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1. Introduction

For the development of larger programs, a recommended practice is to separate a concise but
precise specification of what the program should do from a possibly involved and detailed im-
plementation. We view the specification as an abstract program P and the implementation as
a concrete program . The task of ensuring that the implementation satisfies the specification
is eased by introducing intermediate programs such that each program is a refinement of the
previous one, formally expressed as:

P=PCPCPC...CP,=Q

In algorithmic refinement steps abstract (or more abstract) statements are replaced by concrete
(or more concrete) statements whereas in data refinement steps abstract (or more abstract) data
structures are replaced by concrete (or more concrete) data structures. For the development
of concurrent programs, in atomicity refinement steps sequential (or less concurrent) parts are
replaced by concurrent (or more concurrent) ones.

These general principles are applied here to classes. For example, a file can be specified
as an object of a class whose state is a sequence and a current position and whose read and
write operations access the sequence at the current position. A typical implementation of this
class would use a cache for storage and would process write operations in the background, hence
changing the state space and introducing concurrency. In any case, the illusion to the user of
the write operation is maintained that the operation is executed atomically. In this example,
concurrency is introduced in the implementation for allowing a better utilization of resources,
which is an aspect we are interested in without formalizing it.

In this paper we propose a formal model for objects with attributes and methods, with self-
and super-calls in methods, classes with inheritance, and action-based concurrency. Objects
have actions which, as long as they are enabled, may execute and change the object’s state
while other parts of the program are in progress. As in class-based programming languages,
classes serve as templates for creating objects and inheritance is understood as a mechanism for
modifying classes.

The notion of class refinement expresses that an object of the refining class behaves as an
object of the refined class. Class refinement between two classes is defined in terms of the
observable traces of programs with instances of those classes. We give a simulation condition
for establishing class refinement by using a relation between the attributes of those classes. As
the main result, we prove that simulation by relation implies class refinement in a setting with
dynamic object structures.

The proposed class refinement extends class refinement as defined for sequential objects
[27, 26] by adding actions to classes. Class refinement has also been studied under the name
behavioral subtyping in less formal settings guaranteeing only partial correctness by America [2]
and by Liskov and Wing [24]. Different models for classes and objects have been proposed [1].
We extend the model of classes as self-referential structures with a delayed taking of the fixed
point of [31, 16].
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The action system model for parallel, distributed, and reactive systems was proposed by
Back and Kurki-Suonio [7, 8]. The same basic approach has later been used in other models for
distributed computing, notably UNITY [14] and TLA [21].

An action system describes the behavior of a concurrent system in terms of the atomic
actions that can take place during the execution of the system. Action systems allow a succinct
description of the overall behavior of a system. Furthermore, action-based approaches do not
force us to fix the flow of control where doing so is unnecessary for an abstract specification (see
e.g. [14]). Action systems can be used to express various forms of communication, e.g. shared
variable, rendez-vous, and bounded channels, as well as different interaction mechanisms, e.g.
semaphores, critical regions, and 4-phase handshake [8, 14].

Back and Sere [9] have added procedures to action systems. They, as well as Sere and Waldén
[30] and Bonsangue et al [13], have also studied input/output refinement of action systems with
methods, which is similar to our classes after self- and super-references have been resolved.
Using trace refinement, we extend those results to reactive behavior and handle non-terminating
systems.

The action system model has been extended with different notions of objects. Jarvinen and
Kurki-Suonio [18] used aggregation rather than inheritance and overriding, based their semantics
on TLA, and concentrated on superposition refinement. Back et al [6] concentrated on the design
of a language. Bonsangue et al [13] developed a less formal model with an action-system-per-
object semantics. Seuss [28] also combines objects with action-based concurrency. The catch in
Seuss is that the set of objects (called clones) is static.

Atomicity refinement has first been proposed by Lipton [23]. Back studied input/output be-
havior preserving atomicity refinement in action systems [4, 5]. Sere and Waldén [30] and Bon-
sangue et al [13] have extended this to procedures and methods, still refining only input/output
behavior. Lamport and Schneider [22] and Cohen and Lamport [15] have studied atomicity
refinement in TLA considering liveness properties beyond termination. De Bakker and de Vink
[17] give an overview of atomicity refinement in process algebras and Petri nets. The idea of
an early return, or release, statement has been proposed by Jones [19, 20] in a framework with
explicit constructs for parallelism.

Our calculus for concurrent objects is meant to provide a design notation for programs to
be implemented in concurrent object-oriented languages, such as POOL, Modula-3, and Java.
Programs can be expressed more abstractly than in those languages. The synchronization and
communication mechanisms of these programming languages can be expressed in our formalism
and formally introduced in refinement steps.

Outline. In Section 2 we review the fundamentals of statements and action systems. Sec-
tion 3 introduces classes with attributes, methods, and actions as well as local object creation,
inheritance, and self- and super-references in methods and actions. Section 4 defines class re-
finement in terms of the externally observable behavior, gives a condition for class simulation
using a relation, and proves that class simulation implies class refinement for a system with a
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single object of a given class. Section 5 introduces dynamic object structures and extends the
discussion of class refinement and class simulation to that setting. In Section 6 we study early
returns as a special case of atomicity refinement. Finally, Section 7 draws the conclusions.

2. Statements and Action Systems

The refinement calculus, which provides the foundation for our work, is due to Back, Morgan,
and von Wright [3, 29, 11]. We review the fundamentals of statements defined by predicate
transformers following [11] and of action systems following [10].

2.1. Statements

State predicates of type PX are functions from elements of type X to Bool. Relations of type
A <+ Q are functions from A to (state) predicates over . Predicate transformers of type
A — Q are functions from predicates over € (the postconditions) to predicates over A (the

preconditions):
P = ¥ — Bool
A+-Q = A—PQ
A—Q = PQL—->PA

On predicates, conjunction A, disjunction V, implication =, and negation — are defined by the
pointwise extension of the corresponding operations on Bool. The entailment ordering < is
defined by universal implication. The predicates true and false represent the universally true,
respectively false predicates. On relations, we use union U, intersection N, relational composition
o, and the relational image R [p] of a predicate p, defined by R [p] y = (3z* Rz y Ap z).
The identity relation is denoted by Id.

Statements are defined by predicate transformers because only their input/output behavior
is of interest. Thus, for statement S and predicate ¢ we have S ¢ = wp(S, q), where wp is in
Dijkstra’s notation the weakest precondition of statement S to establish postcondition ¢q. More
precisely, we identify program statements with monotonic predicate transformers, i.e. predicate
transformers S for which p < ¢= S p < S g.

The sequential composition of predicate transformers S and T is defined by their functional
composition:

(§;T)gqg = S(T q)

The identity on predicate transformers is denoted by skip. The guard [p] skips if p holds and
“miraculously” establishes any postcondition if p does not hold. The guard [false] is called
magic. The assertion {p} skips if p holds and establishes no postcondition if p does not hold
(the system crashes). The (never holding) assertion {false} is called abort:

skipg = ¢ Pl = p=4q
magic ¢ = true {ptqg = pAg
abort ¢ = false
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The demonic (nondeterministic) choice M establishes a postcondition only if both alternatives
do. The angelic choice LI establishes a certain postcondition if at least one alternative does. The
relational updates [R] and {R} both update the state according to relation R. If several final
states are possible, then [R] chooses one demonically and {R} chooses one angelically. If R is of
type A < €, then [R] and {R} are of type A — Q:

(SNT)q
(SuT)q

(S ¢ A(T q) [R] q ¢
(S ¢ V(T q) {R} ¢é

VMwe*Réw= quw)
(Tw* RéwA quw)

~
~

1 1

We generalize the binary demonic choice to the choice among a fixed set of statements:
(Miel«S)q = (Viel*Sq)
As a variant, we allow the choice to be restricted by a state predicate:
(Mi|peS) = (Mi*[p]; 9)

All of the above constructs are monotonic or preserve monotonicity. The universally and the pos-
itively conjunctive predicate transformers are two important subsets of the monotonic predicate
transformers. Let ¢; for some index set I and 7 € I form a set of predicates. If

S(Vieleq)=(Viecl*S g)

holds for any index set I, then S is universally conjunctive. If the condition holds for nonempty
sets I, then S is positively conjunctive. Any universally conjunctive predicate transformer is
equal to [R] for some relation R. Any positively conjunctive predicate transformer is equal to
{p}; [R] for some predicate p and some relation R. For example, for any predicate transformers
S, T, U we have that

(SnT); U=(S; U)N(T; U)
but only if U is positively conjunctive we have also that:
U; (SNT)=(U; S)yNn(U; T)

Other statements can be defined in terms of the above ones, for example the guarded statement
p— S = [p]; S and the conditional:

if pthenSelse Tend = (p = S)N(-p—T)

The enabledness domain (guard) of a statement S is denoted by grd S and its termination
domain by trm S:

grd S = =S false trm S = S true

For example, grd (p — S) =p A grd S and trm ({p} ; [R]) = p.
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Refinement. The reflexive and transitive refinement ordering C is defined by universal en-
tailment:
SET =Vq*Sq<Tyq

The loop do S od executes its body as long as it is enabled. This is defined by taking the
least fixed point of the function ' = AX ¢S ; X M [-grd S]. Sequential composition and
nondeterministic choice are monotonic in both operands, so a least fixed point y F exists and
is unique:

doSod = pXS; XM[~grd S]

The loop while p do B is defined as do p — B od, provided that B is always enabled, i.e.
grd B = true.

