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Abstract

This paper reports on an experimental implementation of action-based concur-

rent objects. Concurrency is expressed by allowing objects to have actions with a

guard and a body, in addition to methods and variables. Condition synchroniza-

tion is expressed by method guards protecting entry into an object. An action of

an object can execute any time when its guard is true, with the restriction that at

most one action or methods can execute within an object, thus guaranteeing atom-

icity. In principle, all objects can execute in parallel. The appeal of this model

is that it is conceptually simple for programmers and comes with a verification

and refinement theory based on atomic actions that is a straightforward exten-

sion of that for sequential programs. The concurrency model is suited for tightly

coupled shared-memory processors. The implementation makes use of a recent

thread library, NPTL, that supports a large number of kernel threads. Each active

object has its own thread that cycles through the actions, evaluates their guards,

and executes an enabled action. Syntactic constraints restrict when guards need

to be re-evaluated. We compare the efficiency of the generated code with that of

C/Pthreads, Ada, and Java using classical concurrency examples.



1 Introduction

In the action system model of concurrency, a program is described by a set of

actions of the form p→ S, where p is a predicate, the guard, and S is a statement,

the body of the action. If the guard of action A is true, then A is enabled. In

the sequential execution model, any enabled action Ai = pi→ Si of the system is

selected for execution as long as an action is enabled. In case more than one is

enabled, the selection is nondeterministic. In Dijkstra’s notation this is expressed

as:

dog1→ S1 [] . . . []gn→ Sn od

In the concurrent execution model, any two actions that operate on distinct vari-

ables may be executed in any order or concurrently, which represents the inter-

leaving model of concurrency. The execution of an action is atomic, i.e. without

interference from other actions. Reasoning in the concurrent execution model

can be reduced to reasoning in the sequential execution model, allowing concur-

rent programs to be designed and analyzed as if they were sequential. The action

system model can be used to describe and analyze shared-variable concurrency,

message-passing, and distributed systems [7, 12, 17].

As the sequential execution model simplifies design and analysis, the ques-

tion arises if action systems can be included in a programming language. In a

naive concurrent implementation action guards have to constantly re-evaluated.

If done in hardware, all guards can be evaluated in parallel; indeed, action sys-

tems have been used as a specification language for the development of efficient

hardware implementations [5, 21, 22, 26]. A production system is a kind of an ac-

tion system in which guards are matched against against a memory consisting of

value-attribute pairs and action bodies are updating that memory. While produc-

tion systems can be implemented with concurrency, their use is for expert systems

rather than as a general programming model [16]. An extension of the Oberon-

2 language by actions is reported in [6]. However, that implementation uses the

sequential execution model, hence concurrency is not exploited.

In this paper we report on the implementation of ABC Pascal, an object-based

language with Action-Based Concurrency. The name also suggest that the lan-

guage is meant to be particularly simple and suitable for explaining concepts of

concurrency. If one allows objects to evolve autonomously, objects become a nat-

ural “unit” of concurrency. By attaching actions to objects, rather than having

“global” actions, objects become action systems and an object-oriented program

becomes the parallel composition of objects. We illustrate this with the example
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of an aquarium in ABC Pascal. An action p→ S is written as when b; S within a

class declaration:

const W = 400;

class Fish

var x, d: integer; r: boolean;

procedure setPace (p: integer); {p > 0}
begin d := p end;

action moveRight when (x + d < W) and r;

begin x := x + d end;

action moveLeft when (x − d ≥ 0) and not r;

begin x := x − d end;

action changeToRight when (x < W − 1) and not r;

begin r := true end;

action changeToLeft when (x > 0) and r;

begin r := false end;

begin x := 0; d := 5; r := true end;

var aquarium: array [1..17] of Fish;

Objects with actions are called active objects. After an active object is declared,

first its initialization, as given by the begin-end block at the end of the declara-

tion, is executed and then any of its enabled actions can be executed or any of its

method (procedures) can be called, with the restriction that there can be only one

activation of an action or method. Actions can have a name, but the name does

not carry any meaning. After the declaration of aquarium, 17 fish objects will be

active; they do not need to be created separately.

