1), s′′ = (i, b, J), i, b > 0, i+ b = I

q − iµ1 − (J + 1)µ2 for s = s′′ = (i, b, J + 1), i, b > 0, i+ b = I

(i+ 1)µ1 for s = (i, b, J), s′′ = (i, b, J + 1), i ≥ 0, b > 0, i+ b = I

(J + 1)µ2 for s = (i, b, J), s′′ = (i+ 1, b− 1, J), i ≥ 0, b > 0, i+ b = I

q − (i+ 1)µ1 − (J + 1)µ2 for s = s′′ = (i, b, J), i ≥ 0, b > 0, i+ b = I

(J + 1)µ2 for s = (0, I, J + 1), s′′ = (0, I, J)
q − (J + 1)µ2 for s = s′′ = (0, I, J + 1)

Pd0(s, s′′) =
1
q



(I + 1)µ1 for s = (I + 1, 0, j), s′′ = (I + 1, 0, j + 1), 0 ≤ j < J

jµ2 for s = (I + 1, 0, j), s′′ = (I + 1, 0, j − 1), 0 < j < J

q − (I + 1)µ1 − jµ2 for s = s′′ = (I + 1, 0, j), 0 ≤ j < J

(I + 1)µ1 for s = (I + 1, 0, J), s′′ = (I, 0, J + 1)
Jµ2 for s = (I + 1, 0, J), s′′ = (I + 1, 0, J − 1)
q − (I + 1)µ1 − Jµ2 for s = s′′ = (I + 1, 0, J)
Iµ1 for s = (I, 0, J + 1), s′′ = (I − 1, 1, J + 1)
(J + 1)µ2 for s = (I, 0, J + 1), s′′ = (I + 1, 0, J)
q − Iµ1 − (J + 1)µ2 for s = s′′ = (I, 0, J + 1)
iµ1 for s = (i, b, J + 1), s′′ = (i− 1, b+ 1, J + 1), i, b > 0, i+ b = I

(J + 1)µ2 for s = (i, b, J + 1), s′′ = (i, b, J), i, b > 0, i+ b = I

q − iµ1 − (J + 1)µ2 for s = s′′ = (i, b, J + 1), i, b > 0, i+ b = I

(i+ 1)µ1 for s = (i, b, J), s′′ = (i, b, J + 1), i ≥ 0, b > 0, i+ b = I

(J + 1)µ2 for s = (i, b, J), s′′ = (i+ 1, b− 1, J), i ≥ 0, b > 0, i+ b = I

q − (i+ 1)µ1 − (J + 1)µ2 for s = s′′ = (i, b, J), i ≥ 0, b > 0, i+ b = I

(J + 1)µ2 for s = (0, I, J + 1), s′′ = (0, I, J)
q − (J + 1)µ2 for s = s′′ = (0, I, J + 1)

where q is the normalization factor defined as q = Iµ1 + Jµ2 + max (µ1, µ2).

In the Policy Iteration algorithm we solve

rd0 − g0e+ (Pd0 − In)h0 = 0,

subject to h(1, 0, 0) = 0 with respect to g0 and h0. Note that e is a column vector of ones and In

is the n-dimensional identity matrix, where n = |S|. Then, to prove the optimality of d0, we need
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to show d1(s) = d0(s), where:

d1(s) = argmaxa∈As
{r(s, a) +

∑
j∈S

p(j|s, a)h0(j)}, ∀s ∈ S,

is the result of one iteration of the Policy Iteration algorithm. This is equivalent to showing that

for all s

r(s, a) +
∑
j∈S

p(j|s, a)h0(j)−

r(s, d0(s)) +
∑
j∈S

p(j|s, d0(s))h0(j)

 ≤ 0. (2)

In inequality (2) given that s a→ s′
Pa→ s′′, r(s, a) = x′NµN where x′N appears in the representation

of state s′ according to (1) and µN = Pa(s, s′′). Note that s′ is also a function of s and a.

