
Server allocation for zero buffer tandem queues

Mohammad H. Yarmand and Douglas G. Down

Department of Computing and Software, McMaster University,
Hamilton, ON, L8S 4K1, Canada

Abstract

In this paper we consider the problem of allocating servers to maximize
throughput for tandem queues with no buffers. We propose an allocation
method that assigns servers to stations based on the mean service times and
the current number of servers assigned to each station. A number of simu-
lations are run on different configurations to refine and verify the algorithm.
The algorithm is proposed for stations with exponentially distributed ser-
vice times, but where the service rate at each station may be different. We
also provide some initial thoughts on the impact on the proposed allocation
method of including service time distributions with different coefficients of
variation.

Keywords: Server Allocation, Zero Buffer, Tandem Queue

1. Introduction

Consider a tandem line consisting of N stations (N ≥ 2) where the ser-
vice rate of a server assigned to station i is µi (i = 1, 2, . . . , N). The service
times at each station follow exponential distributions and are independent
and identically distributed with rate µi (i.e. the rate can depend on the sta-
tion). There are M servers available to be allocated to the stations. The
servers are capable of working at any station and can process only one job at
a time. The servers are homogeneous meaning that servers assigned to the
ith station each work at rate µi.

Email address: yarmanmh,downd@mcmaster.ca (Mohammad H. Yarmand and
Douglas G. Down)

Preprint submitted to Elsevier May 13, 2013



We assume that there are always jobs waiting to be served at the first
station. Jobs served at the last station immediately leave the system. The
throughput of the system is equal to the departure rate from the last station.
We assume there are no buffers between stations. Our problem of interest is:
given M servers, allocate them to the N stations, such that the throughput
is maximized. We could define a similar problem in terms of blocking and
starvation probabilities. In that case, the goal would be to minimize an ag-
gregated measure of these probabilities over all stations.

We propose an algorithm that has as a primary goal to roughly equalize
the workloads at each of the stations, meaning that the number of servers is
proportional to the mean service time at a station. However, the heteroge-
neous mean service times and lack of buffers introduce additional complexity
beyond making the workloads equal (further discussed in Section 2). We use
simulation to obtain insights about the nature of the system and later to
measure the performance of our algorithm for a number of configurations. In
addition to exponentially distributed service times, we extend the algorithm
by considering service times with coefficients of variation other than 1. We
illustrate that the algorithm performs well if the coefficients of variation of
all stations are increased or decreased equally. Based on a number of simula-
tions, we infer that the algorithm also works well on configurations where the
majority of stations have service times with coefficient of variation near one
and the remaining stations have service times with coefficient of variation
less than one.

The stated problem is motivated by the bed management issue in hospi-
tals. In short, bed management is the problem of assigning a number of beds
to different departments of a hospital, such that patient flow is optimized [6].
Patients need to go through these departments to complete their treatment
cycle (e.g. the emergency, express, medicine, and alternative level of care
departments). The fact that patients must be assigned to a bed at all times,
represents the zero-buffer nature of this problem.

A zero-buffer environment arises either from characteristics of the pro-
cessing technology itself, or from the absence of storage capacity between
stations. The bed management problem is caused by the absence of storage
capacity. Another example is the allocation of facilities/workers to the sta-
tions of an assembly line. As a concrete example, Hu et al. [14] consider a

2



car assembly line in which each car is carried by a specific conveyor with no
extra conveyors between stations.

An example of a case where the technology itself requires a zero-buffer
environment is the canning process in which delays should be avoided to keep
the food fresh. In particular, no buffer space is allowed between the cooking
operation and the canning operation [3]. Another example is the production
of steel, where molten steel undergoes a series of operations such as molding
into ingots, unmolding, reheating, soaking, and preliminary rolling [21]. To
maintain the molten steel’s temperature, each operation should follow the
previous operation, immediately. Such applications are closely related to the
problem of scheduling jobs in a no-wait setting.

Optimization modeling is typically used to formulate general allocation
problems in this research domain (see Hillier and So [11], for example).
Throughput is denoted byR(q, s, w), where q = (q1, q2, . . . , qN), s = (s1, s2, . . . ,
sN), and w = (w1, w2, . . . , wN) denote the allocation of buffers, servers, and
workload to stations respectively. Q is the total number of available buffer
spaces and W is the total mean service time over all stations. The optimiza-
tion problem is expressed as:

maximize R(q, s, w)
subject to
N∑
j=2

qj = Q,

N∑
j=1

sj = M,

N∑
j=1

wj = W,

qj is an integer greater than or equal to 0, j ∈ {2, 3, . . . , N},
sj is an integer greater than 0, j ∈ {1, 2, . . . , N},
wj > 0, j ∈ {1, 2, . . . , N},

where q, s, and w are decision vectors (q has entries qj, etc.). Note that work-
load allocation (w) is the problem of determining the mean service time at

3



each station, given that the mean service times sum to a fixed value W .

Hillier and So [10] aim to maximize throughput for tandem queues with
equal workloads (wi equal for all i) and small or no buffers (qi = 0 or 1).
They claim the optimal server allocation (s) assigns extra servers rather uni-
formly to the interior stations and refine this claim based on the number of
servers and stations at hand. They introduce the bowl phenomenon: with
single server stations, different mean service times, and equal buffers, the
optimal workload allocation (w) assigns less work to the interior stations
than to the end stations. It appears that the interior stations (especially the
center stations) are critical in determining system performance and so should
be given preferential treatment when making design decisions. Alexandros
and Papadopoulos [1] extend Hillier and So’s method [10] and perform server
allocation in large production lines with multiple parallel stations. They em-
ploy simulated annealing to solve the optimization problem which models
the allocation problem.

Magazine and Stecke [15] consider a three station tandem queueing sys-
tem with no buffers (qi = 0). They follow the results of Hillier and So [10] and
as the number of servers increases, the unbalancing in favour of the middle
station is increased. This behavior continues until the unbalancing becomes
too severe. At this point, a server is taken away from the middle station
and a server is added to the first and third stations. They also state that
if unbalancing and distributing servers (w, s) are left to our control, both
should be as balanced as possible.

Avi-Itzhak and Yadin [4] study single server stations with no or finite
buffers in between stations. For two-station lines, they calculate the mean
response time in terms of probabilities of the first station being empty/busy,
queue sizes, and the number of jobs in stations.

Cheng and Zhu [5] state that when assigning M heterogeneous servers
to M stations with no buffer between the first two (q2 = 0) (resp. the last
(qM = 0)) stations and possible buffers for interior stations, it is better to
allocate the slower server to the first (resp. the last) station.