Data refinement S Cg S’ generalizes (plain) algorithmic refinement by relating the initial
and final state spaces of § : X +— ¥ and S’ : ¥/ — ¥/ with a relation R : 3 < X'

SCrS = S;[RICIR]; S

Data refinement S Cg S’ can be equivalently defined by {R"'}; SC S; {R !}, where R~! is
the relational inverse of R. Algorithmic refinement is a special case of data refinement with the
identity relation.

Program Variables. Typically the state space is made up of a number of program variables.
Thus the state space is of the form T'; x ... x T';,. States are tuples (z1,...,2,). The variable
names serve for selecting components of the state. For example, if z : " and y : A are the only
program variables, then the assignment x := e updates x and leaves y unchanged:

z:=e¢ = [R] where R (z,y) (z",y')=2"=eny' =y
The nondeterministic assignment x :€ ¢ assigns z an arbitrary element of the set ¢:
z:€q = [R] where R (z,y) (z',y)=z"€qhy =y

The declaration of a local variable y : A with initialization predicate yi extends the state space
and sets y to any value for which yi y holds. A block construct allows us to temporarily extend
the state space with local variables, execute the body of the block on the extended state space,
and reduce the state space again:

vary |yi*S =  entery|yi; S; exity
enter y | yi = [R] where Rz (2',y)=2z=2"Nyiy
exit y = [R] where R (z,y)z' =z=21'

Leaving out the initialization predicate as in var y ¢ S means initializing the variable arbitrarily,
var y | true * S. Where necessary, we also explicitly indicate the type A of the new variable as
in var y : A. Since I' x (A x Q) is isomorphic to (I' x A) x Q, we can always find functions which
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transform an expression of one to the other type. Hence we simply write I' x A x ). For example,
if'=T4 x---x T, then S above would have the type I'y X --- x ', x ATy x--- xT') x A.
Assuming that variable names select the correct state space component, we can also commute
state space components.

When writing state predicates, we usually leave out the lambda abstractions over the vari-
ables if they are evident from the context. For example, we write > ¢ rather than Az, y * z > ¢
and similarly we would write if £ > ¢ then S else T.

Product Statements. For predicates ¢; : P¥; and ¢o : P> the product ¢; X ¢o of type
P(X1 xX9) is defined as (¢1 X ¢2) (01,02) = q1 01/ gq 09. For predicate transformers Sy : Ap +—
Q1 and Sy : Ag +— €9, their product S; X s is a predicate transformer of type A; X Ag — 2 X Qg
which corresponds to the simultaneous execution of S; and Ss:

(S1x852) q(61,02) = Fqi,2| 1 X @ < q*S1 q161NS2 g2 62

Intuitively, this means that S; x S9 establishes the postcondition ¢ : P(Qq x 5) from initial state
(01,09), if there is a “rectangular” subset ¢; X ¢o of ¢ such that independently S; establishes ¢
from 0, and S, establishes ¢y from dy [12].

Two statements S and T over the same state space are independent if they operate on
different components of the state space (disjoint variables). This implies that there must exist
S’ and T’ such that S = §' x skip and T = skip x T'. If R is a relation we say that R is
independent of S if [R] and S are independent, or equivalently { R} and S are independent. If
R and @ are independent of S we have following subcommutativity properties:

S;[RIE[R]; S {Q}; SES; {Q}

For simplicity and readability, we usually omit the natural extensions of predicates by true and
of statements by skip when operating on an extended state space.

Procedures. Declaration of a procedure p with value parameters v : A, result parameters
r: (), and body S, written

procedure p(valv: A resr:Q)is S

defines p to stand for S of type I' x A x Q — I' x A x Q, if " is the type of the global variables.
A procedure call p(e, z) extends the state space by the value and result parameters, sets the
value parameters to e, executes the procedure body, sets the result parameter z, and removes
the parameters:
ple,z) = varv,rev:i=e; p; z:=r

Now suppose that p is a recursive procedure, which is expressed by assuming that S is of the
form s p for some s. That is, S has a free occurrence of p. The meaning of p is then given by
taking the least fixed point of the function s, i.e. the least solution of AX * X = s X. Statements
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form a complete lattice with the refinement ordering. Furthermore, we assume that s is defined
with p occurring in monotonic positions only. These two conditions guarantee that the least
fixed point u s of s exists and is unique. Hence we can define p = p s.

A set of mutually recursive procedures is defined by taking the fixed point of statement

!

tuples. For tuples (si,...,58,) and (s{,...,s,), where s; and s, are statements of the same type,

the refinement ordering is defined elementwise:

(s10eees8n) C (shoveeish) = (st S8t Ao A (0 C sl)

— "n

Statement tuples also form a complete lattice with the refinement ordering. Let p stand for
(p1y---sPn), assume Sy = s1 p,..., S, = s, p, and let s stand for Ap * (s1 p,..., s, p). The set
of procedure declarations

procedure p; is 51,..., procedure p, is S,

defines p to be the least fixed point of s, i.e. p = pu s. Assuming again that all p; occur only
in monotonic positions in all s;, a least fixed point exists and is unique.

2.2. Action Systems

Statements modeled as predicate transformers can express only atomic computations. In con-
current programs, components of the program interact during the computation. For reactive
systems, the possible sequences of observable states rather than the input/output behavior are
of interest. Such components can be modeled by action systems. Action systems consist of local
variables, an initialization thereof, and a body, which is repeatedly executed as long as it is en-
abled. Action systems can represent terminating, non-terminating, and aborting computations.
Formally an action system is a pair AS = (ai, A) where ai : PX is the initializing predicate
of the local state. Upon initialization, arbitrary values satisfying ai are chosen for the local
variables. The global state space I' is declared and initialized outside. Action A : T'x % — I'x X%
is a positively conjunctive statement, which acts on the local state of type ¥ and global state of
type I'. Because A is positively conjunctive, it can be written as {p} ; [R]. The next relation
of A relates a state (u,v) in both the enabledness and termination domain to all possible next
states (u', v'):
nzt A (u,v) (u';0") = p (u,v) AR (u,v) (u',v")

A behavior of AS is a sequence of pairs
s = ((u07 IUU)a (ula Ul)a i )

where v is the initial value of the local state, such that ai vy, and all consecutive elements of
the sequence are in the next relation:

nzt A (ui, vi) (Ui, vig1)
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The set beh AS is the set of all behaviors. A behavior is terminating if it is finite and for the
last element (uy, v,) the action A is not enabled, — grd A(uy, v,). A behavior is aborting if it is
finite and for the last element (uy,,v,) the action aborts, i.e. (uy, v,) is not in the termination
domain, = trm A(up, v,). A behavior is non-terminating if it is not of finite length. The set
beh AS can be thought of as the (disjoint) union of terminating, aborting, and non-terminating
behaviors of AS.

We use the following syntax for an action system (ai, A) with local variables a:

var a | ai * do A od

Action systems are typically composed of a set of actions A1, ..., A, operating on different parts
of the state space, which we write as:

vara |ai* do A;]...[ A, od

In the interleaving model, parallelism of two actions is modeled by taking them in arbitrary,
demonically chosen order. Hence the meaning of such an action system is given by taking the
nondeterministic choice between all actions:

vara|ai®doA;M...MA, od

We furthermore consider the case of an indexed set of actions and of set of actions where the
possible choice depends on a state predicate:

(liel=A) = (Miel-A)
([ifps4) = (Mi|peA)

To express various kinds of possibly parallel computations, we use also combinations of these
notations, for example as in:

do ([i|p+A)[([7]q* B)od

Parallel Composition. The parallel composition of action systems AS = (ai, A) and BS =
(bi, B) with the same global state space merges the local state spaces (possibly renaming vari-
ables to make them mutually distinct) and combines the actions by nondeterministic choice:

AS || BS = (ai Abi, AN B)

This models an arbitrary interleaving of the action of AS and BS without any assumption of
fairness. As grd (AN B) = grd AV grd B, the combined system terminates only if both A and B
are not enabled. As ¢trm (AN B) = trm A A trm B, the combined action system aborts if either
A or B aborts. (We omit the explicit state space reordering and the natural extensions by skip
for A and B to operate on the global state space and their respective local state space in AM B.)
Parallel composition is commutative and associative, up to the order of state components.
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Given an action system AS, we can make part of its global state space local by var b |
bi* AS, as we do typically for hiding common variables of two action systems composed in
parallel. If ¢ and b are disjoint then:

var b | bi* vara|ai* doAod = vara,b|aiAbi* do Aod

Trace Refinement. Behaviors contain a local state component, which is not observable from
outside. Furthermore, behaviors may contain stuttering steps which are not observable from
outside either. A state (u;41,vi4+1) is a stuttering state if u; = u;41. Traces on the other hand
capture only the observable part of behaviors. For a behavior s, its trace tr s is obtained by

1. removing all finite sequences of stuttering states from s, and
2. removing the local state component from all states in s.