Communication between objects is expressed through method calls and syn-

chronization by method guards. For example a bounded buffer is expressed as:

const S = 10;

class Buffer

var b: array [0 .. S − 1] of integer;

in, out, n: integer;

procedure put (x: integer) when n < S;

begin b[in] := x; in := (in + 1) mod S; n := n + 1 end;

procedure get (var x: integer) when n > 0;

begin x := b[out]; out := (out + 1) mod S; n := n − 1 end;

begin in := 0; out := 0; n := 0 end;

var b: Buffer;
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Thus calls to put and get may block. For example, producers and consumers with

buffer b in between would contain potentially blocking calls:

action produce;

var x: integer;

begin x := ... ; b.put(x) end;

action consume;

var y: integer;

begin b.get(y); ... y ... end;

Several models of objects with actions have been proposed. In the joint actions

model, an action can involve several objects [15]; while allowing certain commu-

nication patterns to be expressed more abstractly, we restrict to actions attached to

single objects to allow an efficient implementation. In the Seuss approach objects

have methods and actions, with the restriction that guarded methods can appear

only as the first statement in an action of a method [20]. Thus an action like

produce above is forbidden. This model is used for a reduction property which

states that every execution in the concurrent execution model corresponds to an

execution in the sequential model. In OO-action systems the enabledness of an

action is determined by the guard as well as the body [8, 9]. For action produce, if

b.put(x) is not enabled, the action produce is not enabled. In a direct implementa-

tion, the state of an object would have to be rolled back in order to ensure atomic

execution. If calls to other objects would have been called in the meantime, their

state would need to be rolled back as well, making an implementation inefficient.

In ABC Pascal this is relaxed: methods and action are atomic only up to method

calls. A formal model is discussed in [23].

Briot et al. give a classification of concurrency in object-oriented program-

ming, based on the level of concurrency, autonomy of objects, and the acceptance

of messages [10]. The level of concurrency in ABC Pascal can be classified as

serial, like in POOL [3, 4] as only one method or action in an object may be ac-

tive. This is unlike quasi-concurrent objects, as in ABCL/1 [28], where several

method activations may coexist, but at most one is not suspended and in unlike

fully concurrent objects as in Actors [1]. ABC Pascal objects would be classi-

fied as autonomous rather than reactive, as they may be active without receiving a

method call; in Java all objects are reactive and autonomous activity is expressed

through threads [14]. The acceptance of messages is implicit rather than explicit

as in Ada and POOL; in those languages each object has a body that controls

entry into the object through a rendezvous. The communication between objects

is through synchronous method calls, as in Ada, POOL, and Java, rather than
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through message queues as in Actors.

As in ABC Pascal every object can potentially be active, there can be a many

active objects. An implementation of similar language by translation to the Java

Virtual Machine is reported in [19]. There, a fixed number of (pre-empted) worker

threads repeatedly look for enabled actions in objects. While this limits the num-

ber of threads and keeps the memory overhead small, the situation could arise in

which all worker threads get blocked and new threads would need to be created.

While this is unlikely to occur in practice, the possibility of a false deadlock makes

this scheme unattractive.

The recent Native POSIX Thread Library is claimed to support hundred thou-

sands of threads [13]. The implementation of ABC Pascal was started with the

goal of exploring the possibility of having one kernel thread per active object and

delegating all scheduling to the operating system. To make a meaningful assess-

ment, several classical concurrency examples were implemented in ABC Pascal,

C/Pthreads, Java, Ada and the performance compared. Ada was chosen as its

concurrency constructs are more similar to ABC Pascal than C/Pthreads and Java.

The next section gives further examples and elaborates on methodology. Sec-

tion 3 sketches the implementation. Section 4 discusses the performance.