Woensel et al. [19, 24] move a step further and consider any possible
acyclic multi-server configuration with arbitrary service and inter-arrival time

4



distributions. They model the joint buffer and server allocation problem
(q, s) as a non-linear optimization problem with integer decision variables.
They use the Generalized Expansion Method to evaluate throughput. They
further use Powell’s algorithm (detailed in Himmelblau [13]) for allocation
purposes. Smith et al. [20] also model the buffer allocation problem (q) as
an optimization problem and use the Generalized Expansion Method to es-
timate the throughput.

Andriansyah et al. [3] study zero-buffer multi-server general queueing net-
works. They use the Generalized Expansion Method to evaluate the through-
put for a class of acyclic networks. They employ genetic algorithms to solve
a multi-objective optimization problem to provide the trade-off between the
total number of servers used and the throughput. van Vuuren et al. [23] study
multi-server tandem queues with finite buffers with generally distributed ser-
vice times. They decompose lines to two-station subsystems by a spectral
expansion method.

Andradóttir et al. [2] study server allocation (s) in infinite buffer settings
(qi = ∞) with flexible servers using a linear programming approach. We
would like to contrast the two extremes (in terms of buffer sizes) in tandem
lines for allocation of fixed servers. Namely, in Section 2 we compare our con-
figuration of interest (zero-buffer) with a configuration with infinite buffers
between stations.

There has also been work done on the effect of variability of service times
for tandem lines. El-Rayah [7] studies the optimal arrangement of single
server tandem lines (s) with no buffer spaces (qi = 0) and where servers
have different coefficients of variation. They discover that assigning servers
with higher coefficients of variation to the exterior stations leads to higher
throughput. Muth and Alkaff [16] study the effect of independent changes
in the mean service time and the service time variance on a tandem line’s
throughput. They study single-server tandem lines with three stations and
no buffers and offer a method to compute the throughput. Papadopoulos et
al. [9, 17, 18] examine specific production lines (with feedback or unreliable
stations) by generating sparse transition matrices and solving them using
the Successive Over Relaxation (SOR) method. They consider single-server
tandem lines with finite buffers and Erlang or exponential service times.

5



Futamura [8] studies the effect of service time variability in systems with
and without buffers. Futamura suggests that server allocation should fol-
low the inverted bowl phenomenon except that more servers are assigned to
stations with higher coefficient of variation to alleviate the impact of higher
variance. Hillier et al. [12] define the inverted bowl phenomenon: when the
total amount of storage space is a decision variable and workloads are equal
(wi equal for all i), the optimal buffer allocation (q) commonly follows an
inverted bowl pattern. In other words, the allocation provides the stations
toward the center of the line with more buffer storage space than the other
stations.

The problem we consider is different in the following respects. The mod-
els in [5, 12, 22, 24] include buffers in their configurations. Avi-ltzhak and
Yadin [4] study small single server lines, however it is not clear how to gen-
eralize their results to longer multi-server lines. Hillier and So [10] consider
tandem queues with small buffers and perform simulations for the case with
no buffers. They assume that workload is balanced and the numbers of
servers at stations differ by at most two (i.e. there is a limited number of
extra servers). In other words, starting from a balanced system, they study
how to allocate extra servers. We will apply their allocation method to more
generic cases to discover its potential shortcomings. Futamura [8] studies
the same tandem queues that Hillier and So [10] consider. The tandem line
that Magazine and Stecke [15] targets is limited as all rates are equal and
there are only three stations. Andriansyah et al. [3] focus on a system with
arrivals, with better results achieved when the arrival rate is somewhat below
the maximum possible throughput. Our problem of interest assumes a con-
figuration with no buffers where we only have control over server allocation.
There are no restrictions on the number of stations or their service rates and
there is an infinite amount of work at the first station.

This paper is structured as follows. In Section 2 we model the server allo-
cation problem and propose an algorithm to perform the allocation, given the
service rates. In Section 3 we carry out simulations on a number of configu-
rations and analyze the performance of the proposed algorithm. In Section 4
we explain how to modify the algorithm when the coefficients of variation of
some or all of the stations are altered. Section 5 provides concluding remarks
and a discussion of future work.

6



2. Server allocation method

The generic optimization problem (stated in the Introduction) refined to our
specific problem becomes:

maximize R(s)
subject to
N∑
j=1

sj = M,

qj = 0, j ∈ {2, 3, . . . , N},
sj ≥ 1, sj ∈ N and j ∈ {1, 2, . . . , N},
wj =

1

µj
, j ∈ {1, 2, . . . , N}.

In order to design an allocation algorithm, we identify different param-
eters affecting throughput. An optimal allocation might want to 1) clear
blocking, 2) avoid starvation, and/or 3) reduce blocking probability. These
parameters are correlated in the following manner: blocking probability in-
creases when the total service rate of a station (which is equal to the through-
put of a station if it were the only station) is higher than its subsequent
station; a blocking station can cause starvation in downstream stations.

The idea is to balance the total service rate for all stations. In this way,
the allocation does not increase the blocking and starvation probabilities of
a station. Note that the maximum achievable throughput at a station is
dependent on the number of servers assigned to all other stations - upstream
stations due to starvation effects and downstream stations due to blocking
effects. For that reason we intend to use an allocation algorithm that pre-
vents introducing stations with high blocking probability by balancing total
service rates. Algorithm 1 is our proposed allocation method.

First consider the following definitions. Whenever a server is allocated to
a station, we say the allocation method has visited that station. For a given
station, the total number of visits to other stations since the last visit to the
given station is called the visit distance for that station. The visit distance
that an allocation method tries to enforce for each station is called the visit
period of that station.

7



In Algorithm 1, pi is the visit period of station i, equal to the ratio of the
sum of the mean service times of all stations (W ) to the mean service time
of station i. This equality was suggested after extensive simulation results.
This is also compliant with our goal of balancing total service rates, as the
total service rate of each station is proportional to the number of servers
working at that station. The quantity li is the visit distance for station i.
The algorithm assumes that the entries in w are not equal. The case where
the entries in w are equal has previously been considered, for example in
[10, 15, 22].

Algorithm 1 Allocation Algorithm (M,N,w)

1: W =

N∑
i=1

1

µi
2: pi = Wµi
3: ∀i, si = 1
4: ∀i, li = 0

5: while
N∑
i=1

si ≤M do

6: t = the index of the station where ∀k, k 6= t . stµt < skµk
7: lt = 0
8: ∀i, i 6= t . li = li + 1
9: while ((∃j . lj ≥ bpjc) ∧ (j ∈ “high priority stations”)) do

10: sj = sj + 1
11: lj = 0
12: ∀i, i 6= j . li = li + 1
13: end while

14: if
N∑
i=1

si ≤M then

15: st = st + 1
16: end if
17: end while

Our original conjecture was that the optimal allocation balances the total
service rates (siµi) of all stations. In Algorithm 1, lines 6 - 8 perform this
task. The algorithm starts from a situation where one server is allocated to
each station and upon allocation of the next server:

8



• assigns the next server to the station with the smallest value of siµi
(total service rate);

• in cases where ∃i, j. siµi = sjµj∧i 6= j, chooses the station with higher
service rate. (If service rates are equal, follows [10] by assigning extra
servers uniformly to the interior stations.)