Behavior s approximates behavior ¢, written s < ¢, if

e s is aborting and tr s is a prefix of ir ¢, or
e {rs=1Irt.

Trace refinement between action systems AS and BS with the same global state space holds if
all behaviors of BS have an approximating behavior of AS:

AS < BS = Vte beh BS*3ds € beh AS*s =<t

Since only finite stuttering is removed, an infinite behavior gives rise to an infinite trace and a
finite behavior gives rise to a finite trace. Both “concrete stuttering” in BS as well as “abstract
stuttering” in AS are allowed.

Simulation. Trace refinement can be shown to hold by simulation. Here we consider forward
simulation between AS = (ai, A) and BS = (bi, B) with the same global state space using a
relation R. An action Ay is a stuttering action if it always terminates and it leaves the global
state unchanged:

trm Ay = true and nzt Ay (u,v) (u',0") = u=1

Let S™ be the n-fold sequential composition of statement S, defined by S° = skip and §"t! =
S ; §". Let S* stand for the nondeterministic choice between all n-fold sequential compositions
of S, defined by S* = (M n € Nat * S™). Define AI = enter a | ai and BI = enter b | bi.
Action system AS is simulated by BS using R, written AS g BS, if there are decompositions
A=Ay Ay and B = By M By such that A; and By are stuttering actions and:

(a) Initialization: Al'; A5 [RIC BI; By

(b) Actions: Ay A [RIC[R]; By By

(c) Exit Condition: R[trm AN grd A] < grd B

(d) Internal Convergence: R[trm A A trm (do Ay od)] < trm (do B; od)
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Condition (a) expresses that after the initializations AI and BI, the states of AS and BS
have to be in the refinement relation, provided that any number of stuttering actions AE‘ and
Bh* may follow the initializations, respectively. Condition (b) can be equivalently written as
Ay AE“ Er By; Bh*‘ It expresses that Ay is data refined by By, provided that any number
of stuttering actions AE“ and Bh* may follow the actions Ay and By, respectively. Condition
(c) expresses that BS must terminate whenever AS does. Condition (d) expresses that the
stuttering action Bh* must terminate if the stuttering action Bh* does. The proof of condition
(d) involves showing loop termination, which is typically done with a variant.

Theorem 2.1. Let AS and BS be action systems and R a relation. Then:
AS Xr BS = AS < BS

In general, action system refinement is not compositional in the sense that refining one action
system would lead to a refinement in an environment with other action systems running in
parallel. However, we get compositionality under the additional constraint of non-interference.
Let ES = (ei, E) be an action system and let R be refinement relation for AS. Action system
ES does not interfere with R if

trm EANr < FEr

where 7(u,e) = R (u, a) (u,b). In other words, r is an invariant of E.

Theorem 2.2. Let AS, BS, and ES be action systems, let R be a relation. If ES does not
interfere with R then:
AS Xp BS = AS || ES < BS | ES

Figure 1 summarizes the various ordering relations on predicates, statements, traces, action
systems, and classes.

3. Objects and Classes

Conventionally, a class is a template that defines a set of attributes and methods. Methods
of a class may contain self-references to the method itself and to other methods of the class.
Instantiating a class creates a new object with initialized attributes and method bodies as defined
by the class. A subclass inherits attributes and methods from its superclass. Furthermore a
subclass may add new attributes and overwrite inherited methods. Methods in a subclass may
contain super-references to methods in the superclass. Formally, classes are modeled as self-
referential recursive structures, where self-references are not resolved at the time the class is
declared, but resolving is delayed until objects are created [31].

These principles are extended here: classes define additionally a set of actions, which are in-
herited in subclasses and may be overwritten. Subclasses may also introduce additional actions.
Self-references are possible between both methods and actions. Self-references are resolved at the
time when an object is created. Also, both methods and actions may contain super-references
to methods and actions in the superclass.
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p<gq entailment of predicates Section 2.1
SCT algorithmic refinement of statements Section 2.1
SCrT data refinement of statements Section 2.1
st approximation of traces Section 2.2
AS < BS trace refinement of action systems Section 2.2
c=°D class refinement with single object Section 4.1
C=<'"D class refinement with dynamic object structures Section 5.1
AS <r BS simulation of action systems Section 2.2
C<xxD simulation of classes with single object Section 4.2
C 4% D simulation of classes with dynamic object structures Section 5.1

Figure 1. Summary of ordering relations

3.1. Classes

Let 3 be the type of the attributes of some class C' and let « be a type variable to be instantiated
by the type of the global variables and possibly by the type of further attributes of subclasses.
Typically, classes have several attributes and programs contain several global variables. Thus,
elements of X2 and « are tuples. Attribute and variable names are used for accessing the corre-
sponding components. The set of methods and actions of a class is represented by a tuple with
the method and action name accessing the corresponding component. For the types of methods
m; and actions a; of C' we define

CM; =axXxA;j xQ;—axXxA; xQ, CA=axXYX—axX

where A; and Q; are the types of the value, respectively result parameter of method m;. Within
a class, methods m; and actions a; of that class can be referred to by self.m; and self.a;,
respectively. This is formalized by having self.m; and self.a; as parameters of all methods and
actions, allowing all methods and actions to be referred to by all methods and actions. The
usefulness of this generalization becomes clearer when considering inheritance. Let self stand
for the tuple of method and action names prefixed by self:

self = (self.-mq, ..., self.-muy, self.ai,. .., self.ag)

Let ¢m; be the body of method m;. Since ¢m; may contain calls to other methods and actions
of the same object, m; is a function of self:

m; = Aself ¢ cm;
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self self

(a) (b)

Figure 2 Illustration of (a) class C and of (b) taking the fixed point of C. The incoming arrow
represents calls to C, the outgoing arrow stands for self-calls of C.

Thus, the parameter self may be used inside ¢m;. Actions are treated analogously. The collection
of all methods and actions of a class can then be expressed as a tuple cs parameterized with
self,

cs = Aself ¢ (emy,...,cmpy, cay,. .., cag)

where cm; : CM;, ca; : CA, self.m; : CM;, and self.a; : CA. Note that self is here used to
refer to methods and actions, but not to reference attributes (fields) of an object. Attributes
are referenced with their unqualified names inside methods and actions.

A class also specifies possible initial values c¢i : P of its attributes ¢. Hence a class C takes
the form of a tuple:

C = (ci,cs)

Figure 2(a) illustrates the definition of a class. For defining class C with attributes, methods,
and actions as above we use the syntax:

class C'
attr c | ci,
meth my(val vy, res 1) is emy,
oo
meth m,, (val v, res ry) is cmy,,
action q; is cay,
oo
action q, is cq,
end

Objects have all self-calls resolved with methods of the object itself. Self-calls may be mutually
recursive, like mutually recursive procedures. Modeling this formally amounts to taking the
least fixed point of the function c¢s (Figure 2(b)). Methods and actions of objects of class C,
denoted by C.m; and C.a;, respectively, are defined by taking the fixed point of the tuple of all
methods and actions and then selecting the corresponding method or action:

C.m; = (u cs).my C.a; = (p cs).q;

Declaring a variable z to be of class ' means declaring it to be of type X and initializing it with
ci:
varz:(Ce*S = varz|ci* S
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Such a variable corresponds to a local, stack allocated object in programming languages. Since
actions cannot access variables which are local to some statements, concurrency cannot be
expressed this way. For this purpose dynamic object structures are introduced later.

A method call z.m; of object z of class C corresponds to a procedure call with z as a
value-result parameter.

z.m; = varc*c:=z; C.m;; 1:=c¢

The name of the implicit formal parameter is that of the attributes, namely ¢. Therefore, ¢ is
used to access local data in the body of C'.m;. This corresponds to this in some programming
languages.

Additional value and result parameters are treated as for procedure calls. For convenience,
we also use the same notation for selecting an action of an object:

z.a; = varcec:=z; C.q;; z:=c¢

Example. We illustrate the above definitions with a stylized example. Let class £ be defined

as follows:
class F

attrc| c=0,

meth change is ¢ :€ NAT,

meth incis c:=c+1,

action q is true — self.change
end

If E = (ei, es), then ei = Ac* (¢ =0) and es is given by:
es = A(self .change, self .inc, self .a) * (¢ :€ NAT, ¢ := c + 1, true — self.change)

Taking the fixed point of es results in the substitution of the call to change by the definition of
change in E:
pes=(c:€ NAT,c:= ¢+ 1,true — ¢ :€ NAT)

The use of fixed points becomes clear when we consider overriding in inheritance.