We implemented the Policy Iteration algorithm in MATLAB and intended to apply it to the

stated generic MDP. However it is not an easy task to model the generic MDP in MATLAB

as each of the state space members represents a set of states. This fact becomes problematic

when matrices are to be constructed. We have not been able to perform Policy Iteration for

the generic MDP. Therefore we observed several configurations with N = 2, F = 1 and specific

values for the numbers of dedicated servers. For example we set (I, J) to {(1, 1), (1, 2), (2, 3), (4, 2),

(2, 4), (3, 3), (3, 4), (7, 3)}.

The result of the Policy Iteration algorithm (inequality (2)) is an expression in terms of service

rates. We tried to verify the inequality for generic cases using induction on I and J . We have not

been able to find such a relation to this point. However we could prove that the expression holds

for arbitrary service rates, for every specific pair of values I and J that we considered. So, we have

the following conjecture, which has been verified for the values of I and J described above.

Conjecture 1. The optimal policy resulting from these observations is the policy that clears

blocking whenever possible and assigns the flexible server to the first station otherwise.

Comparing this policy with allocation policies for collaborative servers, Andradóttir et al. (2007)

(Lemma 4.1) show that for a tandem queue with two stations, a finite buffer, a dedicated server at

each station, and a flexible server, the optimal policy is threshold type. The optimal policy assigns

the flexible server based on the number of jobs in the system (both in service and in the buffer).
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The optimal policy sends the flexible server to the second station, when there is a busy dedicated

server at each station (even if there are no blocked servers). This difference with our optimal policy

occurs due to the server collaboration assumption in Andradóttir et al. (2007).

3.2. Sample MDP

In order to show how we applied the Policy Iteration algorithm, in this Section we give details

for a specific example with I = 3, J = 2, F = 1. To be able to construct the discrete-time MDP,

we choose the following normalization factor: q = 2µ1 + 3µ2 + max (µ1, µ2). Here,

A = {a1, a2}

S = {(3, 0, 3), (3, 0, 2), (3, 0, 1), (3, 0, 0), (2, 1, 3), (2, 0, 3), (1, 2, 3), (1, 1, 4), (1, 1, 3), (0, 2, 4), (0, 2, 3)}

As =


{a1, a2} for s = (2, 1, 3), (1, 2, 3), (1, 1, 3), (0, 2, 3)
{a1} for s = (3, 0, 0), (3, 0, 1), (3, 0, 2), (3, 0, 3), (2, 0, 3)
{a2} for s = (1, 1, 4), (0, 2, 4)

Our candidate optimal policy d0 is:

d0(s) =

{
a1 for s = (3, 0, 0), (3, 0, 1), (3, 0, 2), (3, 0, 3), (2, 0, 3)
a2 for s = (2, 1, 3), (1, 2, 3), (1, 1, 4), (1, 1, 3), (0, 2, 4), (0, 2, 3)

rd0(s) =



4µ2 for s = (2, 1, 3), (1, 2, 3), (1, 1, 4), (1, 1, 3), (0, 2, 4), (0, 2, 3)
3µ2 for s = (3, 0, 3), (2, 0, 3)
2µ2 for s = (3, 0, 2)
µ2 for s = (3, 0, 1)
0 for s = (3, 0, 0)

For the following matrices, assume the following state ordering: (3, 0, 3), (3, 0, 2), (3, 0, 1), (3,

0, 0), (2, 0, 3), (1, 2, 3), (1, 1, 4), (1, 1, 3), (0, 2, 4), (0, 2, 3).
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Pa1(s, s′′) = 1
q



q1,a1 3µ2 0 0 0 0 0 0 0 0 0
3µ1 q2,a1 2µ2 0 0 0 0 0 0 0 0
0 3µ1 q3,a1 µ2 0 0 0 0 0 0 0
0 0 3µ1 q4,a1 0 0 0 0 0 0 0

3µ2 0 0 0 q5,a1 0 0 0 0 0 2µ1

0 3µ2 0 0 3µ1 q6,a1 0 0 0 0 0
0 0 0 0 3µ2 0 q7,a1 0 0 µ1 0
0 0 0 0 0 0 0 q8,a1 0 0 0