Our original conjecture ignored the effect of zero buffers, i.e. we thought
in terms of a line with infinite buffers between stations. For our system, we
have that for all stations the rate of jobs arriving to a station is equal to
the rate of jobs departing from that station. However, we know that the
maximum departure rate of a station is less than or equal to its total service
rate. Given M servers and N stations we consider the following linear pro-
gramming problem:

maximize R(s)
subject to
siµi ≥ R(s), ∀i ∈ {1, . . . , N},
N∑
i=1

si = M.

This integer programming problem has the solutionR∗ = max
s
{min

i
{siµi}}.

This expression is consistent with the results suggested by Andradóttir et al.
[2], who consider a more general network topology and flexible servers.

This expression for the optimal throughput immediately leads to a greedy
allocation algorithm that always helps the station with the smallest value of
siµi, the same as our original conjecture. However, simulation results re-
vealed that this allocation method alone could lead to allocations that are
far from optimal.

We observed that a method that solely balances siµi for all stations, could
lead to cases where consecutive servers are assigned to a specific station. In
particular, this happens when the service rate of a station is low compared
to other stations. In such a case, the method allocates consecutive servers
to that station to compensate for the low value of siµi. Numerical results
illustrating this fact are included in Section 3.

9



We performed simulation studies for a number of configurations to char-
acterize properties of optimal allocations. Observing the behavior of optimal
allocations, we found that each station should be visited with a certain period.
In addition, some configurations include a set of stations which we call “high
priority stations” (detailed below). If such a set exists, we might need to
change the order of allocation to satisfy the following constraint: visit dis-
tances for “high priority stations” should be less than or equal to their visit
periods. In other words, it might be necessary to prioritize a station in this
set by postponing visits to stations not belonging to this set. A result of in-
cluding high priority stations is that optimal allocations avoid the behavior
described in the last paragraph, i.e. servers are not assigned consecutively to
stations with lower service rates. Lines 9 - 13 of the algorithm implement
this constraint.

While we do not specify “high priority stations” completely, we give guide-
lines on how to choose them. Consider the following expression:

∑
i∈{ 1

µi
<α}

1

µi

W
≤ β. (1)

The set of all stations with mean service times less than α constitute the
“high priority stations”, if summation of their mean service times over the
summation of mean service times of all stations is less than β. We experi-
mentally identified that the members of the set should be chosen so that β
is close to 0.2. Also, α should be less than W

N
.

For example, consider the configuration with mean service time vector
w = (5, 4, 2, 9, 3, 8, 7, 1, 6). W = 45 for the given configuration. The “high
priority stations” are stations with mean service times 1, 2, 3, and 4. In this
example we consider all stations with a mean service time less than 5 a mem-
ber of the “high priority stations” set. Also, we have that the ratio of the sum
of mean services times of the set’s members to W is equal to 1+2+3+4

45 = 10
45

= 0.222. As another example, for a system with mean service time vector
w = (12, 7, 13, 3, 5, 4, 1, 10, 9), “high priority stations” are stations with mean
service times 1, 3, 4, and 5. W = 64 for this configuration. We have that
the required ratio is equal to 1+3+4+5

64 = 13
64 = 0.203. Note that if we let

10



stations with mean service time less than 10 belong to this set, we would
have 1+3+4+5+7+9

64 = 29
64 = 0.453 which makes the ratio too big and hence

we do not consider the second and ninth stations as “high priority stations”.

For a station to belong to this set, it is necessary that its mean service
time is sufficiently small, in the sense that it is less than a proportion of
mean service times of stations with higher mean service times. However, this
is not sufficient. The number of stations with lower and higher mean service
times should be considered, in the following sense. The sum of mean service
times of stations with lower mean service times over the total workload is
an important proportion. If this proportion is too big, a set of “high prior-
ity stations” does not exist. An example is where all stations have the same
mean service times except one station, which has a higher mean service time.

The algorithm is not particularly sensitive to the choice of the set of “high
priority stations”. If it is not obvious if a station belongs to the set, it does
not make much difference if it is counted as a “high priority station” or not.
The reason is that counting the station as a member of the set results in a
better allocation for some values of M and a worse allocation for some other
values of M . For example, with w = (5, 4, 2, 9, 3, 8, 7, 1, 6), it is not clear
whether the first station should belong to the set or not. For instance, if this
station is considered as a member of the set, the algorithm results in closer
to optimal throughput for M = 58. If it is not considered a member, the
algorithm results in closer to optimal throughput for M = 69.

Trying to comprehend the need to use “high priority stations”, we notice
the effect of having multiple servers at a station. In an infinite buffer setting
we only care about the product siµi and not the individual terms, i.e. si and
µi. For example, 5 servers each working at rate 2 offer the same throughput
as 1 server working at rate 10. However, in a zero-buffer setting, a larger
number of servers at a station leads to higher throughputs. For example, 5
servers working at rate 2 perform better than 1 server working at rate 10.
The reason is that with no buffers, servers act as buffers when blocking oc-
curs. Therefore more servers provide artificial buffer space that helps reduce
blocking.

As we intend to balance siµi among all stations, a station with higher
mean service time is assigned more servers compared to a station with lower

11



mean service time. However, as stated above, having more servers improves
the throughput of a station. Therefore, in order for a low mean service time
station to be able to admit multiple jobs coming from high mean service
time stations, more servers should be assigned to the low mean service time
station. Using the concept of “high priority stations” leads to allocations
that take the multiplicity effect into account by making visit distances not
bigger than visit periods for such stations.

To gain a better understanding of the multiplicity effect, we present a
number of analytical results to support the belief that assigning multiple
slow servers to a station leads to better performance than allocating a single
fast server to the station (with equal total service rate). This belief is also
consistent with the way we decide the server allocation order between sta-
tions with equal total service rate but different numbers of servers.

Note that replacing fast servers with slow servers could lead to situations
where a station is working at a slower rate. More specifically, at a station
with fast servers replaced by slow servers, when there are less jobs than the
servers, the departure rate from the station is reduced compared to the case
with fast servers. However, the analysis below shows that the trade-off be-
tween the increase in buffer size and the potential reduction in total service
rate should always be resolved in favour of gaining extra buffer spaces.

Proposition 1: In a tandem line with two stations and one server per sta-
tion, the throughput increases if the server at the first station is replaced by a
number of slow servers, preserving the total service rate at the first station.

