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A Design Notation 

•  We use design notations that 
–  abstract from the specifics of particular computers and 

programming languages, 
–  offer more "expressiveness". 

•  For sequential programming we use a design notation resembling Pascal 
(which was meant to be an executable design notation) and also 
visualize it by flowcharts. However, compared to Pascal 
–  some aspects will be simpler; 
–  some features will be added. 

•  Basic programs consist of 
–  variables that can hold values, 
–  expressions that have a result, 
–  statements that have an effect by changing variables. 
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Basic Statements – 1 

•  Assignment: Suppose x, y are variables and E, F are expressions: 

  x := E           x, y := E, F 
 

•  Compound: Suppose S is a statement: 

  begin S end 
 
 
•  Sequencing: Suppose S, T are statements: 

  S ; T 
 

x := E 

S 

T 

S 

x := E 
y := F 



Elements of Programming-4 

Basic Statements – 2 

•  Conditional: Suppose S, T are statements and B is an expression: 

  if B then S 
 
 
 
 
 
 
 

  if B then S else T 
 
 

+ 

– 

S 

B 

+ – 

T 

B 

S 
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Basic Statements – 3 

•  Repetition: Suppose S is a statement and B is an expression: 

  while B do S 
 
 

+ 

– 

S 

B 
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First Example 

  a, b := x, y ; 
 while a ≠ b do 
  if a > b then 
   a := a – b 
  else 
   b := b – a 

+ 

– 
a≠b 

+ – 

b:=b–a 

a>b 

a:=a–b 

a:=x 
b:=y 

What does this 
program do? 
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Properties of Statements 

•  Of the various properties of a statements (like code size, running time, 
memory used) we are interested in its interpretation as transforming 
values of variables. For example, 
  if initially   x = 3 
  then after   y := x + 2 
  we have finally  y = 5. 

 
•  However, we are more interested in properties holding for every 

execution rather than for individual executions. We express such 
properties by predicates (boolean expressions) in the initial and final 
states. For example, 
  if initially   x ≥ a 
  then after   x := x + 1 
  we have finally  x ≥ a + 1. 
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Correctness Assertions 

•  For statement S and predicates P, Q, we express that under 
precondition P program S will establish postcondition Q by the 
correctness assertion: 

  {P}  S  {Q} 

•  Examples (all variables are integers): 
 
  {x = 3}  y := x + 2  {y = 5} 

 
 

  {x ≥ a}  x := x + 1  {x ≥ a + 1} 

•  Correctness assertions were introduced by C. A. R. Hoare in 1969. 
We also say that S is correct with respect to precondition P and 
postcondition Q. 

S 

P 

Q 

y := x + 2 
x = 3 

y = 5 

x := x + 1 
x ≥ a 

x ≥ a + 1 
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Examples of Correctness Assertions 

•  {true}  y := x + 2  {y = x + 2} 

•  {x = a - 3}  x := x + 3  {x = a} 

•  {(z + u · y = a) ∧ (u > 0)} 
z, u := z + y, u – 1 
{(z + u · y = a) ∧ (u ≥ 0)} 

•  Let gcd(x, y) be the greatest common divisor of integers x and y: 
 
{(x > 0) ∧ (y > 0)} 
a, b := x, y ; 
while a ≠ b do 

 if a > b then a := a – b else b := b – a 
{a = b = gcd(x, y)} 
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Program Annotations 

•  We can subdivide the task of checking correctness assertions by 
adding intermediate annotations: 
 
  
 
{x ≥ 0} 
z, u := 0, x ; 
{invariant: (z + u · y = x · y) ∧ (u ≥ 0)} 
while u > 0 do 

 z, u := z + y, u – 1 
{z = x · y} 

 

z := 0 
u := x 

u > 0 

z := z + y 
u := u – 1 

(z + u · y = x · y) ∧ 
(u ≥ 0) 

x ≥ 0 

z = x · y 

+ 

– 
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Graphical Rules for Checking Annotations 

•  Splitting control flow: 

•  Joining control flow: 

 
•  Consequence: If  P ⇒ Q then 

B 

P 

P ∧ ¬B P ∧ B 

Q P 

P ∨ Q 

P 

Q 

+ – 



Elements of Programming-12 

Describing Syntax – 1 

•  Let us make things more precise, starting with the syntax of programs. 

•  We give syntax in BNF (Backus-Naur Form, named after John Backus 
and Peter Naur, used first for Algol-60). For example, the BNF rule 
 
  digit  ::=  0 | 1 | 2 | � 3 | 4 | 5 | 6 | 7 | 8 | 9 
 
 defines 'digit' to be any of 0, …, 9: 

–  '::=' is read as 'is defined as', 
–  '|' is read as 'or'. 

 Letters can be defined by: 
 
  letter ::=  a | b | c | d | e | f | g | h | i | j | k | l | m | 

     n | o | p | q | r | s | t | u | v | w | x | y | z | 
    A | B | C | D | E | F | G | H | I | J | K | L | M | 
    N | O | P | Q | R | S | T | U | V | W | X | Y | Z 
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Describing Syntax – 2 

•  Constructs (or nonterminals) like 'digit' and 'letter' can be used for 
defining new constructs: 
 

 letterOrDigit  ::=  letter | digit 
 

•  Definitions may also be recursive. Numbers consisting of a sequence of 
at least one digit are defined by: 
 
  number ::=  digit | digit number 
 
 where 'digit number' is read as 'digit followed by number'. Another 
definition of numbers is: 
 
  number ::= digit | number digit 

Show that '905' is a 
number by drawing the 
corresponding tree. 
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Describing Syntax – 3 

•  Identifiers are defined as a sequence of letter and digits, starting 
with a letter: 
 
  identifier  ::=  letter | identifier letterOrDigit 
 
 Examples of identifiers: 
 
  max  U2  g   q2p9   Brrrr 
 
 Examples of that are not identifiers: 
 
  P.Miller  read-write  3d 

Argue why these 
character sequences 
are identifiers or not. 



Elements of Programming-15 

Syntax of Statements … 

•  We define the statements of our design notation by following rules: 
 
 statement  ::=   identifierList := expressionList 

     |   begin statementSequence end 
     |   if expression then statement 
     |   if expression then statement else statement 
     |   while expression do statement 

 
identifierList  ::=   identifier | identifierList , identifier 
 
expressionList  ::=   expression | expressionList , expression 
 
statementSequence  ::= statement 

         |  statementSequence ; statement 
 

•  Keywords like if and while are underlined to express that they are 
single symbols and not character sequences forming an identifier. 
Hence they are excluded from the set of identifiers. 
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… Syntax of Statements 

•  In assignments identifierList and expressionList must be of equal 
length and all identifiers must be distinct.  
 

•  Note that 'command' or 'instruction' would be a better term than 
'statement' since a 'statement' does not state anything. As it is used 
in Pascal, C, C++, Java, 'statement' has become the common term. 
 

•  Examples of statements: 
–  a, b := 7, 8 
–  begin a := 7 ; begin b := 8 ; c := 9 end end 
–  if a > b then while a > 0 do a := a – 1 else b := 7 

 
•  Examples that are not statements: 

–  a := 3; 
–  if a > b then a := a – b end 
–  if b = 7 then a := 0 ; b := 9 else b := a 
–  begin a := a + b, b := b – 1 end 

Argue why these 
are statements or 
not. 
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Nested Conditionals … 

•  The statement 
 
  if B then if C then S else T 
 
 can be interpreted in two ways: 

 
 
 
 
 
 
 
 
 

 Hence the grammar given by the BNF rules is ambiguous! 

exp 

exp stat stat 

exp 

exp stat 

stat 
stat 

stat 

stat 

stat 

if  B  then  if  C  then  S  else  T if  B  then  if  C  then  S  else  T 



Elements of Programming-18 

… Nested Conditionals 

•  This is known as the dangling else problem and is common to Pascal, C, 
Java, … . 
 

•  It is resolved by taking the left interpretation, i.e. above statement is 
equivalent to: 
 
  if B then begin if C then S else T end 
 

•  It is good programming practice to make this explicit by indentation, 
for example: 
 

 if B then 
  if C then S else T 
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Expressions 

•  Expressions occurring within statements are built from: 
–  constants like 'true', 'false', '0', '1', '2', … 
–  identifiers like 'result', 'i', 'sum' 
–  parenthesis: '(', ')' 
–  unary operators: '–', '¬' 
–  binary operators: 

•  '·', 'div', 'mod', '∧' (multiplicative operators)   bind tighter 
•  '+', '–', '∨' (additive operators) 
•  '=', '≠', '<', '≤', '>', '≥' (relational operators)    bind weaker 

 For now we restrict to integer and boolean expressions within 
statements. 

 
•  Within correctness assertions we allow arbitrary mathematical 

expressions, not necessarily restricted to this form, e.g. 
exponentiation xy, implication a ⇒ b. 
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Syntax of Expressions … 

•  We define the syntax of expressions recursively: 
 
  factor    ::=   number 

       |   false 
       |   true 
       |   identifier 
       |   ( expression ) 
       |   unaryOperator factor 

 
 term     ::=   factor 
       |   term mulOperator factor 

 
 unaryOperator  ::=   – | ¬ 

 
 mulOperator  ::=   · | div | mod | ∧ 

  
 

Is x · y div 2 interpreted as 
–   (x · y) div 2 or 
-   x · (y div 2) ? 
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… Syntax of Expressions 

 simpleExpression  ::=   term 
       |   simpleExpression addOperator term 

 
 addOperator   ::=   + | – | ∨ 
 
expression    ::=   simpleExpression 

       |   simpleExpression relOperator simpleExpression 
 
 relOperator    ::=   = | ≠ | < | ≤ | > �| ≥ 
 
 Examples of terms: 

 99 
 a ∧ false 
 x · y div 2 

 Examples of expressions: 
 ¬(a ∨ b) ∧ (x ≤ y) 
 ab – x mod 3 + 8 · y 

Show how these are 
interpreted by giving the 
corresponding trees. 
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Types 

•  In order to disallow expressions like 'a + true', we assign each 
expression (in statements and in assertions) a unique type. 
 

•  We distinguish basic types and composed types. 
–  Fundamental basic types are integer (Z) and boolean. (To those we 

add real (R), char, …, as needed). 
–  Fundamental composed types are product types and function types. 