2 ABC Pascal

Program structure. A program in ABC Pascal starts with the program name,

followed by constant, type, class, variable, procedure declarations, and the main

body in that order, except that class and variable declarations may alternate. All

except class declarations are as in standard Pascal. A class consists of variables,

procedures, actions, and an initializing statement. Class variables and class pro-

cedures are called fields and methods. All fields are private, i.e. can be accessed

only within the actions and methods of the object. All methods are public, i.e.

can be called from other procedures or the main program. (The only use of action

names would be for overriding in subclasses, which is currently not supported.)

The scope of a constant, type, variable, and class starts from the point of the dec-

laration. Procedures can only be called from the main body and thus are never

executed concurrently. Procedures can be recursive but methods not. Variables

can be of class type, i.e. objects, of primitive type, or of a structured type. Prim-

itive types are boolean and integer and structured types are records and arrays.

The initialization of an object is executed before any method is called or action

selected. Actions and methods can have guards, global procedures cannot. If a
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guard is left out it is assumed to be true. A program terminates when the main

body has terminated, all actions that were initiated have terminated, and all actions

are disabled.

Examples. We illustrate the language by some classical examples. For the

reader-writer problem, we assume that access to the database by readers and writ-

ers is co-ordinated through an arbiter rwa which ensures that only a single writer

or multiple readers can access the data. A reader would execute the sequence

rwa.start read ; read access ; rwa.end read and a writer rwa.start write ; write

access ; rwa.end write.

class RW arbiter

var rw: integer; {−1: one writer; 0: idle; > 0: #readers}
procedure start read when rw ≥ 0;

begin rw := rw + 1 end;

procedure end read;

begin rw := rw − 1 end;

procedure start write when rw = 0;

begin rw := −1 end;

procedure end write;

begin rw := 0 end;

begin rw := 0 end;

var rwa: RW arbiter;

For the dining philosopher problem we have forks, philosophers, and a butler as

objects. When philosophers start to compete for the forks, the butler acts as the

host and ensures that one less philosopher is seated then there are seats.

program DP;

const ROUNDS = 100000; SEATS = 5;

class Fork

var up: boolean;

procedure pickup when not up;

begin up := true end;

procedure putdown;

begin up := false end;

begin up := false end;
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class Host

var occupants: integer;

procedure enter sitdown when occupants < SEATS − 1;

begin occupants := occupants + 1 end;

procedure getup leave;

begin occupants := occupants − 1 end;

begin occupants := 0 end;

var butler: Host; F: array [0 .. SEATS − 1] of Fork;

class Philosopher

var seat: integer; awake: boolean;

procedure wakeup(s: integer) ;

begin seat := s; awake := true end;

action start when awake;

var r: integer;

begin r := 0;

while r < ROUNDS do

begin

butler.enter sitdown;

F[(seat + 1) mod SEATS].pickup;

F[seat].pickup;

F[(seat + 1) mod SEATS].putdown;

F[seat].putdown;

butler.getup leave;

r := r + 1;

end;

awake := false

end;

begin awake := false end;

var P: array [0 .. SEATS − 1] of Philosopher;

s: integer;

begin s := 0;

while s < SEATS do

begin P[s].wakeup(s); s := s + 1 end
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end.

The third example is a priority queue that allows integers to be added and the least

stored integer to be retrieved. This can be implemented by keeping a sorted se-

quence such that the minimum is always at the end and can be retrieved in constant

time. However, inserting in a sorted sequence would take linear time. The imple-

mentation below allows quick insertion as well and sorts in the “background”.

Retrieving the minimum may need to be delayed until the complete sequence is

sorted again.

const CAPACITY = 10;

class PriorityQueue

var a: array [0 .. CAPACITY − 1] of integer;

n: integer; {total count}
m: integer; {index to not sorted additions}
s: integer; {sorting position}

procedure add (u: integer);

begin a[n] := u; n := n + 1 end;

procedure min (var u: integer) when s = n;

begin n := n − 1; u := a[n]; m := n; s := n end;

action swap when s < n;

var h: integer;

begin

if (s > 0) and (a[s − 1] < a[s]) then

begin h := a[s − 1]; a[s − 1] := a[s]; a[s] := h;

s := s − 1

end

else begin m := m + 1; s := m end

end;

begin n := 0; m := 0; s := 0

end PriorityQueue;