Proof: Assume the server at the first station (working at rate µ1) is replaced
by γ servers (each working at rate

µ1

γ ). Let the server at the second station

work at rate µ2. Let pwγi represent the probability of being in a state with
γ busy servers at the first station and an idle server at the second station.
Also, set µ =

µ1

µ2
. We have (from the solution of the corresponding birth-

death process)

pwγ i =
1

1 + µ+ µ2 +

γ−1∑
j=1

γ − j
γ

µj+2

.

12



The throughput of the system is equal to µ2(1−pwγ i). Hence the through-
put increases as γ is increased.

�

Proposition 2: In a tandem line with two stations and one server per sta-
tion, the throughput increases if the server at the second station is replaced
by a number of slow servers, preserving the total service rate at the second
station.

Proof: Assume the server at the second station (working at rate µ2) is
replaced by η servers (each working at rate

µ2

η ). Let the server at the first

station work at rate µ1. Let pbwη represent the probability of being in a state
with a blocked server at the first station and η busy servers at the second
station. Also, set µ =

µ2

µ1
. We have (from the solution of the corresponding

birth-death process)

pbwη =
1

1 + µ+ µ2 +

η−1∑
j=1

η − j
η

µj+2

.

The throughput of the system is equal to µ1(1−pbwη). Hence the through-
put increases as η is increased.

�

Proposition 3: In a tandem line with three stations and one server per sta-
tion, the throughput increases if any of the servers is replaced by two slower
servers each working at half of the rate of the original server.

Proof: We only provide the proof for the case where the server at the third
station is replaced by two slower servers. When there is a single server at
each station, the states are:

{wii, wwi, wiw,www,wbw, bwi, bww, bbw},

where w, i, and b stand for a working, idling, and blocked server, respectively.
The throughput is equal to T = µ3(1− (pwii + pwwi + pbwi)). When the third
station’s server is replaced by two slower servers, the states are:

{wiii, wwii, wiwi, wwwi, wiww,wwww, bwii, bwwi, wbww, bbww, bwww},

13



where the last two letters of each state correspond to the two servers at the
third station. The throughput is equal to T ′ = µ3(pwiww + pwwww + pwbww +
pbwww + pbbww) + µ3(pwiwi + pwwwi + pbwwi)/2.

Evaluating the sign of T ′ − T simplifies to:

µ4
1µ

3
2µ

3
3(µ1 +µ2)(µ

2
1 +µ1µ2 +µ2

2)
2(µ1 +µ2 + 2µ3)(4µ

6
1 + 12µ5

1µ2 + 20µ5
1µ3 +

12µ4
1µ

2
2 + 48µ4

1µ2µ3 + 41µ4
1µ

2
3 + 4µ3

1µ
3
2 + 44µ3

1µ
2
2µ3 + 84µ3

1µ2µ
2
3 + 44µ3

1µ
3
3 +

26µ2
1µ

3
2µ3+77µ2

1µ
2
2µ

2
3+78µ2

1µ2µ
3
3+26µ2

1µ
4
3+16µ1µ

4
2µ3+52µ1µ

3
2µ

2
3+65µ1µ

2
2µ

3
3+

37µ1µ2µ
4
3 + 8µ1µ

5
3 + 4µ5

2µ3 + 16µ4
2µ

2
3 + 25µ3

2µ
3
3 + 19µ2

2µ
4
3 + 7µ2µ

5
3 + µ6

3),

which is clearly positive, allowing us to conclude T ′ > T . The cases where the
first or second stations are replaced with slower servers are proved similarly.

�

We considered several configurations with two stations and more than one
server at each station (e.g. s = (2, 3)). The multiplicity effect holds for them.
However, we found it difficult to show the effect for an arbitrary number of
servers at the two stations. When the number of stations is increased (in
a single-server setting), validating the multiplicity effect becomes a complex
algebraic exercise. However, we believe this effect holds in general under
Markovian assumptions. The multiplicity effect does not hold for lines with
deterministic service times. Hence, the degree of the effect is determined by
the service time variance.

In [10], Hillier and So adapt results for the single server setting to analyze
multi-server settings. They state that using si servers working at rate µi at a
station is almost equivalent to employing a single fast server working at rate
siµi with si − 1 buffer spaces. The multiplicity effect is consistent with this
argument. Having multiple servers introduces buffer spaces which in turn
increases throughput by reducing blocking.

3. Simulation results

We have simulated a number of configurations with different numbers of
stations and servers. As the numbers of servers and stations increase, the

14



number of possible allocations grows so dramatically that it becomes im-
practical to find the optimal allocation by simulation. Given M and N and
assuming each station has at least one server, the number of possible com-
binations is NM−N , which illuminates the exponential nature of the search
space. In order to be able to simulate the problem, we need to reduce the size
of the search space to a manageable size, i.e. filter the set of combinations
that we consider. Each run of the simulation consists of tracking the system
until a certain number of departures has occurred and then calculating sys-
tem throughput.

Assume that the throughput values for all combinations of a configuration
with given N , M , and w are known. We now want to simulate the system
for M + 1 servers. Call the combinations leading to the highest throughput
values top combinations. We track the top combinations with M servers and
record the minimum value that each station takes (smini ) in this set. The smini

values for top combinations with M + 1 servers are greater than or equal to
smini for top combinations with M servers. If a station in the configuration
with M + 1 servers has a lower smini value compared to the configuration
with M servers, this station will have a high blocking probability as its total
service rate would be less than other stations, which in turn will reduce the
throughput. This is consistent with Algorithm 1 and reinforced by simu-
lations. Note that we do not claim that the optimal allocation for M + 1
servers has si values that are greater than or equal to those in the optimal
allocation for M servers. Our claim is weaker as it targets a range of si values
and combinations rather than a specific si value.

We used this property to limit our search space when simulating M + 1
servers using simulation results for M servers. For example, if a station is
assigned 9, 10, or 11 servers within the top combinations with 80 servers, for
simulating 81 servers we only consider a range around these numbers (say
7 to 13). In practice, the si values in top combinations tend to be equal or
differ by at most two servers, which supports our choice of the numbers of
servers (si) to consider.

In order to determine the order in which servers are allocated during a
simulation study, we used the following criterion: whenever all si values for
a station are greater than or equal to a certain number (x) in the top combi-
nations, we let that station have x servers. We recorded the order in which

15



stations satisfied the above criterion.