 
•  We express that expression E is of type T as E : T, e.g. 

 x : integer 
 (y + 3) : integer 
 x = y : boolean 
 ¬(a ∧ b) : boolean 
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Product and Function Types 

•  If T1, …, Tn are types, then T1 × … × Tn is a product type. For example: 
–  (2, 'm', 'e', 3) : integer × char × char × integer 
–  (3, ('a', true)) : integer × (char × boolean) 

•  If T, U are types, then T → U is a function type. For example: 
–  sin : real → real 
–  power : real × integer → real 
–  + : integer × integer → integer 
–  + : real × real → real 

 Note that 
–  binary operators are just functions written in infix form, i.e. x + y 

stands for +(x, y); 
–  it is common practice to overload functions, e.g. + stands for 

addition of integers or reals or matrices etc. Which one it stands 
for must be inferred from the context; 

–  If f : T → U and a : T then f a : U, also written f(a) : U. For example 
if (a + b) : real then sin(a + b) : real. 
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Checking Types 

•  For any type T, we have 
 
  =  : T × T → boolean 
 

•  Examples: Well-typed expressions: 
 a ∧ b = (x > y)  provided a, b : boolean and x, y : integer 
 a mod b div c  provided a, b, c : integer 

 Syntactically correct but not well-typed expressions: 
 true = 1 
 a = 0 ∧ b 

•  Remark: if we would have only integer and boolean, we could change the 
syntax to allow only well-typed expressions. However, as soon as we 
allow composed types (like arrays of arrays of records) we can no 
longer express correct typing in BNF. Both syntax and typing is 
checked by compilers, though all modern programming languages define 
syntax only in BNF and typing separately. 

Show this! 
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The Type integer 

•  The types of the operators are: 
–  Unary:  +, – : integer → integer 
–  Binary:  +, –, ·, div, mod : integer × integer → integer 

•  The integer quotient x div y (also written x ÷ y) and the remainder of 
the division x mod y are defined by, provided y ≠ 0: 
 

 x div y = q  and  x mod y = r 
 
where 
 

 x = q · y + r  and  0 ≤ r < y 
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The Type boolean 

•  The types of the basic operators are: 
–  Constants:   true, false : boolean 
–  Negation:   ¬ : boolean → boolean      "not" 
–  Conjunction:  ∧ : boolean × boolean → boolean   "and" 
–  Disjunction:  ∨ : boolean × boolean → boolean   "or" 
–  Implication:  ⇒ : boolean × boolean → boolean   "implies" 
–  Consequence:  ⇐ : boolean × boolean → boolean   "follows from" 

•  Boolean expressions are also called predicates or conditions. 

•  We let ⇒ and ⇐ bind as strong as = and other relational operators, e.g. 
 

 p ∧ q ⇒ p ∨ q   is read as    (p ∧ q) ⇒ (p ∨ q) 
 

•  Boolean operators are often defined by truth tables. Rather than 
doing so, we define them algebraically.    
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Boolean Algebra 

•  Predicates form a boolean algebra. Let p, q, r be predicates:  
 

p ∧ true = p       p ∨ false = p       (unit) 
p ∧ q = q ∧ p       p ∨ q = q ∨ p  ���������     (symmetric) 
(p ∧ q) ∧ r = p ∧ (q ∧ r)    (p ∨ q) ∨ r = p ∨ (q ∨ r)    (associative) 

 
p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)  p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)  (distributive) 

 
p ∧ ¬p = false      p ∨ ¬p = true      (complement) 
 
•  To keep the symmetry, we write (p ∧ q) ∨ (p ∧ r) instead of p ∧ q ∨ p ∧ r. 

•  (Note that in general a structure (S, ⊔, ⊓, ‾, ⊤, ⊥) is called a boolean 
algebra if (S, ⊔, ⊥) and (S, ⊓, ⊤) are commutative monoids, ⊔ and ⊓ 
distribute over each other, and x ̅ is the complement of x.) 
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Theorems of Boolean Algebra 

•  We use following theorems for simplifying predicates: 
 
 p ∧ p = p       p ∨ p = p         (idempotent) 
 p ∧ false = false    p ∨ true = true     (zero) 
 p ∧ (p ∨ q) = p     p ∨ (p ∧ q) = p     (absorption) 
 ¬(p ∧ q) = ¬p ∨ ¬q    ¬(p ∨ q) = ¬p ∧ ¬q    (De Morgan) 
 ¬¬p = p              (involution) 
 

•  These theorems follow from the previous axioms, for example: 
 

 p ∧ p            p ∧ (p ∨ ¬p) 
=   «false unit of ∨»      =   «complement» 

 (p ∧ p) ∨ false         p ∧ true 
=   «complement»       =   «true unit of ∧»    

 (p ∧ p) ∨ (p ∧ ¬p)        p 
=   «∧ distributes over ∨» 

 …  continued  



Elements of Programming-29 

Ordering of Predicates … 

•  Implication and consequence are defined by (we use spacing instead of 
parenthesis to state precedence): 
 
  p ⇒ q   =   ¬p ∨ q    q ⇐ p   =   p ⇒ q 
 

•  Implication is a partial order on predicates: 
 
  p ⇒ p              (⇒ reflexive) 
  if  p ⇒ q  and  q ⇒ r  then  p ⇒ r       (⇒ transitive) 
  if  p ⇒ q  and  q ⇒ p  then  p = q        (⇒ antisymmetric) 
 

•  The ordering has a least and greatest element: 
 

 false ⇒ p            (false smallest) 
  p ⇒ true             (true greatest)   
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… Ordering of Predicates 

•  Conjunction gives the greatest lower bound: 
 

 p ∧ q ⇒ p          (weakening / strengthening) 
  if  r ⇒ p  and  r ⇒ q  then  r ⇒ p ∧ q 
 
Dually, disjunction gives the least upper bound: 
 

 p ⇒ p ∨ q          (weakening / strengthening) 
  if  p ⇒ r  and  q ⇒ r  then  p ∨ q ⇒ r 
 

•  Conjunction and disjunction are monotonic, negation is antimonotonic: 
 

 if  p ⇒ q  then  p ∧ r ⇒ q ∧ r      (∧ monotonic) 
  if  p ⇒ q  then  p ∨ r ⇒ q ∨ r      (∨ monotonic) 
  if  p ⇒ q  then  ¬q  ⇒  ¬p        (¬ antimonotonic) 
 

•  We read 'p ⇒ q' also as 'p less than q' or 'p is stronger than q' or 'q is 
weaker than p'. 
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Substitution 

•  Let E, R be expressions and x a variable. Then the substitution 
 

 E [x \ R]   or   Ex
R 

 
stand for expression E with all occurrences of x replaced by R (or with 
(R) if necessary). 

•  Examples: 
–  (x + y) [x \ z]   =  z + y 
–  (x + y) [z \ 5]   =  x + y 
–  (x + y) [x \ x + 1]  =  x + 1 + y 
–  (x + x) [x \ 7]   =  7 + 7 
–  (x · y) [x \ x + 1]  =  (x + 1) · y 

•  Note that E [x \ R] is also written as E [x := R]. 
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Multiple Substitutions 

•  Substitutions can be generalized to multiple substitutions: 
 

 E [x, y \ R, S]   or   Ex,y
R,S 

 
stands for expression E with all occurrences of x and y simultaneously 
replaced by R and S, respectively. 

•  Examples: 
–  (x + y) [x, y \ z, 5]   =  z + 5 
–  (x + y) [x, y \ y, x]   =  y + x 

Compare the following: 
-   (x + y) [x, z \ z, 5] 
-   ((x + y) [x \ z]) [z \ 5] 
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Equality and Proofs … 

•  Equality is reflexive, transitive, and symmetric: 
 
  E = E              (= reflexive) 
  if  E = F  and  F = G  then  E = G        (= transitive) 
  if  E = F  then  F = E         (= symmetric) 
 
 For example, in the proof on slide 28 transitivity was used silently. 
 

•  Equals can be replaced by equals: 
 

 if  E = F  then  G [x \ E] = G [x \ F]      (Leibniz) 
 

•  Stating (or proving) that E is equal to true means stating E: 
 

 (E = true) = E 
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… Equality and Proofs 

•  For example, we prove the transitivity of implication, 

  if  p ⇒ q  and  q ⇒ r  then  p ⇒ r 

 by first calculating: 
 true 

=   «= reflexive» 
 p ∨ r = p ∨ r 

=   «q ∨ r = r from hypothesis q ⇒ r by definition of ⇒, Leibniz» 
 p ∨ r = p ∨ (q ∨ r) 

=   «∨ associative» 
 p ∨ r = (p ∨ q) ∨ r 

=   «p ∨ q = q from hypothesis p ⇒ q by definition of ⇒, Leibniz» 
 p ∨ r = q ∨ r 

=   «q ∨ r = r from hypothesis q ⇒ r by definition of ⇒, Leibniz» 
 p ∨ r = r 

=   «definition of ⇒» 
 p ⇒ r 

 This shows (p ⇒ r) = true, from which we conclude p ⇒ r .  
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Weakest Preconditions 

•  All of the following correctness assertions hold: 
 {x ≥ 4}   x := x + 1  {x ≥ 3} 
 {x ≥ 3}   x := x + 1  {x ≥ 3} 
 {x ≥ 2}   x := x + 1  {x ≥ 3} 

 However, among those the last one is the strongest claim: x ≥ 2 is the 
weakest precondition for x := x + 1 to establish x ≥ 3. 

