
Foundations of the Trace Assertion Method of Module
Interface Specification∗

Ryszard Janicki
McMaster University

Hamilton, Ontario, Canada L8S 4K1
janicki@mcmaster.ca

Emil Sekerinski
McMaster University

Hamilton, Ontario, Canada L8S 4K1
emil@mcmaster.ca

June 2000

Abstract

The trace assertion method is a formal state machine based method for specifying module inter-
faces. A module interface specification treats the module as a black-box, identifying all module’s
access programs (i.e. programs that can be invoked from outside of the module), and describing
their externally visible effects. In the method, both the module states and the behaviors observed
are fully described by traces built from access program invocations and their visible effects. A
formal model for the trace assertion method is proposed. The concept of step-traces is introduced
and applied. The stepwise refinement of trace assertion specifications is considered. The role of
non-determinism, normal and exceptional behavior, value functions and multi-object modules are
discussed. The relationship with algebraic specifications is analyzed. A tabular notation for writing
trace specifications to ensure readability is adapted.

Keywords. Module interface specifications, trace assertion method, state machines, Mealy ma-
chines, step-sequences, relational model, nondeterminism, module refinement, tabular notation.

1 Introduction

Software modules, viewed as “black boxes” [25, 23], hide some design decisions and provide abstract
data types. They can be specified using thetrace assertion method. A trace is a complete history
of the visible behavior of a module. It includes all events affecting the module, eventually with the
outputs produced. Formally a trace is a sequence of events. The fundamental principle is that a trace
specification describes only those features of a module (or an object in general) that are externally
observable and the central idea of the approach is that traces can be divided into clusters and each
cluster is represented by a single canonical trace.

The trace assertion method was first formulated by Bartussek and Parnas in [3], as a possible answer
for problems with algebraic specifications [7, 34], which will be discussed later. It also can avoid the
problem of overspecification in model-oriented specifications, e.g. [1]. A typical example is the use
of a sequence for specifying a stack module, wherePUSH will append the new element either at the
front or the tail of the sequence, the choice being arbitrary. In the trace assertion method, this decision
∗To appear in IEEE Transactions on Software Engineering. Partially supported by NSERC Research Grant

1

is avoided. Since its introduction the method has undergone many modifications [12, 22, 27, 33]. In
recent years, there has been an increased interest in the trace assertion method [14, 16, 15, 24, 28, 32].
However, a satisfactory foundation has not yet been developed.

The trace assertion method is based on the following postulates:

• Information hiding[25, 23] is a fundamental principle for specification.

• Sequencesare simple and powerful tool for specifying abstractobjects.

• Explicit equationsare preferable overimplicit equationslike those of algebraic specifications.

• State machinesare simple and powerful tool for specifyingmodules.

For many applications state machines are better than algebras, and their use for specification is growing
[1, 2, 11]. State machines (not necessary finite) are equivalent to algebras. This relationship differs for
different machines and algebras, but the general idea of relationship may be illustrated as follows:

δ(p,a) = q︸ ︷︷ ︸
state machine

⇔ a(p) = q︸ ︷︷ ︸
algebra

,

whereδ is a transition function of a state machine witha as a function name, anda(p) is a function
nameda applied top. See [8, 4] and Section 15.

The term “trace” has at least two different meanings. One it that a trace is just a sequence of events,
actions, operations, or systems calls, i.e. it is a sequence of specially interpreted elements. The other
meaning is that a trace is an element of a partially commutative monoid, where the monoid operation
is concatenation (see [6]). In the second case the name “Mazurkiewicz traces” is often used [6, 18]
. Traces in the first sense can be treated as a special case of the second (the independency relation is
empty, i.e. no commutativity at all). The “step-traces” used in this paper lie somewhere between the
first and the second meaning.

The contributions of this paper to the trace assertion method are:

• The role ofnondeterminism, which caused some problem in the previous models is explained.

• The concept ofexceptional behaviorif formally analyzed.

• The role of value functions, in particular for nondeterministic modules, is discussed.

• The use ofstep-tracesto overcome difficulties with asymmetry caused by the use of ordinary
traces is proposed.

• A notion of refinementfor trace assertion specifications is introduced.

• The use ofabstract state constructorsfor the problem of finding canonical traces is certain situa-
tions is suggested.

• A formal model formulti-objectmodules is proposed and discussed.

2

Overview. In the next section we introduce and briefly discuss three simple modules. These modules
are used to illustrate the major problems and solutions. In Section 3 the question “What is an atomic
observable event?” is discussed. Section 4 reviews the fundamentals of the relational model of programs
and of program refinement. The automata model for module specifications is introduced in Section 5,
together with a notion of module refinement and a simulation condition. A module access-program
may return some values, but is it absolutely necessary to specify this fact by a separate output value
function? This problem is discussed in Section 6. Objects described by sequences and the concept of
step-sequences are discussed in Section 7, while automata with states specified by the step-sequences
are analyzed in Section 8. The formal concept of a trace assertion specification is given in Section 9.
The special instances of the trace assertion specification in Mealy form and the controversial use of
invisible actions are discussed respectively in Sections 10 and 11. Exceptional behavior is discussed in
Section 12. The idea is that misuses can be modeled separately and eventually they may be added to
the pure trace specification as an enhancement. Section 13 defines a format for the trace specification
technique. All the examples from Section 2 are formally specified in this format. Refinement with
these examples is illustrated in Section 14. Section 15 deals with multi-object modules. The uniquely
labeled sets of step-traces are introduced and used as a specification tool. The relationship between
trace assertions and algebraic specifications is analyzed in Section 16. The last section contains final
comments.

2 Introductory Examples

We shall use the following examples of modules: Stack, Unique Integer, Very Drunk Stack and Drunk
Stack. Each module is designed to implement a single object. The Stack module provides three access
programs,

• PUSH(i): enters an integeri on the stack,

• POP: takes no arguments and removes the top of the stack, and

• TOP: takes no arguments and returns the value which is on the top of the stack.

Intuitively, a state of the stack is determined by the finite sequence of integers, the last element of the
sequence represents the top of the stack, and the first represents the bottom. Note that every sequence
of properly used access programs leads to exactly one state. For instancePUSH(4).PUSH(1).POP.
PUSH(7).TOPandPUSH(4).PUSH(7) both lead to the state〈4, 7〉. They could be seen as equivalent
and we can choose for instance the tracePUSH(4).PUSH(7) as acanonical tracerepresenting the state
〈4, 7〉.

The Unique Integer module provides only one access program,

• GET: does not take any argument and returns an integer value from the set of integers a machine
can represent.

The only restriction on the return value is that it cannot be any value that was returned by previousGET
invocations. Intuitively the state of Unique Integer is determined by the set of all integers that were
returned by all previousGET invocations. In this case the sequence, sayGET.GET.GET, corresponds
to any set{i1, i2, i3}, wherei1, i2 and i3 are distinct integers. However, the invocation ofGET is only

3

a part of a single observable event, an invocation ofGET returns an integeri, so the full observable
event is a pair(GET, i), or, more conveniently,GET:i. A pair GET:i is a call-response event, with the
call GET and the responsei. Any trace built fromGET:i pairs describes one state. For instance both
GET:5.GET:1.GET:8, andGET:1.GET:5.GET:8, describe the state{1, 5, 8}. They could be seen as
equivalent and we can choose for instanceGET:1.GET:5.GET:8 as the canonical trace. However, since
the order ofGET’s is not important, quite opposite, it may cause some problems when imposed, we will
use a canonicalstep-trace〈GET:1.GET:5.GET:8〉, as a state descriptor. The operator〈·〉 makes the
order irrelevant, i.e.〈GET:1.GET:5.GET:8〉 = 〈GET:8.GET:1.GET:5〉, etc. (see Section 7).

Both Stack and Unique Integer can be modeled by state machines (automata) for which every
trace describes exactly one state. The difference is that for Unique Integer traces are built from pairs
(call, response) while for Stack calls alone are sufficient. The case when traces built from calls alone
are sufficient are calledoutput independent.

Module Drunk Stack is the same as Stack except that access programPOPbehaves differently,

• POP: if the length of the stack is one removes the top element, if the length is greater than one
removes either the top element or the two top elements of the stack.

Now the tracePUSH(7).PUSH(4).PUSH(1).PUSH(3).POPmay lead to two states:〈7, 4, 1〉 and〈7, 4〉.
Adding outputs to the events does not change the situation since bothPUSHandPOPproduce no output.
However, each state is unambiguously described by an appropriate trace built fromPUSHcalls. For in-
stancePUSH(7).PUSH(4).PUSH(1) describes the state〈7, 4, 1〉, and only this state, so canonical traces
can be built. However, the tracesPUSH(7).PUSH(4).PUSH(1) and PUSH(7).PUSH(4).PUSH(1).
PUSH(3).POP may no longer be considered as equivalent, they lead to different sets of states. They
could be interpreted assimilar since the sets of states they represent are not disjoint, and they both belong
to the sameclusterof traces. The cluster of traces they belong to is the set of all traces that may lead to
the state〈7, 4, 1〉. This cluster is unambiguously represented by the tracePUSH(7).PUSH(4).PUSH(1).
The programPUSHis “sober” so it can be used to specify canonical traces.

The use of output independent traces is sufficient for Drunk Stack. It can also be modeled by a
non-deterministic state machine with states unambiguously described by canonical traces.

The Very Drunk Stack has two “drunk” access programsPOPandPUSH. Access programsTOPand
POPare the same as for Drunk Stack, while the behavior ofPUSHis the following,

• PUSH(i): enters an integeri either once or twice on the stack.

In this case the tracePUSH(7).PUSH(4) leads to〈7, 4〉, 〈7, 7, 4〉, 〈7, 4, 4〉, or 〈7, 7, 4, 4〉. Moreover,
each trace which does not lead to the empty stack, may lead to at least two different states. Thus
canonical traces, interpreted as traces that can unambiguously describe states, cannot be defined. We
need to proceed differently. One way is to observe that the state〈7, 4〉 is the only state that can be
reached by both the tracePUSH(7).PUSH(4) and the tracePUSH(7).PUSH(4).POP.POP. Thus the
set of traces

{PUSH(7).PUSH(4) , PUSH(7).PUSH(4).POP.POP}

could be used as a trace descriptor of the state〈7, 4〉. One may observe that every state can unambigu-
ously described in this sense by a finite set of traces. Modeling states of modules by sets of canonical
traces was proposed in [24]. However, we reject such an approach. The sets of traces that describe states

4

can be large and complex even for relatively simple, non-deterministic modules. We believe such an
approach will result in a complex and unreadable specification. We propose the use of abstract construc-
tor programs instead. In the case of Very Drunk Stack, all states can easily be specified by anabstract
constructor(invisible) programpush1(i) which pushesi exactly once on the stack. The specification
obtained is simple and natural (see Section 13, Figures 8 and 9).

3 Alphabet

Since a trace specification describes only those features of a module that are externally observable, the
question arises what an atomic observation is. What constitutes an alphabet from which the traces are
built? We consider two kinds of observations:

• call events likePUSH(5), and

• call-response events likeGET:5.

Let f be the name of an access program and letinput(f) andoutput(f) be the sets of possible argument
and result values. Thesignature sig(f) is the triple:

sig(f) = (f , input(f),output(f)).

We assume that neitherinput(f) nor output(f) are empty by havinginput(f) = {nil} andoutput(f) =
{nil} as default. For example:

sig(PUSH) = (PUSH, integer, {nil}),
sig(TOP) = (TOP, {nil}, integer),
sig(POP) = (POP, {nil}, {nil}).

For a finite setE of access program names, thesignature sig(E) is the set of all signatures off ∈ E:

sig(E) = {sig(f) | f ∈ E}.

GivenE, thecall-response alphabet∆E is the set of all possible triples, writtenf (x):g of access program
names, arguments, and return values:

∆E = {f (x):g | f ∈ E, x ∈ input(f), y ∈ output(f)}.

We adopt the convention of omittingnil in signatures. For example, for the stack modules we have
E = {PUSH,TOP,POP} and:

∆E = {PUSH(i) | i ∈ integer} ∪ {TOP:i | i ∈ integer} ∪ {POP}.

For a given setE of access program names, we also define thecall alphabetΣE and theresponse
alphabetOE:

ΣE = {f (x) | f ∈ E, x ∈ input(f)},
OE = {d | ∃f ∈ E . d ∈ output(f)}.