For example, consider a case withN = 9 and w = (12, 7, 13, 3, 5, 4, 1, 10, 9),
with all values of M between 10 and 98. The simulation results are shown
in Table 1. Analyzing this table helped us refine our original conjecture in
the algorithm. In the table, the header is w, the first column is si, and the
table entries represent the order in which servers are allocated to stations.
To measure the performance of our algorithm, we applied Algorithm 1 to
the above configuration. The allocation order generated by the algorithm is
shown in Table 2.

si 12 7 13 3 5 4 1 10 9
1 11 14 10 24 17 19 52 12 13
2 16 23 15 42 29 33 94 18 20
3 22 32 21 60 39 48 25 27
4 28 40 26 81 54 63 31 35
5 34 50 30 66 77 37 43
6 38 59 36 76 92 44 47
7 45 69 41 90 49 58
8 51 80 46 57 64
9 55 86 53 65 71
10 62 96 56 70 79
11 68 61 74 85
12 73 67 83 93
13 78 72 89
14 84 75 97
15 88 82
16 95 87
17 91
18 98

Table 1: Empirical allocation order for w = (12, 7, 13, 3, 5, 4, 1, 10, 9)

To gain a better understanding of how the algorithm performs, we summa-
rize the results in Table 3. In this table, the optimal allocation together with
the relative error of the allocation generated by the algorithm are shown (for
w = (12, 7, 13, 3, 5, 4, 1, 10, 9)). If the allocation suggested by the algorithm
is not optimal, the optimal allocation is also presented below the algorithm’s

16



allocation. The average relative error of the allocation provided by the algo-
rithm for M = 10 to 98 servers is 0.80%. For the same configuration, if we
delay increasing the value of li for “high priority stations” even for at most
3 visits, i.e. skipping lines 9 to 13 in the algorithm, experimental results are
greatly changed and the average relative error increases to 2.00%. This is
in fact the results of the greedy algorithm suggested for the infinite buffer
setting (and our original conjecture).

si 12 7 13 3 5 4 1 10 9
1 11 14 10 26 17 21 48 12 13
2 16 23 15 45 29 35 85 18 19
3 22 32 20 63 40 49 24 27
4 28 41 25 82 52 62 31 34
5 33 51 30 64 77 37 42
6 38 60 36 76 92 44 47
7 42 69 39 89 53 56
8 50 78 46 58 65
9 55 88 54 66 70
10 59 97 57 71 80
11 67 61 79 86
12 72 68 84 94
13 75 72 91
14 83 74 98
15 90 81
16 95 87
17 93
18 96

Table 2: Algorithm 1 allocation order for w = (12, 7, 13, 3, 5, 4, 1, 10, 9)

We have simulated a number of other configurations to verify the pro-
posed algorithm. We describe three of them here. Assume a nine sta-
tion line with the following mean service times: w = (1, 2, 3, 4, 5, 6, 7, 8, 9).
For M = 45 through 70 the average relative error is 0.93%. Consider
another nine station configuration with the following mean service times:
w = (5, 4, 2, 9, 8, 3, 8, 7, 1, 6). For M = 45 through 82 the average relative
error is 0.46% which suggests that the algorithm is performing well.

17



M s R(s) Err. M s R(s) Err.
10 (1, 1, 2, 1, 1, 1, 1, 1, 1) 0.0562 55 (10, 6, 10, 3, 5, 4, 2, 8, 7) 0.6037 0.57%
15 (2, 2, 3, 1, 1, 1, 1, 2, 2) 0.1085 (9, 6, 10, 4, 5, 4, 2, 8, 7) 0.6071
20 (3, 2, 4, 1, 2, 1, 1, 3, 3) 0.1593 3.1% 60 (11, 7, 11, 3, 5, 4, 2, 9, 8) 0.6594 1.88%

(3, 2, 4, 1, 2, 2, 1, 3, 2) 0.1644 (10, 7, 11, 4, 5, 4, 2, 9, 8) 0.6721
25 (4, 3, 5, 1, 2, 2, 1, 4, 3) 0.2181 3.97% 65 (11, 7, 12, 4, 6, 5, 2, 9, 9) 0.7367 0.04%

(4, 3, 4, 2, 2, 2, 1, 4, 3) 0.2271 (13, 9, 15, 5, 7, 6, 2, 12, 11) 0.9329
30 (5, 3, 6, 2, 3, 2, 1, 4, 4) 0.2858 70 (12, 8, 13, 4, 6, 5, 2, 10, 10) 0.7995 0.43%
35 (6, 4, 6, 2, 3, 3, 1, 5, 5) 0.3482 (12, 8, 13, 4, 6, 5, 2, 11, 9) 0.8029
40 (7, 4, 8, 2, 4, 3, 1, 6, 5) 0.4074 0.62% 75 (14, 8, 15, 4, 6, 5, 2, 11, 10) 0.8519 1.72%

(6, 5, 7, 3, 4, 3, 1, 6, 5) 0.4099 (13, 8, 14, 4, 7, 6, 2, 11, 10) 0.8661
45 (8, 5, 8, 3, 4, 3, 1, 7, 6) 0.4706 1.01% 80 (14, 9, 15, 4, 7, 6, 2, 12, 11) 0.9286 0.46%

(7, 5, 8, 3, 4, 3, 2, 7, 6) 0.4754 (13, 9, 15, 5, 7, 6, 2, 12, 11) 0.9329
50 (9, 5, 9, 3, 4, 4, 2, 7, 7) 0.5358 0.86% 85 (15, 9, 16, 5, 7, 6, 3, 13, 11) 0.9985

(8, 6, 9, 3, 4, 4, 2, 8, 6) 0.5404 90 (15, 10, 17, 5, 8, 7, 3, 13, 12) 1.0652
95 (17, 10, 18, 5, 8, 7, 3, 14, 13) 1.1298 0.09%

(16, 11, 18, 5, 8, 7, 3, 14, 13) 1.1309

Table 3: Algorithm 1 allocation for w = (12, 7, 13, 3, 5, 4, 1, 10, 9)

We also simulated a configuration with mean service times: w = (3, 5, 10,
12, 13, 9, 7, 4, 1). For M = 9 through 31 the average relative error is 0.003%
which is better than the result of the w = (12, 7, 13, 3, 5, 4, 1, 10, 9) configura-
tion. According to Hillier and So [10], assigning extra servers to the interior
stations lead to higher throughputs. Also, the stations with higher mean
service times have smaller visit periods. The algorithm works better for the
former configuration, as the higher mean service time stations are also the
interior stations.

To further evaluate the algorithm, we performed a simulation study for
a longer tandem line which also included stations with equal mean service
times. The configuration had mean service times: w = (2, 5, 7, 14, 13, 10, 4, 3,
13, 5, 12, 11, 7, 3, 8). For M = 15 through 50 the average relative error is
0.006%. As explained in Section 2, ties are broken by assigning servers uni-
formly to the interior stations.

Comparing our allocations with the optimal allocations for w = (12, 7, 13,
3, 5, 4, 1, 10, 9), Algorithm 1 always assigns more servers to stations 1, 3, and
9; it always assigns less servers to stations 4, 5, and 6; station 2 often has the
same number of servers except for a few cases where the algorithm assigns

18



less servers. For w = (5, 4, 2, 9, 8, 3, 8, 7, 1, 6), the algorithm always assigns
more servers to stations 1, 4, and 9; it always assigns less servers to stations
3, 5, and 8.