•  The weakest precondition such that statement S establishes 
postcondition R is written as: 
 

 wp(S, R) 
 
For example: 
 

 (x ≥ 2)  =  wp(x := x + 1, x ≥ 3) 
 
As we are only interested in the input-output behavior of statements, 
we can define them completely through wp. 
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Definition of Assignment 

•  wp(x := E, P)    =  P [x \ E] 
wp(x, y := E, F, P)  =  P [x, y \ E, F] 
 

•  Examples: 
  wp(y := x + 2, y = x + 2) 
=   «wp of assignment» 

 (y = x + 2) [y \ x + 2] 
=   «substitution» 

 x + 2 = x + 2 
=   «logic (as E = E and E = (E = true) for any E)» 

 true 
 
  wp(x := x + y, x > y) 
=   «wp of assignment» 

 (x > y) [x \ x + y] 
=   «substitution» 

 x + y > y 
=   «arithmetic» 

 x > 0 
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Definition of Sequential Composition and Compound Statement 

•  wp(S ; T, R)    =  wp(S, wp(T, R)) 
wp(begin S end, R)  =  wp(S, R)  
 

•  Example: 
  wp(y := y – z ; y := y · y, y < 4) 
=   «wp of sequential composition» 

 wp(y := y – z, wp(y := y · y, y < 4)) 
=   «wp of assignment, substitution» 

 wp(y := y – z, y · y < 4) 
=   «wp of assignment, substitution» 

 (y – z) · (y – z) < 4 
=   «arithmetic» 

 –2 < y – z < 2 
 
Note that E < F < G stands for (E < F) ∧ (F < G). 
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Definition of Conditionals 

•  wp(if B then S, R)    =  (B ⇒ wp(S, R)) ∧ (¬B ⇒ R) 
wp(if B then S else T, R)  =  (B ⇒ wp(S, R)) ∧ (¬B ⇒ wp(T, R)) 
 

•  Example: 
 

 wp(if x < 0 then x := – x, x ≥ 0) 
=   «wp of if-then» 

 ((x < 0) ∧ wp(x := – x, x ≥ 0)) ∨ (¬(x < 0) ∧ (x ≥ 0)) 
=   «wp of assignment, arithmetic» 

 ((x < 0) ∧ (x ≥ 0) [x \ – x]) ∨ (x ≥ 0) 
=   «substitution» 

 ((x < 0) ∧ (– x ≥ 0)) ∨ (x ≥ 0) 
=   «arithmetic ((-x ≥ 0) = (x ≤ 0) = (x < 0) ∨ (x = 0))» 

 (x < 0) ∨ (x ≥ 0) 
=   «arithmetic» 

 true 
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Correctness Assertions and Weakest Preconditions 

•  Stating that S is correct with respect to precondition P and 
postcondition Q means that P is stronger than the weakest 
precondition for S to establish Q: 
 

 {P} S {Q}   =   P ⇒ wp(S, Q) 
 

•  For example, we show that {x ≥ 3} x := x + 1 {x ≥ 3} by: 
 

 wp(x := x + 1, x ≥ 3) 
=   «wp of assignment» 

 (x ≥ 3) [x \ x + 1] 
=   «substitution» 

 x + 1 ≥ 3 
=   «arithmetic» 

 x ≥ 2 
⇐   «arithmetic» 

 x ≥ 3 
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Implication and Proofs 

•  Because implication is transitive, from the proof 
 

 P 
⇒   «justification» 

 Q 
⇒   «justification» 

 R 
 
we can conclude P ⇒ R. We allow also combination with =, as in: 
 

 P 
=   «justification» 

 Q 
⇒   «justification» 

 R 
 
We can conclude P ⇒ R because of the theorem: 
 

 if  E = F  then  E ⇒ F 
 

•  This scheme can be applied to any partial order like ≤ on numbers or ⊆ 
on sets. 
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Monotonicity of wp 

•  A stronger (weaker) postcondition leads to a stronger (weaker) 
precondition: 
 

 if  P ⇒ Q  then  wp(S, P) ⇒ wp(S, Q) 
 
(This theorem can be proved by induction over the structure of 
statements.) 
 

•  Example: 
 

 wp(S, x > 5) ⇒ wp(S, x > 3) 
 

•  Consequences: 
 

 if  P ⇒ wp(S, Q)  and  Q ⇒ R  then  P ⇒ wp(S, R) 
  if  P ⇒ wp(S, Q)  and  Q ⇒ wp(T, R)  then  P ⇒  wp(S ; T, R) 

Reformulate the 
consequences 
with correctness 
assertions! 
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Conjunctivity of wp 

•  If we show that a statement establishes two postconditions, it also 
establishes their conjunction: 
 

 wp(S, P) ∧ wp(S, Q)   =   wp(S, P ∧ Q) 
 

•  Example: 
 wp(x := 2 · x, (x ≥ 0) ∧ even(x)) 

=   «conjunctivity of wp» 
 wp(x := 2 · x, x ≥ 0) ∧ wp(x := 2 · x, even(x)) 

=   «wp of assignment, substitution» 
 (2 · x ≥ 0) ∧ even(2 · x) 

=   «arithmetic» 
 x ≥ 0 

 
•  Consequence: 

 
 if  P ⇒ wp(S, Q)  and  P ⇒ wp(S, R)  then  P ⇒ wp(S, Q ∧ R)  
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Rule for Repetition 

•  Rather than giving the exact weakest precondition, we give the 
main theorem about repetitions. Let 
–  P be a predicate, the invariant; 
–  T be an integer expression, the bound (or variant); 
–  v be an auxiliary integer variable. 

 If 
 
  B ∧ P      ⇒   wp(S, P)     (P is invariant of S) 
  B ∧ P ∧ (T = v)  ⇒   wp(S, T < v)    (S decreases T) 
  B ∧ P     ⇒   T > 0      (T ≤ 0 causes termination) 
 
then 
 

 P   ⇒   wp(while B do S, P ∧ ¬B) 
 
(The proof of this theorem requires a definition of loops that is 
outside of the scope of this course.) 
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Integer Multiplication … 

•  Suppose we want to multiply x and y without using multiplication: 
 

 {x ≥ 0} 
 z, u := 0, x ; 
 while u > 0 do 
  z, u := z + y, u – 1 
 {z = x · y} 

 
Defining P = (z + u · y = x · y) ∧ (u ≥ 0), we split this in two parts, 
 
  x ≥ 0  ⇒   wp(z, u := 0, x, P) 
  P   ⇒   wp(while u > 0 do …, z = x · y) 
  
from which we conclude: 
 
  x ≥ 0   ⇒   wp(z, u := 0, x ; while u > 0 do …, z = x · y) 

- Why can we conclude this? 
- Prove the first part! 
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… Integer Multiplication 

•  We now prove the second part using P as invariant and u as bound. As 
 

 (u > 0) ∧ P       ⇒   wp(z, u := z + y, u – 1, P) 
 (u > 0) ∧ P ∧ (u = v)   ⇒   wp(z, u := z + y, u – 1, u < v) 
 (u > 0) ∧ P     ⇒   u > 0 
 

 we can conclude by the repetition rule 
 
  P   ⇒   wp(while u > 0 do z, u := z + y, u – 1, P ∧ ¬(u > 0)) 
 
from which we finally conclude (as u ≥ 0 and u ≤ 0 implies u = 0): 
 

 P   ⇒   wp(while u > 0 do z, u := z + y, u – 1, z = x · y) 

Prove these! 
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Documenting Loops 

•  The invariant and bound are the essential design decisions for a loop. 
We keep them as annotations in the program: 
 

 {x ≥ 0} 
 z, u := 0, x ; 
 {invariant: (z + u · y = x · y) ∧ (u ≥ 0)} 
 {bound: u} 
 while u > 0 do 
  z, u := z + y, u – 1 
 {z = x · y} 

 
•  Note that there is the danger of over-documenting programs with 

annotations, but invariants, bounds, and essential pre- and 
postconditions should always be given. 
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Integer Division and Remainder 

•  The following program calculates for two integers x and y the quotient 
x div y and the remainder x mod y: 

  {(x ≥ 0) ∧ (y > 0)} 
 q, r := 0, x ; 
 {invariant: (x = q · y + r) ∧ (r ≥ 0) ∧ (y > 0)} 
 {bound: r} 
 while r ≥ y do 
  q, r := q + 1, r – y 
 {(q = x div y) ∧ (r = x mod y)} 

Show that the 
program is correct 
with respect to 
this annotation! 
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Euclids Algorithm 

•  The following program calculates for two integers x and y their 
greatest common divisor gcd(x, y). 

  {(x > 0) ∧ (y > 0)} 
 a, b := x, y ; 
 {invariant: (gcd(a, b) = gcd(x, y)) ∧ (a > 0) ∧ (b > 0)} 
 {bound: a + b} 
 while a ≠ b do 
  if a > b then a := a – b else b := b – a 
 {a = gcd(x, y)} 

 
•   We have following theorems about gcd: 

 
 gcd(x, y) = gcd(x – y, y) 
 gcd(x, y) = gcd(y, x) 
 gcd(x, x) = x 
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Arrays … 

•  Arrays are like sequences, except that an array variable cannot change 
its length. We write the type of an array as 
 

 array N of T 
 
for constant N and selecting an array element by a(E) (or a[E]). The 
alter function (a ; E : F) modifies a(E) to be F. 
 

•  For example, if a : array 4 of integer and a = 〈9, 3, 6, 7〉, then: 
 

 a(0)   =  9      (a ; 1 : 11)    =  〈9, 11, 6, 7〉 
 a(2)   =  6      ((a ; 0 : 3) ; 1 : 8)  =  〈3, 8, 6, 7〉 
 (a ; 0 : 8)  =  〈8, 3, 6, 7〉   ((a ; 3 : 9) ; 3 : 8)  =  〈9, 3, 6, 8〉 
  

•  Formally, the alter function (a; E: F) is defined recursively by: 
 

 if   E = G   then   (a ; E : F)(G) = F 
 if   E ≠ G   then   (a ; E : F)(G) = a(G) 
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… Arrays 

•  We extend the syntax of expressions accordingly: 
 

 factor    ::=   … 
       |   identifier ( expression ) 

 
•  We allow assignments to array elements: 

 
 statement   ::=   … 
       |   identifier ( expression ) := expression 

 
•  The array assignment is defined as assigning the whole array, with one 

element modified: 
 

 wp(a(E) := F, P)  =  P [a \ (a ; E : F)] 
 
For example: 
 

 {i ≠ j}   a(i) := 5 ; a(j) := 7   {(a(i) = 5) ∧ (a(j) = 7)}   
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Sum of Array Elements 

•  Let a: array N of integer (with N ≥ 0): 
 

 {true} 
 s, n := 0, 0 ;  
 while n < N do 
  s, n := s + a(n), n + 1 
 {s = (∑ i | 0 ≤ i < N • a(i))} 

Give invariant 
and bound! 
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Vector Addition 

•  Let a, b, c : array N of integer represent three vectors: 
 
  {N ≥ 0} 

 n := 0 ; 
 {invariant: (∀ i | 0 ≤ i < n • c(i) = a(i) + b(i)) ∧ (0 ≤ n ≤ N)} 
 {bound: N – n} 
 while n < N do 
  begin c(n) := a(n) + b(n) ; n := n + 1 end 
 {(∀ i | 0 ≤ i < N • c(i) = a(i) + b(i))} 