3µ2 0 0 0 0 0 2µ1 0 q9,a1 0 0
0 0 0 0 0 0 0 0 0 q10,a1 0
0 0 0 0 3µ2 0 0 0 0 µ1 q11,a1



Pa2(s, s′′) = 1
q



q1,a2 0 0 0 0 0 0 0 0 0 0
0 q2,a2 0 0 0 0 0 0 0 0 0
0 0 q3,a2 0 0 0 0 0 0 0 0
0 0 0 q4,a2 0 0 0 0 0 0 0
0 0 0 0 q5,a2 4µ2 0 0 0 0 0
0 0 0 0 0 q6,a2 0 0 0 0 0
0 0 0 0 0 0 q7,a2 0 4µ2 µ1 0
0 0 0 0 0 0 0 q8,a2 4µ2 µ1 0
0 0 0 0 0 4µ2 0 2µ1 q9,a2 0 0
0 0 0 0 0 0 0 0 0 q10,a2 4µ2

0 0 0 0 3µ2 0 0 0 4µ2 µ1 q11,a2



where qi,a = q −
|S|∑

j=1∧j 6=i
Pa(i, j) and a ∈ A.

Now we want to show inequality (2) to verify that d0(s) is optimal. Assume µ1 > µ2. Then

q = 3(µ1 + µ2). Let

C = 27µ6
1 + 108µ5

1µ2 + 216µ4
1µ

2
2 + 288µ3

1µ
3
2 + 288µ2

1µ
4
2 + 192µ1µ

5
2 + 64µ6

2.

Then

g0 =
12(9µ6

1µ2 + 36µ5
1µ

2
2 + 72µ4

1µ
3
2 + 72µ3

1µ
4
2 + 48µ2

1µ
5
2 + 16µ1µ

6
2)

C
.

For example for s = (2, 0, 3),

h0(s) =
q(9µ5

1µ2 + 54µ4
1µ

2
2 + 162µ3

1µ
3
2 + 224µ2

1µ
4
2 + 176µ1µ

5
2 + 64µ6

2)
C

and inequality (2) simplifies to checking

16µ6
2µ1 + 80µ5

2µ
2
1 + 190µ4

2µ
3
1 + 288µ3

2µ
4
1 + 261µ2

2µ
5
1 + 126µ2µ

6
1 + 27µ7

1 > 0

which is trivially true. If µ1 < µ2, with similar calculations inequality (2) simplifies to verifying
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32µ6
2µ1 + 144µ5

2µ
2
1 + 316µ4

2µ
3
1 + 450µ3

2µ
4
1 + 360µ2

2µ
5
1 + 153µ2µ

6
1 + 27µ7

1 > 0,

which is also trivially true. Similarly it can be shown that inequality (2) holds for all other states.

In this example d0 makes the Policy Iteration algorithm converge in one step. Hence d0 is the

optimal policy. It should be noted that the policy is independent of µ1 and µ2.

4. Larger systems

With two stations, only one station can be blocked. As we saw in Section 3, the primary task

of the optimal policy is to clear blocking. When the number of stations is increased, blocking can

occur in more than one station, and policies should prioritize the order in which blocked servers

are cleared. Also, starvation might occur in the system. Starvation occurs when a dedicated server

becomes free and has no jobs to process. To study these effects, in this section we apply the MDP

modelling and Policy Iteration algorithm to longer tandem lines, and use these results to provide

heuristics. Similar to Section 3, the policies that we consider are non-idling and perform hand-off

whenever possible (which are properties of optimal policies as shown by Theorems 1 and 2).

To begin, we study tandem lines where stations have equal mean service times, have a dedicated

server per station, and have one flexible server. Solving the MDP for 3, 4, and 5 stations suggests

the following near-optimal policy: i) clear blocking from the end to the beginning unless it causes

starvation; ii) if clearing a blocked server would cause starvation, admit a new job.

With 3 stations starvation does not happen. With 4 stations the following states cause starva-

tion: (1,0, 1,0, 0,1, 1), (1,0, 0,0, 0,1, 1), (0,1, 1,0, 0,1, 1). In these states an optimal policy admits

a new job. However while the following states also cause starvation, clearing a blocked server is

preferred: (1,0, 0,1, 1,0, 1) and (1,0, 0,1, 0,1, 1).