Hillier and So [10] define n = bMN cand E = M − nN for systems with
equal workloads. They state that when N − E = 1 the optimal allocation
assigns extra servers to every station except station 1; when N − E = 2
it allocates extra servers to every station except stations 1 and N ; when
N − E > 2 they could not characterize an optimal solution. However, in
general terms, they suggest to spread the extra servers rather uniformly over
the interior stations. Applying their method to w = (5, 4, 2, 9, 8, 3, 8, 7, 1, 6)
when N − E = 1, then M = 53 and the average relative error is 0.41%.
When N − E = 2, then M = 52 and the average relative error is 0.24%.
When N −E > 2, then we choose M = 46 through 50, resulting in an aver-
age relative error of 6.05% (our algorithm results in 1.31% average relative
error). Note that their method is silent on allocations in the range of M =
54 through 89, as the workloads become equal again at M = 90.

Similarly, if we apply their guideline to w = (12, 7, 13, 3, 5, 4, 1, 10, 9) when
N − E = 1, then M = 72 and the average relative error is 0.06%. When
N − E = 2, then M = 71 and the average relative error is 0.07%. When
N − E > 2 we choose M = 65 through 69, the average relative error is
2.07%. Their method is silent on allocations in the range of M = 73 through
128. Notice that their guideline performs better on the latter configuration
compared to the former configuration, as it is a case where “high priority
stations” are also interior stations.

4. Impact of Service Time Variance

A natural extension to the above problem is considering service time
distributions which are not exponential. More specifically, we modify the
distributions so that the coefficients of variation (cv) are not equal to 1. In
simulations, an Erlang distribution is used for coefficient of variation less than
one and a Hyper-exponential distribution for coefficient of variation greater
than one. In such systems, allocations depend on the position of stations in
the tandem line, service rates, and coefficients of variation. We try to study
the effect of these parameters separately and together. We let cvj represent

19



the coefficient of variation of the service time distribution of station j.

The simulation results below suggest that for the following cases, the al-
gorithm works well: coefficients of variation are approximately one except for
a small number of stations which are less than one; coefficients of variation
are less than one with equal values; coefficients of variation are greater than
one with equal values. For these cases, the adjusted visit periods are in-
versely proportional to the coefficients of variation. For the remaining cases:
coefficients of variation are approximately one except for a small number of
stations where they are greater than one; coefficients of variation less than
one with different values; coefficients of variation greater than one with dif-
ferent values, we provide some guidelines for how to modify the algorithm,
but are unable to provide a complete picture.

In a tandem line including stations with cvj = 1 and cvj > 1, the guideline
is to follow Algorithm 1 but expedite visits to stations with cvj > 1. Employ-
ing Algorithm 1 alone with no modifications could lead to results that are far
from optimal. The amount that visit periods should be advanced depends
on the coefficients of variation, the pj values, and the position of stations.
However notice that visit periods are still mainly dependent on service rates.
Therefore the change in visit periods is not very large compared to pj. Dur-
ing our simulations, we have observed that a 100% increase in the coefficient
of variation of a station changes its visit period by not more than 20%.

For the w = (12, 7, 13, 3, 5, 4, 1, 10, 9) configuration with cv5 = 1.61, cv8 =
1.31 and cvj = 1 for the remaining stations, the average relative error of the
algorithm is 1.61%. As suggested in the previous paragraph, p5 and p8 should
be decreased (we do not know the exact amount). However, we only need to
perform simulations for a couple of M values to calculate new visit periods.
These M values are less than multiples of p5 and p8, so that we can verify
how much the visit periods need to be reduced. Choosing M = 13, 14, 19, we
inferred that we should change p5 from 12.8 to 10.75 and p8 from 6.4 to 6.25.
The adjusted visit periods of stations are calculated by dividing M by the
number of servers assigned to the stations. Employing the algorithm with
the modified visit periods results in an average relative error of 0.94%. Ta-
ble 4 presents the optimal allocations for this example for M = 43 through 69.

In a tandem line where for all stations cvj > 1 with different values, visits

20



to stations with higher mean service times are expedited which can result
in an increase in visit periods of lower mean service time stations. Consider
the w = (12, 7, 13, 3, 5, 4, 1, 10, 9) configuration with cvj > 1 for all stations.
More specifically, let cv = (1.22, 1.76, 1.14, 2.68, 2.12, 2.37, 2.45, 1.38, 1.50).
Algorithm 1 with the original visit periods results in an average relative
error of 5.53%. We performed simulations for a small number of M val-
ues (M = 15, 17, 20) and determined the following values for visit periods:
(6.11, 8, 5.4, 15.66, 10.8, 13, 35, 7, 7.28). With these adjusted visit periods the
average relative error becomes 0.67%. Comparing optimal allocations with
the allocations computed from Algorithm 1 adjusted with the above visit
periods, the optimal allocations assign more servers to stations with higher
mean service times.

In a tandem line where for all stations cvj > 1 with equal values, the
algorithm yields good results. For example for w = (3, 2, 1, 2, 1, 1, 1, 2) and
cvj = 2.15 for all stations, for M = 9 through 50 the algorithm leads to an
average relative error of 0.93%.

In a tandem line including stations with cvj = 1 and cvj < 1, the algo-
rithm leads to reasonable results. However, the optimal allocation tends to
postpone visits to stations with cvj < 1 in comparison with pj calculated in
Algorithm 1. In other words, the optimal policy assigns less servers to sta-
tions with lower coefficients of variation. For the w = (12, 7, 13, 3, 5, 4, 1, 10, 9)
configuration with M = 10 through 69, cv5 = cv8 = 0.5, and cvj = 1 for the
rest, the average relative error of the allocations provided by the algorithm
is 0.79%. Table 4 presents the optimal allocations for this example for M =
43 through 69.

In a tandem line where for all stations cvj < 1 with equal values, the
algorithm yields good results. The optimal allocation assigns more servers
to stations with higher mean service times and to stations at the two ends of
the line. For the same configurations with M = 10 through 69 and cvj = 0.5
for all stations, Algorithm 1 results in an average relative error of 0.52%.

In a tandem line where for all stations cvj < 1 with different values,
less servers are assigned to stations with higher mean service times. For
w = (3, 2, 1, 2, 1, 1, 1, 2) and cv = (0.7, 0.7, 0.25, 0.25, 0.7, 0.25, 0.25, 0.25) with
M = 9 through 50, the algorithm results in an average relative error of 1.95%.

21



The average relative error for the same configuration with cvj = 1 is 0.58%.
This suggests that the visit periods in the algorithm should be adjusted.
Simulating for a small number of M values (M = 19, 25, 26, 27), we inferred
that the adjusted visit periods should be (4.75, 6.33, 12, 6.16, 12, 12.5, 12, 6.9).
Employing the algorithm with the adjusted visit periods results in an average
relative error of 0.58%.