 
Note that the postcondition can be more briefly written as: 
 

 c = a + b 



Elements of Programming-53 

Multi-Dimensional Arrays 

•  For multi-dimensional arrays we use: 
 

 array M, N of T     for  array M of array N of T 
 a(E, F)      for  a(E)(F) 

•  The array assignment is defined as assigning the whole array, with one 
element modified: 
 

 wp(a(E, F) := G, P)  =  P [a \ (a ; E : (a(E) ; F : G))] 
 
For example: 
 

 {true}   a(i, j) := a(j, i)   {a(i, j) = a(j, i)} 
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Matrix Multiplication … 

•  Write a program which multiplies l × m matrix A with m × n matrix B and 
assigns the result to l × n matrix C such that in the final state: 
 

 C(i, k)  =  (∑ j | 0 ≤ j < m • A(i, j) · B(j, k)) 
 
for all 0 ≤ i < l and 0 ≤ k < n, or more briefly: 
 

 C = A · B 
 
This requires three nested loops: 

 {true} 
p := 0 ; 
{invariant P: 

 (∀ i, k | (0 ≤ i < p) ∧ (0 ≤ k < n) • C(i, k) = (∑ j | 0 ≤ j < m • A(i, j) · B(j, k))) ∧ 
 (0 ≤ p ≤ l)} 

{bound: l – p} 
… 
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… Matrix Multiplication 

 while p < l do 
 begin q := 0 ; 
  {invariant Q: 
   P ∧ (∀ k | 0 ≤ k < q • C(p, k) = (∑ j | 0 ≤ j < m • A(p, j) · B(j, k))) ∧ 
   (0 ≤ q ≤ n)} 
  {bound: n – q} 
  while q < n do 
   begin r := 0 ; C(p, q) := 0 ; 
    {invariant R: 
     Q ∧ (C(p, q) = (∑ j | 0 ≤ j < r • A(p, j) · B(j, q))) ∧ 
     (0 ≤ r ≤ m)} 
    {bound: m – r} 
    while r < m do 
     begin C(p, q) := C(p, q) + A(p, r) · B(r, q) ; r := r + 1 end ; 
    q := q + 1 
   end ; 
  p := p + 1 
 end 

{(∀ i, k | (0 ≤ i < l) ∧ (0 ≤ k < n) • C(i, k) = (∑ j | 0 ≤ j < m • A(i, j) · B(j, k)))} 
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Quantification 

•  Traditional Notation: 
 

  

•  We write quantifiers uniformly in linear form 
 

 ∑ i | 0 ≤ i • (1/2)i     =  (1/2)0 + (1/2)1 + … 
 ∏ i | 1 ≤ i ≤ 9 • i2     =  12 · 22 · … · 92  
 ∀ i | i > 0 • 1 / i > 0     =  (1 / 1 > 0) ∧ (1 / 2 > 0) ∧ …  
 ∃ i | 0 < i ≤ 3 • even(i)    =  even(1) ∨ even(2) ∨ even(3) 
 MAX k | 0 ≤ k < N • a(k)   =  a(0) max a(1) max … max a(N–1) 

   
•  Every quantification is based on an operator, like +, ·, ∧, ∨. Thus: 

 
 ∑ x | R • P  stands for  + x | R • P  
 ∏ x | R • P  stands for  · x | R • P  
 ∀ x | R • P  stands for  ∧ x | R • P   universal quantification 
 ∃ x | R • P  stands for  ∨ x | R • P   existential quantification 

(1 / 2)i
i=0

∞

∑
  

i2
i=0

9
∏
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Syntax of Quantification 

•  General form of quantification is  * x : T | P • E where: 
–   * is a symmetric, associative operator with identity. 
–  x is the bound variable of the quantification; there may be several 

bound variables. 
–  T is the type of the bound variable; if it is understood from the 

context, it is usually omitted. 
–  P a predicate, the range of the quantification. 
–  E is an expression, the body of the quantification. 

 
•  For predicates, the range is optional as: 

 
 (∀ x | P • Q)   =  (∀ x • P ⇒ Q)        (trading) 
 (∃ x | P • Q)   =  (∃ x • P ∧ Q) 
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Quantification – 1 

•  If u is identity of * (u * x = x) then 
 (* x | false • E) =  u          (empty range) 

 
•  If x does not occur in F then 

 (* x | x = F • E)  = E [x \ F]        (one-point rule) 
 

•  (* x | P • E) * (* x | P • F) =  (* x | P • E * F)    (distributivity) 
 

•  Examples: 
 

 (∑ i | false • 2i)  =  0 
 (∃ i | i = 3 • even(i))  =  even(3) 
 (MAX i | 1 ≤ i ≤ 9 • a(i)) max (MAX i | 1 ≤ i ≤ 9 • b(i))  = 
  (MAX i | 1 ≤ i ≤ 9 • a(i) max b(i)) 

 
•  (Distributivity holds for sums and products only if they are defined.) 
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Quantification – 2 

•  If (P ∧ Q) = false (P and Q are not "overlapping") then 
 (* x | P ∨ Q • E) = (* x | P • E) * (* x  | Q • E)     (range split) 

 
•  If * is idempotent (b * b = b) then 

 (* x | P ∨ Q • E) = (* x | P • E) * (* x  | Q • E)     (range split) 
 

•  If  y does not occur in P then 
 (* x, y | P ∧ Q • E) = (* x | P • (* y | Q • E))     (nesting) 

 
•  If y does not occur in P and E then 

 (* x | P • E) = (* y | P [x \ y] • E [x \ y])      (renaming) 
 

•  Examples: 
 (∑ i | 1 ≤ i ≤ 9 • i2) = (∑ j | 1 ≤ j ≤ 9 • j 2) 
 (∏ i | 0 ≤ i ≤ N • b(i)) = b(0) · (∏ i | 1 ≤ i ≤ N • b(i)) 
 (∑ i, j | (1 ≤ i ≤ 9) ∧ (1 ≤ j ≤ 9) • a(i,j)) 
  = (∑ i | 1 ≤ i ≤ 9 • (∑ j | 1 ≤ j ≤ 9 • a(i,j))) 
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Quantification and Substitution 

•  In the expression (∑ i | 1 ≤ i ≤ 9 • ij) + i · j 
–  the occurrences of i in 1 ≤ i ≤ 9 and in ij are bound, 
–  the occurrence of i in i · j is free 
–  the occurrences of j in ij and i · j are free. 

 We say that variable x occurs in E if there is a free occurrence. 

•  If y does not occur in F (and is different from x) then 
 (* y | P • E) [x \ F] = (* y | P [x \ F] • E  [x \ F])   (substitution)
  

•  Care has to be taken that a free variable cannot become bound by a 
substitution. For example: 
 

 (∑ b | 1 ≤ b ≤ 9 • ab) [a \ b] 
=   «renaming» 

 (∑ c | 1 ≤ c ≤ 9 • ac) [a \ b] 
=   «substitution» 

 (∑ c | 1 ≤ c ≤ 9 • bc) 



Elements of Programming-61 

Universal and Existential Quantification … 

•  More specific laws than the previous ones can be given for universal and 
existential quantification: 

•  If x does not occur in P then 
 P ∨ (∀ x • Q) = (∀ x • P ∨ Q)         (distributivity) 
 P ∧ (∃ x • Q)  = (∃ x • P ∧ Q) 

 
•  If  P ⇒ Q then 

 (∀ x • P) ⇒ (∀ x • Q)           (monotonicity) 
 (∃ x • P) ⇒ (∃ x • Q) 

 
•  (∀ x • P) ⇒ P [x \ E]            (instantiation) 

 
•  P [x \ E] ⇒ (∃ x • P)             (witness) 

 
•  (∃ x • P)  =  ¬(∀ x • ¬P)           (De Morgan) 

(∀ x • P)  =  ¬(∃ x • ¬P) 
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… Universal and Existential Quantification 

•  (∃ x • (∀ y • P)) ⇒ (∀ y • (∃ x • P))        (interchange) 
 

•  Example (from Slide 64, very detailed): Assume n does not occur in b(i) 
 

 (∀ i: integer | 0 ≤ i < n • ¬b(i)) [n \ n + 1] 
=   «substitution, assumption» 

 (∀ i: integer | 0 ≤ i < n + 1 • ¬b(i)) 
=   «arithmetic» 

 (∀ i: integer | (0 ≤ i < n) ∨ (i = n) • ¬b(i)) 
=   «range split»  

 (∀ i: integer | 0 ≤ i < n • ¬b(i)) ∧ (∀ i: integer | i = n • ¬b(i)) 
=   «one-point rule»  

 (∀ i: integer | 0 ≤ i < n • ¬b(i)) ∧ (¬b(i)) [ i \ n] 
=   «substitution»   

 (∀ i: integer | 0 ≤ i < n • ¬b(i)) ∧ ¬b(n) 
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Implicit Universal Quantification 

•  Free variables in a theorem are implicitly universally quantified. For 
example, stating 
 

 a + b = b + a 
  (x > 0) ⇒ wp(x := x – 1, x ≥ 0) 
 
is the same as stating: 
 

 ∀ a: integer, b: integer • a + b = b + a 
  ∀ x: integer • (x > 0) ⇒ wp(x := x – 1, x ≥ 0) 

•  Formally,  P is a theorem if and only if ∀ x: T • P is a theorem. 
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Linear Search 

•  Linear search is one of the most fundamental algorithms. We first 
formulate it abstractly. Let b: integer → boolean: 
 

 {N ≥ 0} 
 n := 0 ; 
 while (n < N) ∧ ¬b(n) do 
  n := n + 1 
 {(0 ≤ n ≤ N) ∧ (∀ i | 0 ≤ i < n • ¬b(i)) ∧ ((n < N) ⇒ b(n))} 

 
We can specialize this with say b(i) = (a(i) = key), where a: array N of T: 
 

 {N ≥ 0} 
 n := 0 ; 
 while (n < N) ∧ (a(n) ≠ key) do 
  n := n + 1 
 {(0 ≤ n ≤ N) ∧ (∀ i | 0 ≤ i < n • a(i) ≠ key) ∧ ((n < N) ⇒ (a(n) = key))} 

Can the condition be written as: 
(a(n) ≠ key) ∧ (n < N) ? 
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Partially Defined Expressions 

•  While mathematically every well-typed expression has a value, trying 
to evaluate certain expressions in a program is an error. For example, 
 

 x div y = x div y 
 
is true in mathematics (a consequence of = reflexive). However, 
 

 if x div y = x div y then x := 5 
 
is not the same as 
 

 if true then x := 5 
 
as the first may fail if y = 0 while the second will always terminate. 
 