Note that the sequences of call-response event occurrences are what is really observed. However, one
may abstract away from the output values, if states can be unambiguously described by sequences of
call event occurrences only.

5

4 Relational Model of Programs

We review the fundamentals of the relational model of programs (e.g. [30]). Data refinement is in-
troduced according to [10], except that, rather than taking relations extended by a bottom element,
“demonic relational composition” and “demonic refinement” is used.

We writeS↔ T for the set of all relations betweenSandT, formally defined asS↔ T = 2S×T.
For relationsQ ∈ S↔ T andR ∈ T ↔ U, the relational compositionQ ◦ R, the relational imageQ[s]
of a sets⊆ S, and the relational imageQ(x) of an elementx ∈ Sare defined as follows:

Q ◦R = {(x, z) | ∃y . x Q y∧ y R z},
Q[s] = {y | ∃x . x Q y∧ x ∈ s},
Q(x) = {y | x Q y}.

Here,x Q y stands for(x, y) ∈ Q. If Q is interpreted as a (possibly nondeterministic) program over
initial state spaceSand final state spaceT, then thedomainof Q, i.e. the set of all initial states which
are related to at least one final state, is the precondition for which execution ofQ will terminate with a
defined outcome. Outside its domain, programQ may not terminate.

Using the notationQ(x) for the image ofx underR suggests that we may equivalently viewQ as a
set valued function. In particular, where convenient, we define a relationQ by an equation of the from
Q(x) = e for all x.

The sequential (demonic) compositionQ ; R is Q ◦ R restricted to those initial states for whichQ
leads to intermediate states in whichR is defined. Ifx Q yandy is not in the domain ofR, thenx is not
in the domain ofQ ; R:

Q ; R = {(x, z) | x(Q ◦ R)z∧ (∀y . x Q y⇒ R(y) 6= ∅)}.

AssumeQ,Q′ ∈ S↔ S. RelationQ′ is an (algorithmic) refinement ofQ if Q′ is “more deterministic”
thanQ and the domain ofQ′ is not smaller than the domain ofQ:

Qv Q′ ⇔ (∀x . Q(x) 6= ∅ ⇒ Q′(x) ⊆ Q(x) ∧Q′(x) 6= ∅).

Now assume thatQ is as above andQ′ ∈ S′ ↔ S′. Let Rbe a relation between the state spaces ofQ and
Q′, i.e. R∈ S↔ S′. ThenQ′ is a data refinement ofQ via R means:

QvR Q′ ⇔ (∀x . Q(x) 6= ∅ ⇒ (R◦Q′)(x) ⊆ (Q ◦ R)(x) ∧ (R◦Q′)(x) 6= ∅).

Algorithmic refinement is a special case of data refinement,Q vId Q′ ⇔ Q v Q′ where Id is the
identity relation. Refinement is reflexive and transitive in the sense thatQ v Q and forQ′′ ∈ S′′ ↔ S′′

andR′ ∈ S′ ↔ S′′:
QvR Q′ ∧Q′ vR′ Q′′ ⇒ QvR◦R′ Q′′.

Sequential composition is monotonic with respect to refinement:

PvR P′ ∧QvR Q′ ⇒ P ; QvR P′ ; Q′.

6

5 Automata

The standard automata model is used for module specifications by associating signatures with the al-
phabet, similarly to [20]. Data refinement is used for forward simulation of automata. Simulations of
automata are further discussed in in [10, 21].

Let ∆ be an alphabet,∆∗ be the set of all sequences built from the elements of∆ including the
empty sequence denoted byε. For every two sequencesx, y ∈ ∆∗, their concatenation is denoted by
x.y. A (nondeterministic) automatonA is a quadruple,

A = (∆,S, %, s0),

where∆ is the alphabet,S is the (finite or infinite) set of states,% is the transition relation,% ∈ ∆ →
S↔ S, ands0 ∈ S is the initial state.

The extended transition relation%∗ ∈ ∆∗ → S↔ S, is defined for everyx ∈ ∆∗ anda ∈ ∆ as:

%∗(ε) = Id,
%∗(x.a) = %∗(x) ; %(a).

We use automata for specifying modules: The set∆ consists of sequences of call-responses, the setS is
the state private to the module in the sense that it is only accessed through calls to the module, the state
s0 is the initial state of the module, and the function% specifies the change of the module’s state for each
possible call. Formally, for a given signatureE, a module specificationA is an automaton:

A = (∆E,S, %, s0).

The setL(A) = {x ∈ ∆∗ | %∗(x)(s0) 6= ∅} contains all valid sequences of call-responses of the module,
i.e. describes thenormal behaviorof the module.

ModuleA is transition deterministicif |%(b)(s)| ≤ 1 for all b ∈ ∆E ands∈ S. ModuleA is output
deterministicif for all a ∈ ΣE there exists at most oned ∈ OE such that%(a:d) 6= ∅, where∅ is the
empty relation. ModuleA is deterministicif it is both transition deterministic and output deterministic.

Abstraction in the module specification is achieved in two ways. First, the automaton may be non-
deterministic, thus hiding implementation decisions. Secondly, the automaton can use a more abstract
state space than would be required for an (efficient) implementation. Abstraction is formalized by intro-
ducing a refinement relation between modules. Module refinement is defined in terms of the observable
behavior, which ultimately are the possible values returned after a sequence of calls. We first decompose
% into a transition relationδA ∈ Σ→ (S↔ S), or δ for short, and a value relationvA ∈ Σ→ (S↔ O),
or v for short:

δ(a) =
⋃{%(a:d) | d ∈ O},

v(a) = {(s,d) | %(a:d)(s) 6= ∅}.
The extended transition relationδ∗ ∈ Σ∗ → (S ↔ S), is defined byδ∗(ε) = Id and δ∗(x.a) =
δ∗(x) ; δ(a). The response relationrA ∈ Σ+ ↔ O, or r for short, defines the set of all possible responses
(outputs) after a non-empty sequence of calls, starting from the initial state:

r(x.a) = (δ∗(x) ; v(a))(s0).

For a given signatureE, let A = (∆E,S, %, s0) andA′ = (∆E,S′, %′, s′0) be module specifications with
the same alphabet but possibly different state space, transition function and initial state. ThenA′ is a

7

behavioral refinementof A, written A ≤ A′, if after any sequence of calls for whichA returns some
defined output,A′ returns also at least one output value and all the possible outputs returned byA′ would
also possible forA:

A≤ A′ ⇔ rA v rA′ .

Note that behavioral refinement is expressed without direct reference to the states ofA andA′. If fol-
lows immediately that behavioral refinement is reflexive and transitive. For example, given appropriate
definitions of the modules, we would have:

Very Drunk Stack≤ Drunk Stack and Drunk Stack≤ Stack.

Let E be a signature, let% ∈ ∆E → S ↔ S and %′ ∈ ∆E → S′ ↔ S′ be transition relations
with the same alphabet but different state space, and letR be a relation betweenSandS′. We note that
∆E ⊆ ΣE × OE. Transition relation% is data-refined by%′, written % vR %′, means that for a given
initial state and access program call, the outputs which are possible with%′ are also possible with% (the
nondeterminism in selecting a response may be reduced) and the final states which are possible for%′

are also possible with% (the nondeterminism in selecting a final state may be reduced), where the initial
and final states are related viaR. Moreover, whenever for a given initial state and access program call at
least one response and final state are defined in%, there must be also at least one response and final state
defined by%′ (the domain must not be reduced), where the initial and final stated are related viaR. For
this, let %̃ ∈ ΣE × S↔ OE × Sbe a relation which is isomorphic to% but makesΣE part of the initial
state space andOE part of the final state space. Data refinement is defined in terms of%̃ and%̃′ :

% vR %
′ ⇔ %̃ vId×R %̃′,

(a, s) %̃ (d, t)⇔ s (%(a:d)) t.

Module specificationA′ simulates Avia simulation relationR if the initial values are in relationR and
the transition relations are data refined viaR:

AvR A′ ⇔ s0 R s′0 ∧ % vR %
′.

If for some relationR moduleA′ simulates moduleA, thenA′ is a behavioral refinement ofA. Hence
this gives a practical way of establishing module refinement:

Proposition 5.1 For a given signature E, let A= (∆E,S, %, s0) and A′ = (∆E,S′, %′, s′0) be module
specifications. If R∈ S↔ S′ then:

AvR A′ ⇒ A≤ A′.

For the purpose of the proof we need two lemmas. First, we generalize data refinement to allow different
relations for the initial and final state space. AssumeQ ∈ S0 ↔ S1, Q′ ∈ S′0 ↔ S′1, T ∈ S0 ↔ S′0, and
U ∈ S1 ↔ S′1. Data refinement ofQ by Q′ via T,U is defined by:

QvT,U Q′ ⇔ (∀x . Q(x) 6= ∅ ⇒ (T ◦Q′)(x) ⊆ (Q ◦ U)(x) ∧ (T ◦Q′)(x) 6= ∅).

Ordinary data refinement is a special case sinceQ vT Q′ ⇔ Q vT,T Q′. Sequential composition is
monotonic with respect to generalized data refinement in the sense that, assuming additionallyR ∈
S1 ↔ S2, R′ ∈ S′1 ↔ S′2, andV ∈ S2 ↔ S′2:

QvT,U Q′ ∧ RvU,V R′ ⇒ Q ; RvT,V Q′ ; R′.

8

For removing a data refinement on the initial state we have that for anyQ,R, x, x′:

x R x′ ∧QvR,Id Q′ ⇒ (Q(x) 6= ∅ ⇒ Q′(x′) ⊆ Q(x) ∧Q′(x′) 6= ∅).

Proof of Proposition 5.1First, we observe that by definition,A vR A′ implies %̃ vId×R %̃′. From this,
we can show that for anya ∈ Σ:⋃

{%(a:d) | d ∈ O} vR

⋃
{%′(a:d) | d ∈ O}.

This is done by expanding the definitions and some subsequent simplifications. By the definition of
δA(a), this is equivalent to:

∀a ∈ Σ . δA(a) vR δA′(a).

With the monotonicity of sequential composition and by using induction over the length ofx ∈ Σ∗ we
conclude:

∀x ∈ Σ∗ . δ∗A(x) vR δ
∗
A′(x).

Furthermore, from the definition ofvA and%̃ vId×R %̃′ we get:

∀a ∈ Σ . vA(a) vR,Id vA′(a).

Again, this is done by expanding the definitions and some subsequent simplifications. From these two,
using the monotonicity lemma above, we have:

∀x ∈ Σ∗,a ∈ Σ . δ∗A(x) ; vA(a) vR,Id δ
∗
A′(x) ; vA′(a).

As s0 R s′0 holds by the assumption thatA vR A′, we can apply above lemma for removing data
refinement on the initial state and get:

∀x ∈ Σ∗,a ∈ Σ . (δ∗A(x) ; vA(a))(s0) 6= ∅ ⇒
(δ∗A′(x) ; vA′(a))(s′0) ⊆ (δ∗A(x) ; vA(a))(s0) ∧ (δ∗A′(x) ; vA′(a))(s′0) 6= ∅.

By the definition ofrA this is equivalent to:

∀x ∈ Σ∗,a ∈ Σ . rA(x.a) 6= ∅ ⇒ rA′(x.a) ⊆ rA(x.a) ∧ rA′(x.a) 6= ∅,

which again is equivalent torA v rA′ , and hence impliesA≤ A′.

6 Mealy Machines

In contrast to automata, Mealy machines specify the next state and the output by separate functions. For
a given signatureE, a Mealy machineM is a tuple,

M = (∆E,S, δ, v, s0)

where∆E are call-responses of signatureE, S is the (finite or infinite) set of states,δ ∈ ΣE→ S↔ S is
the state transition relation,v ∈ ΣE → S→ OE, s0 ∈ S is the initial state, and all valid call-responses
of δ andv are according to∆E:

∀a ∈ ΣE, s∈ S . δ(a)(s) 6= ∅ ⇒ a:v(a)(s) ∈ ∆E

9

jq

j j

@
@
@
@
@
@
@
@@R

�
�
�
�
�
�
�
��	�

�
��

@
@

@
@@

�
�	

�
�
�
�
�
�
�
- s1

s2 s3

a:1 b:2

a:2

a:2

b:3

b:1

j j-s1 s3
b:2 ⇔ %(b:2)(s1) = {s3}⇔δ(b)(s1) = {s3}

v(b)(s1) = 2

}

Figure 1: The Mealy machine withΣ = {a,b}, O = {1, 2, 3}, or thedeterministicautomaton with
∆ = {a:1,a:2,b:1,b:2, b:3}. The states1 is initial.