In order to study the effect of coefficient of variation independent of mean
service times, we consider a configuration with 4 stations, each having a mean
service time of 1. We choose cvj = 0.5, 1, 1.34 for the third station and let
cvj = 1 for the other stations. As expected, the inverted bowl phenomenon is
followed, i.e. the second and third stations are prioritized. While visit periods
remain the same when the coefficient of variation is changed, their ordering
changes. For cvj = 1, the allocation priority swings between the second and
third station so that balance is achieved in the long run. For cvj 6= 1, al-
though the allocation priority swings between the second and third station,
for cvj < 1 the second station is prioritized and for cvj > 1 the third station
is prioritized. This observation is consistent with the above claims.

Futamura [8] states that the optimal server allocation follows the inverted
bowl phenomenon but assigns more servers to stations with higher coefficient
of variation. As the number of stations is increased, the optimal allocation
tends to put servers at stations with higher coefficient of variation over sta-
tions in the middle. The systems under consideration have equal workload
and all coefficients of variation are 1 except some stations which have higher
coefficients of variation. Futamura performs simulations for configurations
with balanced workloads and a limited number of extra servers. We observe
that a more comprehensive analysis of such systems (i.e. when one considers
extra servers beyond the limit that Futamura has considered) would suggest
that increasing the coefficient of variation of some stations changes the allo-
cation order but leaves visit periods unchanged. Table 4 illustrates this fact.
In Table 4, while the fifth station with cv5 > 1 takes servers 5 and 6 sooner
compared to the case cv5 = 1, the visit periods for both cases are the same.
This is consistent with our earlier observation that changing the coefficient
of variation has an effect on the server assignment, but not to the degree
that there is a large difference in the number of servers assigned (over the
exponential case).

22



M cvj = 1 cv5 = cv8 = 0.5 cv5 = 1.61, cv8 = 1.31
43 (7, 5, 8, 3, 4, 3, 2, 6, 5) (7, 5, 8, 3, 4, 3, 1, 6, 6) (7, 5, 8, 3, 4, 3, 1, 7, 5)
44 (7, 5, 8, 3, 4, 3, 2, 6, 6) (7, 5, 8, 3, 4, 3, 2, 6, 6) (7, 5, 8, 3, 4, 3, 1, 7, 6)
45 (7, 5, 8, 3, 4, 3, 2, 7, 6) (8, 5, 8, 3, 4, 3, 2, 6, 6) (7, 5, 8, 3, 5, 3, 1, 7, 6)
46 (8, 5, 8, 3, 4, 3, 2, 7, 6) (8, 5, 8, 3, 4, 3, 2, 7, 6) (8, 5, 8, 3, 5, 3, 1, 7, 6)
47 (8, 5, 9, 3, 4, 3, 2, 7, 6) (8, 5, 9, 3, 4, 3, 2, 7, 6) (8, 5, 8, 3, 5, 3, 2, 7, 6)
48 (8, 5, 9, 3, 4, 4, 2, 7, 6) (8, 5, 9, 3, 4, 4, 2, 7, 6) (8, 5, 9, 3, 5, 3, 2, 7, 6)
49 (8, 6, 9, 3, 4, 4, 2, 7, 6) (8, 6, 9, 3, 4, 4, 2, 7, 6) (8, 5, 9, 3, 5, 3, 2, 8, 6)
50 (8, 6, 9, 3, 4, 4, 2, 8, 6) (8, 6, 9, 3, 4, 4, 2, 7, 7) (8, 6, 9, 3, 5, 3, 2, 8, 6)
51 (8, 6, 9, 3, 5, 4, 2, 7, 7) (8, 6, 10, 3, 4, 4, 2, 7, 7) (8, 6, 9, 3, 5, 4, 2, 8, 6)
52 (8, 6, 10, 3, 4, 4, 2, 8, 7) (9, 6, 10, 3, 4, 4, 2, 7, 7) (9, 6, 9, 3, 5, 4, 2, 8, 6)
53 (9, 6, 9, 3, 5, 4, 2, 8, 7) (9, 6, 10, 3, 4, 4, 2, 8, 7) (9, 6, 9, 3, 5, 4, 2, 8, 7)
54 (9, 6, 10, 3, 5, 4, 2, 8, 7) (9, 6, 10, 3, 5, 4, 2, 8, 7) (9, 6, 10, 3, 5, 4, 2, 8, 7)
55 (9, 6, 10, 4, 5, 4, 2, 8, 7) (9, 6, 11, 3, 5, 4, 2, 8, 7) (9, 6, 10, 3, 5, 4, 2, 9, 7)
56 (9, 6, 10, 4, 5, 4, 2, 9, 7) (9, 6, 11, 3, 5, 4, 2, 9, 7) (9, 6, 10, 3, 6, 4, 2, 9, 7)
57 (9, 7, 10, 4, 5, 4, 2, 9, 7) (10, 6, 11, 3, 5, 4, 2, 9, 7) (9, 6, 11, 3, 6, 4, 2, 9, 7)
58 (10, 6, 11, 4, 5, 4, 2, 8, 8) (10, 6, 11, 4, 5, 4, 2, 9, 7) (10, 6, 11, 3, 6, 4, 2, 9, 7)
59 (10, 6, 11, 4, 5, 4, 2, 9, 8) (10, 6, 11, 4, 5, 4, 2, 9, 8) (10, 6, 11, 3, 6, 4, 2, 9, 8)
60 (10, 7, 11, 4, 5, 4, 2, 9, 8) (10, 7, 11, 4, 5, 4, 2, 9, 8) (10, 6, 11, 4, 6, 4, 2, 9, 8)
61 (10, 7, 11, 4, 5, 5, 2, 9, 8) (10, 7, 11, 4, 5, 5, 2, 9, 8) (10, 7, 11, 4, 6, 4, 2, 9, 8)
62 (10, 7, 11, 4, 6, 5, 2, 9, 8) (10, 7, 12, 4, 5, 5, 2, 9, 8) (10, 7, 11, 4, 6, 4, 2, 10, 8)
63 (11, 7, 11, 4, 6, 5, 2, 9, 8) (10, 7, 12, 4, 5, 5, 2, 10, 8) (10, 7, 12, 4, 6, 4, 2, 10, 8)
64 (11, 7, 12, 4, 5, 5, 2, 10, 8) (11, 7, 12, 4, 5, 5, 2, 10, 8) (10, 7, 12, 4, 6, 5, 2, 10, 8)
65 (11, 7, 12, 4, 6, 5, 2, 10, 8) (11, 7, 12, 4, 5, 5, 2, 10, 9) (11, 7, 12, 4, 6, 5, 2, 10, 8)
66 (11, 7, 12, 4, 6, 5, 2, 10, 9) (11, 7, 13, 4, 5, 5, 2, 10, 9) (11, 7, 12, 4, 6, 5, 2, 10, 9)
67 (11, 8, 12, 4, 6, 5, 2, 10, 9) (11, 8, 12, 4, 6, 5, 2, 10, 9) (11, 7, 13, 4, 6, 5, 2, 10, 9)
68 (11, 8, 13, 4, 6, 5, 2, 10, 9) (11, 8, 13, 4, 6, 5, 2, 10, 9) (11, 8, 13, 4, 6, 5, 2, 10, 9)
69 (11, 8, 13, 4, 6, 5, 2, 11, 9) (11, 8, 13, 4, 6, 5, 2, 11, 9) (11, 8, 13, 4, 6, 5, 2, 11, 9)