•  We have to distinguish expressions by their definedness domain: 
 x div y = x div y   is defined only if y ≠ 0 
 true      is always defined 

Hence they are not "equal"! 
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Definedness Domain 

•  We let ∆ E be the definedness domain of expression E: 
 

 ∆ c    =  true      where c is true, false, 0, 1, … 
 ∆ x    =  true      where x is a variable 
 ∆ a(E)   =  ∆ E ∧ (0 ≤ E < N)    where a : array N of T 
 ∆ - E    =  ∆ E 
 ∆ ¬ E    =  ∆ E 
 ∆ (E · F)   =  ∆ E ∧ ∆ F 
 ∆ (E div F)  =  ∆ E ∧ ∆ F ∧ (F ≠ 0) 
 ∆ (E mod F)  =  ∆ E ∧ ∆ F ∧ (F ≠ 0) 
 ∆ (E + F)   =  ∆ E ∧ ∆ F 
 ∆ (E – F)   =  ∆ E ∧ ∆ F 
 ∆ (E = F)   =  ∆ E ∧ ∆ F 
 … 

(All other operators except ∧ and ∨ are like =) Determine 
∆ (a div (b – 2) ≥ 7) ! 
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Definedness of ∧ and ∨ 

•  Continuing mathematical practice, we have that 
 

 (x = 0) ∨ (x div x = 1) 
 
is always true; if one part of a disjunction is true, the whole 
disjunction is true, even if the other parts are undefined. 
 

•  If one part of a conjunction is false, the whole conjunction is false, 
even if other parts are undefined. Hence: 
 

 ∆(false ∧ P)  =  true    ∆(false ∨ P)  =  ∆P 
 ∆(P ∧ false)  =  true    ∆(P ∨ false)  =  ∆P 
 ∆(true ∧ P)  =  ∆P    ∆(true ∨ P)  =  true 
 ∆(P ∧ true)  =  ∆P    ∆(P ∨ true)  =  true 

 
•  Thus, even in the presence of undefinedness, we continue to have: 

 
 false ∧ P  =  false     true ∨ P  =  true 
 P ∧ false  =  false     P ∨ true  =  true 
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Equality and Undefinedness 

•  In presence of undefinedness, we lose E = E. However, we have 
following weakened reflexivity: 
 

 if  ∆E  then  E = E          (= weak reflexive) 
 

•  Above equality is known as weak equality. If needed, we can use a 
strong equality E ≡ F for which 
 

 E ≡ E              (≡ reflexive) 
 
always holds. Compared to ∆ (E = F) = ∆ E ∧ ∆ F we then have: 
 

 ∆ (E ≡ F) = true 
 
For example, we have: 
 

 x div y  ≡  x div y 
 
(We do not go further into the laws of strong equality.) 
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Conditional Boolean Operators …  

•  Conjunction (∧) and disjunction (∨) are symmetric. However, they cannot 
be implemented directly. Instead we have to use asymmetric ones that 
evaluate the second operand only if needed: 
 
–  Conditional conjunction:  and : boolean × boolean → boolean 

                "conditional and" 
–  Conditional disjunction:  or : boolean × boolean → boolean 

                "conditional or" 
  
These are sometimes written 'cand' and 'cor' or sometimes 'and then' 
and 'or else'. 
 

•  We extend the syntax of expressions accordingly: 
 

 mulOperator  ::=   … | and 
 

 addOperator  ::=   … | or 
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… Conditional Boolean Operators 

•  Conditional and evaluates the second operand only if the first one is 
true; conditional or evaluates the second operand only if the first one 
is false, hence: 
 

 ∆ (P and Q)  =  ∆ P ∧ (P ⇒ ∆ Q) 
 ∆ (P or Q)  =  ∆ P ∧ (P ∨ ∆ Q) 

 
•  Provided that the first operand is defined, the conditional operators 

are equivalent to the standard ones: 
  

 ∆P  ⇒  (P and Q  =  P ∧ Q) 
 ∆P  ⇒  (P or Q  =  P ∨ Q) 

 
•  Example: If a : array N of T 

 
 ∆ ((n < N) and (a(n) ≠ key)) = ((n < N) ⇒ (n ≥ 0)) 

 

What is ∆ ((a(n) ≠ key) and (n < N))? 
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Statements with Partial Expressions 

•  Extended definition of assignment (assuming a : array N of T): 
 

 wp(x := E, P)    =  ∆ E ∧ P [x \ E] 
 wp(a(E) := F, P)   =  ∆ E ∧ ∆ F ∧ (0 ≤ E < N) ∧ P [a \ (a ; E : F)]  

 
•  Extended definition of conditional: 

 
 wp(if B then S, R)    =  ∆ B ∧ (B ⇒ wp(S, R)) ∧ (¬B ⇒ R) 
 wp(if B then S else T, R)  =  ∆ B ∧ (B ⇒ wp(S, R)) ∧ (¬B ⇒ wp(T, R)) 

 
•  Extended rule for repetition: If 

 
 B ∧ P      ⇒   wp(S, P)      (P is invariant of S) 
 B ∧ P ∧ (T = v)  ⇒   wp(S, T < v)     (S decreases T) 
 B ∧ P     ⇒   T > 0       (T ≤ 0 causes termination) 
 P      ⇒   ∆ B       (B is always defined) 

 
then 
 

 P   ⇒   wp(while B do S, P ∧ ¬B) 

What is wp(x, y := E, F, P)? 
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Linear Search Revisited 

•  Let a : array N of T. With the extended rules we have: 
 

 {N ≥ 0} 
 n := 0 ; 
 {invariant: (∀ i | 0 ≤ i < n • a(i) ≠ key) ∧ (0 ≤ n ≤ N)} 
 {bound: N – n} 
 while (n < N) and (a(n) ≠ key) do 
  n := n + 1 
 {(0 ≤ n ≤ N) ∧ (∀ i | 0 ≤ i < n • a(i) ≠ key) ∧ ((n < N) ⇒ (a(n) = key))} 

 
•  (If we replace and by ∧, the program is still correct with the extended 

rules; we can always replace and by ∧, but not the other way.) 
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Strict Boolean Operators …  

•  Programming languages offer operators that always evaluate both 
operands. Like ∧ and ∨, these are symmetric: 
 
–  Strict conjunction:  & : boolean × boolean → boolean  "strict and" 
–  Strict disjunction:   | : boolean × boolean → boolean  "strict or" 

  
We extend the syntax of expressions accordingly: 
 

 mulOperator  ::=   … | "&" 
 

 addOperator  ::=   … | "|" 
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… Strict Boolean Operators 

•  Strict boolean operators require both operands to be defined (like all 
arithmetic operators): 
 

 ∆ (P & Q) =  ∆ P ∧ ∆ Q 
 ∆ (P | Q)  =  ∆ P ∧ ∆ Q 

 
•  Provided that both operands are defined, the strict operators are 

equivalent to the standard ones: 
  

 ∆ P ∧ ∆ Q  ⇒  (P & Q  =  P ∧ Q) 
 ∆ P ∧ ∆ Q  ⇒  (P | Q  =  P ∨ Q) 

 
•  Example: If we write the loop of the linear search as 

 
 while (n < N) & (a(n) ≠ key) do 
  n := n + 1 

 
the program is not correct w.r.t. the given pre- and postcondition. 

What is ∆ ((n < N) & (a(n) ≠ key))? 
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Boolean Operator in Programming Languages 

•  Historically, Pascal defines and and or strict (as & and |) so that 
compilers could use the symmetry for optimizations. Nowadays, most 
compilers implement and and or conditionally. 

•  Java and C define & and | strict and && and || conditionally (as and and 
or). 

•  Eiffel and Ada define and and or strict (as & and |)  and and then and 
or else conditionally (as and and or). 

•  Modula-2 defines AND and OR conditionally (as and and or). 

•  No language implements mathematical ∧ and ∨. Strictly speaking their 
use is not allowed in concrete programs even though we will continue to 
do so, with the understanding that they can be appropriately replaced 
by and and or. 
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Coping with Machine Limitations 

•  Previous definition of ∆ assumed unbounded arithmetic. As integers 
are typically limited to the word size of the machine or a small multiple 
thereof, we consider instead: 
 

 ∆ (E + F)  =  ∆ E ∧ ∆ F ∧ (MININT ≤ E + F ≤ MAXINT) 
 ∆ (E – F)  =  ∆ E ∧ ∆ F ∧ (MININT ≤ E – F ≤ MAXINT) 
 ∆ (E · F)  =  ∆ E ∧ ∆ F ∧ (MININT ≤ E · F ≤ MAXINT) 

 
where MININT and MAXINT are the smallest and largest 
representable integer, respectively. 
 

•  However, while division by zero is clearly a "design error", an 
arithmetic overflow or underflow is an "implementation error" – a 
limitation of the underlying machine which has not been taken into 
account in the design. 
 

•  When analyzing programs, we have to be careful whether we consider 
the possibility of arithmetic overflow or not! 
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Case Statement – 1 

•  While the language described so far is universal (which follows from 
Church's Thesis), it needs further extensions for programs of even 
modest size. 

•  Suppose E, c1, …, cn are expressions and S1, …, Sn are statements. 
 
 
 
 

 case E of c1 : S1 ; … ; cn : Sn end 
 
 
 

 
•  Here, as in Pascal, c1, …, cn have to be constant expressions and must 

all be different. 

•  If E does not equal to any of c1, …, cn, the statement is undefined. 

E = 

S1 Sn … 

c1 cn 
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Case Statement – 2 

•  A case may have several labels: 
 

 c, d : S    stands for    c : S ; d : S 

•  We extend the syntax of statements accordingly: 
 

 statement   ::=   … 
       |   case expression of caseList end 

 
 caseList    ::=   expressionList : statementSequence  
       |   caseList ; expressionList : statementSequence  
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Case Statement – 3 

•  Provided that constant expressions c1, …, cn are all defined and 
different, we have: 
 

 wp(case E of c1 : S1 ; … ; cn : Sn end, P)  = 
  ∆E ∧ ((E = c1) ∧ wp(S1, P)) ∨ … ∨ ((E = cn) ∧ wp(Sn, P)) 

 
•  For example: 

 
 {((c = 0) ∧ (x ≠ –1)) ∨ ((c = 1) ∧ (x ≠ 1))} 
 case c of 
  0 : x :=x + 1 ; 
  1 : x := x – 1 
 end 
 {x ≠ 0}  
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Repeat Statement … 

•  Suppose S is a statement and B is an expression: 

  repeat S until B 
 

•  We allow S to be a statement sequence rather than a statement, i.e. 
we can write repeat S ; T until B for statements S and T. 
 