Grammar and Restrictions. The concrete grammar is as follows.

selector ::= { ”.” ident | ”[” Expression ”]” }
factor ::= ident selector | integer | ”(” Expression ”)” | not factor

term ::= factor { ( ”*” | div |mod | and ) factor}
SimpleExpression ::= [”+” | ”− ” ] term {( ”+ ” | ”− ” | or ) term}
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Expression ::= SimpleExpression [ ( ” = ” | ” 6= ” | ” < ” | ”≤ ” |
” > ” | ”≥ ” ) SimpleExpression ]

assignment ::= ident selector ” := ” Expression

ActualParameters ::= ”(” [ Expression {”,” Expression} ] ”)”
ProcedureCall ::= ident selector [ ActualParameters ]
CompoundStatement ::= begin statement { ”;” statement } end

IfStatement ::= if Expression then Statement [ else Statement ]
WhileStatement ::= while Expression do Statement

Statement ::= [ assignment | ProcedureCall |
CompoundStatement | IfStatement |WhileStatement ]

IdentList ::= ident { ”,” ident }
ArrayType ::= array ”[” Expression ”..” Expression ”]” of type

FieldList ::= [ IdentList ” : ” type ]
RecordType ::= record FieldList { ”;” FieldList } end

type ::= ident | ArrayType | RecordType

FPSection ::= [ var ] IdentList ” : ” type

FormalParameters ::= ”(” [ FPSection { ”;” FPSection } ] ”)”
guard ::= [ when Expression ]
ProcedureDeclaration ::= procedure ident [ FormalParameters ]

guard ”;” declarations CompoundStatement

ActionDeclaration ::= action ident guard ”;”

declarations CompoundStatement

ClassDeclaration ::= class ident [ var { IdentList ” : ” type ”;” } ]
{ ProcedureDeclaration ”;” } { ActionDeclaration ”;” }
CompoundStatement ”;”

declarations ::= [ const { ident ” = ” Expression ”;” } ]
[ type { ident ” = ” type ”;” } ]
{ ClassDeclaration ”;” | var { IdentList ” : ” type ”;” } }
{ ProcedureDeclaration ”;” }

program ::= program ident ”;” declarations CompoundStatement

Predefined types are the primitive types boolean and integer. Predefined proce-

dures include write. Methods can access a global variable only if the variable is

an object. Procedures can access all kinds of global variables, objects, primitive,

and structured. Procedures can call methods but methods cannot call procedures.

These rules guarantee that any data that may be accessed concurrently is encapsu-
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lated in an object.

Reference parameters, indicated by var, can be of arbitrary type, value pa-

rameters must be of a primitive type. Action guards can only access the fields of

the object and method guards can only access the fields of the object and value

parameters of the method. That is, guards must not contain calls to other objects.

These syntactic restrictions are the key for an efficient implementation: the value

of a method or action guard can only be affected by method and actions of the

same object. Hence guards or procedures that were false at the time of the call

and guards of all actions only need to be re-evaluated at the end of an action or

method.

Verification Let b, p,q,r be boolean expressions and S,T be statements. We

let {p}S{q} stand for the partial correctness assertion: if P holds initially and S

terminates, Q will hold finally. The language does not allow for expressions with

side-effects. For simplicity, we assume that all expressions evaluate without error.

We include skip as the empty statement explicitly. The common rules hold:

(p⇒ q) ⇒ {p} skip{q}
(p⇒ q[x\e]) ⇒ {p} x := e{q}
{p∧b}S{q} ⇒ {p}whenb;S{q}

{p}S{q}∧{q}T {r} ⇒ {p}S ;T {r}
{p∧b}S{q}∧ (p∧¬b⇒ q) ⇒ {p} ifb thenS{q}
{p∧b}S{q}∧{p∧¬b}T {q} ⇒ {p} ifb thenSelseT {q}
{p∧b}S{p}∧ (p∧¬b⇒ q) ⇒ {p}whilebdoS{q}

The rules can be extended with those for assignments to array elements and record

fields and for procedure calls in a standard way. We leave out the details. The

notation C.init, C.meth, C.act refers to initialization, the method meth and action

act of class C.