For every Mealy machineM we can construct an automatonAM,

AM = (∆E,S, %, s0)

over the same alphabet∆E, same setS of states, same initial states0 and the transition relation% ∈
∆E → S↔ Sdefined by:

%(a:d)(s) =

{
δ(a)(s) if v(a)(s) = d
∅ if v(a)(s) 6= d

The automatonAM is equivalent to the Mealy machineM in the sense that the set of valid call-response
sequences ofM andAM are identical. Figure 1 illustrates the relationship betweenM andAM. However,
not every automaton, even not every deterministic automaton, can be interpreted as a Mealy machine.
In Figure 1, if one adds an arrow froms1 to s3 labeled bya:2, the new automaton cannot be interpreted
as a Mealy machine1.

We may use both Mealy machines and standard automata as the backbone of our model. The de-
scriptive power of Mealy machines is at best the same as transition deterministic automata, only notation
is different, more complex in our opinion. It might occasionally be convenient to use Mealy machines
instead of standard automata. As an example, we define simulation of Mealy machines which implies
simulation of the corresponding automata. AssumingM = (∆E,S, δ, v, s0) andM′ = (∆E,S′, δ′, v′, s′0)
we define:

M vR M′⇔ s0 R s′0 ∧ δ vR δ
′ ∧ vvR v′

vvR v′ ⇔ ∀s∈ S, s′ ∈ S′,a ∈ ΣE . s R s′ ⇒ v(a)(s) = v′(a)(s′)

Proposition 6.1 M vR M′ ⇒ AM vR AM′ .
1Sincev ∈ ΣE → S→ OE, thenv(s, a) can be equal to 1 or 2 but not both. Extendingv to ΣE → (S↔ O) does not help,

since it does not indicate thata:1 leads froms1 to s2 anda:2 from s1 to s3.

10

- - - - -v v v v v v(a, 1) (b, 1) (a, 2) (c, 1) (b, 2) (d, 1)

(a)

v v v v
v

v
v
v

(b)

�
�
���

@
@
@@R

-

�
�
��3

�
�
�
��7

Q
Q
QQs

S
S
S
SSw

��
��1

PPPPq��
��1

PPPPq -(a, 1)

(a, 2)

(c, 1)

(b, 1)

(c, 2)

(b, 2)

(a, 3)

(b, 3)

Figure 2: (a) Total order defined by the sequencea.b.a.c.b.d and (b) Weak order defined by the sequence
a.〈a.c.b〉.〈b.c〉.a.b.

Proof SupposeM = (∆E,S, δ, v, s0) andM′ = (∆E,S′, δ′, v, s′0). We have to show thats0 R s′0 and
% vR %

′ where%(a:d)(s) = δ(a)(s) if v(a)(s) = d and∅ otherwise, and similarly%′(a:d)(s) = δ′(a)(s)
if v′(a)(s) = d and∅ otherwise. The first part follows immediately fromM vR M′, the second part can
be shown to hold by first unfolding the definitions.

The difference is that here the refinements ofδ andv are dealt with separately, which may be of
practical advantage.

In general the standard automata provide a better and simpler model. In particular adding non-
determinism to value functions in Mealy formalism is problematic and, although possible, is seldom
done, because the formalism becomes complex. In [27, 33, 15, 24] Mealy machines were used and we
believed that resulted in unnecessary complexity and formal problems [33].

After deciding to use automata as a backbone of the specification technique, the next question is
how to describe the set of states in an as abstract as possible way, i.e. in a way which does not commit
to implementation decisions prematurely.

7 Defining Objects by Sequences

The ingenuity of the trace assertion method ([3]) is to use traces (i.e. some kind of sequences) not
only as a medium to describe behavior, but to specify states as well. Sequences are easy to specify and
understand and, since we observe only traces of call-responses, they provide anyway the entire visible
information.

Let ∆ be an alphabet (possibly infinite), and letx ∈ ∆∗. Not assuming an interpretation of elements
of ∆, what kind of structure canx be, what kind of information canx contain?

Considerx = a.b.a.c.b.d. The sequencex can be interpreted as atotal order tox of the occurrences of
elements of∆, as illustrated in Figure 2(a). By an occurrence ofa we mean a pair(a, i), wherei is a
natural number indicating the occurrence.

Consider now the sequencey = a.b.c.d and suppose that we have the additional information that the
order between the occurrences ofa,b, c,d does not matter. To express this, we introduce a partial
operator〈·〉 which takes aplain sequence and removes the order of its elements. Sequences where each
element of the alphabet occurs at most once are called plain. The set of all plain sequences over∆ is

11

denoted byPlain(∆). We can interpret〈·〉 as transforming a plain sequence into the corresponding set,
for example〈y〉” can be interpreted as{a,b, c,d}.

By mixing “〈·〉” with standard concatenation “.”, we obtain sequences likea.〈a.c.b〉.〈b.c〉.a.b. Such
sequences are used especially in concurrency theory. They are calledstep-sequencesor subset lan-
guages([18, 29]). They representweak(or stratified) partial orders([9, 18]). Figure 2(b) illustrates this
relationship.

Formally step-sequences are constructed as sequences over the alphabetFin(2∆), where for every
family of setsX , Fin(X) = {X | X ∈ X ∧ X is finite}. In this sense oura.〈a.c.b〉.〈b.c〉.a.b corresponds
to the sequence of sets:{a}.{a, c,b}.{b, c}.{a}.{b}.

From Szpirlajn theorem [9] it follows that every partial order corresponds uniquely to the set of all its
total extensions. In particular every setX = {a1, . . . ,an} is a partial order with empty ordering relation,
and it can be seen as a description of the set of all total order that can be built from the elements ofX.
Since finite total orders can be specified as sequences, the set{a1, . . . ,an} can be seen as a description
of all plain sequences built froma1,. . . ,an. For instance{a,b, c} can be seen as a description of the set
of sequences{a.b.c,a.c.b,b.a.c,b.c.a, c.a.b, c.b.a}.

In general a step-sequence can are be interpreted as a set of all sequences corresponding to all
total extensions of the weak orders specified by the step-sequence. For instance the step-sequence
a.〈b.a〉.c.〈a.c〉 defines the set of sequences:{a.b.a.c.a.c,a.a.b.c.a.c, a.b.a.c.c.a,a.a.b.c.c.a}. The set
of sequences corresponding to the step-sequence from Figure 2(b) consists of 12 elements, including
for instancea.a.c.b.b.c.a.b anda.b.c.a.c.b.a.b

Formally, the set of step-sequences over∆, denoted〈∆∗〉, is the smallest set of sequences over
∆ ∪ {〈, 〉} such that:

• everyx ∈ ∆∗ is a step-sequence,

• if x ∈ Plain(∆), then〈x〉 is a step-sequence,

• if x andy are step-sequences, thenx.y is a step-sequence.

In addition to the above concatenation “.” on step-sequences, we defineweak concatenation, denoted
by “^”. Weak concatenation with an empty step-sequence is defined by:

x^ε = x and ε^y = y.

For non-empty step-sequencesx and y, the idea ofx ^ y is to merge the last “step” ofx with the
first “step” of y. If the result of the concatenation of the last and first “step”, respectively, is plain,
then we have for instance(a.b) ^ c = (a.c) ^ b = a.〈b.c〉, 〈a.b〉 ^ 〈c.d.e〉 = 〈a.b.c.d.e〉, and
(a.〈a.b〉)^(〈c.d〉.a) = a.〈a.b.c.d〉.a.

For non-plain step-sequences, “^” can be illustrated as follows: ifx = 〈a.b〉.c.〈a.c〉 and y =
〈a.b〉.a.c thenx^ y = 〈a.b〉.c.〈a.b.c〉.a.c, i.e. the last step ofx, 〈a.c〉, is merged with the first step
〈a.b〉 of y. We would also like to write expressions like(〈a.b〉.c.〈a.c〉)^(〈a.b〉.a.c) = 〈a.b〉.c.(〈a.c〉^
〈a.b〉).a.c .

Formally, weak concatenation can be defined as follows. Since every non-empty step sequencesx, y
can be expressed asx = x1.α, y = β.y1, whereα = 〈t〉 or α = a, β = 〈s〉 or β = b, t ands are plain,
t 6= ε, s 6= ε, a,b ∈ ∆, we can definex^y in this case by:

x^y = x1.(α^β).y1

12

The interpretation of step-sequences is given by a mappingsem: 〈∆∗〉 → 2∆∗ . Let set(x) denote the
set of all elements of∆, from which the stringx ∈ ∆∗ is built. For exampleset(a.b.c.a.c) = {a,b, c}.
The mappingsemmay be defined as follows:

1. ∀x ∈ ∆∗ . sem(x) = {x},

2. ∀x ∈ Plain(∆) . sem(〈x〉) = {y ∈ Plain(∆) | set(x) = set(y)},

3. ∀x, y ∈ 〈∆∗〉 . sem(x.y) = sem(x).sem(y),

where “.” in “sem(x).sem(y)” denotes the standard concatenation of sets of sequences (see [13]). For
instancesem(〈a.b.c〉) = {a.b.c,a.c.b,b.a.c, b.c.a, c.a.b, c.b.a}, sem(a.〈b.a〉.c.〈a.c〉) = {a.b.a.c.a.c,
a.a.b.c.a.c, a.b.a.c.c.a, a.a.b.c.c.a}.

The two views of step sequences, sequences of sets and sets of sequences, are compatible in the
sense that two step sequencesx, y ∈ 〈∆∗〉 are equal,x = y, if and only if they are equal in their
interpretations as sets of sequences,sem(x) = sem(y).

For all x, y ∈ 〈∆∗〉 we will say thatx is a prefix of y if there isz ∈ 〈∆∗〉 such thaty = x.z or
y = x^z. For everyt ∈ 〈∆∗〉 and everya ∈ ∆ we shall writea ∈ t if a is contained int. For instance
a ∈ b.〈a.b〉, anda /∈ b.b.c. We use step-sequences to specify states of automata.

8 Trace Only Automata

Let A = (∆,S, %, s0) be an automaton. We shall say thatA has thecanonical trace property(ct-property)
if for every states ∈ S there is a tracexs ∈ ∆∗ such that%∗(xs)(s0) = {s}. Not every automaton has
ct-property and every transition-deterministic automaton has ct-property. The automaton from the left
hand side of Figure 3 does not have ct-property (the automaton can then “generate” only two tracesε and
a and it has three states). Frequently there is more than onexs satisfying%∗(xs)(s0) = {s}. For example
for the automaton from Figure 1 and the states3 we have (s1 is initial here)%∗(b:2.(a:2)i)(s1) = {s3},
for everyi ≥ 0.

If A has ct-property we may define a set ofcanonical traces[27]. A set of tracesCanTr ∈ ∆∗

is canonical if for every s ∈ S there is exactly onexs ∈ CanTr, its unique representation, such that
%∗(xs)(s0) = {s}. AutomatonA is isomorphic toAct = (∆,CanTr, %ct, xs0), where%ct(a)(xs) =
{xs1 , . . . , xsk} ⇐⇒ %(a)(s) = {s1, . . . , sk}.

Automata likeAct are calledtrace only automatasince their states are defined in terms of traces.
Mealy machine counterparts of trace only automata are used extensively for the trace assertion method,
e.g. [14, 16, 15, 24, 27, 33]. The problem is that using traces may frequently result in a kind of asym-
metry which makes the specification less readable than expected. Consider the automaton on the right
hand side of Figure 3. It occurs typically as part of a greater automaton. The states4 is unambiguously
defined by two tracesa.a.b anda.b.a. Each of them can be chosen as a canonical one. Ifa.a.b is chosen,
then the canonical tracex = a.a is a prefix ofa.a.b, hence we have%ct(b)(x) = {x.b}. The canonical
tracey = a.b is not a prefix ofa.a.b, so%ct(a)(y) 6= {y.a}. The asymmetry is induced by the choice of
a canonical trace, the automaton itself is symmetrical, from the states1 we reachs4 in two steps, using
bothaandb in any order,a.bor b.a. Such asymmetry makes some specifications unnecessarily complex.
The Unique Integer module is a classical example, but the problem occurs frequently in real modules

13

j

j

j

q
�
�
�
�
�
��

A
A
A
A
A
AU

a a

(a)

j j
j

j
jq

s0

s1

s2

s3

s4-
Z
Z
ZZ~

�
�
��>

�
�
��>

Z
Z
ZZ~

a

a

b a

b
ε a

a.a

a.b

a.a.b or a.b.a

a.〈a.b〉

(b)

Figure 3: (a) Example of an automaton which does not have ct-property and (b) Example of asymmetry
when canonical traces are used.

as well. The asymmetry disappears when step-traces are used to identify states. When the states4 is
identified bya.〈a.b〉, then botha.b anda.a are prefixes ofa.〈a.b〉 (a.〈a.b〉 = (a.b)^a = (a.a)^b).