For 5 stations the suggested policy offers the optimal allocations in most cases. The number of

states is 236 from which the suggested policy results in the optimal allocation in 228 of them. With

5 stations, the following states cause starvation: (1,0, 1,0, 0,0, 0,1, 1), (1,0, 0,0, 1,0, 0,1, 1), (1,0,

0,0, 0,1, 1,1, 1), (1,0, 0,0, 0,1, 1,0, 1), (1,0, 0,0, 0,0, 0,1, 1), (0,1, 1,0, 1,0, 0,1, 1), (0,1, 1,0, 0,1, 1,0,

1), (0,1, 1,0, 0,0, 1,0, 2), (0,1, 0,1, 1,0, 0,1, 1). In all these states avoiding starvation is favoured

over clearing blocking. However while the following states cause starvation, clearing blocking is

19



preferred: (1,0, 1,0, 1,0, 0,1, 1), (1,0, 1,0, 0,1, 1,0, 1), (1,0, 0,1, 1,0, 1,0, 1), (1,0, 0,1, 1,0, 1,0, 0),

(1,0, 0,1, 1,0, 0,0, 1).

Also in the following three states blocking is not cleared and starvation does not occur: (1,0,

1,0, 1,0, 1,1, 1), (1,0, 0,0, 0,1, 1,1, 1), (0,1, 0,1, 0,1, 0,1, 1). The exceptions above suggest that

while an optimal policy does not have a simple structure, a near-optimal policy exists as stated

above.

Note that asN increases, the number of states increases exponentially, which makes the overhead

of constructing the MDP prohibitive. For example when N = 5 (with the configuration introduced

above), there are 5 actions, 236 states, and Pa1 , Pa2 , Pa3 , Pa4 , and Pa5 have 498, 496, 462, 447, and

413 non-zero entries, respectively. Calculating each of these entries is difficult to automate, and

hence is error-prone. In Section 5 we will use simulation to show that if the policy stated in the

beginning of this section is employed, near-optimal results are gained for different configurations.

5. Numerical results

A number of policies and configurations are considered here. Let si represent the number

of dedicated servers at station i. The first set of configurations (Tables 1, 2, and 3) has si =

1, µi = 1, i = 1, . . . , N , and F = 1. N ranges from 4 to 30. The second set of configurations

(Tables 4, 5, and 6) deals with heterogeneous service rates and a single server per station. We let

W = (w1, . . . , wi, . . . , wN ) be the vector of mean service times, where wi is the mean service time

at the ith station.

The policies we consider can be distinguished by the way they treat blocking and starvation

and how they employ hand-off. A policy should determine the order in which it clears blocking.

It should specify how it deals with the trade-off between blocking and starvation. The policy also

describes if it uses hand-off or not. While Theorem 1 suggests that hand-off should be used, here we

also consider policies that do not employ hand-off. We intend to show how the suggested heuristic

works and also study the impact of allowing hand-offs.

In all policies if there is no blocking in the system and free flexible servers exist, flexible servers

are sent to the first station to admit a new job. This is consistent with the necessity of non-idling

for optimality.

The policies we studied are as follows:
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• Policy 1: clears blocking from end to beginning only if it does not cause starvation in the

b23Nc previous stations (derived experimentally); uses hand-off

• Policy 2: ignores blocking and admits new jobs when possible; uses hand-off

• Policy 3: clears blocking from end to beginning only if it does not cause starvation; uses

hand-off

• Policy 4: clears blocking in order of descending service rates only if it does not cause starva-

tion; uses hand-off

• Policy 5: clears blocking in order of descending service rates; uses hand-off

• Policy 6: clears blocking from beginning to end; uses hand-off

• Policy 7: clears blocking from end to beginning; uses hand-off

• Policy 8: clears blocking from beginning to end; does not use hand-off

Policies 4 and 5 prioritize clearing blocking caused by the station with the highest mean service

time (among the stations that cause blocking). Policies 4 and 5 are applied only on the second set

of configurations. In practice, Policies 2, 3, and 4 show similar behavior as Policies 3 and 4 clear

a blocked server only if all stations preceding a blocked station are blocked. Hand-off in Policy

2 pushes a flexible server through all consecutive blocked stations. Simulation results reveal that

Policies 1 and 4 perform better than the other policies, depending on the configuration considered.