3.2. Inheritance

Inheritance is expressed by the application of a modifier to a base class: If D inherits from C,
then D is equivalent to L mod C, where modifier L corresponds to the extending part of the
definition of D. This model of single inheritance is equivalent to dynamic method lookups along
the inheritance graph as implemented in most object-oriented languages [16]. We call C' the
superclass of D and D a subclass of C.

Let C be as above. A modifier L specifies additional attributes, say [ of type A. We consider
only modifiers that redefine all methods of the base class. If a method should remain unchanged,
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this is expressed by making a supercall to the same method of the base class. A modifier also
redefines all actions of the base class and possibly adds new actions.

For defining modifier L with attributes, methods, and actions as above we use the following
syntax, where unmentioned methods m; and actions a; are defined as super.m; and super.a;,
respectively:

modifier L
attr [ | li,
meth my(val vy, res 1) is Imy,
.
meth m,, (val vy, res ry,) is Imy,,
action a; is lay,
.
action ay is lay
end

For the types of methods m; and actions a; of L we define

LM; =0 XAXEXXA; x> 0xAXEXxA; x§;
LA=0BxAXYX—xAXxX
where (3 is the type variable for global variables and further attributes in subclasses of D. Thus,
we instantiate o of CM; and CA by 8 x A. The types of the value and result parameters of
method m; are, exactly as in C, that is A; and €;. Within L, methods m; and actions a; of
that class can be referred to by self.m; and self.a;, and those of the superclass C' by super.m;
and super.a;, respectively. This is formalized by having self.my, self.ay, super.m;, and super.a;
as parameters of all methods and actions. We let self and super stand for:
self = (self.mq,...,self.-mp, self.a, ..., self.ap)
super = (super.mqy,..., SUPer.-My,, SUPET.ay, . . . , SUPET-Ayg )
The collection of all methods and actions of modifier L can then be expressed as a tuple Is
parameterized with both self and super,

Is = Aself * Asuper * (Imy, ... Impy,lay, ... lap)

where Imy, : LMy, lay, : LA, self.mj, : LMy, self.ay, : LA, super.m; : CM;, and super.a; : CA. A
modifier also specifies initial values i : A of the new attributes /. Hence a modifier L takes the
form of a tuple:

L= (li,ls)
The modification of C' by L binds super-calls in L to C' and leaves the self-calls in L and C
unresolved for possible further modification (Figure 3(b)):

Lmod C = (li A ci, Aself * Is self (cs self))

Here self = (self.-my,...,self.-mmy, self.ai, ..., self.a,) is identical as self in the definition of cs.
Self-calls in L mod C, including those in methods and action of C, are bound to L when an
object is instantiated (Figure 3(c)).
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C C
super super self super self
L L L self
L= self self
(b) ()

(a)

Figure 3 Illustration of (a) modifier L, of (b) L mod C, and of (c) taking the fixed point of
L mod C

Example. We illustrate inheritance by extending class F of Section 3.1. Modifier F' overrides
method change and adds action b:

modifier F
meth change is super.inc(),
action b is ¢ < 10 — self .inc()
end

If F = (fi,fs), then fi = true and fs is given by:

fs = A(self .change, self .inc, self .a, self .b)
A(super.change, super.inc, super.a) *
(super.inc(), super.inc(), super.a, ¢ < 10 — self .inc())

The second and third component are the implicit supercalls of not explicitly redefined method
inc and action a. The application F' mod E gives the following:

Fmod E = (gi,gs)
gi = Ac* (c=0)
gs = A(self.change, self .inc, self .a, self .b) * (¢ :==c+ 1,¢c:= c+ 1,

true — self.change(), ¢ < 10 — self .inc())

This illustrates that the super-calls are bound to the definitions in E. On the other hand, the
self-calls in both E and F are still unresolved. This makes it possible to add another modifier
to F mod E. The self-calls are again bound when an instance of F' mod F is created:

pgs=(ci=c+l,c:=c+1,true > c:=c+1,¢<10 =5 c:=c+1)

4. Class Refinement and Class Simulation

In this section we define class refinement in terms of trace refinement. Also, a simulation
condition between classes with a relation is defined and proved to imply class refinement. The
reasoning is done with a single object of a class running in isolation; dynamic object creation is
considered later.
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4.1. Class Refinement

For an object z of class C, let A[z] be the action system with all its actions. Thus A[z] specifies
how z behaves between external method calls to z:

Alzl=doz.a; ... | z.a, od

Let O[z] be an action system observing object z only through method calls: we represent O|z]
as the (guarded) choice of either aborting or calling a method of z, where additionally local
variables may be updated between method calls. Let SA, Si,..., S, be universally conjunctive
statements that are independent of the global state, i.e. they access only local variables h:

Olz] = var h | hi* do SA; abort | S1; z.mi|...[| Sm; z.mpy od

Let K[C] be a program operating on an object z of class C such that K is the full context of z,
in the sense that no other program accesses z. We describe [C] by an interleaving of method
calls to z and of actions of z:

K[C] = varz: C * O[z] || Alz]

Class D is a refinement of class C, written C <° D, if using an object of class D instead of C
in all possible programs yields a trace refinement of the original program:

C =<°D = VK-« K[C] < K[D]

Class refinement between two classes is independent of how the classes are constructed using
inheritance. However, it is considered good practice if a class refines all its superclasses, partic-
ularly in languages in which inheritance leads to subtyping (i.e. substitutability).

Our theory of refinement applies to classes with inheritance and self- and super-calls as
introduced above. Because self- and super-calls in methods and actions are resolved before re-
finement is considered, there is no textually explicit resolution with fixed points here. Therefore,
our treatment of refinement is independent of the model for inheritance and self- and super-calls
and is also applicable to models lacking these concepts. In summary, our notion of refinement
is targeted at the model of classes introduced in Section 3, but is independent enough to be
applicable to other models as well.

4.2. Class Simulation

For proving refinement between classes C = (ci, ¢s) and D = (di, ds) we use a simulation with
a refinement relation R. Define CI = enter ¢ | ci, DI = enter d | di, and:

CX=C.ag...MNC.a, and DX =D.aqy...MD.ay

Class (' is simulated by D using R, written C' <% D, if there is a decomposition CX = CXMCX;
and DX = DX; M DXy such that CXy; and DX, are stuttering actions and:
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(a) Initialization: CI; CX;; [R] C DI ; DX/

(b) Methods: C.m;; CX{"; [R]C[R]; D.m;; DX
for all m; in mq,..., my,

(c) Actions: CXy; CX;; [R]C[R]; DXy; DX/

(d) Method Guards: R[trm C.m; A trm CX A grd C.m;] < grd D.m; V grd DX
for all m; in mq,..., my,

(e) Exit Condition: R[trm CX A grd CX] < grd DX

(f) Internal Convergence: R[trm CX A trm (do CX; od)] < ¢trm (do DX; od)
Theorem 4.1. Let C and D be classes and R a relation. Then:
CxpD=0C=°D
Proof:
By the subordinate lemma below and Theorem 2.1. O

Lemma 4.1. Let C and D be classes and R a relation. Then:
C X3 D =VK-+K[C] < K[D]

Proof:

We define:
CY = (SA; abort)M(S1; Comy)N...M (S ;5 C.my,)

DY = (SA; abort)N1(S1; Domy)M...M0(Sm ; D.my,)

We have to show that (a) to (f) above imply K[C] g K[D] for any K as above, which means
that for any hi, SA, and Si,..., Sp:

var h | hi* var ¢ | ci* do CY | CX od <3
var h | hi* var d | di * do DY | DX od

We note that R is independent of h, hence h is not involved in the refinement. According to the
definition of action system simulation (Section 2.2) with Al := CI, Ay := CY N CXy, Ay := CX,,
BI := DI, By := DY 1 DXy, and B, := DX we get four conditions:

(1) Initialization: CI; CX;; [R]C DI; DX}
(2)  Actions: (CY N CXy); CX5 [RIC[R]; (DY M DX,); DX;
(3) Exit Condition: Ritrm (CY NCX) A grd (CY N CX)] < grd (DY N DX)

(4) Internal Convergence: R[trm (CY M CX) A trm (do CX; od)] < trm (do DX, od)
Condition (1) follows immediately from (a). For (2) we calculate, for any SA and S, ..., Sp:

(CY N CXy) s CX[ 5 [RIC[R]; (DY NDXy) ; DX/

{; distributes over M}
(CY; CX;; [R)N(CXy; CX[ 5 [R]) C([R]; DY ; DX[)N([R]; DXy; DX{')
= {monotonicity }