•  We extend the syntax of statements accordingly: 
 

 statement   ::=   … 
       |   repeat statementSequence until expression 

+ 

– 

S 

B 
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… Repeat Statement 

•  Following rule is derived by defining: 
 repeat S until B   =   S ; while ¬B do S 

 
Let 
–  P, Q be a predicates, where Q is the invariant; 
–  T be an integer expression, the bound; 
–  v be an auxiliary integer variable. 

 If 
 

 P      ⇒   wp(S, Q)    (S establishes Q)   
  ¬B ∧ Q      ⇒   wp(S, Q)    (Q is invariant of S) 
  ¬B ∧ Q ∧ (T = v)  ⇒   wp(S, T < v)    (S decreases T) 
  ¬B ∧ Q    ⇒   T > 0      (T ≤ 0 causes termination) 

 Q       ⇒   ∆ B      (B is always defined) 
 
then 
 

 P   ⇒   wp(repeat S until B, Q ∧ B) 
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Sum of Array Elements Revisited 

•  Let a: array N of integer (with N ≥ 0) and assume no arithmetic 
overflow: 
 

 {0 < N} 
 n, s := 0, 0 ; 
 repeat s, n := s + a(n), n + 1 
 until n = N  
 {s = (∑ i | 0 ≤ i < N • a(i))} 

 
This can be verified by applying the rule with 
–  P = ((n = 0) ∧ (s = 0) ∧ (0 < N)) 
–  Q = ((s = (∑ i | 0 ≤ i < n • a(i))) ∧ (1 ≤ n ≤ N)) 

 
•  Comparing to the program on slide 51 we conclude: 

–  the precondition of a repeat loop is in general stronger than the 
one of the corresponding while loop, 

–  repeat loops are harder to verify because of the possibility of 
entering the body without that the invariant and guard hold. 

Give a precondition 
assuming bounded 
arithmetic and N ≤ 
MAXINT. 



Elements of Programming-83 

Variable Declarations – 1 

•  A variable declaration introduces a local (bound) variable with a scope, 
like a quantification. Let x be an identifier, T a type, S a statement: 
 

 var x : T ; S 
 

•  Several variables may be declared at once and several variables may be 
declared to have the same type: 
 

 var x1 : T1, …, xn : Tn   stands for  var x1 : T1 ; … ; var xn : Tn 
 x1, …, xn : T      stands for  x1 : T, …, xn : T 

 
•  We extend the syntax of statements accordingly: 

 
statement   ::=   … 

      |   declaration ; statement 
 
declaration   ::=   var variableList 
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Variable Declarations – 2 

•  We continue with the syntax: 
 
variableList   ::=   identifierList : type 

      |   variableList , identifierList : type 
 

•  Note that we allow variable declarations to appear anywhere in 
programs, like in C but unlike in Pascal, where variable declarations can 
be only at the outermost level. 
 

•  The body has to be prepared for an arbitrary initial value of the 
declared variable. Let x be a variable that does not occur in P: 
 

 wp(var x : T ; S, P)   =   (∀ x : T • wp(S, P)) 
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Integer Multiplication Revisited 

•  Let x, y, z be integer variables: 
 

 {x ≥ 0} 
 var u : integer ; 
 begin z, u := 0, x ; 
  while u > 0 do 
   z, u := z + y, u – 1 
 end 
 {z = x · y} 

 
•   With S standing for z, u := 0, x ; while u > 0 do … we show this by: 

 
 wp(var u : integer ; begin S end, z = x · y) 

=   «wp of variable declaration» 
 (∀ u: integer • wp(begin S end, z = x · y)) 

⇐   «from slide 44 we have (x ≥ 0) ⇒ wp(S, z = x · y)» 
 (∀ u: integer • x ≥ 0) 

=   «u does not occur in x ≥ 0» 
 x ≥ 0 
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Stepwise Refinement 

•  No serious program can be conceived in one step. We therefore 
develop programs by a series of refinement steps. For example, in one 
step, we 
–  select a specific algorithm or a data structure, 
–  make some transformations (for efficiency), 
–  elaborate on what to do in exceptional situations (for robustness), 
–  generalize parts of the program (for reusability). 

 
•  The phrase "Program Development by Stepwise Refinement" was 

coined by N. Wirth and applied in a hierarchical fashion: 
 
 
 
 
 
  
Note that in practice programs are rarely developed this way. Still, 
this is a good way of explaining the program and documenting the 
development. 

begin 
   … ; 
   … ; 
end 

while … do 
   … 

if … then 
   … 
else 
   …  
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Printing Images – 1 

•  Let a printer be given that is controlled by following commands: 
–  newLine:  start a new line at the leftmost position 
–  advance: move the print head one position to the right 
–  print:  print a dot and move one position to the right 

 Our task is to print an image given by the functions fx, fy, where 
 

 ∀ i | 0 ≤ i < N • (0 ≤ fx(i) < X) ∧ (0 ≤ fy(i) < Y) 
 
More specifically, fx and fy could be arrays rather than functions. We 
take, for example, N = 1000, X = 100, Y = 50. 
 

•  Our idea is to compute and store the image first and then to output it 
on the device line by line. 
–  This assumes we can afford storing the whole image. 
–  It does not require that the values fx(i), fy(i) need to be computed 

several times. 

Suggest an alternative approach! 
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Printing Images – 2 

•  Our first step is therefore to define two types, 
 

 var image : array X, Y of boolean; 
 begin 
  "build image" ; "print image" 
 end 

 
•  As the intermediate condition - the interface - between "build image" 

and "print image" we would have 
 

 image(x, y) = (∃ i | 0 ≤ i < N • (x = fx(i)) ∧ (y = fy(i))) 
 
for all 0 ≤ x < X and 0 ≤ y < Y. 
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Printing Images – 3 

•  We refine "build image": We first have to clear "image" and then can 
set the dots: 
 
"build image": 

 "clear image" ; "mark dots" 
 

•  As the intermediate condition - the interface - between "clear image" 
and "mark dots" we would have: 
 

 ∀ x, y | (0 ≤ x < X) ∧ (0 ≤ y < Y) • ¬image(x, y) 
 

•  We refine  "mark dots" by iterating over all N dots to be drawn: 
 
"mark dots": 

 var n : integer ; 
 begin n := 0 ; 
  while n < N do 
   begin image(fx(n), fy(n)) := true ; n := n + 1 end 
 end 
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Printing Images – 4 

•  We refine "print image" by printing all lines from top to bottom. We 
assume that the print head is initially in leftmost position: 
 
"print image": 

 var y : integer ; 
 begin y := Y – 1; 
  while y ≥ 0 do 
   begin "print line(y)" ; newLine ; y := y – 1 end 
 end 

 
•  We refine "print line(y)" by printing all dots of a line: 

 
"print line(y)": 

 var x : integer ; 
 begin x := 0 ; 
  while x < X do 
   begin if image(x, y) then print else advance ; x := x + 1 end 
 end 
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Printing Images – 5 

•  We refine  "clear image" by clearing all lines: 
 
"clear image": 

 var y : integer ; 
 begin y := Y – 1 ; 
 while y ≥ 0 do 
  begin "clear line(y)" ; y := y – 1 end 
 end 

 
•  Finally we refine "clear line(y)" by clearing all dots of line y: 

 
"clear line(y)": 

 var x : integer ; 
 begin x := 0 ; 
  while x < X do 
   begin image(x, y) := false ; x := x + 1 end 
 end 
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Procedure Declarations … 

•  Procedures introduce three aspects: 
–  naming 
–  parameter passing 
–  recursion 

 (Pascal additionally connects local variables to procedures.) 
 

•  We extend the syntax of statements and declarations accordingly: 
 
statement  ::=   … 

     |   identifier ( expressionList , identifierList ) 
 
declaration  ::=   ... 

     |   procedure identifier ( variableList , 
       var variableList ) statement 

 
Note: a procedure declaration may be with value or without result 
parameters or without both and likewise for the call. We omit the 
corresponding cases in the grammar for brevity. 
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… Procedure Declarations 

•  The call of a procedure can always be replaced by its body, known as 
the copy rule. If p is declared by 
 

 procedure p(v : V, var r : R) S  
 
and e : V is an expression and x : R is a variable, we define: 
 

 p(e, x)    =    var v : V, r : R ; begin v := e ; S ; x := r end 
 

•  For example, if increment is declared by 
 

 procedure increment(d : integer) c := c + d  
 
then 
 

 increment(3) 
=   «copy rule» 

 var d : integer ; begin d := 3 ; c := c + d end 
=   «simplifications» 

 c := c + 3 
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Function Procedures and return statements 

•  A function procedure is a procedure with a single result parameter. We 
allow an alternative syntax for declaration and call: 
 

 procedure p(v : V) : R       x := p(e) 
  S  

 
are equivalent to   
 

 procedure p(v : V, var result : R)    p(e, x) 
  S  

 
•  A return statement assigns to the result parameter: 

 
 return e 

 
is equivalent to 
 

 result := e 
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Rule for Procedure Calls… 

•  Suppose procedure p is declared by 
 

 procedure p(v : V, var r : R) S  
 
and we have: 
 

  {P} S {Q} 
 
Then 
 

  {P [v \ e]} p(e, x) {Q [v, r \ e, x]} 
 
provided that: 
–  x does not occur in Q and e 
–  r does not occur in P and e 
–  S does not assign to v and variables of e 
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… Rule for Procedure Calls 

•  Example: Given {i ≥ 0} S {result2 ≤ i < (result + 1)2} and the declaration 
 

 procedure sqrt(i : integer) : integer 
  S 

 
we can conclude for the call k := sqrt(7): 
 

 {(i ≥ 0) [i \ 7]} k := sqrt(7) {(result2 ≤ i < (result + 1)2) [i, result \ 7, k]} 
= 

 {true} k := sqrt(7) {k2 ≤ 7 < (k + 1)2} 

•  These rules show that when thinking about a procedure, it is sufficient to 
know what it does in terms of its pre- and postcondition, not how the 
body implements this! 
 