In Policy 1, the b23Nc parameter gives higher priority to avoiding starvation, compared to Policies

2, 3, and 4. This parameter is derived experimentally and is used to ignore a blocked server, if

clearing that blocking causes simultaneous starvations in a large number of stations.

We applied the above policies to several configurations (defined below) and measured throughput

in a simulation environment. Each simulation is a long run, in terms of the number of departures

from the system. The run is long enough (100 million departures) so that the effect of starting the

system from an empty state becomes negligible. In the following tables policies are ordered based

on their throughputs.

5.1. Homogeneous mean service times (the first set)

Table 1 compares the throughputs of configurations with one flexible server, N ∈ {4, 5, 8, 15, 30}

stations where the service time of each station is exponentially distributed with rate one, and one
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dedicated server at each station. Policy 1 is close to what the Policy Iteration algorithm suggested

and results in the best throughput among these policies. It can be observed that Policies 1 and

2 lead to identical throughputs. This is because when a station and all its preceding stations are

blocked, Policy 1 clears blocking from the last station in the sequence of blocked stations and Policy

2 uses hand-off to pass the flexible server to the last station in the sequence of blocked stations.

Although the throughputs are identical, Policy 2 needs to perform extra hand-offs compared to

Policy 1.

N Policy1 Policy2 Policy3 Policy6 Policy7 Policy8 F = 0
4 0.93248 0.93248 0.93065 0.92021 0.91869 0.78592 0.59596
5 0.83049 0.83049 0.82448 0.81400 0.81032 0.66214 0.53038
8 0.66720 0.66720 0.64631 0.64298 0.62598 0.47267 0.41827
15 0.51520 0.51520 0.47234 0.50238 0.44993 0.33768 0.32384
30 0.40490 0.40490 0.34292 0.40149 0.32791 0.26023 0.25696

Table 1: Throughput for configurations with i = 1, . . . , N, wi = 1, and F = 1

Comparing Policies 1 and 3, Policy 1 allows starvation in the initial stations, while Policy 3

avoids it in all stations. Policy 1 has better performance than Policy 3. The reason is that the

downside of having starvation in the initial stations is less than the benefit of clearing blocked

servers at the end stations. There are two explanations: i) starvation closer to the first station is

likely to be resolved more quickly compared to starvation in the end stations; ii) starvation at the

initial stations, when the downstream stations are busy, does not affect the downstream stations.

Hence in Policy 1, the trade-off between clearing blocking and avoiding starvation (in the initial

stations) is resolved in favour of clearing blocking.

To illustrate the effect of including flexible servers, in the last column of Table 1 we show the

case where there are no flexible servers and the extra server is assigned to one of the middle stations.

It can be observed that making a server flexible can lead to throughput improvements up to 36.08%.

We also study configurations that include service time distributions with coefficients of variation

other than 1. In simulations, an Erlang distribution is used for coefficients of variation less than

one and a Hyper-exponential distribution for coefficients of variation greater than one. Table 2 is

similar to Table 1 except that the coefficients of variation of all stations are 0.5. Table 3 is similar

to Table 1 except that the coefficients of variation are 1.34. The results in both cases are almost

the same as the case with coefficients of variation equal to 1 for all stations.

22



Let cv i be the coefficient of variation of the ith station and cv be the vector of coefficients

of variation. We simulated a number of configurations with different coefficients of variation and

concluded the same results as the case with coefficients of variation equal to 1 for all stations.

More specifically we tested the following configurations: N = 4, cv3 = 0.5, 1.34; N = 5, cv2 = 0.5;

N = 5, cv4 = 1.34; N = 8, cv3 = 0.5, cv7 = 1.34; N = 15, cv3 = cv10 = 0.5, cv7 = cv13 = 1.34;

N = 30, cv3 = cv10 = cv18 = cv25 = 0.5, cv7 = cv13 = cv22 = cv28 = 1.34. The unspecified

coefficients of variation are equal to one.