(cY; CX;; [R] C [R]; DY ; DXH*) A (CXy s CX;; [R] C [R]; DX; ; DXH*)
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The second conjunct follows from (¢). We continue with the first conjunct:

CY: OX;; [R|C[R]; DY : DX;
{definition of CY, DY and ; distributes over M}
(SA; abort ; CX;*; [R]) M (S1; Coma s CX[ 5 [R)) M.
M (Sm; Comm ;3 CX; 5 [R]) C
([R]; SA; abort ; DX)N([R]; S1; Domy; DXJ) ...
N([R]; Sm; D.mm; DX{)
{monotonicity }
(SA: abort ; CX;"; [R]C[R]; SA; abort ; DX)A
(Vie{l,....,m}S;i; Comiy CX 5 [RIC[R]; Siy D.m;; DXYY)
{S; [R]C [R]; S for independent R, S and abort ; S = abort for any S}
(Vie{l,...,m}S;i; Comiy CX 5 [RIC[R]; Siy D.mi; DXYY)
{as S; and R are independent}
Vie{l,...,m}*S;; C.m;; CX; ; [RIC S;; [R]; D.m;; DXy
{monotonicity }
Vie{l,...,m}* C.m;; CX/; [R|C[R]; D.m;; DX/

The last line follows from (b). For (3) we calculate, for any SA and Sy,...,Sy:

Ritrm (CY N CX) A grd (CY N CX)] < grd (DY N DX)
{as trm (SN T)=trm SA trm T and grd (ST T) = grd SV grd T}
R[trm CY A trm CX A (grd CY V grd CX)] < grd DY V grd DX
{monotonicity }
(R[trm CY A trm CX A grd CY] < grd DY V grd DX)A
(R[trm CX A grd CX] < grd DX)

The second conjunct follows from (e). We continue with the first conjunct:

R[trm CY A trm CX A grd CY] < grd DY V grd DX
{grd(S ; T) < grd T if S universally conjunctive and S, T independent}
R[trm CY A trm CX A grd CY] <
grd DY V grd (SA; DX)V ...V grd (Sp ; DX)
{grd (ST1T)=grd SV grd T for any S, T}
Ritrm CY AN trm CX A grd CY]| < grd (DY N (SA; DX)N...N(Sn ; DX))
{R[p) < ¢ =p < [R] g and [R)(grd §) = grd ({R} ; S) (*)}
trm CY A trm CX A grd CY <
grd ({R}; (DY I (SA; DX)N...N(Sm ; DX)))
{; distributes over M and abort M S = abort for any S}
trm CY A trm CX A grd CY < grd ({R} ; SI; abort)n
{R}; S1; (DominDX))N...MM({R}; Sm; (D.my N DX)))
{{R}; SC S; {R} if R, S independent and grd U < grd T if T C U}

43
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trm CY A trm CX A grd CY < grd ((SA; {R}; abort)n
(S5 {R} 5 (Damy N DX)) 11 .. 1V (S 3 {R} ; (Dot 11 DX)))
= {trm (ST T) = trm S A trm T and
grd (ST T) = grd SV grd T for any S, T'}
(trm (SA; abort) A trm CX A grd (SI ; abort) < grd (SI ; {R}; abort)) A
(Vie{l,...,m} s trm (S;; C.mi) A trm CX A grd (S;; C.m;) <
grd (Si; {R}; (D.m; N DX)))
&= {{R} ; abort = abort for any R}
Vie{l,...,m} e trm (S;; C.mi) A trm CX A grd (S;; C.m;) <
grd (S; s {R}; (D.m; N DX))
= {trm T < trm (S ; T) if S universally conjunctive and S, 7' independent}
Vie{l,...,m}* trm (S;; C.mi) A trm (S;; CX) A grd (S;; C.m;) <
grd (Si; {R}; (D.m; N DX))
= {trm (ST T) = trm S A trm S for any S, T and ; distributes over M}
Vie{l,...,m}* trm (S;; (C.m; T CX)) A grd (S;; C.m;) <
grd (Si 5 {R}; (D.m; N DX))
= {(trm T AN grd U < grd V) =
(trm (S; T)Ngrd (S; U) < grd (S; V)}
Vie{l,...,m}* trm (C.m; N CX) A grd C.m; < grd ({R}; (D.m; N1 DX))
{(*) above}
Vie{l,...,m}* R[trm (C.m; 1 CX) A grd C.m;] < grd (D.m; N DX)
{trm (ST T) = trm S A trm T and
grd (ST T)=grd SV grd T for any S, T}
Vie{l,...,m}* R[trm C.m; N trm CX A grd C.m;] < grd D.m; V grd DX)

The last line follows from (d). Condition (4) follows from (f) by monotonicity. O

A related theorem has first been given for action systems with remote procedures in [9] and in a
revised form in [30], which is similar to the corresponding theorem for OO-action systems in [13].
The theorem given here generalizes those in four ways. First, we consider trace refinement and
not just input/output refinement. Thus, class refinement also preserves reactive behavior and is
meaningful for non-terminating systems. Second, removing abstract stuttering in refinement is
explicitly considered. Third, the concrete stuttering action can be more general than a (data-)
refinement of skip. Fourth, conditions (d) and (e) are weakened by including the termination
conditions into the antecedents of the implications.

The case with no explicit abstract stuttering and the concrete stuttering actions being re-
finements of skip is obtained as a special case. Let C' and D be classes and let CI, DI, CX,
and DX be defined as above. Assume there exists a decomposition DX = DXy M DX, such that
DXy is a stuttering action. The conditions for this case are:

(a’) Initialization: CI; [R]C DI
(b’)  Methods: C.m;; [RJC[R]; D.m; forall m; in my,...,mp,
(¢’) Main Actions: CX ; [R] C [R]; DXy
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(d’) Internal Actions: [R] C [R] ; DX,

(')  Method Guards: R[trm C.m; A trm CX A grd C.m;] < grd D.m; V grd DX
for all m; in mq,..., my,

(f’) Exit Condition: R[trm CX A grd CX] < grd DX

(g') Internal Convergence: R[trm CX] < trm (do DX; od)

Condition (d’) is equivalent to skip CTx DXj, expressing that the concrete stuttering actions are
data refinements of skip .

Theorem 4.2. Let C and D be classes and R a relation as above. If conditions (a’) — (g9°) hold
then C <% D.

Proof:
We show that the above conditions (a’) - (g’) imply the conditions (a) — (f) of class simulation.
We set CX; := CX and CXj := magic. Thus we have C’Xuo = skip, CXhi = maygic for all 1 > 0,
and, therefore, CX;" = skip because skip M magic = skip. With this, (a) follows immediately
from (a’) and (d).

By reflexivity and transitivity of refinement, we get from condition (d’) that [R] C [R] ; DX;
for any i > 0. Since [R] is refined by sequences of any length, it is also refined by their choice,
[R] C [R]; DX;". Condition (b) then follows by a transitivity from the following calculation:

C.m; ; CX{"; [R]

C {as[R]CI[R]; DX}
C.m; ; [R]; DX/
C {condition (b’)}

[R]; D.mi; DX/

Condition (c) follows analogously using (c’). The remaining conditions (d) to (f) follow directly
from (e’) to (g’). For (f) we observe that do CX; od = magic and trm magic = true. O

Corollary 4.1. Let C and D be classes and R a relation as above. If conditions (a’) — (g’)
hold then C <° D.

As with action system refinement, class refinement is not compositional in the sense that re-
fining the class of an object will not necessarily lead to a system with other objects running
in parallel being refined. However, we get compositionality under the additional constraint of
non-interference with the environment. The environment is expressed as an action system that
can access the global variables, but cannot access the (single) object of the class in question.

Theorem 4.3. Let C and D be classes, ES be an action systems, and R be a relation. If ES
does not interfere with R then:

¢ <% D = VK« K[C] | ES < K[D] || ES

Proof:
By Lemma 4.1 and Theorem 2.2. O
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4.3. Example

We use an artificial aquarium as an example. Clearly, the observable sequences of states, de-
noting the position of the fishes, are the relevant aspect in such a system. A refinement of only
the state transformation from initial to final states would be insufficient: A dedicated artificial
aquarium has no final state. For its use as a screen saver, input/output refinement would only
mean that at the end we are again guaranteed to get the original screen back.