•  We conclude that every procedure declaration adds another "primitive" 
command to our language, thus raising the level on which we construct 
new commands. 
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Printing Images Revisited 

•  Procedures can be used to reflect the program development. For 
example, the printing program can be expressed by: 
 

 var image : array X, Y of boolean ; 
 

 procedure clearImage … ; 
 

 procedure markDots … ; 
 

 procedure printImage 
  var y : integer ; 
  begin y := Y – 1 ; 
   while y ≥ 0 do 
    var x : integer ; 
    begin x := 0 ; 
     while x < X do 
      begin if image(x, y) then print else advance ; x := x + 1 end ; 
     newLine ; y := y – 1 
    end 
  end ; 

 
 begin clearImage ; markDots ; printImage end 
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Programming Style – 1 

•  Indentation should visualize the program structure. 
 

•  Comments 
–  should not rephrase the program text. Bad examples are: 

 
x := 0  (* initialize x *) 
n := n + 1 (* increment n *) 
 

–  should precede very major block and explain abstractly what 
follows. A good example is: 
 
(* search minimum in a[n .. N) *) 
… 
 

–  should state essential annotations like invariants, bounds, and 
selected pre- and postconditions 
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Programming Style – 2 

•  Names 
–  should be readable. Bad names are: 

 
avrg, hdr, fopen, _x_2 
 

–  should have consistent capitalization, for example 
 
N,  MAXINT    constants in capitals 
List, Node     types starting with capital 
displayDialog, sort   operations starting with lower case 
employees, average  variables starting with lower case 
 

–  should be grammatically sensible, that is: 
•  noun phrases for constants, types, variables 
•  verb phrases for operations 
•  adjectives for boolean variables and boolean operations, for 

example queueEmpty, isClosed. 
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Programming Style – 3 

•  Use Boolean assignment to avoid conditionals, e.g. 
 

 if n < N then found := true else found := false 
 
should be replaced by: 
 

 found := n < N 
 

•  Use while loops in favor of repeat loops. 
 

•  Avoid goto's, restrict to sequencing, conditional, and repetition as the 
only control structures. Developing programs with only these control 
structures is called structured programming. 
 

•  Declare a variable exactly where it is needed. 
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Hints for Implementation in Pascal and C 

•  In C booleans have to be mapped to integers. In Pascal and C implication 
a ⇒ b is written as a <= b. 

•  Value parameters and function results are present in Pascal and C, result 
parameters are mapped to reference parameters, e.g.: 
 

 procedure has(x : integer, var h : boolean)  (*result parameter h*) 
 
is mapped to: 
 

 procedure has(x: integer; var h: boolean); (*reference parameter h*) 
 

•  Reference parameters may lead to aliasing, e.g. in Pascal 
 procedure n(var v, w : integer) begin v := 3; w := 4 end 

establishes postcondition v < w but the call 
 n(x, x) 

does not establish x < x! 
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For Statement … 

•  The for loop specifies an iteration over elements in a given range, and 
therefor corresponds to the structure of arrays. We consider: 
 
for x := E to F do S   =  var x : integer ; 

         begin x := E ; 
          while x ≤ F do begin S ; x := x + 1 end 
         end 

 
for x := E downto F do S  =  var x : integer ; 

         begin x := E ; 
          while x ≥ F do begin S ; x := x – 1 end 
         end 

 
•  Note that C and Java allow the variable to be made local, Pascal does 

not. However, Pascal does not guarantee any specific final value of x. 
Some Pascal compilers forbid assignments to x in S, C and Java don't. 
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… For Statement  

•  We extend the syntax of statements accordingly: 
 

 statement  ::=   … 
      |   for identifier := expression to expression do 
        statement 
      |   for identifier := expression downto expression do 
        statement 

 
•  If the variable is not assigned in the statement, the for loop guarantees 

termination. Let P be a predicate, the invariant. If x does not occur in E, F 
and E, F, x are not changed by S and 
 
  (E ≤ x ≤ F) ∧ P   ⇒   wp(S, P [x \ x + 1])     (P is invariant of S) 

 
then 
 

 ∆E ∧ ∆F ∧ (E ≤ F + 1) ∧ P [x \ E]  ⇒  wp(for x := E to F do S, P [x \ F + 1]) 
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Printing Images Revisited 

•  "clear line(y)" can be written as 
 

 for x := 0 to X – 1 do image(x, y) := false 
 
Taking as the invariant 
 

 P = (∀ i | 0 ≤ i < x • ¬image(i, y)) 
 
we have 
 

 (0 ≤ x < X) ∧ P   ⇒   wp(image(x, y) := false, P [x \ x + 1]) 
 
and can conclude by the rule for for-loops: 
 

 {0 ≤ X} 
 for x := 0 to X – 1 do image(x, y) := false 
 {∀ i | 0 ≤ i < X • ¬image(i, y)} 
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Repeat Statement Revisited 

•  The rule for the repeat loop can be simplified by requiring that the 
invariant holds already before the loop is entered. Let 
–  P be a predicates, the invariant; 
–  T be an integer expression, the bound; 
–  v be an auxiliary integer variable. 

 If 
 

 P      ⇒   wp(S, P)     (P is invariant of S)  
  ¬B ∧ P ∧ (T = v)  ⇒   wp(S, T < v)    (S decreases T) 
  ¬B ∧ P    ⇒   T > 0      (T ≤ 0 causes termination) 

 P      ⇒   ∆ B      (B is always defined) 
 
then 
 

 P   ⇒   wp(repeat S until B, P ∧ B) 
 

•  As the hypothesis is now stronger, the rule is weaker (less applicable), 
but simpler. 
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String Search 

•  The task is to find the first occurrence of pattern p of length M ≥ 0 in 
text t of length N ≥ 0, that is: 
 

 p : array M of T 
 t : array N of T 

 
for some type T. Variables found and i should be assigned such that 
  

 (found ∧ (0 ≤ i ≤ N – M) ∧ match(i, M) ∧ nomatch(i)) ∨ 
(¬found ∧ nomatch(N – M + 1)) 
 

 holds finally, where: 
 

 match(i, k)  =   (p[0 .. k) = t[i .. i + k)) 
nomatch(i)  =   (∀ k | 0 ≤ k < i • ¬match(k, M)) 
 

•  We develop two solutions to this fundamental problem to demonstrate 
how the introduced techniques are used for programs which cannot be 
understood otherwise. 
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Naive String Search – 1 

•  A straightforward solution is to start comparing p with t at the left 
end of t and in case of a mismatch shift the position of p: 
 
 
 
 

{N ≥ M} 
 i := –1 ; 
{invariant: nomatch(i + 1) ∧ (–1 ≤ i ≤ N – M)} 
repeat i := i + 1 ; {nomatch(i)} 

 "compare p with t at position i" 
until "p matches t" ∨ (i = N – M) ; 
found := "p matches t" 
 

•  For the invariant, we observe that 
–  nomatch(0) holds initially, 
–  "p matches t" means match(i, M), 
–  nomatch(i) and ¬match(i, M) implies nomatch(i + 1), hence the 

invariant is preserved. 

t0 t1 … ti ti+1 … ti+M–1 … tN-1 

p0 p1 … pM-1 
shift 
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Naive String Search – 2 

•  We refine "compare p with t at position i" by a loop; let j be an integer 
variable: 
 

 j := 0 ; 
 {invariant: match(i, j) ∧ (0 ≤ j ≤ M)} 
 while (j < M) ∧ (t(i + j) = p(j)) do j := j + 1 
 {match(i, j) ∧ ((j = M) ∨ (t(i + j) ≠ p(j)))} 

 
•  As "p matches t" corresponds to match(i, M), it can be here refined 

by: 
 

 j = M 

Give the bounds 
for both loops! 
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Naive String Search – 3 

•  The final algorithm is: 
 

 var j : integer ; 
 begin i := –1 
  {invariant: nomatch(i + 1) ∧ (-1 ≤ i ≤ N – M)} 
  repeat i := i + 1 ; j := 0 ; 
   {invariant: nomatch(i) ∧ (0 ≤ i ≤ N – M) ∧ match(i, j) ∧ (0 ≤ j ≤ M)} 
   while (j < M) ∧ (t(i + j) = p(j)) do j := j + 1 
  until (j = M) ∨ (i = N – M) ; 
  found := j = M 
 end    

How many comparisons 
does this algorithm 
make in the best and in 
the worst case? 
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Boyer-Moore Search – 1 

•  The idea is to start comparing the pattern with the text at the end of 
the pattern. In case of a mismatch, the pattern can immediately be 
shifted to the right by a precomputed number of positions. Example 
where the compared characters are underlined: 

Hoola-Hoola girls like Hooligans  
Hooligan  
     Hooligan  
       Hooligan  
               Hooligan  
                       Hooligan 
 

•  Let match(i, j) mean that when p(0) is shifted over t(i), then all 
elements from p(j) on match the corresponding ones in t; let 
nomatch(i) mean that there is no complete match left of t(i): 
 

 match(i, j)  =  (p[j .. M) = t[i + j .. i + M)) 
nomatch(i)  =  (∀ k | 0 ≤ k < i • ¬match(k, 0))
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Boyer-Moore Search – 2 

•  Let d(x) be the rightmost occurrence of x in p from the end, not 
including the last character, defined by: 
 

 (∀ k | M - d(x) < k < M • p(k) ≠ x) 
 

•  For example, if p = "abc", then 
 

 d(a) = 2, d(b) = 1, d(c) = 3, d(x) = 3 for all x ≠ a, b, c 
 
•  If p = "aab", then 

 
 d(a) = 1, d(b) = 3, d(x) = 3 for all x ≠ a, b 

 
•  If p = "aba", then 

 
 d(a) = 2, d(b) = 1, d(x) = 3 for all x ≠ a, b 
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Boyer-Moore Search – 3 

•  We have to assume that T is a finite type like char, enumeration, or 
subrange, say: 
 

 T = [TMIN .. TMAX] 
 