For an automatonA with ct-property, we define the setC ⊆ 〈∆∗〉 of canonical step-traces. Let %̄ be
an extension of% defined on the Cartesian product of the states andplain traces:

%̄(t) =

{
%∗(x) x ∈ sem(t) ∧ (∀y, z∈ sem(t) . %∗(y) = %∗(z))
∅ otherwise

Now, letC be any subset of〈∆∗〉 satisfying:

1. ∀t ∈ C. ∃st ∈ S. ∀x ∈ sem(t) %∗(x)(s0) = {st},

2. 2∀s∈ S.∃!ts ∈ C. %̄∗(ts)(s0) = {s}.

The symbol∃! denotes “there exists exactly one”. Note that the ct-property implies the existence of (at
least one)C.

What if an automaton does not have the ct-property? First we must note that such a situation occurs
rather seldom in practice. The Drunk Stack has the ct-property, Very Drunk Stack does not, but neither
of them is a part of any real system. They were chosen to illustrate potential problems. But if the best
and most readable model of a module is an automaton-like structure without ct-property, we can use
a concept similar tolabeled transition system[2]. In contrast to automata, each arrow in a transition
system has a unique name. The elements of∆ attached to arrows in automata are calledlabels in
transition systems. By “labeled transition system” we mean that each arrow hastwo attachments, a
unique name, and a not necessarily unique label. We do not need each arrow to be unique, we need only
the ct-property, so the following construction is proposed.

An automaton with the alphabet of state constructorsis a tuple

A = (∆,Υ,S, %, s0),

where∆ is the alphabet,Υ is thestate constructorsalphabet,S is the set of states,% is the transition
relation,% ∈ (∆∪Υ)→ S↔ S, ands0 ∈ S is the initial state. The transition relation% must satisfy the
following conditions:

14

1. ∀α ∈ Υ, s∈ S . |%(α)(s)| ≤ 1,

2. ∀s1, s2 ∈ S . (∃a ∈ ∆ . s2 ∈ %(a)(s1) ⇔ ∃α ∈ Υ . %(α)(s1) = {s2}).

The setL(A) = {x ∈ ∆∗ | %∗(x)(s0) 6= ∅} describes the normal behavior of the module. The elements
of Υ do not occur inL(A). Wedo notassume∆ ∩ Υ = ∅. The first condition says thatA restricted to
Υ is a transition-deterministic automaton. Hence the ct-property is guaranteed. The second condition
guarantees that each arrow is marked by one element of∆ and one element ofΥ. Since automata with
state constructors alphabet do always have ct-property, their states can always be specified as canonical
step-sequences.

Every automaton may be extended to an equivalent automaton with state constructor alphabet by
simply definingΥ = {(s,a, s′) | s′ ∈ %(v)(s)}, and extending% ontoΥ by %(s,a, s′)(s) = {s′}. This
construction results in a labeled transition system, and is of a very little use in practice, but is always
possible.

9 Trace Assertion Specifications

Trace assertion specifications emerge when using canonical traces for the states of module specifica-
tions. More precisely, given a signatureE, a trace assertion specificationTA is a module specification

TA = (∆E, C, %, t0),

whereC ⊆ 〈∆∗E〉 is a set of step-traces such that every step-tracet describes unambiguously one state,
and this is the state the sequencex ∈ sem(t) leads to:

∀t ∈ C, x ∈ sem(t) . %∗(x)(t0) = {t}.

For the Stack and Drunk Stack modules,C can just be the set of all sequences of typePUSH(i1).
PUSH(i2).PUSH(ik), and for instance:

%(TOP:4)(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH(4)}
%(TOP:8)(PUSH(5).PUSH(7).PUSH(4)) = ∅
%(PUSH(5))(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH(4).PUSH(5)}

The access program calledPOPbehaves differently in Stack than in Drunk Stack, for example:

%(POP)(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7)}

for Stack, while for Drunk Stack:

%(POP)(PUSH(5).PUSH(7).PUSH(4),POP) = {PUSH(5).PUSH(7),PUSH(5)}.

For the Unique Integer module, the setC can be defined as the set of all step-sequences〈GET:i1.GET:
i2.GET:ik〉, whereij = ik⇔ j = k, and for instance:

%(GET:7)(GET:3.GET:6.GET:9) = {〈GET:3.GET:6.GET:9.GET:7〉}
= {〈GET:3.GET:6.GET:7.GET:9〉}

%(GET:3)(GET:3.GET:6.GET:9) = ∅

15

The Very Drunk Stack cannot be modeled (in a natural way) byTAas defined above.
Given a trace assertion specificationTA, we define the competence functionκ : C × Σ → Bool =

{0, 1}, in the following way:

κ(t,a) =

{
0 if ∀d ∈ O . %(a:d)(t) = ∅
1 if ∃d ∈ O . %(a:d)(t) 6= ∅

The notion of competence function follows from [24]. It defines what is a misuse. Ifκ(t,a) = 0,
then the use ofa at the state described byt is a misuse. For both Stack and Drunk Stack we have:
κ(ε,POP) = κ(ε,TOP) = 0, andκ(tfull ,PUSH(d)) = 0, if tfull represents the full stack. Otherwise
κ(t,a) = 1. For the Unique Integer,κ(t,GET) = 0 only if t represents the state where all available
integers are used.

Let π : 〈∆∗〉 → 〈Σ∗〉 be a projection mapping, for anya:d ∈ ∆ andx, y ∈ 〈∆∗〉 defined by:

π(ε) = ε, π(a:d) = a, π(x.y) = π(x).π(y), π(〈x〉) = 〈π(x)〉.

For exampleπ(a1:d1.a2:d2.a3:d3.a4:d4) = a1.a2.a3.a4, andπ(a:3.〈a:2.b:2〉.〈a:3.a:2〉) = a.〈a.b〉.〈a.a〉.

A trace assertion specificationTA is output independentif for every x, y ∈ L(TA),

x = y ⇔ π(x) = π(y),

otherwise it isoutput dependent. If TA is output independent thenπ can be interpreted as a one-to-one
function, soπ−1 is a function onπ(L(TA)).

Both Stack and Drunk Stack are output independent while Unique Integer is not. Note that in
[27, 33] and others the output independent trace assertion specifications are called deterministic while
output dependent are called non-deterministic.

In our terminology, both Stack and Unique Integer are transition deterministic, while Drunk Stack is not.
Transition determinism does not imply output independence and output independence does not imply
transition determinism. Unique Integer is transition deterministic but output dependent, Drunk Stack is
not transition deterministic but output independent.

10 Mealy Form of Trace Assertion Specifications

If TA is output independent, it may be represented as a kind of a Mealy machine, with a separate
specification of the output function. Most trace assertion models in the literature are based on Mealy
machines. We think that, in general, the automata concept is better, but for the output independentTA’s
the Mealy model also leads to equally readable specification. It also helps to explain the relationship
with algebraic specifications (see Chapter 16).

Lemma 10.1 If TA is output independent then, for all t∈ C, a∈ Σ, and all d∈ O,

%(a:d)(t) 6= ∅ ⇒ (∀d′ 6= d . %(a:d′)(t) = ∅).

16

Proof. Suppose that there ared,d′ ∈ ∆∗, a ∈ C, such thatd 6= d′, and%(a:d)(t) 6= ∅, %(a:d′)(t) 6= ∅.
Hence for allx ∈ sem(t), x.a:d 6= x.a:d′, whileπ(x.a:d) = π(x).a = π(t.a:d′), a contradiction.

Lemma 10.1 says that for output independentTA, for everyt ∈ C, a ∈ Σ, there existsat mostoned ∈ O
such that%(a:d)(t) is not empty.

Given anoutput independenttrace assertion specification, we define the mappingδ : Σ→ π(C) ↔
π(C), thecalls only transition function, as

δ(a)(π(t)) = π(%(a:d)(t))

and the mappingv : Σ→ π(C)→ O ∪ {nil}, theoutput value functionas follows:

v(π(t),a) =

{
d if ∃d ∈ O . %(a:d)(t) 6= ∅
nil if ∀d ∈ O . %(a:d)(t) = ∅

Lemma 10.1 guarantees the well-definedness ofδ andv.

Proposition 10.2 If TA is output independent and deterministic then for all t, s∈ C, a:d ∈ ∆:

s∈ %(a:d)(t) ⇐⇒ π(s) ∈ δ(a)(π(t)) ∧ v(a)(π(t)) = d.

Proof. (⇒) From the definitions ofδ andv.
(⇐) Supposes /∈ %(a:d)(t). We have to consider two cases.
Case 1.%(a:d)(t) = ∅. From the definition ofv, we havev(a)(π(t)) = nil 6= d.
Case 2.%(a:d)(t) 6= ∅. Thenδ(a)(π(t)) = π(%(a:d)(t)). If π(s) ∈ δ(a)(π(t)) then there existss′ ∈ C
such thatπ(s) = π(s′), a contradiction, sinceTA is output independent.

Proposition 10.2 guarantees that for output independentTA’s, the mapping% is completely defined byδ
andv.

The Stack is output independent, so instead of

%(TOP:4)(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH(4)},

one can write equivalently, as commonly used in the existing literature:

δ(TOP)(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH(4)},
v(TOP)(PUSH(5).PUSH(7).PUSH(4)) = 4.

Proposition 10.2 allows to represent any output independent trace assertion specification in an equiv-
alent form, which is called theMealy form. Formally the Mealy form ofTA is defined by:

TAMealy = (∆E, π(C), δ, v, t0).

For every trace assertion specificationTA, not necessary output independent, an explicate value
function v% : Σ → C ↔ O can be defined asv%(a)(t) = {d | %(a:d)(t) 6= ∅}. But v% differs from v.
The functionv can only be defined for an output independentTA, occurs together withδ and cannot be
derived formδ. The mappingv% is redundant, it is derived from%.

17

For the Unique Integer module which is outputdependentone may just write

%(〈GET:3.GET:6.GET:9〉,GET:7) = {〈GET:3.GET:6.GET:9.GET:7〉},
%(〈GET:3.GET:6.GET:9〉,GET:i) = ∅ if i ∈ {3, 6, 9},

or one may write equivalently:

%(〈GET:3.GET:6.GET:9〉,GET:7) = {〈GET:3.GET:6.GET:7.GET:9〉},
%(〈GET:3.GET:6.GET:9〉,GET:i) = ∅ if i ∈ {3, 6, 9},
v%(〈GET:3.GET:6.GET:9〉,GET) = {i | i /∈ {3, 6, 9}}.

The second way is longer and, in our opinion, does not increase readability. It is used in [33] and others.

All the concepts introduced so far do not allow to model Very Drunk Stack in a natural way. The reason
is that in this case the natural states of the stack, i.e. the sequences of integers, cannot be unambiguously
described by the sequences of call-responses. The solution we suggested in Section 2 is to introduce a
state constructorpush1(i) to describe the stack states.

11 Trace Assertion Specifications with State Constructors

Given a signatureE, a trace assertion specification with state constructorsis an automaton

ΥTA = (∆E,Υ, C, %, t0),

with the alphabetΥ of state constructors where, as for trace assertion specifications,C ⊆ 〈Υ∗〉 is the set
of canonical step-traces:

∀t ∈ C, x ∈ sem(t) . %∗(x)(t0) = {t}.
We do not assume∆E ∩ Υ = ∅, although it may often happen. The elements ofΥ \ ∆E are invisible
(abstract).