The global variable s : array [0..w — 1,0..h — 1] of NAT denotes the state (color) of each
quadrant of the screen, with constants w > 6 and h > 6. The color value 0 stands for background
water. The base class Creature of all objects in our aquarium is given by:

class Creature
attr z,y,col |0<z<wA0<y<hAcol#0,
meth move(val dz, val dy) is
0<z+dr<wANO<Ly+dy<h—
skip N (s[z,y] :==0; z:=z +dz; y:=y+ dy; s[z,y] := col),
action newpos is
slz,y] :==0; z:€ {0.w —1}; y:€ {0..h — 1} ; s[z,y] := col
end

Creatures described by class Ray are a refinement with a special form of movement. Rather
than jumping wildly around the screen, rays are always at the same vertical position, have a
horizontal speed sz, and move at most 3 pixels at once:

class Ray
attr z,y,col,sz |2 =0AN0<y < hAcol=5Asx =1,
meth move(val dz, val dy) is
0<z+dr<wAN-3<de<3ANdy=0—
slz,y] =03 z =z +dz ; s[z,y] = col,
action newpos is
0<z+4+szr<w—sz,yl:=0; z:=2+sz; s[z,y]:= col,
action bouncel is z 4+ sz < 0 — sz :€ {1..3},
action bouncer is w < z + sz — sz :€ {—3.. — 1}
end

Class Ray refines class Creature with refinement relation R:

R (s,z,y,col) (' 2",y col',sx') = s=sANzx=2'A0<z<wAy=9yA
0<y<hAcol=col'l N=3<sz' <3

We can use Theorem 4.2 to prove Creature <% Ray because we have no explicit abstract stutter-
ing. We set CX := Creature.newpos, DXy := Ray.newpos, DXy := Ray.bouncel M Ray.bouncer,
and CI and DI to the respective initialization. Internal convergence (condition (g’)) follows by
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transitivity from the calculation below (assuming that an access to s outside the screen aborts):

R[trm CX]

= {definitions of ¢trm and CX}
R0<z<wA0<y<h]

= {definition of R, relational image}
0<z' <wA0O<y<hA-3<sz'<3

< {universal implication}
—1<z'<wvio<z' +s2' <w

= {definitions, calculus}
trm (do DX, od)

The other conditions can also be proved by unfolding the definitions and refinement rules. By
Corollary 4.1 we also get Creature <° Ray. Hence, replacing a Creature by a Ray in any context
K produces a trace refinement.

5. Dynamic Object Structures

In this section we introduce dynamic object structures, which allow multiple objects to run
concurrently. Furthermore, we extend the discussion of class refinement and class simulation to
this setting.

We model the heap as an array and pointers as indices into this array [25]. We first describe
the basic ideas using only one class and then generalize it to multiple classes with subtypes.

5.1. Single Class

For a class C' with attributes of type > we declare a program variable heap to contain all
dynamically created objects:

var heap : array NAT of ¥

Pointers to objects of C' are then simply natural numbers, that is the declaration p : pointer
to C stands for p : NAT. We use 0 to denote nil, that is the pointer not referencing any object.
We use a separate counter nezt, initialized to 1, to generate new pointer values. If c¢i is the
initialization of the attributes of C' and p is a pointer, p : pointer to C, then the creation of a
new object is defined by:

p:=new C = p:=mnext; (MNc| ci* heap[p] := c) ; next := next + 1

To handle the way how attributes of objects on the heap are referenced, we have to introduce
an indirection for each attribute reference via the receiver (the current object). We denote the
receiver by this and introduce the shorthand this.c for referencing the attribute ¢ of the object
heap[this]:

this.c = heap[this].c



48 M. Biichi and E. Sekerinski / Refining Concurrent Objects

We use this shorthand in both expressions and for assignments in methods. A method call p.m
is then defined as (We use the restricted choice rather than the variable notation for this because
the latter is a constant rather than a program variable.):

p.m = {p # nil}; (Nthis | this=p* C.m)

Parameter passing is handled as for procedures. In our formalization, this is used to reference
the receiver object whereas self and super are used in classes to reference methods and actions.

Formally, a class C with dynamically created objects is given by C = (c¢i, ¢s) as previously,
except that heap is now necessarily part of the global state and all references in cs to attributes
go via heap. The selection C.m; and C.a; are defined as previously and we use the same syntax:

class C
attr ¢ | ci,
meth m;(val vy, res 1) is cmy,
e
meth m,, (val v, res rpy,) is cmy,,
action a; is cay,
e
action q, is ca,
end

With the declaration of class C' as above, we associate an action system A[C] which consists of
actions operating on all objects of that class:

A[C] = do ([this | 1 < this < next* C.a1 | ...] C.a,) od

This action system is composed in parallel with any other action system using objects of class C.

Example. A class Creature with dynamically created objects could be defined by:

class Creature
attr z,y,col |0<z<wA0<y<hAcol#0,
meth move(val dz, val dy) is
0 <this.x +dzr < wAO0 < this.y +dy < h —
skip T (s[this.z, this.y] :== 0 ; this.z := this.z + dz ;
this.y = this.y + dy ; s[this.z, this.y] := this.col),
action newpos is
slthis.z, this.y] == 0; this.z :€ {0..w — 1} ; this.y :€ {0..h — 1} ;
s[this.x, this.y] := this.col
end
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This declaration stands for:

var heap : array NAT of NAT x NAT x NAT
var nezt | next = 1
class Creature
meth move(val dz, val dy) is
0 < heap[this).z + dz < w A0 < heap[this].y + dy < h —
skip M (s[heap[this].z, heap|[this].y] := 0 ;
heapthis].z := heap[this].z + dz ;
heap[this].y := heap[this].y + dy ;
s|heap[this].z, heap[this].y] := heap[this].col),
action newpos is
s|heap[this].z, heap[this].y] := 0 ;
heap(this].z :€ {0..w — 1} ; heap[this].y :€ {0..h — 1} ;
s|heap[this].z, heap|[this].y] := heap[this].col

end
If ¢r is a pointer to a Creature object, cr : pointer to Creature, then cr := new Creature is
defined by:
cr = next ;

(Mz,y,col |0 <z <wA0<y<hAcol#0¢ heap[cr] :== (z,y, col)) ;
next := next + 1

A method call cr.move(2,7) stands for:
{er # nil} ; (Mthis | this = cr * Creature.move(2,7))
The method selection Creature.move(2,7) stands for:

var dz,dy * dr,dy := 2,7 ;

0 < heapl[this].z + dz < w A0 < heap[this].y + dy < h —
skip M (s[heap[this].z, heap|this].y] := 0 ; heap[this].z := heap[this].z + dz ;
heap[this].y := heap[this].y + dy ;
s|heap[this].z, heap[this].y] := heap[this].col)

The action system A[Creature] associated with Creature is:

do
([this | 1 < this < next *
s|heap[this].z, heap[this]|.y] := 0 ; heap[this].z :€ {0..w — 1} ;
heap[this).y :€ {0..h — 1} ; s[heap[this].z, heap[this].y] := heap|this].col)
od
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5.2. Class Refinement and Class Simulation

We show that with the above definitions the notion of class refinement carries over analogously
to dynamic object structures. With the declaration of a class C, we associate an action system
O[C], which observes all objects of class C' by calling their methods. We represent O[C] as
the (guarded) choice of either aborting or calling a method of z, where additionally local vari-
ables may be updated between method calls. Let SA, Si,..., Sy, SC be universally conjunctive
statements that are independent of the global state, i.e. they access only local variables h:

O[C] =
var h | hi*
do SA ; abort
[([this | 1 < this < next* Sy ; Comy || ...[ Sm; C.mpy)
[SC; p:= new C
od

Here we assume that p is part of the local variables h. Let K[C] be a program operating on
objects of class C' such that K is the full context of objects of class C, in the sense that no other
program accesses the attributes of objects of C or creates new objects of C'. We describe K[C]
by an interleaving of method calls to instances of C, creation of new instances of C', and actions
of instances of C"

K[C] = var heap, next | next =1+ O[C] || A[C]

Class D is a refinement of class C, written C < D, if using objects of class D instead of C in
all possible programs yields a trace refinement of the original program:

¢ <"'D = VK+K[C] < K[D]

The conditions for simulation between two classes with dynamically created objects are like those
for simulation with a single object, except that all objects on the heap are in the refinement
relation. Let R be a refinement relation between classes C = (ci, ¢s) and D = (di, ds) such that

next = 1 = R(u, heap, next)(u', next'heap')

where u are the global variables. That is, if the heap is empty the refinement relation must
hold. Furthermore we define CC = p := new C, DC = p := new D, and

CX = (Mthis | 1 < this < next* C.ay M...1 C.a,)
DX = (Mthis | 1 < this < next * D.ay M...M D.ay)

Class C is simulated by D using R, written C 42 D, if there is a decomposition CX = CX;MCX;
and DX = DXy M DX such that CX; and DX, are stuttering actions and:
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(a) Creation:
(b) Methods:

(c) Actions:
(d) Method Guards:

(e) Exit Condition:

(f) Internal Convergence:

CC; CX/;; [R]C[R]; DC; DX;
C.m;; CX{" 5 [R] T [1 < this < nest]; [R]; D.m; ; DX{
for all m; in mq,..., my,

CX;: CX7; [R|C [R]; DX;; DX;

R[1 < this < next A trm C.m; A trm CX A grd C.m;] <
grd D.m; vV grd DX  for all m; in mq,..., my,

R[trm CX A grd CX] < grd DX

R[trm CX A trm (do CX, od)] < trm (do DX; od)