Our first step is: 
 

 var d : array T of integer ; 
 begin "initialize d" ; 
  i := 0 ; 
  {invariant: nomatch(i) ∧ (0 ≤ i ≤ N – M)} 
  repeat 
   "compare p with t at i" 
   if "p does not match t" then i := i + d(t(i + M – 1)) 
  until "p matches t" ∨ (i = N – M) ; 
  found := "p matches t" 
 end 
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Boyer-Moore Search – 4 

•  We refine "initialize d" by: 
 

 for x := TMIN to TMAX do d(x) := M ; 
 for k := 0 to M – 2 do d(p(k)) := M – k – 1 

 
•  We introduce j : integer. Provided M ≤ N, we refine "compare p with t 

at i" by: 
 

 j := M – 1 ; 
 {invariant: match(i, j + 1) ∧ (–1 ≤ j < M)} 
 while (j ≥ 0) ∧ (t(i + j) = p(j)) do 
  j := j – 1 

 
•  This allows us to refine "p matches t" by: 

 
 j < 0 



Elements of Programming-114 

Boyer-Moore Search – 5 

•  Provided M ≤ N, the final algorithm is (without the invariant for d): 
 

 var d : array T of integer ; 
 var j : integer ; 
 begin  
  for x := TMIN to TMAX do d(x) := M; 
  for k := 0 to M – 2 do d(p(k)) := M – k – 1 ; 
  i := 0 ; 
  {invariant: nomatch(i) ∧ (0 ≤ i ≤ N – M)} 
  repeat 
   j := M – 1 ; 
   {invariant: nomatch(i) ∧ (0 ≤ i ≤ N – M) ∧ match(i, j + 1) ∧ (–1 ≤ j < M)} 
   while (j ≥ 0) ∧ (t(i + j) = p(j)) do 
    j := j – 1 
   if j ≥ 0 then i := i + d(t(i + M – 1)) 
  until (j < 0) ∨ (i = N – M) ; 
  found := j < 0 
 end 
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Recursive Procedures 

•  Procedure p is called directly recursive if it contains a call to p itself; 
it is called indirectly recursive if it contains a call to procedure q which 
directly or indirectly calls p. We consider here direct recursion only. 
 

•  The copy rule applies to recursive procedures as well, except that it 
does not eliminate the occurrences of the procedure call, as in: 
 

 procedure p(n : integer) 
  if n > 0 then begin p(n – 1) ; x := x · n end 
  else x := 1 

 
•  Repetition is a special case of recursion. The loops 

 
 while B do S        repeat S until B 

 
are equivalent to calling p, where p is defined as: 
 

 procedure p        procedure p 
 if B then begin S ; p end    begin S ; if ¬B then p end 
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Tail Recursion 

•  In general, any tail recursion with at most one recursive call at the end 
of a procedure can directly be transformed into a loop. For example, we 
can express binary search recursively and iteratively: 

  
var a : array N of T ; 
 procedure recursiveSearch(x : T, l, r : integer, var n : integer, f : boolean) 
if l < r then 

 var m : integer ; 
 begin m := (l + r) div 2 ; 
  if a(m) < x then recursiveSearch(x, m+1, r, n, f) else recursiveSearch(x, l, m, n,f) 
 end 

else begin n := r ; f := a(n) = x end 
 procedure iterativeSearch(x : T, l, r : integer, var n : integer, f : boolean) 
begin 

 while l < r then 
  var m : integer ; 
  begin m := (l + r) div 2 ; 
   if a(m) < x then l := m + 1 else r := m 
  end ; 
 n := r ; f := a(n) = x 

end 
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Verifying Recursive Procedures 

•  Both forms of binary search are verified by making 
–  (∀ k | 0 ≤ k < l • a(k) < x) ∧ (∀ k | r ≤ k < N • a(k) ≥ x) ∧ (l ≤ r)  

part of the invariant 
–  r – l the bound 

 provided a is ascending, i.e. (∀ k | 0 < k < N • a(k – 1) ≤ a(k)). From the 
invariant we deduce that the first occurrence is found. 

•  In general, if P, Q are predicates, T an integer expression, the bound, 
v an auxiliary integer variable, procedure n has body S, and 
 
  {P ∧ (T < v)} n {Q}   ⇒   {P ∧ (T= v)} S {Q} 

       (under P body establishes Q and decreases T) 
  {P ∧ (T ≤ 0)} S {Q}        (T ≤ 0 causes termination) 
 
then 
 

 {P} n {Q} Show that the rule for 
repetition follows from this rule! 
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Quicksort – 1 

•  Some algorithms are more naturally expressed iteratively, some 
recursively, for example quicksort. Given var a : array N of T, 
 

 ascending(l, r)   =  (∀ i | l ≤ i < r • a(i) ≤ a(i + 1)) 
 a[l .. r] ≤ x    =  (∀ i | l ≤ i ≤ r • a(i) ≤ x)  
 a[l .. p] ≤ a[q .. r]  =  (∀ i, j | (l ≤ i ≤ p) ∧ (q ≤ j ≤ r) • a(i) ≤ a(j))  

 
our goal is to show that 
 

 {true} quicksort(0, N – 1) {ascending(0, N – 1)} 
 

 procedure quicksort(l, r : integer) 
 if l < r then 
  var p : integer ; 
  begin 
   "partition a at p" ; 
   quicksort(l, p) ; 
   quicksort(p + 1, r) 
  end 
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Quicksort – 2 

•  The task of "partition a at p" is to move all smaller elements to the 
left of p and all larger element to right of p, and set p accordingly:  
 

 {l < r} "partition a at p" {(l ≤ p < r) ∧ (a[l .. p] ≤ a[p + 1 .. r])}  
 

•  We apply the rule for recursive procedures with the hypothesis that 
for the calls in the body of quicksort we can assume: 
 

 {true}  quicksort(l, p)   {ascending(l, p)} 
 {true}  quicksort(p + 1, r)  {ascending(p + 1, r)} 

 
From this we like to conclude that: 
 

 {true} if l < r then var p : integer ; begin … end {ascending(l, r)} 
 
This holds as (we do not go into the details here): 
 

 (l ≤ p < r) ∧ (a[l .. p] ≤ a[p + 1 .. r])) ∧ ascending(l, p) ∧ ascending(p + 1, r) 
  ⇒  ascending(l, r)  
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Quicksort – 3 

•  The recursion terminates as the bound l – r decreases with every 
recursive call and the recursion stops when it becomes zero. 
 

•  The idea of "partition a at p" is first to select a pivot x randomly and 
then to move all elements less than x to the left and all elements 
greater than x to the right: 
 
"partition a with p": 

 var q : integer ; x : T ; 
 begin p, q := l, r ; 
  "choose x from a[l .. r] randomly" ; 
  {invariant: (a[l .. p - 1] < x) ∧ (x ≤ a[q + 1 .. r]) ∧ (l ≤ p ≤ q ≤ r)} 
  while p < q do 
   begin 
    "set p to index the first element > x" ; 
    "set q to index the last element < x" ; 
    if p < q then "exchange a(p) and a(q), decrement q" 
   end 
 end    
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Quicksort – 4 

•  "choose x from a[l .. r] randomly" can be refined in several ways: 
–  Choose the first or last element: x := a(l) or x := a(r) 
–  Choose the middle element: x := a((l + r) div 2) 

 The middle element yields the best behavior if the array is already 
ascending. We conclude with the complete program: 
 

 procedure quicksort(l, r : integer) 
 if l < r then 
  var p, q : integer ; x, h : T ; 
  begin p, q := l, r ; x := a((l + r) div 2) ; 
   while p < q do 
    begin 
     while a(p) < x do p := p + 1 ; 
     while a(q) > x do q := q – 1 ; 
     if p < q then 
      begin h := a(p) ; a(p) := a(q) ; a(q) := h ; q := q – 1 end 
    end ; 
   quicksort(l, p) ; quicksort(p + 1, r) 
  end 
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Assertions … 

•  The statement assert B does nothing if B holds and fails when B does 
not hold: 
 

 wp(assert B, P)  =  ∆ B ∧ B ∧ P 
 

•  Assert statements are used for documenting the intended use: 
 

 assert x ≥ 0 ; 
 z, u := 0, x ; 
 while u > 0 do z, u := z + y, u – 1 ; 
 assert z = x · y 

 
This states that if the program is executed with x < 0 initially, it fails; 
if finally z = x · y does not hold, it fails as well. 
 

•  We extend the syntax of statements accordingly: 
 

 statement  ::=   … 
      |   assert expression 



Elements of Programming-123 

… Assertions  

•  Assert statements are needed for restricting programs, for example: 
 

 procedure bookSeat 
  begin assert seats < CAPACITY ; seat := seat + 1 end 

 
 procedure cancelSeat 
  begin assert seats > 0 ; seat := seat – 1 end 

 
•  Note the difference between correctness assertions and assertion 

statements: 
–  Adding an assertion statement changes the meaning of a program. 
–  A correctness assertion states a property of a program. 

 However, both are related: 
 

 {P}   S   {Q}   =   {P}   assert P ; S ; assert Q   {Q} 
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Using Assertions for Testing 

•  Languages like C and Eiffel allow assertions for testing purposes. 
Checking of assertions can be switched on and off at compile-time. 
Standard Pascal and Java do not feature assertions, though these can 
be simply added. Example in C: 
 
#include <assert.h> 
int multiply (int x, int y) { 

 int z, u; 
 assert (x >= 0); 
 z = 0; u = x; 
 while (u > 0) {z = z + y; u = u - 1;} 
 assert (z == x * y); 
 return z; 

} 
 

•  Unfortunately, languages like C and Eiffel restrict predicates of 
assertions to those that can occur elsewhere in programs; hence 
quantifiers and other functions are excluded, limiting their use. 
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skip and abort … 

•  The statement skip does nothing, it is defined as assert true. The 
statement abort always fails, it is defined as assert false. 
 

 wp(skip, P)  =  P 
  wp(abort, P)  =  false 
 
(In C and Java, skip is written as ";") 
 

•  We extend the syntax of statements accordingly: 
 
statement  ::=   … 

     |   abort 
     |   skip 
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… skip and abort  

•  Although there is no need to write skip or abort explicitly in programs, 
they are useful for reasoning about programs, for example: 
 

 if B then S  =  if B then S else skip 
 assert true  =  skip 
 assert false  =  abort 

 
•  Formally, skip is the identity and abort the zero of sequential 

composition: 
 

 skip ; S  =  S     S ; skip  =  S     (identity) 
 abort ; S  =  abort    S ; abort  =  abort    (zero) 