For the Very Drunk Stack module, the setΥ is the set of all abstract invisible callspush1(i), wherei
is any available integer, andC is the set of all sequencespush1(i1).push1(ik). In this case we have
∆E ∩Υ = ∅. For instance

%(TOP:4)(push1(5).push1(7).push1(4)) = {push1(5).push1(7).push(4)}
%(TOP:8)(push1(5).push1(7).push1(4)) = ∅
%(PUSH(5))(push1(5).push1(7).push1(4)) = {t1, t2}
%(POP)(push1(5).push1(7).push1(4)) = {push1(5).push1(7), push1(5)},

where
t1 = push1(5).push1(7).push1(4).push1(5),
t2 = push1(5).push1(7).push1(4).push1(5).push1(5).

A trace assertion specification with state constructorsΥTAdefines the following normal behavior

L(ΥTA) = {x ∈ ∆∗ | %∗(x)(t0) 6= ∅}.

Note thatΥ is not involved inL(ΥTA). The output independentΥTA, the Mealy form of an output
independentΥTA, and the competence functionκ are defined analogously as forTA.

18

Introducing invisible state constructors is clearlyagainstthe philosophy of the trace assertion method
as formulated in [3]. One of the advantages claimed in [3] was no need for hidden functions to specify
modules with delays. The algebraic specifications of those modules have required hidden functions. On
the other hand, what we really want is to specify the visible behavior of a module in the most easy and
readable yet precise way. The states are auxiliary concepts, and the invisible calls seem to serve well as
the state constructors.

12 Enhancements and Exceptional Behavior

Large specifications are best developed and presented in a number of steps of increasing complexity. In
particular, we suggest that the first step describes the normal behavior and exceptional behavior is added
in the second (or later) step. The second step can be seen as anenhancementof the first step, in the
sense that it additional behavior is specified while the original is preserved.

Let us take the stack module and a tracet = PUSH(i1).PUSH(i2).PUSH(in). Suppose that the
stack has a boundn, i.e. t is a state of the full stack, and consider the trace:

t.PUSH(in+1) = PUSH(i1).PUSH(i2).PUSH(in).PUSH(in+1).

Since we cannot prevent such an access program call to occur, the question arises what behavior this
trace describes. Defining the transition relation to be empty in this case allows nontermination. Alterna-
tively, we can specify thatPUSH(in+1) should be ignored or that it replaced the previous top element.

However, in any case the state structure of the module is independent of its exceptional behavior.
All states of the stack are entirely defined by its normal behavior.

Let TA = (∆E, C, %, t0) be a trace assertion specification. Ifκ(t,a) = 0 then for alld ∈ O, we have
%(a:d)(t) = ∅, which means thata at t is a misuse and it does not generate any normal behavior. In
principle, an enhancement ofTA consists in defining new%′ such that%′(a:d)(t) 6= ∅ whenκ(t,a) = 0.
It is a structure complimentary toTA. Formally, an enhancementenh(TA) of TA is a triple

enh(TA) = (∆E′ , C′, %′),

where:∆E′ is anenhanced call-response alphabet, C′ ⊆ 〈∆∗E′〉 is anenhanced set of canonical traces,
%′ ∈ ∆E′ → C′ ↔ C′ is anenhanced transition relation, which is defined only if the transition relation
of TA is not defined,

∀t ∈ C . ∀a ∈ ΣE . κ
′(t,a) = 1⇒ κ(t,a) = 0,

whereκ andκ′ are the competence functions ofTAandenh(TA), respectively.

The enhancementenh(TA) is calledplain if ∆E′ ⊆ ∆E, andC′ ⊆ C. Non-plainenh(TA) means that
there are some special error recovery states and some separate error recovery procedure. We shall not
consider such examples in this paper.

For Stack and Drunk Stack a plain enhancement can be defined by:

%′(POP)(ε) = %′(TOP)(ε) = {ε} and %′(PUSH(i))(tfull) = {tfull}

wheretfull is the canonical step-trace corresponding to the full stack, and%′(a:d)(t) = ∅ for the rest of
t,a, andd. For the Unique Integer module the enhancement can be defined by:

%′(GET:nil)(tall) = {tall}

19

wheretall is the canonical trace corresponding to the state where all available integers are used up, and
%′(a:d)(t) = ∅ for all othert,a, andd.

Enhancements describing exceptional behavior are typically output independent, hence can be repre-
sented in a Mealy form(∆E′ , π(C′), δ′, v′). The definition is practically identical as for output indepen-
dentTA’s. The only difference is that the enhancements do not possess initial step-traces.

For Stack and Drunk Stack the plain form of an enhancement can be defined by:

δ′(POP)(ε) = δ′(TOP)(ε) = {ε}, δ′(PUSH(d))(tfull) = {tfull}, v′(TOP)(tfull) = nil,

andδ′(a)(t) = ∅ for the rest oft anda.

We obtain theenhanced trace assertion specification ETAby taking the composition (union) ofTA and
the enhancementenh(TA): The full specification is just a union ofTAandenh(TA), ETA= TA∪enh(TA),
i.e.

ETA= (∆E ∪∆E′, C ∪ C′, % ∪ %′, t0).

Hence%+ = % ∪ %′ satisfies%+ ∈ (∆ ∪ ∆E) → (C ∪ C′) ↔ C ∪ C′, and for all t ∈ C ∪ C′,a ∈
∆E ∪∆E′ ,d ∈ O ∪O′,

%+(a:d)(t) =

{
%(t,a:d) if t ∈ C ∧ κ(t,a) = 1
%′(t,a:d) otherwise

Proposition 12.1 For any plain enhancement enh(TA):

TA≤ TA∪ enh(TA)

Proof. Sinceenh(TA) is plain, we have thatETA = TA∪ enh(TA) = (∆E, C, % ∪ %′, t0). We apply
Proposition 5.1 withR = Id. Refinement follows immediately from the above observation that%+

defines additional behavior only ifκ(t,a) = 0.

For every output independentETAwe can standardly built its Mealy formETAMealy. In a very similar
way we may define an enhancement for the trace assertion specification with state constructors as a
composition of a trace assertion specification with state constructors and its enhancement.

13 Specification Format

To be useful in practice, the trace assertion technique must provide some specification formats. Two
such formats are described and later used. Any trace assertion specification in the standard form con-
sists of four sections:Syntax, Canonical Step-trace Definition, Trace Assertionsand Dictionary. A
trace assertion specification in theMealy formconsists of five sections:Syntax, Canonical Step-trace
Definition, Trace Assertions, Output ValuesandDictionary.

In the Mealy form theSyntaxsection is just a table which specifies for each module access-program
namef ∈ E, the possible inputsinput(f) and by the number of arguments each program takes and
the type of each argument, and the possible outputsoutput(f) by the type of each return value. In the
standard form it also specifies call-response formats for all access programs.

20

In the Canonical Step-trace Definitionsection, the predicatecanonicaland the initial canonical
step-trace are defined. In general this could be a complex definition with a tabular notation involved
(c.f. [27, 33]). However, in the majority of (well thought of) cases this is a relatively simple formula.
The convention

[e(xi)]ki=j

as a shorthand fore(xj).e(xj+1).e(xk) andε if k < j, is often used.
In the standard form the Trace Assertions section is a sequence of trace assertions of the form

%(a:d)(t) = {t1, . . . , tk}

for all callsa defined in the Syntax section. The tracest, t1, . . . , tk are the canonical step-traces. Since
% is a total function it must be defined for every possiblea andd. The convention that empty relations
or sets, respectively, are specified by omission is used. If for particular values oft, a andd, the value
of the function%(a:d)(t) does not appear in the Trace Assertions section this means that%(a:d)(t) = ∅.
In the Mealy form the Trace Assertions section is a sequence of trace assertions of the formδ(a)(t) =
{t1, . . . , tk}.

To specify transition deterministic trace assertions the following tabular notation is used2.

%(a:d)(t) =
Conditions Trace Patterns Equivalence

condition1 pattern1(t) this c’
.....

The columnEquivalencedefines the canonical step-tracet′ such that%(a:d)(t) = {t′}. Sincet here
is a variable,t′ could be different for differentt, the columnsConditionsandTrace Patternsare used
to specify all different cases. The columnTrace Patternscontains appropriate patterns (or their char-
acteristic predicates) fort, while the columnConditionscontains predicates on the trace and argument
variables. The first row above should be readif condition1 and pattern1(t) then%(a:d)(t) = {this c′}.
The columnsConditionsandTrace Patternscan be omitted if not needed. The empty cells in those
columns denote the predicatetrue.

For trace assertions which are not transition deterministic the tabular notation is slightly different,
namely:

%(a:d)(t) =

Conditions Trace Patterns Clusters

condition1 pattern1(t) t1,1 t1,2 t1,3 t1,4
condition2 pattern2(t) t2,1 t2,2

.....

In this case the rows should be read as follows:
if condition1 and pattern1(t) then%(a:d)(t) = {t1,1, t1,2, t1,3, t1,4},
if condition2 and pattern2(t) then%(a:d)(t) = {t2,1, t2,2},

etc. Since in this case the canonical step-traces do not represent equivalence classes but some clusters
of traces the third column has now the nameClusters.

For the Mealy form we have also theOutput Valuessection, which defines the value functionv. A
similar tabular notation is used, in this case a table consists of the columnsConditions, Trace Patterns
andValue. Thenil values are specified by omission.

2See [17, 19, 26] for details on tabular notation.

21

Syntax of Access Programs

Name Argument Value Call-Response Forms

POP POP:nil
PUSH integer PUSH(d):nil
TOP integer TOP:d

Canonical Step-traces
canonical(t) ⇔ t = [PUSH(di)]ni=1 ∧ 0 ≤ n≤ size
t0 = ε

Trace Assertions

%(POP)(t) =
Trace Patterns Equivalence

t = s.PUSH(d) s
% t = ε ε

%(PUSH(d))(t) =
Condition Equivalence

length(t) < size t.PUSH(d)
% length(t) = size t

%(TOP:d)(t) =
Condition Trace Patterns Equivalence

t = s.PUSH(d) t
% d = nil t = ε ε

Dictionary
size: the size of the stack
length(t) : the length of the tracet

Figure 4: Enhanced Trace Assertion Specification for Stack Module

The Dictionary section provides the definitions of the terms, auxiliary functions, types and other
structures that are used in the body of the specification. The Dictionary section is rather short for simple
examples.

The format forenhancedtrace assertion specification is basically the same as the described above. The
only difference is that new rows that correspond to the enhancement are added. We use the convention
that all the rows added by the enhancement are marked by the symbol “%” at the beginning.

Figures 4, 5, 6, 7, 8 present various forms of trace assertion specifications of the Stack, Drunk Stack
and Very Drunk Stack modules in the specification format described above.

22

Syntax of Access Programs

Name Argument Value

POP
PUSH integer
TOP integer

Canonical Step-traces
canonical(t) ⇔ t = [PUSH(di)]ni=1 ∧ 0 ≤ n≤ size
t0 = ε

Trace Assertions

δ(POP)(t) =
Trace Patterns Equivalence

t = s.PUSH(d) s
% t = ε ε

δ(PUSH(d))(t) =
Condition Equivalence

length(t) < size t.PUSH(d)
% length(t) = size t

δ(TOP)(t) =
Equivalence

t
or δ(TOP)(t) =

Trace Patterns Equivalence

t 6= ε t
% t = ε t

Values

v(TOP)(t) =
Trace Patterns Value

t = s.PUSH(d) d
% t = ε nil

Dictionary
size: the size of the stack
length(t) : the length of the tracet

Figure 5: Mealy Form of the Enhanced Trace Assertion Specification for Stack Module

23

Syntax of Access Programs

Name Value Call-Response Forms

GET integer GET:d

Canonical Step-traces
canonical(t) ⇔ t = 〈[GET:di]ni=1〉 ∧ 0 ≤ n≤ size∧ (di = dj ⇔ i = j)
t0 = ε

Trace Assertions

%(GET:d)(t) =
Condition Equivalence

length(t) < limit ∧GET:d /∈ t t^GET:d
% length(t) = limit ∧ d = nil t

Dictionary
limit : the number of available integerslimit = maxinteger−mininteger+ 1
maxinteger: the maximum available integer
mininteger: the minimum available integer
length(t) : the length of the tracet

Figure 6: Enhanced Trace Assertion Specification for Unique Integer Module

14 Refining Modules

We illustrate the refinement of trace assertion specifications by showing that Drunk Stack is refined by
Stack. From the Trace Assertion section in Figure 4 we get following transition relation%S for Stack:

%S(POP)(t, t′) ⇔ ∃d, s . (t = s.PUSH(d) ∧ t′ = s) ∨ (t = ε ∧ t′ = ε)
⇔ ∃d . t = t′.PUSH(d) ∨ (t = ε ∧ t′ = ε),

%S(PUSH(d))(t, t′)⇔ (length(t) < size∧ t′ = t.PUSH(d)) ∨ (length(t) = size∧ t′ = t),
%S(TOP:d)(t, t′) ⇔ ∃s . (t = s.PUSH(d) ∧ t′ = t) ∨ (d = nil ∧ t = ε ∧ t′ = ε).