Definition 1 (Class Invariant) Let C be a class and p a boolean expression over

the fields of C. Then p is invariant of C if following conditions hold:

(a) Initialization: The initialization establishes the invariant:

{true}C.init {p}
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(b) Methods: Every method meth preserves the invariant:

{p}C.meth{p}

(c) Actions: Every action act preserves the invariant:

{p}C.act {p}

This extends the common definition of a class invariant for sequential programs

by adding condition (c) for actions. We argue that the definition is sound. As

methods and actions are executed atomically, there is no possibility for interfer-

ence, hence sequential reasoning is sufficient. The language does not allow for

recursive method calls and for re-entrant calls, i.e. calls that go to another object

and back, hence the class invariant does not have to be established before a call

to another object. For example, an invariant of class PriorityQueue is s≤ m≤ n.

Note that this definition requires that the invariant is only over the fields of one

object. This is not suitable for proving a global invariant, for example that in

program DP at most SEATS − 1 forks are in state up.

Refinement Concurrency can either be part of the requirements and present

from the beginning of the development, like for an aquarium, or be an imple-

mentation decision. Consider the classes Doubler and DelayedDoubler:

class Doubler

var x: integer;

procedure store (u: integer);

begin x := 2 × u end;

procedure retrieve (var u: integer);

begin u := x end;

begin end;

class DelayedDoubler

var y: integer; d: boolean;

procedure store (u: integer);

begin y := u; d := false end;

procedure retrieve (var u: integer) when d;

begin u := y end;

action double when not d;

begin y := 2 × y; d := true end;

begin d := true end;
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Both classes allow an integer to be stored and its double to be retrieved. In Dou-

bler the operation of doubling is performed when the number is stored. In De-

layedDoubler instead a “background” action is enabled that perform the doubling,

allow a call to store to return quicker. The retrieve method needs to be suspended

until the doubling occurs, which is controlled by the additional variable d. This is

a universal pattern. For example, when data is written to a file, the programmer

is given the illusion that this happens instantly, but typically the data is stored in

a cache and a background action is enabled. The same holds for database op-

erations. In each case, the goal is to increase the responsiveness and utilize the

resources better. We say that DelayedDoubler is a refinement of Doubler, writ-

ten as Doubler v DelayedDouber; every observation of DelayedDoubler is also

possible with Doubler. Refinement may change the variables of a class and may

introduce actions. Class refinement is defined in [11], based on the theory of

data refinement of remote procedures of [25]. Class refinement is proved using a

refinement relation, expressed as a predicate. We can take:

R≡ (d∧ x = y)∨ (¬d∧ x = 2× y)

We present the proof conditions as a checklist without going into the formalism.

Classes Doubler and DelayedDoubler are abbreviated by D and DD.

(a) Initialization Refinement: D.init has to be refined by DD.init through R.

(b) Method Refinement: D.store has to be refined by D.store and D.retrieve has

to be refined by D.retrieve through R.

(c) Method Enabledness: Whenever D.store is enabled, either DD.store or

DD.double has to be enabled.

(d) Action Refinement: DD.double refines skip through R.

(e) Action Termination: DD.double eventually disables itself.

Class refinement has been applied to the development of relaxed balanced AVL

trees from a sequential specification [27]. These are trees that allow a temporary

imbalance for the purpose of quicker insertion.

3 Implementation

The ABC Pascal compiler is a derivative of a compiler for Pascal that was devel-

oped for teaching purposes [24]. It is a recursive-descent one-pass compiler that
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generates IA-32 assembly language and uses stack-based code generation without

optimization of register allocation. The generated code makes calls to the pthreads

library.