N Policy1 Policy2 Policy3 Policy6 Policy7 Policy8
4 0.99498 0.99498 0.99257 0.98428 0.98265 0.81297
5 0.90918 0.90918 0.90360 0.89475 0.84575 0.73190
8 0.77088 0.77088 0.75612 0.75361 0.73646 0.60107
15 0.64377 0.64377 0.61052 0.63681 0.58832 0.50407
30 0.54746 0.54746 0.50081 0.54584 0.48228 0.43911

Table 2: Throughput for configurations with i = 1, . . . , N, wi = 1, cv i = 0.5, and F = 1

N Policy1 Policy2 Policy3 Policy6 Policy7 Policy8
4 0.94136 0.94136 0.93919 0.92778 0.93919 0.79680
5 0.83372 0.83372 0.82736 0.81564 0.81244 0.66997
8 0.65759 0.65759 0.63753 0.63090 0.61551 0.46233
15 0.49317 0.49317 0.44717 0.47511 0.42999 0.29728
30 0.37423 0.37423 0.30740 0.36776 0.29448 0.19957

Table 3: Throughput for configurations with i = 1, . . . , N, wi = 1, cv i = 1.34, and F = 1

5.2. Heterogeneous mean service times (the second set)

Table 4 compares the throughputs for configurations with various numbers of stations, different

service rates, and one flexible server. Policies 4 and 5 are not applicable to the first set of config-

urations, but they are compared against other policies in the second set of configurations. Table

4 illustrates that all orders remain the same as Table 1, except that Policy 4 outperforms Policy

1 in certain cases. The intuition is that while for small systems, an optimal policy clears blocking

from the end to the beginning, for large systems an optimal policy prefers to clear blocking for

bottleneck stations first (i.e. stations with higher mean service times). For small systems, several

adjacent blocked stations could deny admissions to the system. Therefore it is valuable to clear

blocking from the end as Policy 1 does.
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W Policy4 Policy1 Policy2 Policy5 Policy7
(1,3,6,9,5,4,2,3,7,10,5,2,1) 0.10409 0.10409 0.10409 0.09940 0.09676
(1,3,2,4,5,7,10,8,6,4,5,2,1) 0.10286 0.10286 0.10286 0.09769 0.09635
(7,5,6,4,2,3,1,3,2,4,5,9,8) 0.10876 0.10872 0.10872 0.10448 0.10472

(5,2,14,3,7,12,6,1,10) 0.08403 0.08402 0.08402 0.08088 0.07996
(9,8,7,6,5,4,3,2,1) 0.11143 0.11143 0.11143 0.10508 0.10319

Table 4: Throughput for configurations with F = 1 and i = 1, . . . , N, cv i = 1

Table 5 is similar to Table 4 except that the coefficients of variation of all service times are 0.5.

The results are almost the same as when the coefficients of variation are equal to 1. Table 6 is similar

to Table 4 except that the coefficients of variation are greater than 1 for all stations (with different

values). For W = (1, 3, 6, 9, 5, 4, 2, 3, 7, 10, 5, 2, 1) , W = (1, 3, 2, 4, 5, 7, 10, 8, 6, 4, 5, 2, 1), and W =

(7, 5, 6, 4, 2, 3, 1, 3, 2, 4, 5, 9, 8) mean service time vectors, coefficients of variation vectors are cv =

(2.38, 2.31, 1.66, 1.27, 1.83, 2.06, 2.63, 2.31, 1.51, 1.17, 1.83, 2.63, 2.38), cv = (2.38, 2.31, 2.63, 2.06, 1.83,

1.51, 1.17, 1.38, 1.66, 2.06, 1.83, 2.63, 2.38), and cv = (1.51, 1.83, 1.66, 2.06, 2.63, 2.31, 2.38, 2.31, 2.63,

2.06, 1.83, 1.27, 1.38), respectively. Compared to the case with coefficients of variation equal to 1,

Policies 1 and 2 perform better than Policy 4. The intuition is that high variability increases the

chance of blocking or starvation in adjacent stations.