We transform% into %̃ such that(a, t) %̃ (d, t′)⇔ t (%(a:d)) t′ (see Section 5):

%̃S(POP, t)(nil, t′) ⇔ %S(POP)(t, t′),
%̃S(PUSH(d), t)(nil, t′)⇔ %S(PUSH(d))(t, t′),
%̃S(TOP, t)(d, t′) ⇔ %S(TOP:d)(t, t′).

24

Syntax of Access Programs

Name Argument Value Call-Response Forms

POP POP:nil
PUSH integer PUSH(d):nil
TOP integer TOP:d

Canonical Step-traces
canonical(t) ⇔ t = [PUSH(di)]ni=1 ∧ 0 ≤ n≤ size
t0 = ε

Trace Assertions

%(POP)(t) =

Trace Patterns Clusters

t = PUSH(d) ε

t = s.PUSH(d1).PUSH(d2) s.PUSH(d1) s
% t = ε ε

%(PUSH(d))(t) =
Condition Equivalence

length(t) < size t.PUSH(d)
% length(t) = size t

%(TOP:d)(t) =
Condition Trace Patterns Equivalence

t = s.PUSH(d) t
% d = nil t = ε ε

Dictionary
size: the size of the stack
length(t) : the length of the tracet

Figure 7: Enhanced Trace Assertion Specification for Drunk Stack Module

25

Syntax of Access Programs

Visible Name Abstract Name Argument Value Call-Response Forms

POP POP:nil
PUSH integer PUSH(d):nil
TOP integer TOP:d

push1 integer push1(d)

Canonical Step-traces
canonical(t) ⇔ t = [push1(di)]ni=1 ∧ 0 ≤ n≤ size
t0 = ε

Trace Assertions

%(POP)(t) =

Trace Patterns Clusters

t = push1(d) ε

t = s.push1(d1).push1(d2) s.push1(d1) s
% t = ε ε

%(PUSH(d))(t) =

Condition Cluster

length(t) < size− 1 t.push1(d).push1(d) t.push1(d)
length(t) = size− 1 t.push1(d)
% lenght(t) = size t

%(TOP:d)(t) =
Condition Trace Patterns Equivalence

t = s.PUSH(d) t
% d = nil t = ε ε

Dictionary
size: the size of the stack
length(t) : the length of the tracet

Figure 8: Enhanced Trace Assertion Specification for Very Drunk Stack Module

26

From the Trace Assertion section in Figure 7 we get the following transition relation%DS for Drunk
Stack:

%DS(POP)(t, t′) ⇔ ∃d,d1,d2, s . (t = PUSH(d) ∧ t′ = ε)∨
(t = s.PUSH(d1).PUSH(d2) ∧ (t′ = s.PUSH(d1) ∨ t′ = s)∨
(t = ε ∧ t′ = ε)

⇔ ∃d,d1,d2 . t = t′.PUSH(d) ∨ t = t′.PUSH(d1).PUSH(d2)∨,
(t = ε ∧ t′ = ε)

%DS(PUSH(d))(t, t′)⇔ (length(t) < size∧ t′ = t.PUSH(d)) ∨ (length(t) = size∧ t′ = t),
%DS(TOP:d)(t, t′) ⇔ ∃s . (t = s.PUSH(d) ∧ t′ = t) ∨ (d = nil ∧ t = ε ∧ t′ = ε).

We transform%DS into %̃DS:

%̃DS(POP, t)(nil, t′) ⇔ %DS(POP)(t, t′),
%̃DS(PUSH(d), t)(nil, t′)⇔ %DS(PUSH(d))(t, t′),
%̃DS(TOP, t)(d, t′) ⇔ %DS(TOP:d)(t, t′).

For showing simulation between Drunk Stack and Stack, we have to find a relationR between the
canonical traces of Drunk Stack and those of Stack. Letsubseq(x, y) be a relation between sequencesx
andy which holds if elements ofx occur in the same order iny, i.e.subseqis the smallest relation such
that for any sequencesx, y and elementa:

subseq(ε, ε) and subseq(x, y) ⇒ subseq(x.a, y.a) and subseq(x, y) ⇒ subseq(x, y.a).

Intuitively, the canonical traces of Drunk Stack correspond to those of Stack with somePUSH(d) ele-
ments interspersed. Hence we define:

R(t, t′)⇔ subseq(t′, t).

The first condition for Stack to simulate Drunk Stack usingR is that the initial tracet0 = ε of Drunk
Stack andt0 = ε of Stack are in relationR, which holds trivially. The second condition is̃%DSvId×R %̃S,
which is defined as:

%̃DS(a, t) 6= ∅ ⇒ ((Id × R) ◦ %̃S)(a, t) ⊆ (%̃DS ◦ (Id × R))(a, t) ∧ ((Id × R) ◦ %̃S)(a, t) 6= ∅,

wherea are all the calls of Drunk Stack and Stack, andt ranges over all canonical trances of Drunk
Stack. We consider the casesa = POP, a = PUSH(d), anda = TOP separately. Fora = POP,
we have that̃%DS(POP, t) 6= ∅ for any canonical tracet and similarly%̃s(POP, t) 6= ∅. As R is a total
relation, it is easy to see that((Id × R) ◦ %̃S)(POP, t) 6= ∅ for any canonical tracet. Hence above
condition simplifies in this case to:

((Id ×R) ◦ %̃S)(POP, t) ⊆ (%̃DS ◦ (Id × R))(POP, t),

which is equivalent to:

(∃t′ . subseq(t′, t) ∧ (∃d . t′ = t′′.PUSH(d) ∨ (t′ = ε ∧ t′′ = ε)))
⇒ (∃t′ . (∃d,d1,d2 . t = t′.PUSH(d) ∨ t = t′.PUSH(d1).PUSH(d2) ∨ (t = ε ∧ t′ = ε))

∧subseq(t′′, t′)),

27

for all t′′. This holds according to the rules of logic and above definition ofsubseq. The cases
a = PUSH(d) anda = TOP follow similarly. In total, this establishes Drunk StackvR Stack, which
according to Proposition 5.1 implies Drunk Stack≤ Stack.

Trace assertion specifications like Stack can be further refined into modules with a “more concrete” state
space. For example, a Stack implementation could use an arrayA and integerN, related to the canonical
traces of Stack by

R(t,A,N)⇔ N = length(t) ∧ t = A[1..N],

whereA[1..N] selects the subsequence ofA with the firstN elements. Such refinement steps can be
carried out in a standard way, e.g. [10, 21]. However, this establishes a link between abstract trace
assertion specifications and efficient implementations.

15 Multi-Object Modules

In practical applications, it is not unusual that a module is designed to implement several independent
homogeneous objects. For example in some applications, one may need to design a (multi-object)
stack module that implements two or, in general, any number of stacks, plus for instance the stack
concatenationoperation. The module may beself-initializing, i.e. the first use ofPUSH(stackname, i)
creates a stackstacknameor may require object generator likenew(stackname). A natural way of
modeling such modules is to define the global states as sets of states of individual modules, with the
empty set as the initial state. We already know how to specify individual states (by canonical step-traces)
and relationships between them (by trace assertions). Note that the sets can be specified by sequences,
the sequence “{a,b, c}” specifies the set consisting of the elementsa, b, c. This convention is used for
years and is easy to understand3 . We need only an apparatus to make the states of individual objects
distinct, to transform global states by both global calls (likeconcatenate, which affects more than one
individual state, ornew, which create a new local state), and local calls (likePUSH, which affects only
one local state). The states of individual objects may be made distinct by adding individual labels to
them. For instance{stack1 7→ PUSH(3).PUSH(5), stack2 7→ PUSH(3).PUSH(1).PUSH(8), stack3 7→
ε} may represent a global state consisting of three stacksstack1, stack2, stack3, where the local state
of stack1 is PUSH(3).PUSH(4), the local state ofstack2 is PUSH(3).PUSH(1).PUSH(8) andstack3
is empty. Thestack1, stack2 andstack3 areunique labelsattached to appropriate canonical step-traces,
creatinglabeled step-traces. This lead us to the concept ofuniquely labeled sets.

15.1 Uniquely Labeled Sets

LetX be a set andL be a set oflabels. A subsetX ofL×X is alabeled set. We shall writeα 7→ x ∈ L×X
instead of(α, x) ∈ L×X. If L = {1, 2, 3}, X = {a,b} then{1 7→ a, 1 7→ b, 2 7→ a} is an example of a
labeled set.

A setX ⊆ L× X is uniquely labeledif for all α ∈ L and for allx, y ∈ X,

(α 7→ x ∈ X ∧ α 7→ y ∈ X) ⇔ x = y.
3In a sense{a, b, c} and〈a.b.c〉 describe the same object, only the interpretation is different, see Section 7.

28

X is uniquely labeled if every element of it has an unambiguous label. For example{1 7→ a, 2 7→ a}
is uniquely labeled, while{1 7→ a, 1 7→ b, 2 7→ a} is not. Thefamily of all uniquely labeled setsover
L × X is denoted byU(L,X). Note that∅ is uniquely labeled, and for everyX ∈ U(L,X), |X | ≤ |L|.
In particular we are interested in the familyU(L, 〈∆∗〉), where∆ is an alphabet.

For every uniquely labeled setX ⊆ L× X, letL(X) be the set of all its labels,

L(X) = {α ∈ L | ∃x ∈ X. α 7→ x ∈ X}.

For everyα ∈ L and everyX ∈ U(L,X), let

X|α = x and X ‖α = α 7→ x

if α 7→ x ∈ X for somex, and undefined otherwise. For instance ifX = {1 7→ a, 2 7→ b} thenX|1 = a
andX ‖1 = 1 7→ a, whileX|3 andX ‖3 are undefined. The operator| is called“projection” and‖ is
called“selection”. Note thatX ‖α = α 7→ X |α, if X|α is defined.

For every two uniquely labeled setsX , Y, we define the operation←↩ and⊕ as follows:

X ←↩ Y = X \ {α 7→ x ∈ X | α ∈ L(Y)} ∪ Y,
X ⊕ Y = X ∪ Y \ {α 7→ x | x ∈ X ∧ α ∈ L(X) ∩ L(Y)}.

Note thatX ←↩ Y, X ⊕ Y are always uniquely labeled andX ⊕ Y = Y ⊕ X , but it may happen that
X ←↩ Y 6= Y ←↩ X . The operation←↩ replaces elements ofX by the elements ofY with the same
labels. IfL(X) ⊆ L(Y) thenX ←↩ Y = Y. If L(X)∩L(Y) = ∅ thenX ←↩ Y = X ∪Y = X ⊕Y. For
instance{1 7→ a, 2 7→ b} ←↩ {1 7→ b} = {1 7→ b, 2 7→ b}, and{1 7→ a, 2 7→ b}⊕{1 7→ b} = {2 7→ b}.
The operator←↩ is called thelabeled replacement, the operator⊕ is an auxiliary operator that is used to
define concatenation and weak concatenation for the elements ofU(L, 〈∆∗〉).

The elements ofU(L, 〈∆∗〉) are calleduniquely labeled sets of step-sequences, and the elements of
L × 〈∆∗〉 labeled step-sequences. In particular∅ andα 7→ ε are labeled step-sequences. For every
τ1, τ2 ∈ U(L, 〈∆∗〉) we defineconcatenation“.” and weak concatenation“^” by:

τ1.τ2 = {α 7→ t1.t2 | α 7→ t1 ∈ τ1 ∧ α 7→ t2 ∈ τ2} ∪ (τ1 ⊕ τ2)
τ1^τ2 = {α 7→ t1^ t2 | α 7→ t1 ∈ τ1 ∧ α 7→ t2 ∈ τ2} ∪ (τ1 ⊕ τ2)

Clearlyτ1.τ2 andτ1^τ2 are elements ofU(L, 〈∆∗〉). For instance ifτ1 = {1 7→ ε, 2 7→ a.〈b.a〉, 3 7→
a.a} andτ2 = {1 7→ a.b, 2 7→ 〈c.d〉}, then we haveτ1.τ2 = {1 7→ a.b, 2 7→ a.〈b.a〉.〈c.d〉, 3 7→ a.a},
τ1^τ2 = {1 7→ a.b, 2 7→ a.〈b.a.c.d〉, 3 7→ a.a}.