Theorem 5.1. Let C and D be classes and R a relation. Then:

Proof:

c<xhD=Cc=<'D

By the subordinate lemma below and Theorem 2.1. O

Lemma 5.1. Let C and D be classes and R a relation. Then:

¢ <, D= VK *K[C] <r K[D]

Proof:
We define:
CY = (SA; abort)n
(Mthis | 1 < this < next * (S1; C.my)MN...M0 (S ; C.my)) N
(SC; CQ)
DY = (SA; abort)n
(Mthis | 1 < this < next* (S1; D.my) N ...0(Sp ; D.my,)) N
(SC; DO)
CI = enter heap,next | next =1
DI = enter heap, next | next =1

Leaving out the types, we note that heap in CI is an array of C attributes and heap in DI is
an array of D attributes. We have to show that (a) to (f) above imply K[C] <r K[D] for any
K as above, which means that for any hi, SA, Sy,..., Sy, and SC:

var h | hi * var heap,next | next =1+ do CY | CX od <p
var h | hi * var heap, next | next =1+ do DY || DX od

We note that R is independent of h, hence h is not involved in the refinement. According to the
definition of action system simulation (Section 2.2) with Al := CI, Ay := CY N CXy, A} := CXj,
BI := DI, By := DY 1 DXy, By := DX, and R := R we get four conditions:

(1) Initialization:

(2) Actions:

(3) Exit Condition:

(4) Internal Convergence:

CI; CX;; [R]C DI ; DX;

(CY N CXy); CX;; [RC[R]; (DY 1DX,); DXy

Ritrm (CY N CX) A grd (CY N CX)] < grd (DY N DX)
R[trm (CY N CX) A trm (do CX; od)] < trm (do DX, od)
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Condition (1) expands to:
enter heap, next | next = 1; CX{"; [R] C enter heap, next | next =1; DX/

First we note that after the initialization of next by 1, neither CX; nor DX; is enabled, as
(M7 | false » S) = magic. Therefore, CX; = skip and DX/ = skip. As nmext is set to 1, the
refinement relation is true by the assumption, and the refinement holds vacuously.

For (2) we calculate, for any SA, Si,..., Sy, and SC:

(CY N CXy) ; CX/"; [R]C [R]; (DY N DXy) ; DX/

{; distributes over M}
(OV: OX;; [R)N(CX;: CX; : [B]) C (IR]: DY : DX;) N ([R]: DX;: DX;)
= {monotonicity }

(cY; CX;; [R] C [R]; DY ; DXH*) AN (CXy 5 CX;; [R] C [R]; DXy ; DXIJ*)

The second conjunct follows from (¢). We continue with the first conjunct:

CY ; OX;; [R]C[R]; DY ; DX;
{definitions of CY and DY and ; distributes over M}
(SA ; abort ; CXy [R]) M
(Mthis | 1 < this < next * (S1; C.my; CX[5 [R])M...
M(Sm 5 C.mpy 5 CX7 5 [R])) T
(8C; CC; CXy 5 [R]) C
([R]; SA; abort ; DX[) T
(Mthis | 1 < this < next * ([R]; S15 D.mq; DX[)M...
M([R] 5 Sm s D.mp 5 DX[)) T
([B]; $C; DC; DXY)
= {monotonicity }
(SA; abort ; CXf; [R]C[R]; SA; abort 5 DX[)A
((Mthis | 1 < this < next * (S1; Comq 5 CXJ 5 [R])O...
M(Sm 5 Comum 5 CXJ 5 [R])) C
(Mthis | 1 < this < mnext * ([R]; S1 5 D.my; DX[)M...
N([R] 5 Sm; D.mm 3 DXJ)))A
(SC; C€C; CX;; [RIC[R]; SC; DC; DXY)
= {S; [R]C [R]; S for independent R, S and abort ; S = abort for any S}
((Mthis | 1 < this < next * (S1; C.my 5 CX[J 5 [R])M...
M(Sm 3 Comm 5 CX[ 5 [R])) E
(Mthis | 1 < this < next * ([R]; S1; D.my; DX[)M...
N([B]; Sm 5 D.mpy ; DX[))) A
(SC; CC; CX;; [RIC[R]; SC; DC; DXY)
= {definition of Mi | p * S and
(Vie SCT)=(Mi*S)C(Ni*T) for any S, T}
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(Vthis e Vi€ {1,...,m}*
[1 < this < next]; S;; C.m;; CX,"; [R] C
[1 < this < mezt]; [R]; Si; D.m;; DX[) A
(SC; €C; €X' [R]C[R]; SC; DC; DXY)
<= {S; and R and SC and R independent, refinement calculus}
(Vthis e Vi€ {1,...,m}*
Si; C.mi s CX{; [R] C[1 < this < next]; S;; [R]; D.mi; DX/[) A
(SC; €C; €X' [R]C SC; [R]; DC; DXY)

The first conjunct follows from (b) and the second from (a). The proof of (3) is similar to the
one of the corresponding condition in Theorem 4.1 and is left out for brevity. Condition (4)
follows from (f) by monotonicity. O

As for the case with a single object, class refinement with dynamic object structures is com-
positional only under the additional constraint of non-interference with the environment. The
environment takes the form of an action system that can access the global variables, but cannot
access the heap with the objects of the class in question.

Theorem 5.2. Let C and D be classes, ES be an action systems, and R be a relation. If ES
does not interfere with R then:

¢ <L, D=VK-+K[C]| ES < K[D] || ES

Proof:
By Lemma 5.1 and Theorem 2.2. O

5.3. Multiple Classes and Subtyping

This formalization easily extends to multiple classes with subtyping. We declare for each class
C; with attribute type X; a separate heap; : array NAT of X;. Thus with a class declaration
class C; ... end we associate:

var heap; : array NAT of %;,
var next; | next; =1

Pointers are extended to tuples with one index indicating the heap and one index indicating
the element within the heap. A pointer variable declaration p : pointer to C; stands for
p: NAT x NAT. The first component of a pointer p is selected by p.class, the second component
by p.ref. The nil value is always represented by (0,0) to make it unique.

Assuming that Cy, ..., C; are all subtypes of C; (including C;), object creation, method calls
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with dynamic dispatch, type tests, and attribute access are defined by:

~

p = new Cj = p:=(i,next;); (Nec| ci; * heapi[next;] := ¢) ;
next; 1= next; + 1
p.m = Ap# nil};
(Mthis | this = p * p.class =k — Cr.m M ...T]
p.class =1 — Cj.m)

p.class € {k,... 1}

this.class = k — x := heapy[this.ref].c ... M

this.class = | — x := heap;[this.ref].c

)

p instanceof C;

1

T = this.c

With each class declaration Cj;, we associate an action system A[C;] which represents all actions
of all objects of that class:

.A[C,] = do
([this | this.class = i N1 < this.ref < next; * Cj.a1 M ... N Cj.a,)
od
For a program with classes C',..., C, we take the parallel composition of the action systems

for objects of each class. This composition is then to be combined with further action systems
containing normal actions and procedures:

A[C - [ A[Cu] || BS

Example. Let class Creature be as defined previously in this section and Ray be defined by:

class Ray
attr z,y,col,sz |z =0AN0<y < hAcol=5Asz =1,
meth move(val dz, val dy) is
0<thisz+dr<wANA-3<de<3ANdy=0—
s[this.z, this.y] := 0 ; this.z := this.x + dz ; s[this.z, this.y] := this.col,
action newpos is
0 < this.z + this.sz < w —
s[this.z, this.y] := 0 ; this.z := this.x + this.sz ; s[this.z, this.y| := this.col,
action bouncel is this.z + this.sz < 0 — this.sz :€ {1..3},
action bouncer is w < this.z + this.sz — this.sz :€ {—3.. — 1}
end

We further assume that a similar class Turtle is defined. Let Aquarium be the main program of
an aquarium, expressed as an action system, in which new rays and turtles are constantly added
and where the most recently created creature is influenced through its move method:

Aquarium = var p: pointer to Creature | p = nil ®
do p := new Ray || p :== new Turtle | p # nil — p.move(2,0) od
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Then the whole system becomes the parallel composition of the action systems associated with
all classes and the main program:

Al Creature] | A[Ray] || Al Turtle] || Agaurium

Note that A[Creature] is only going to affect objects of class Creature (of which there are none),
A[Ray] is only going to affect objects of class Ray, and similarly for Turtle.

6. Early Return

Early returns are a syntactically simple way of increasing concurrency by splitting an action
in two parts. In this section, we show how early returns can be defined and how they can be
introduced as a special case of atomicity refinement.

Consider method rnd that computes random numbers and for later reference stores them in
a time ordered sequence:

meth rnd(res y) is y :€ NAT ; ‘store y in sequence’

Using atomicity refinement, we could split up rnd so that it returns control to the caller after
assigning y and schedules the —if the sequence is kept on secondary storage— time consuming
insertion operation for later. Thereby, the execution time of any action a calling rnd is reduced.
Thus, other actions accessing the same resources as a can be started earlier, thereby increasing
concurrency.