Table 4: Comparison of coefficient of variation modifications for w =
(12, 7, 13, 3, 5, 4, 1, 10, 9)

23



5. Conclusion

In this paper we studied the allocation of a number of servers to stations
in a zero-buffer tandem line. We considered a wide range of configurations,
varying the number of stations, number of servers per station, and service
time distributions. In contrast to infinite buffer settings where balancing to-
tal service rates of stations is the only concern, in zero-buffer tandem lines,
under certain conditions, stations with lower mean service times should be
prioritized. We introduced the multiplicity effect to explain that servers
also play the role of buffers in the absence of real storage between stations.
Studying the impact of variability in service times through a small number
of configurations, we found that the algorithm performs well for the follow-
ing combinations of service time distributions: coefficients of variation are
approximately one except for a small number of stations which are greater
than one; coefficients of variation are less than one with equal values; coef-
ficients of variation are greater than one with equal values. In other cases
adjustments are required to the algorithm.

In terms of future work, additional simulations might lead to more con-
crete statements on how to justify visit periods for arbitrary coefficients of
variation across all stations. Simulation variables would be the number of
stations, distributions of service times, number of servers, and arrangement
of coefficients of variation. In this work we have considered non-collaborative
homogeneous servers. A natural extension to this work is to study the case
where servers are heterogeneous (i.e. have different service rates at different
stations) or can work collaboratively at a station.

[1] D. C. Alexandros and P. T. Chrissoleon. On the server allocation in
large reliable production lines with exponential processing times. In
Fifth International Conference on “Analysis of Manufacturing Systems
- Production Management”, Zakynthos Island, Greece, 2005.

[2] S. Andradóttir, H. Ayhan, and D. G. Down. Dynamic server alloca-
tion for queueing networks with flexible servers. Operations Research,
51(6):952 – 968, 2003.

[3] R. Andriansyah, T. Van Woensel, F. R. B. Cruz, and L. Duczmal. Perfor-
mance optimization of open zero-buffer multi-server queueing networks.
Computers and Operations Research, 37(8):1472–1487, 2010.

24



[4] B. Avi-Itzhak and M. Yadin. A sequence of two servers with no inter-
mediate queue. Management Science, 11(5):553–564, 1965.

[5] D. W. Cheng and Y. Zhu. Optimal order of servers in a tandem queue
with general blocking. Queueing Systems, 14(3):427–437, 1993.

[6] Department of Health and Aged Care. Managing beds better - balancing
supply and demand the NDHP-2 experience, 1999. Commonwealth of
Australia, Canberra.

[7] T. E. El-Rayah. The effect of inequality of interstage buffer capacities
and operation time variability on the efficiency of production line sys-
tems. International Journal of Production Research, 17(1):77–89, 1979.

[8] K. Futamura. The multiple server effect: Optimal allocation of servers
to stations with different service-time distributions in tandem queueing
networks. Annals of Operations Research, 93(1):71–90, 2000.

[9] C. Heavey, H. T. Papadopoulos, and J. Browne. The throughput rate
of multistation unreliable production lines. European Journal of Opera-
tional Research, 68(1):69–89, 1993.

[10] F. S. Hillier and K. C. So. The assignment of extra servers to stations
in tandem queueing systems with small or no buffers. Performance
Evaluation, 10(3):219–231, 1989.

[11] F. S. Hillier and K. C. So. On the optimal design of tandem queueing
systems with finite buffers. Queueing Systems, 21(3-4):245–266, 1995.

[12] F. S. Hillier, K. C. So, and R. W. Boling. Notes: Toward characterizing
the optimal allocation of storage space in production line systems with
variable processing times. Management Science, 39(1):126–133, 1993.

[13] D. M. Himmelblau. Applied Nonlinear Programming. McGraw-Hill Book
Company, 1972.

[14] S. Hu, J. Ko, L. Weyand, H. ElMaraghy, T. Lien, Y. Koren, H. Bley,
G. Chryssolouris, N. Nasr, and M. Shpitalni. Assembly system design
and operations for product variety. CIRP Annals - Manufacturing Tech-
nology, 60(2):715 – 733, 2011.

25



[15] M. J. Magazine and K. E. Stecke. Throughput for production lines
with serial work stations and parallel services facilities. Performance
Evaluation, 25(3):211–232, 1996.

[16] E. J. Muth and A. Alkaff. The bowl phenomenon revisited. International
Journal of Production Research, 25(2):161–173, 1987.

[17] H. Papadopoulos, C. Heavey, and M. O’Kelly. Throughput rate of multi-
station reliable production lines with inter station buffers (I) exponential
case. Computers in Industry, 13(4):229 – 244, 1989.

[18] H. Papadopoulos, C. Heavey, and M. O’Kelly. Throughput rate of mul-
tistation reliable production lines with inter station buffers (II) erlang
case. Computers in Industry, 13(4):317 – 335, 1990.

[19] J. M. Smith, F. R. B. Cruz, and T. Van Woensel. Optimal server alloca-
tion in general, finite, multi-server queueing networks. Applied Stochastic
Models in Business and Industry, 26(6):705–736, 2010.

[20] J. M. Smith, F. R. B. Cruz, and T. Van Woensel. Topological net-
work design of general, finite, multi-server queueing networks. European
Journal of Operational Research, 201:427–441, 2010.

[21] W. F. Smith and J. Hashemi. Foundations of Materials Science and
Engineering. McGraw-Hill, 2006.

[22] D. Spinellis, C. Papadopoulos, and J. MacGregor Smith. Large produc-
tion line optimization using simulated annealing. International Journal
of Production Research, 38(3):509–541, 2000.

[23] M. van Vuuren, I. J. Adan, and S. A. Resing-Sassen. Performance anal-
ysis of multi-server tandem queues with finite buffers and blocking. OR
Spectrum, 27(2/3):315–338, 2005.

[24] T. Van Woensel, R. Andriansyah, F. R. B. Cruz, J. M. Smith, and
L. Kerbache. Buffer and server allocation in general multi-server
queueing networks. International Transactions in Operational Research,
17(2):257–286, 2010.

26