W Policy4 Policy1 Policy2 Policy5 Policy7
(1,3,6,9,5,4,2,3,7,10,5,2,1) 0.11852 0.11848 0.11848 0.11628 0.11571
(1,3,2,4,5,7,10,8,6,4,5,2,1) 0.11734 0.11734 0.11734 0.11277 0.11080
(7,5,6,4,2,3,1,3,2,4,5,9,8) 0.12611 0.12492 0.12492 0.12488 0.12494

Table 5: Throughput for configurations with F = 1 and i = 1, . . . , N, cv i = 0.5

W Policy4 Policy1 Policy2 Policy5 Policy7
(1,3,6,9,5,4,2,3,7,10,5,2,1) 0.09882 0.09901 0.09901 0.09478 0.09609
(1,3,2,4,5,7,10,8,6,4,5,2,1) 0.09759 0.09760 0.09760 0.09307 0.09547
(7,5,6,4,2,3,1,3,2,4,5,9,8) 0.10031 0.10049 0.10049 0.09897 0.09798

Table 6: Throughput for configurations with F = 1 and i = 1, . . . , N, cv i > 1

Tables 2, 3, and 5 suggest that if coefficients of variation of all stations are changed uniformly,

the ordering between policies remains the same as when coefficients of variation are 1. However

Table 6 indicates that when coefficients of variation of stations are arbitrarily modified (in this case

all greater than one), the ordering between policies might change. Finally we should comment that

our results on coefficients of variation are not conclusive, in the sense that we have not considered
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vectors of coefficients of variation (cv) with more heterogeneous values.

6. Increasing the number of flexible servers

In this section we consider the effect of increasing F , the number of flexible servers. Assume we

are given a system with a particular allocation of dedicated servers. We start to change dedicated

servers to flexible servers until all servers are flexible. In other words, F takes all values between 0

and N . An interesting question is how much throughput improves as F increases.

6.1. Homogeneous W

For equal workloads, we consider a tandem line with 15 stations where originally each station

possesses one dedicated server. Service times at each station follow an exponential distribution

with rate 1. The deployed server allocation policy is one that clears blocking from the end to the

beginning of the line, unless there is blocking caused by a station with no dedicated servers. In that

case, the policy prioritizes allocating servers to the station with no dedicated server over clearing

blocked servers from the end to the beginning. The policy also avoids starvation.

While increasing F , one should specify the order in which dedicated servers are changed to flexible

servers. We contemplate four ordering policies: Policy i) choosing servers from the end to the

beginning of the line; Policy ii) picking servers from the beginning to the end of the line; Policy iii)

selecting servers around the middle station in a zig-zag way; Policy iv) choosing servers randomly.

Simulations showed that Policies i and ii lead to similar results.

Figure 4: Throughput improvement (as a percentage) versus F for W = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

25



Figure 4 contrasts Policies i and iii (for the 15 stations configuration described above) and shows

that throughputs are fairly close for the two policies, but slightly higher for Policy i. Policy iv

performs slightly worse than the two other policies, suggesting that choosing the first few servers

is more sensitive to the employed policy, compared to choosing the last servers. It is worthwhile

to note that, as can be seen in Figure 4, the highest improvements in throughput are gained

from making the first few servers flexible. Also, as F increases, the throughput improvement is

diminished.

6.2. Heterogeneous W

In addition to the equal workload case, we want to consider more generic configurations with

heterogeneous service rates and multiple servers per station. We propose four ordering policies

that specify the order in which dedicated servers are changed to flexible servers.

• Policy I. Changing a dedicated server of a station to a flexible server reduces the total service

rate of that station and can even make the station a bottleneck. Therefore to gain better

results, the order in which flexible servers are chosen should depend on the mean total service

rates of stations. As we intend to avoid introducing bottlenecks, consider the case where

each station has one less dedicated server and then compare their total service rates. More

specifically, start making servers flexible from the stations with the highest µi(si − 1) value.