We explain the translation scheme for classes. Every class corresponds to a

record type with all the fields of the class and two additional fields, a mutex and

a condition variable. The initialization corresponds to a global procedure that

takes a reference to the record as a parameter, initializes the mutex and condi-

tion variable, and executes the initialization body. Every method corresponds to

a procedure that takes a reference to the object record as an additional parameter.

Every method locks the object record at entry and unlocks it at exit. If a method

has a guard, it is evaluated at entry after obtaining the lock. If the guard it true,

execution continues, otherwise the condition variable is used to suspend execu-

tion. Before exiting a method, the condition variable is used to signal all possibly

blocked callers to re-evaluate the guard. Consider following class without actions:

class C

var f: F;

procedure m(g: G) when p;

begin S end;

begin T end;

This corresponds to:

type C rec = record mtx: Mutex; cv: Cond; f: F end

procedure C m(var c: C rec; g: G);

begin

lock(c.mtx); while not pp do cond wait(c.cv, c.mtx);

SS;

cond broadcast(c.cv, c.mtx); unlock(c.mtx)

end;

procedure C init(var c: C rec);

begin

mutex init(c.mtx); cond init(c.cv);

TT

end

Here pp,SS,T T stand for p,S,T with ever occurrence of f replaced by c. f . A

method call c.m(e) of object c of class C corresponds to C m(c,e).
Now consider that class C has also actions. Then the initialization creates an

object thread, leading to one thread per active object. That thread repeatedly locks
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the object record, evaluates the action guards, executes an enabled action if there

is one and waits otherwise, and unlocks the object record.

class C

...

action a when q;

U;

action b when r;

V;

begin T end;

In this corresponds to:

procedure C thread(var c: C rec);

begin

while true do

begin

lock(c.mtx);

if qq then UU

else if rr then VV

else

cond wait(c.cv, c.mtx); (*)

unlock(c.mtx)

end

end;

procedure C init(var c: C rec);

begin

mutex init(c.mtx); cond init(c.cv);

TT;

thread create(C thread, c)

end

Here thread create(C thread, c) means that procedure C thread is started with

parameter c as a new thread. Again, qq,rr,UU,VV stand for q,r,U,V with every

occurrence of f replaced by c. f .

This scheme of implementing actions has two deficiencies. First, as action

guards are evaluated in a specific order, some are being preferred over others.

Fairness of the selection can be achieved by keeping an index to the last executed

action and starting guard evaluation from the next action in a cyclic fashion.

The second deficiency is that if the main body terminates, all object threads
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would terminate as well. The main body cannot join all object threads, as they

never terminate. Our implementation solves this by keeping in a global variable a

count of the number of object threads that are waiting at (*) in C thread. If main

body has finished and that count reaches the number of created objects, the whole

program terminates. For this, at the end of the main body a loop is added that

in a specific interval checks if the count has reached the number of created ob-

jects. Before (*) that count is incremented and after (*) the count is decremented.

Atomic IA-32 instructions are used for incrementing and decrementing.

In the NPTL implementation of the pthreads standard, a mutex occupies 24

bytes and a condition variable occupies 48 bytes. The index of the last executed

action adds another four bytes. Thus every object occupies 76 bytes in addition to

the size of the declared fields.

4 Performance

Four programs were implemented in each of ABC Pascal, C/Pthreads, Ada, and

Java, where N refers to the number of active objects (threads) and R to the number

of rounds. The number of rounds was selected such that the execution time would

be in the seconds and any loading latency would be negligible.

RW The reader-writer problem, with N being the total number of readers and

writers.

CC The car control problem. Cars come from either the north or south and have

to cross a bridge. The bride allows car in one direction allow and has a

maximal capacity. Here N is the total number of all cars.

DP The dining philosopher problem, with N being the number of philosophers.

MRA The multiple resource allocator problem. Several users compete for up to

4 resources out of 10 in a random manner. Here N is the number of users.