We also extend the operator∈, for anyα ∈ L, τ ∈ U(L, 〈∆∗〉), a ∈ ∆ by:

α ∈ τ ⇔ ∃t ∈ 〈∆∗〉 . α 7→ t ∈ τ,
a ∈ τ ⇔ ∃α ∈ L. ∃t ∈ 〈∆∗〉 . α 7→ t ∈ τ ∧ a ∈ t.

For instance,2 ∈ {1 7→ a.a, 2 7→ a.〈b.a〉}, but 3 /∈ {1 7→ a.a, 2 7→ a.〈b.a〉}, b ∈ {1 7→ a.a, 2 7→
a.〈b.a〉}, butc /∈ {1 7→ a.a, 2 7→ a.〈b.a〉}.

29

15.2 Multi-Objects Trace Assertion Specifications

Let TA = (∆E, C, %, t0) be a trace assertion specification, and letL be a set of labels. By afree multi-
object trace assertion specificationgenerated byTAandL, we mean a tuple:

LTA = (L ×∆E,U(L, C), %L, ∅)

where:L × ∆E is the set oflabeled call-responses, U(L, C) is theuniquely labeled set of canonical
step-traces, %L : L ×∆E → U(L, C) ↔ U(L, C) is the transition relation defined for allτ ∈ U(L, C)
andα 7→ a:d ∈ L×∆ by:

%L(α 7→ a:d)(τ) =

{
{ τ ←↩ {α 7→ t} | t ∈ %(a:d)(τ |α) } if %(a:d)(τ |α) 6= ∅
∅ if %(a:d)(τ |α) = ∅

The above definition assumesself-initializationof modules, i.e. the first call initializes a given object in
the module. Without self-initialization, the user must initialize an object before the call relating to this
object. The pair(L,TA) describesLTA completely, sinceLTA is entirely specified by the specification
TA and the description ofL. For instanceL = the set of all available names, andTA from Figure
4 (without enhancement) describe completely the self-initializing multi-stack module. We may easily
derive that in such a case (we specify normal behavior only so far):%L(st1 7→ PUSH(3))(∅) = {st1 7→
PUSH(3)}, while %L(st1 7→ POP)(∅) = ∅. If τ = {st1 7→ PUSH(3).PUSH(1), st2 7→ ε, st3 7→
PUSH(5)}, then we have%L(st1 7→ POP)(τ) = {st1 7→ PUSH(3), st2 7→ ε, st3 7→ PUSH(5)}, while
%L(st2 7→ POP)(τ) = ∅. In the sequel, except in the theory part, we shall prefer to writePUSH(st1, 3).
PUSH(st1, 1) instead ofst1 7→ PUSH(3).PUSH(1).

The normal behavior described byLTA is given by:

L(LTA) = {x | x ∈ (L×∆)∗ ∧ %∗L(x)(∅) 6= ∅},

where%∗L is the standard extension of%L onto(L×∆)∗ → U(L, C)↔ U(L, C) (see Section 6.1).

The empty trace,ε, always does belong toL(LTA) since, by the definition,%∗L(ε)(∅) = {∅} 6=
∅. For the self-initializing multi-stack trace assertion specificationLTA we havex = PUSH(st1, 1).
PUSH(st2, 3).POP(st1) ∈ L(LTA) since%∗L(x)(∅) = {st1 7→ ε,PUSH(st2, 3)} 6= ∅, whilex.POP(st1) /∈
L(LTA) since%∗L(x.POP(st1))(∅) = ∅.

For a givenLTA, let %∅L denote the following transition relation, for allτ ∈ U(L, C) andα 7→ a:d ∈
L×∆:

%∅L(α 7→ a:d)(τ) =

{
δL(α 7→ a:d)(τ) if α ∈ τ
∅ if α /∈ τ

A multi-object trace assertion specificationis a tuple:

MTA = (LTA,∆Eglob, %glob)

whereLTAas above,∆Eglob is the set ofglobal call-response events, δglob theglobal transitionrelation,
such that for someΣglob:

input(Eglob) =
⋃∞

i=0(Σglob×Li),
%glob ∈ ∆glob→ U(L, C)↔ U(L, C).

30

We write a(α1, . . . , αk) ∈ ∆glob, and a(α1, . . . , αk) : d ∈ ∆glob, rather than(a, α1, . . . , αk), and
(a, α1, . . . , αk,d). For instance, we writenew(α) instead of(new, α) andconcatenate(α1 , α2, α3) in-
stead of(concatenate, α1 , α2, α3).

For everyMTA we definethe transition relation%̂ ∈ ((L×∆) ∪ ∆glob) → U(L, C) ↔ U(L, C),
where for allτ ∈ U(L, C) andp ∈ (L×∆) ∪∆glob:

%̂(p)(τ) =


%L(p)(τ) if p ∈ L×∆ ∧ new /∈ Σglob

%∅L(p)(τ) if p ∈ L×∆ ∧ new∈ Σglob

%glob(p)(τ) if p ∈ ∆glob

To create a new instance of an object, we use the access program callnew∈ Σglob× L, defined by:

%glob(new(α))(τ) =

{
{ τ ←↩ {α 7→ t0} } if α ∈ τ
∅ if α /∈ τ

In other wordŝ% = %L ∪ %glob if new /∈ Σglob, and%̂ = %∅L ∪ %glob otherwise.
The global programnew(α) is usually accompanied by a programdelete(α) ∈ Σglob × L, which

deletes the instance ofTA with labelα:

%glob(delete(α))(τ) =

{
{ τ \ {τ ‖α} } if α ∈ τ
∅ if α /∈ τ

Thenormal behaviorgenerated byMTA is defined by:

L(MTA) = {x | x ∈ ((L×∆) ∪∆glob)∗ ∧ %̂∗(x)(∅) 6= ∅}.

For instanceε always does belong toL(MTA) since%̂∗(ε)(∅) = {∅} 6= ∅, if new,delete∈ Σglob, then
new(α1).new(α2).delete(α2) ∈ L(MTA) since%̂∗(new(α1).new(α2).delete(α2))(∅) = {α1 7→ t0} 6= ∅,
and%̂∗(new(α1).new(α2).delete(α2).delete(α1))(∅) = {∅} 6= ∅, while new(α1).delete(α2) /∈ L(MTA)
since%̂∗(new(α1).delete(α2))(∅) = ∅.

MTA is self-initialized if new /∈ Σglob, output independentif TA is output independent,deterministic
if TA is deterministic and|δglob(τ,p)| ≤ 1. The concepts ofenhancement, full specification, Mealy
form andstate constructorscan easily be introduced for multi-objects modules. The counterparts of
Lemma 10.1, Proposition 10.2 and Proposition 12.1 also do hold for multi-objects trace specifications.
Figure 9 represents a full self-initialized multi-object trace assertion specification for the Cross module
that was introduced and analyzed in [14]. The specification of the Cross module caused some problems
when the older convention and techniques were used [14]. The Cross specification is non-deterministic
and output independent. The module implements up to two sets, labeled by eithera or b, each set
may contain0, 1, both0 and1 or is empty. There are two local operationsINSERT, which inserts an
element into a given set,TESTwhich tests if an element is in a given set, and one global operation
CROSSwhich takes two sets and divides non-deterministically their union into two disjoint sets. The
module is self-initializing, the firstINSERTcreates a set. Figure 10 represents the full multi-objects
trace assertion specification of Multi-Stack withnew, concatenate, anddeleteas global program calls.
The specification is deterministic, output-independent and non self-initializing.

31

Labels
L = {a, b}

Syntax of Access Programs
Name Type Argument Value Call-Response Forms Code

INSERT local 0 or 1 INSERT(∗, i):nil i
TEST local 0 or 1 Boolean TEST(∗, i):d
CROSS global CROSS:nil

Local Canonical Step-traces (Coded)
canonical(t) ⇔ (t = ε ∨ t = i ∨ t = 〈i1.i2〉) ∧ i, i1, i2 ∈ {0, 1} ∧ i1 6= i2
t0 = ε

Local Trace Assertions

%(INSERT(∗, i))(t) =
Equivalence

t^ i

%(TEST(∗, i):d)(t) =

Condition Equivalence

i ∈ t ∧ d = true t
i /∈ t ∧ d = false t

Global Canonical Step-traces(Redundant)

global canonical(τ) ⇔ τ = ∅ ∨ ((τ = {a 7→ t} ∨ τ = {b 7→ t}) ∧ canonical(t))
∨(τ = {a 7→ t1, b 7→ t2} ∧ canonical(t1) ∧ canonical(t2))

τ0 = ∅

Global Trace Assertions
%̂(CROSS)(τ) =

Condition Clusters

0 ∈ τ ∧ 1 ∈ τ ∧ |τ | = 2 {a 7→ 〈0.1〉, b 7→ ε} {a 7→ 0, b 7→ 1} {a 7→ 1, b 7→ 0} {a 7→ ε,b 7→ 〈0.1〉}
0 ∈ τ ∧ 1 /∈ τ ∧ |τ | = 2 {a 7→ ε, b 7→ 0} {a 7→ 0, b 7→ ε}
1 ∈ τ ∧ 0 /∈ τ ∧ |τ | = 2 {a 7→ ε, b 7→ 1} {a 7→ 1, b 7→ ε}
τ = {a 7→ ε, b 7→ ε} τ

% |τ | < 2 τ

Extended Local Trace Assertions(Redundant, except for enhancements)

%̂(INSERT(α, i))(τ) =
Equivalence

τ ^{α 7→ i}

%̂(TEST(α, i):d)(τ) =

Condition Equivalence

α 7→ i ∈ τ ∧ d = true τ
α ∈ τ ∧ α 7→ i /∈ τ ∧ d = false τ
% α /∈ τ τ

Figure 9: Enhanced Trace Assertion Specification for (a self-initializing) Cross Module

32

Labels L =available names
Syntax of Access Programs
Name Type Argument Value Call-Response FormsCodes

POP local POP(∗):nil
PUSH local integer PUSH(∗, i):nil i
TOP local integer TOP(∗):i
new global label new(∗)
concatenate global 3× label concatenate(∗, ∗, ∗)
delete global label delete(∗)

Local Canonical Step-traces
canonical(t) ⇔ t = [di]ni=1 ∧ 0 ≤ n≤ size
t0 = ε

Local Trace Assertions

%(POP(∗))(t) =
Trace Patterns Equivalence

t = s.d s
% t = ε ε

%(PUSH(∗,d))(t) =
Condition Equivalence

length(t) < size t.d
% length(t) = size t

%(TOP(∗):d)(t) =
Condition Trace Patterns Equivalence

t = s.d t
% d = nil t = ε ε

Global Canonical Traces(Redundant)
global canonical(τ) ⇔ τ = {αi 7→ ti}ki=1 ∧

∧ti
i=1 canonical(ti) ∧ (αj = αl ⇔ j = l)

τ0 = ∅

Global Trace Assertions

%̂(new(α))(τ) =
Condition Equivalence

α /∈ τ τ ←↩ {α 7→ ε}
% α ∈ τ τ

%̂(concatenate(α1 , α2, α3)(τ) =
Condition Equivalence

α1 ∈ τ ∧ α2 ∈ τ ∧ α3 ∈ τ τ ←↩ {α3 7→ τ |α1.τ |α2}
% α1 /∈ τ ∨ α2 /∈ τ ∧ α3 /∈ τ τ

%̂(delete(α))(τ) =
Condition Equivalence

α ∈ τ τ \ {τ ‖α}
% α /∈ τ τ

Dictionary
size: the size of the stack,length(t) : the length of the tracet

Figure 10: Enhanced Trace Assertion Specification for Multiple Stack Module. Extended Local Trace
Assertions are omitted as redundant.