We introduce a release statement, which facilitates the above type of atomicity refinement.
A release returns control to the caller of a method and schedules the remainder to be executed
later on. If the method containing the release statement has result parameters, they must be
assigned before executing release. For example, we could rewrite method rnd as follows:

meth rd(res y) is y :€ NAT ; release ; ‘store y in sequence’

Figure 4 defines release as enabling an action r that performs the remainder. The object is
locked, that is none of its other methods or actions can be executed, until the remainder action
is completed. Introducing a release in m leads to an earlier completion of the action calling
m and allows other actions to be executed in parallel with the remainder 7', thus increasing
concurrency. For simplicity, we do not allow self-calls in the remainder.

Introducing release leads to class refinement under certain conditions. We give a theorem
for the case of a single object:

Theorem 6.1. Let C' and D be classes which are identical except that method m in C and m
in D, referred to as C :: m and D :: m, are defined by:

meth C::misS; T,

meth D :: mis S ; release ; T

We assume that the classes do not contain any self-calls. If T is always enabled, is always
terminating, and does not access global variables, then C' <X° D holds.
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class D class D
attr c | ci, attr c,lck | ci A lck =0,
meth m is S ; release ; T, meth mislilck=0— S5 ; Ick :=1,
meth nis U, meth nislck =0— U,
action a is V action a is lck =0 — V,
actionrisick=1— T ; lck :==0
end end
a) Method with release b) Equivalent without release

Figure 4. Definition of release as enabling a remainder action

Proof:

Without loss of generality we assume that class D is as in Figure 4 and class C is analogously.
As the methods and actions do not contain any self-calls, taking their fixpoint is not going to
change them, ie. Com = S; T, C.n = U, C.a = V, Dom = (lck = 0 — S; lck := 1),
Din=(Ick=0—U),D.a=(lck=0— V),and D.r = (Ick =0 — T ; lck := 0). We apply
Theorem 5.1 with R (u,¢) (u',c',lck") :=vw' = u A (lck' =0 = ¢’ = ¢) and CI := enter ¢ | ci,
CXy:= V, CXy := magic, DI := enter c,lck | ciNick =0, DXy :=lck =0— V, DX} := Ick =
1 — T ; lck := 0. The theorem follows by simplifications of the conditions (a) — (f). O

The release statement can be generalized to allow the remainder to access the value parameter
and the local variables of the method and also read the result parameter (Figure 5). The values
of the parameters and local variables are stored in additional attributes for use by the remainder.

Finally, we consider the case where an action contains multiple calls to methods of the same
object. If a method of an object that has an outstanding remainder is called then the latter
is executed as part of the call. Otherwise, the guard of the methods called after performing a
release would be false and, therefore, such actions never enabled. Consider action b where o
references an object of type C as in Figure 6:

action bis (var z : U * o.m(e,z) ; o.n(e, z))

If we simply locked o, that is, defined the implicit guard of n to be Ick = 0, then b would never
be enabled.
We illustrate this with a random number class that stores a sequence of already computed

numbers:
class C

attr [ :=0,s : array NAT of NAT ,
meth rd(res y) is y :€ NAT ; s[l],l .=y, + 1,
meth get(val i, res y) isi < — y := s[i]

end
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class C class C
attr ¢ := ci, attr c,lck,m_v,m_r,m_z | ci A\ lck =0,
meth m(val v, res r) is meth m(val v, res r) is
varz * S ; release ; T, Ilck=0—varz*S; lck,m_v,m_r,m_z:=1,v,r,z,
meth n(val w, res s) is meth n(val w, res s) is
U, lck=0— U,
action ¢ is action q is
Vv lck=0— 1V,

action r is
lck=1— varv,r,z:=m_ov,m.r,muax*T; lck:=0
end end

a) Method with release b) Equivalent without release

Figure 5. Definition of release with remainder accessing parameters and Local Variables

Class C is refined by D, where a release is introduced in method rnd after the assignment of
y. We show directly the expansion according to Figure 6:

class D
attr [ :=0,s : array NAT of NAT ,lck := 0, rnd_y,
meth rd(res y)isp; y:€ NAT ; lck,rnd_y :==1,y,
meth get(vali,res y)isp; i <l — y:= s[i],
meth p is if lck = 1 then var y := rnd_y * s[l], [, lck := y,l+ 1,0 end ,
actionrisilck=1—p
end

We have C <% D for the following R:

R (I,s) (I',s',lck',rnd_y") = lck’ € {0,1}A
(lek" =0=1=10"A(Vi € {0..1 — 1} « s[i] = s'[i]))A
(lek" =1=1=0+1A Vi€ {0..l —2}+s[i] = s'[1]) As[l —1] = rnd_y")

The proof is a simple verification of the six conditions of class simulation with CXy = magic,
CXy = magic, DXy = magic, DXy = r, and CI and DI the respective initializations.
7. Conclusions and Discussion

We have given a model for action-based concurrency with objects. Classes with attributes,
methods, and actions serve as templates for objects. Class refinement supporting algorithmic,
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class C class C
attr ¢ | ci, attr ¢, lck,m_v,m_r,m_z | ci Nlck =0
meth m(val v, res r) is meth m(val v, res r) is
varz * S ; release ; T, p; varxz* S ; lck,m_v,m_r,m_x:=1,v,r,z,
meth n(val w, res s) is U, meth n(val w, res s)isp; U,
meth p is

if Ick = 1 then
var v,r,z :=m_v,m_r,m_z* T ; lck :=0

end ,
action ais V action a is lck =0 — V,
actionrisilck=1—7p
end end
a) Method with release b) Equivalent without release

Figure 6. Definition of release supporting multiple calls to an object within an action

data, and atomicity refinement is defined based on trace refinement. Class refinement can be
proved by a simulation rule. Early returns are a special form of atomicity refinement. Dynamic
data structures allow objects to run concurrently.

The refinement rules have been developed in a most general form without considering some
useful special cases. For example, for the refinement of classes with dynamically created ob-
jects each attribute reference goes via the heap. If aliasing can be excluded, the rule could be
simplified. Another special case is superposition refinement. When a subclass is created by su-
perposition, the original computation on the inherited attributes is left unchanged. Additional
functionality is provided through new attributes. Deriving rules for such special cases is left as
future work.

Another point about refinement can be illustrated with the example of Section 4.3: Class
Creature can be refined by a class that is identical, except that the method mowve is never enabled,
i.e. defined as magic. All conditions for class simulation hold with Id as the refinement relation
and no stuttering actions. In particular condition (d) holds as the action newpos is always
enabled. While our notion of refinement in a sense preserves liveness of the whole system, it
allows that certain methods calls become impossible. A stronger notion of refinement preserving
the possibility of method calls is worth further study.

Class refinement for concurrent objects is defined here as an extension of class refinement
defined in [26, 27], following the general model of classes as self-referential structures with a
delayed taking of the fixed point of [31, 16]. As known from [26], inheritance is not monotonic
with respect to the refinement of the base class: if C is refined by D, then L mod C is not
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necessarily refined by L mod D. If D is supposed to be a revision of C' and L an independently
developed extension of C, then this leads to the fragile base class problem, a problem plaguing
independent class development and evolution. This problem persists in the concurrent setting.
With the possibility of self- and super-references between actions, it extends to actions.

For expressing symmetric communication and synchronization among several objects, multi-
party actions have been studied in [6]. They can be introduced here without further difficulties.

Many interesting, open questions are connected with early returns. So far we disallowed
self-calls in classes with early returns. Also, the remainder of a method into which we introduce
a release statement cannot modify global variables. Otherwise, multiple changes that were
previously executed in one atomic step could now be performed in multiple steps. The definition
of trace refinement does not permit this. Making intermediate states visible and even making
modifications to other global variable before the remainder’s changes to global variables are
performed are not legal refinements.

Modifications to other objects in the remainder of a method is a useful concept studied
by Jones [20]. This is allowed if there are no other references to those objects and hence those
changes are not observable to the remaining program. To this aim, Jones uses unique references.
Spinning the idea of non-observability even further, the global state could also be updated in
multiple steps if parts of it could be guaranteed not to be observed until the remainder has been
executed. The incorporation of such refinement steps into our formalism is an open issue.

The main advantage of a release statement over a “manual” atomicity refinement are the
readability (no need to syntactically split the method into parts and to syntactically clutter
all guards and the split method with synchronization and variable save statement) and the
automatic resource locking. A version without resource locking would be possible and would
allow additional interleavings, but would lead to practically rather strong proof conditions,
making it less attractive.

The release statement could also be introduced into action systems without objects, for
example within procedures. Objects, however, have the advantage that they encapsulate tightly
coupled state components and, thereby, make it in practice easier to lock resources accessed by
the remainder.
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