The measurements were obtained running Suse Linux 10.1 for i686 on Intel Cen-

trino Duo at 1.0 GHz. The C programs were compiled with gcc 4.1.0, Ada pro-

grams with gnat 4.1.0 and Java with Sun’s HotSpot Client VM of Java 1.5. The

C programs use the same NPTL implementation of pthreads as ABC Pascal. All

results are in seconds.
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Car Control (CC)

R = 5000 R = 10000 R = 500

N = 600 N = 100 N = 1000

ABC Pascal 9.78 3.44 0.84

Java 3.60 1.27 0.92

Ada 46.75 5.87 8.77

C 3.58 1.02 0.24

Dining Philosophers (DP)

R = 200000 R = 100000

N = 5 N = 5

ABC Pascal 2.18 1.21

Java 4.41 2.09

Ada 5.44 2.80

C 1.42 0.72

Multiple Resource Allocator (MRA)

R = 5000 R = 5000 R = 500

N = 500 N = 100 N = 500

ABC Pascal 49.88 7.42 5.36

Java 14.60 2.95 1.69

Ada 44.54 8.91 4.70

C 16.60 2.13 1.95

Reader-Writer (RW)

R = 5000 R = 10000 R = 500

N = 600 N = 100 N = 1000

ABC Pascal 7.10 2.36 2.91

Java 3.65 1.28 0.93

Ada 16.19 5.32 3.81

C 4.58 1.23 0.57

These numbers represent the averages of 30 runs. The standard deviation was

in most cases small enough that it is not reported. The largest deviation was for

the Ada implementation of CC with R = 5000,N = 600. There the 95 percent

confidence interval is (42.2,51.3). More extensive tables are given in [18].
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5 Discussion

In most cases, ABC Pascal is as efficient as or more efficient than Ada and not as

efficient as C or Java. Given that optimization was not attempted, this gives hope

that further performance improvements are possible. For example, [2] report on

success in eliminating sychronization in Java programs. On the other hand, even

with the current compiler the performance is not so weak that the model of action-

based concurrent objects needs to be dismissed. The four examples consist mainly

of communication. Considering that in a practical application more computation

is involved, the relative slowdown due to use of actions would be less. We plan to

continue with improving our implementation.

A common issue with a large number of threads is the need for creating stacks

with a fixed stack size. If the stack size is chosen too small, threads run out of stack

space, if the stack size is too large, not enough objects can be created. Indeed, with

the C/Pthreads programs we had to adjust the default stack size. In ABC Pascal

this is not an issue, as recursive procedures can be called only form the main

program. Actions can only call actions of previously declared objects, such that

the maximal call depth can be statically determined and the smallest amount of

stack space allocated. However, if this restriction is relaxed, the problem of the

stack size needs to be addressed.

Acknowledgements. The name ABC Pascal was suggested by Daniel Zingaro.

A C, Ada, Java Sources of Dining Philosophers

C Version Using Monitors

#include <pthread.h>
#define TRUE 1

#define FALSE 0

#define ROUNDS 100000

#define SEATS 5

typedef struct {
int up;

pthread mutex t mutex;
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pthread cond t forkdown;

} Fork;

void pickup(Fork ∗f) {
pthread mutex lock(&f−>mutex);

while (f−>up)

pthread cond wait(&f−>forkdown, &f−>mutex);

f−>up = TRUE;

pthread mutex unlock(&f−>mutex);

}

void putdown(Fork ∗f) {
pthread mutex lock(&f−>mutex);

f−>up = FALSE;

pthread mutex unlock(&f−>mutex);

pthread cond signal(&f−>forkdown);

}

void fork init(Fork ∗f) {
f−>up = FALSE;

pthread mutex init(&f−>mutex, NULL);

pthread cond init(&f−>forkdown, NULL);

}

typedef struct {
int occupants;

pthread mutex t mutex;

pthread cond t notfull;

} Host;

void enter sitdown(Host ∗h) {
pthread mutex lock(&h−>mutex);

while (h−>occupants == SEATS − 1)

pthread cond wait(&h−>notfull, &h−>mutex);

h−>occupants++;

pthread mutex unlock(&h−>mutex);

}
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void getup leave(Host ∗h) {
pthread mutex lock(&h−>mutex);

h−>occupants−−;

pthread mutex unlock(&h−>mutex);

pthread cond signal(&h−>notfull);