In case the values of µi(si − 1) are equal for more than one station, choose the one with the

lowest µi first. See Yarmand and Down (2012) for further details.

• Policy II. Start choosing servers from the station with the highest si value. In case more than

one station has the same value for si, choose the one with the lowest µi.

• Policy III. Start picking servers from the station with the highest µi value regardless of the

value of si.

• Policy IV. Select servers randomly.

Policy I follows a selection order that intends to avoid introducing new bottlenecks (if all si

and µi values are the same, introducing bottlenecks is inevitable). On the other hand, Policy II

makes use of the server multiplicity effect (Yarmand and Down (2012)). This effect suggests that

comparing two stations with equal total mean service times, the station with a higher number of
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servers leads to higher throughput. Policy II chooses the station that benefits most from this effect.

Policy III is based on the fact that jobs could depart sooner from stations with higher service rates

(when there is no blocking).

Figure 5 compares these four policies over a configuration with W = (12, 7, 13, 3, 5, 4, 1, 10, 9)

and an initial server allocation of (4, 5, 5, 2, 4, 2, 1, 4, 5). Figure 5 shows that the throughput

improvement is dependent on the order that servers are chosen to become flexible. As the server

allocation policy in the simulations, we employed Policy 4 (from Section 5) enhanced as follows:

the policy prioritizes helping a bottleneck caused by a station with no dedicated servers.

Figure 5: Throughput versus F for W = (12, 7, 13, 3, 5, 4, 1, 10, 9)

Figure 6: Throughput versus F for W = (9, 7, 10, 3, 5, 4, 1, 13, 12)

We tried additional configurations to compare the performance of the proposed policies. Figure 6

illustrates the comparison for W = (9, 7, 10, 3, 5, 4, 1, 13, 12) with an initial server allocation of (11,
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7, 12, 3, 5, 4, 1, 15, 14). Figure 7 presents the comparison for W = (1, 3, 4, 5, 7, 9, 10, 12, 13) with

an initial server allocation of (3, 5, 6, 7, 9, 11, 12, 14, 15). Figures 5, 6, and 7 show that Policy

I performs better than Policies II and III. The figures also illustrate that the highest throughput

improvements are gained when the first few servers are made flexible, and that as F increases,

the throughput improvement is diminished. Additionally, the performance of Policy IV in these

figures shows that the ordering policy employed, affects the throughput improvement values (and

if not chosen well, results in lower improvements). The fact that in some cases, Policy IV performs

better than Policies II and III, implies that Policies II and III, while intuitively reasonable, can be

problematic to employ.

Figure 7: Throughput versus F for W = (1, 3, 4, 5, 7, 9, 10, 12, 13)

7. Conclusion

In this paper we studied the allocation of flexible servers in zero buffer tandem lines in the

presence of dedicated servers. We focused on configurations with only one flexible server. The

optimal policy for two stations performs hand-off, clears blocking, and admits new jobs when

there is no blocking. We used the Policy Iteration algorithm to show that for small systems with

equal workloads, the optimal policy clears blocking from end to beginning and avoids starvation.

Simulation results illustrated that for longer lines with varying workloads the optimal policy tends to

prioritize clearing blocking from stations with higher mean service times. When making dedicated

servers flexible, we observed that significantly higher throughput improvements were gained when

the first few servers were made flexible. The improvement was diminished as the number of flexible
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servers increased.

In this work we have considered non-collaborative homogeneous servers. A natural extension

is to study the case where servers are heterogeneous (i.e. have different service rates at different

stations) or can work collaboratively at a station. Another potential direction is to run the Policy

Iteration algorithm for F > 1 to identify optimal allocation policies. With F > 1, the allocation

problem is more challenging, as the allocation of a flexible server is dependent on the assignment

of other flexible servers. The problem is more interesting when long lines are considered for F > 1,

as more complicated collaboration among flexible servers is required. Considering costs for making

a server flexible and then minimizing the overall cost and maximizing the throughput, is also of

interest. It may also be of interest to introduce hand-off costs or server switching costs.
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