}

void host init(Host ∗h) {
h−>occupants = 0;

pthread mutex init(&h−>mutex, NULL);

pthread cond init(&h−>notfull, NULL);

}

Fork F[SEATS];

Host butler;

void ∗Philosopher(void ∗arg) {
int seat = (int) arg;

int r;

for (r = 0; r < ROUNDS; r++) {
enter sitdown(&butler);

pickup(&F[seat]);

pickup(&F[(seat + 1) % SEATS]);

putdown(&F[seat]);

putdown(&F[(seat + 1) % SEATS]);

getup leave(&butler);

}
}

int main() {
pthread t p[SEATS];

pthread attr t attr;

int stack size;

pthread attr init(&attr);

pthread attr getstacksize(&attr, &stack size);

pthread attr setstacksize(&attr, stack size/8);
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int s;

for (s = 0; s < SEATS; s++) fork init(&F[s]);

host init(&butler);

for (s = 0; s < SEATS; s++)

pthread create(&p[s], &attr, Philosopher, (void ∗) s);

for (s = 0; s < SEATS; s++)

pthread join(p[s], NULL);

}

Ada Version

procedure DP is

ROUNDS: constant := 100000;

SEATS: constant := 5;

type Seat Index is mod SEATS;

task type Philosopher is

entry start (s: Seat Index);

end Philosopher;

protected type Fork is

entry pickup;

procedure putdown;

private

up: Boolean := False;

end Fork;

protected type Host is

entry enter sitdown;

procedure getup leave;

private

occupants: Natural := 0;

end Host;

P: array (Seat Index) of Philosopher;

F: array (Seat Index) of Fork;

butler: Host;

19



task body Philosopher is

seat: Seat Index;

begin

accept start (s: Seat Index) do

seat := s;

end;

for round in 1 .. ROUNDS loop

butler.enter sitdown;

F(seat + 1).pickup;

F(seat).pickup;

F(seat + 1).putdown;

F(seat).putdown;

Butler.getup leave;

end loop;

end Philosopher;

protected body Fork is

entry pickup when not up is

begin

up := True;

end pickup;

procedure putdown is

begin

up := False;

end putdown;

end Fork;

protected body Host is

entry enter sitdown when occupants < SEATS − 1 is

begin

occupants := occupants + 1;

end enter sitdown;

procedure getup leave is

begin

occupants := occupants − 1;

end getup leave;

end Host;
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begin

for s in Seat Index loop

P(s).Start(s);

end loop;

end DP;

Java Version

class Fork {
private boolean up = false;

synchronized void pickup() {
while (up) {

try {wait();

} catch (InterruptedException e) {}
}
up = true;

}
synchronized void putdown() {

up = false;

notifyAll();

}
}

class Host {
private int occupants = 0;

synchronized void enter sitdown() {
while (occupants == DP.SEATS − 1) {

try {wait();

} catch (InterruptedException e) {}
}
occupants++;

}
synchronized void getup leave() {

occupants−−;

notifyAll();

}
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}

class Philosopher extends Thread {
private int seat;

private Host butler;

private Fork[] f;

public void run() {
for (int r = 0; r < DP.ROUNDS; r++) {

butler.enter sitdown();

f[(seat + 1) % DP.SEATS].pickup();

f[seat].pickup();

f[(seat + 1) % DP.SEATS].putdown();

f[seat].putdown();

butler.getup leave();

}
}
Philosopher(int s, Host b, Fork[] f) {

seat = s;

butler = b;

this.f = f;

}
}

public class DP {
static final int ROUNDS = 100000;

static final int SEATS = 5;

public static void main(String[] args) {
Philosopher[] p = new Philosopher[SEATS];

Host butler = new Host();

Fork[] f = new Fork[SEATS];

for (int s = 0; s < SEATS; s++) {
f[s] = new Fork();

p[s] = new Philosopher(s, butler, f);

}
for (int s = 0; s < SEATS; s++)

p[s].start();
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}
}
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