33

16 Trace Assertion Method and Algebraic Specification

There are strong similarities between the trace assertion method and thealgebraic specification method
(see [7, 34]) for specifying abstract data types. Examples of similarities are:

1. Syntax parts of trace assertion specifications correspond to signatures in algebraic specification.

2. For output-independent trace assertion specifications, trace assertions correspond to conditional
equations,

3. Canonical traces corresponds canonical terms (see [7]).

4. State constructors (as introduced in the paper to solve the problem that it is not always possible
to represent the possible states uniquely by sequences of call-response pairs of visible functions)
correspond to auxiliary/hidden functions in algebraic specification.

However, there are major differences. Themain difference is that

1. Algebraic specification supportsimplicit equations while trace assertion method usesexplicit
equationsonly.

The functionsPUSH, POP, andTOPoperating on non-empty stack may abstractly beimplicitly defined
as [7]:

POP(PUSH(s,a)) = s
TOP(PUSH(s,a)) = a

Less abstract, with states of the stack represented as sequences and “.” denoting concatenation,explicit
definition of the same part of stack is the following (also see [7]):

PUSH(s,a) = s.a
POP(s.a) = s
TOP(s.a) = a

In the second, explicit, case we may replace “=” by “
df
=”, but in the first, implicit, case we cannot.

The trace assertion specification is a straight abstraction of the second case. Theimplicit definitions
might sometimes be shorter, they are usually more abstract. However, typicallyexplicit definitions are
considered to be more readable and easier to understand. The stack is well-known and easy to understand
module, but even here some students have encountered initial problems to understand that the implicit
equations really define the stack, while the explicit equations are practically self-explaining. For more
complex modules, as for example parts of protocols [5, 12], parts of software for aircraft control [31],
or intra-processor, inter-process communication via mailboxes [32] both defining and understanding
implicit equations might be difficult (how simple would equational definitions of the Unique Integer or
the Cross module look like?).

The second difference is

2. The underlying models for algebraic specification areabstract algebras[4], while the underlying
model for trace assertion method areautomata.

While as we mentioned before there is similarity between automata and algebras, they are different
models. The other differences:

34

3. To specify in trace assertion specifications that a function does not change the state, it is necessary
to explicitly write trace assertions expressing this, while in algebraic specification it is possible
already in the signature to express this so that there is no need for equations.

4. Trace assertion specifications provide syntactic facilities which makes it possible in certain cases
to specify a function by a single trace assertion, where the use ofauxiliary/hidden functions(e.g.
in the definition of a stack with overflow [3]) orrecursive definitions(e.g. in the definition of the
dequeue function for a queue [7]) are necessary in algebraic specifications.

5. State constructorsthat correspond toauxiliary/hiddenfunctions are used only to handle heavy
non-determinism, while the use of auxiliary/hidden functions is much wider in algebraic specifi-
cations.

Suppose for instance thatPUSHadditionally returns the value that is pushed on the top of the stack. The
trace assertion specification requires only small adjustments, in Figure 5 we need to replacePUSH(d):nil
by PUSH(d) : d in the last column of the Syntax of Access Programs,t = [PUSH(di)]ni=1 by t =
[PUSH(di):di]ni=1 in the Canonical Step-traces definition (ornothingif codes are used as in Figure 11),
and

%(PUSH(d))(t) =
Condition Equivalence

length(t) < size t.PUSH(d)
% length(t) = size t

by:

%(PUSH(d):d)(t) =
Condition Equivalence

length(t) < size t.PUSH(d):d
% length(t) = size t

Similar minor adjustments are needed for the Mealy form of Figure 6. The algebraic specification
requires the use of anauxiliary/hiddenfunctionpush, and may look like:

POP(push(s,a)) = s
TOP(push(s,a)) = a
PUSH(s,a) = (push(s,a),a)

wherePUSH : Stack× integer→ Stack× integer. The descriptive power of trace assertion specifica-
tion and algebraic specification is the same. Every trace assertion specification can be transformed into
an equivalentcanonical terms algebra([7, 34]), and for every algebraic specification, a trace assertion
specification equivalent to thecanonical terms algebraof the given algebraic specification can be con-
structed. The constructions in the general case are formally complex and tedious, even so the intuitions
seem to be clear. We will show how such transformations may look like in some special cases. Those
transformations will also emphasize similarities and differences.

A trace assertion specificationTA = (∆E, C, %, t0) is total if it defines a transition for all calls, i.e.
κ(t,a) = 1 for all t ∈ C anda ∈ ΣE.

Let TA = (∆E, C, %, t0) be adeterministic and totaltrace assertion specification. We define the
many-sorted algebra

ATA = (SortC ,SortO ,Sort1, . . . ,SortkTA; Op)

35

whereSortC = C, SortO = OE, Sort1, . . . ,SortkTA are the domains of the arguments of the procedures
(function calls) fromNΣ, and

Op = {f̂ | f ∈ E} ∪ {f̃ | f ∈ E},

wheref̂ andf̃ are the functions defined as follows:

%(f (d1,,dr) : d)(t) = {s} ⇐⇒
{

f̂ (t,d1, ...,dr) = s
f̃ (t,d1, ...,dr) = d

For TA representing the Stack module (Figure 4) the above transformation result in the following two-
sorted function algebra

ATA = (SortC ,SortO ,Sort1; Op)

with SortC = C = {[PUSH(di)]ni=1 | 0 ≤ n ≤ size∩ di ∈ integer}, SortO = OE = integer∪ {nil},
Sort1 = integer, Op = { ̂PUSH, ˜PUSH, P̂OP, P̃OP, T̂OP, T̃OP}, ̂PUSH : SortC × Sort1 → SortC ,˜PUSH : SortC × Sort1 → SortO , P̂OP : SortC → SortC , P̃OP : SortC → SortO, T̂OP : SortC → SortC ,
T̃OP : SortC → SortO , and for everyt ∈ C, and every integeri:

̂PUSH(t, i) = t.PUSH(i) if lenght(t) < size, and,̂PUSH(t, i) = t if lenght(t) = size,˜PUSH(t, i) = nil
P̂OP(t.PUSH(i)) = t andP̂OP(ε) = ε,

P̃OP(t) = nil
T̂OP(t) = t
T̃OP(t.PUSH(i)) = i andT̃OP(ε) = nil,

We say that the “tilde” functioñf is trivial if range(f̃) = {nil}, and that the “hat” function̂f is trivial if
f̂ (t,d1, . . . ,dr) = t for everyt. For the Stack example, the functions̃PUSH, P̃OPandT̂OPare trivial.

Let Amodified
TA be the algebra derived fromATA by eliminating all trivial functions. We will consider

Amodified
TA as an algebraic equivalent of the deterministic trace assertion specificationTA.

For non-deterministic trace assertion specifications we proceed in a similar manner, but instead of stan-
dard many-sorted algebras we have to use for instancepartial algebras(see [34] chapter 3.3.5).

Consider a many-sorted algebraA = (S0,S1, . . . ,Sk; Op). We say that a sortSi is domesticif for
every f ∈ Op, Si is a component of the domain off , and there exists at least oneg ∈ Op such thatSi

is the range ofg. The sort is calledforeign if it is not domestic. For instance for the two sorted algebra
that defines stack of integers, the sortstackis domestic and the sortintegersis foreign. Intuitively, the
domestic sort is defined by the algebra, and all foreign sorts are predefined by other means.

An element ofso ∈ S0 is called ageneratorof S0 (see [34]), if every element ofS0 can be derived
from s0 by applying a sequence of operators (functions) fromOp.

To transform an algebraic specification in a trace assertion specification we have to resolve following
main problems:

1. all implicit equations must be replaced byexplicit ones,

36

2. only one domestic sort is allowed,

3. there exists a generators0 of S0.

It appears that many algebraic specifications can be transformed into the form described above, however
the result is usually less general.

Let A = (S0,S1, . . . ,Sk; Op) be a many-sorted algebra with explicit equations, one domestic domain
S0, and supposes0 is a generator ofS0. Without loss of generality we may assume that for everyf ∈ Op,
the domain off is of the formS0 ×Si1 × . . .×Sif , i.e. the value of the first argument off belongs toS0,
and thatS0 is the set ofcanonical terms[7, 34] (so in the case of stack, instead of〈1, 2〉 ∈ S0, we have
PUSH(PUSH(stack, 1), 2) ∈ S0).

DefineE, the set of access program names asE = {f | f ∈ Op}. For all f ∈ E, we definedinput(f) and
output(f) to be the smallest sets such that:

(v1, ..., vk) ∈ input(f) ∧ nil ∈ output(f) ⇐⇒ ∃t, s∈ S0 . f (t, v1, ..., vr) = s
(v1, ..., vk) ∈ input(f) ∧ d ∈ output(f) ⇐⇒ ∃t ∈ S0 . f (t, v1, ..., vk) = d.

Let Θ be the following mapping that transformsS0 into a set of traces over∆E: Θ(s0) = ε and for every
f (v0, v1, . . . , vk) ∈ S0, Θ(f (v0, v1, . . . , vk) = Θ(v0).f(v1, . . . , vk):nil. Now define

TA = (∆E,Θ(S0), %, ε)

where:
%(f(v1, . . . , vk):nil)(s) = {t} ⇐⇒ f (s, v1, . . . , vk) = t
%(f(v1, . . . , vk):d)(s) = {s} ⇐⇒ f (s, v1, . . . , vk) = d.

and%(a:d)(s) = ∅ for all other cases. We shall considerTA as a trace assertion specification that is
equivalent to the algebraA.

We believe the areas of applications for the algebraic specifications are different than for the trace asser-
tion method. The algebraic specification is better suited for defining abstract data types in programming
languages (as SML, LARCH, etc., see [34]). The trace assertion method is better suited for specify-
ing complex interface modules as for instance communication protocols [5, 12, 31, 32]. The division
follows from the general pattern of applicability of automata based and algebraic models. One may
model integers as an automaton (it is usually defined as an algebra), or may define the semantics of SCR
specification [11] as an abstract algebra (it is defined as a kind of automaton), however in both cases the
advantage as such way of modeling is hardly seen.

17 Final Comment

An automata-based model for the trace assertion method has been presented and its formal consistency
has been proven. A modified specification format based on this model has also been proposed. The
main points of the model are the following:

• the alphabet which represent observable event occurrences is built from call-response events,

37

• the structure of the trace assertion specification is entirely described on the bases of normal be-
havior only,

• the refinement relation captures the externally observable behavior of module specifications,

• trace assertion specifications can be refined into “more deterministic” and “more total” trace as-
sertion specifications or into module specifications with some “more concrete” state space, using
a simulation relation,

• exceptional behavior is specified separately as an enhancement of normal behavior, and such an
enhancement may be added to the trace assertion specification, leading a behavioral refinement,

• canonical step-traces (instead of canonical traces) are used to specify states for single-object
modules, and sets of canonical step-traces are used to specify states for multi-object modules.
Sequence notation is used to specify both step-traces and sets of step traces,

• Mealy forms are special cases of a more general yet simpler model,

• multi-object modules are specified using the concept of uniquely labeled sets of step-traces.

Neither the monitored events [11, 27, 33] nor non-sequential modules are considered in this paper. For
non-sequential models a possible delay between a call and its response must be modeled, so “true-
concurrency” models should rather be used [18]. We have shown that the output value functions are
redundant. The theory does not need them, and we believe they usually make specifications less read-
able. We have found the standard forms shorter and more readable than the Mealy forms. For the
output dependent trace specifications, the explicit output functions seem to be useless at all. The spec-
ification of multi-object modules is not much different than single-object modules. The trace assertion
method and algebraic specification can be seen as complimentary approaches. They have some things
in common, but substantial differences as well. The main difference is the use of implicit equations in
algebraic specifications, and explicit equations only in trace assertions. Their areas of applications seem
to be different.

Acknowledgment

We would like to thank D. Parnas and A. J. van Schouwen for many useful comments and discussions.
We gratefully acknowledge three anonymous referees, whose comments significantly contributed to the
final version of this paper.

References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meaning. Cambridge University Press, 1996.

[2] A. Arnold. Finite Transition Systems. Prentice Hall, 1994.

[3] W. Bartussek and D.L. Parnas. Using assertions about traces to write abstract specifications for
software modules. In G. Bracchi and P. C. Lockemann, editors,2nd Conf. on European Coopera-
tion in Informatics on Information Systems Methodology, Lecture Notes in Computer Science 65,
pages 211–236, Venice, Italy, 1978. Springer-Verlag.

38

[4] P. M. Cohen.Universal Algebra. D. Reidel, 1981.

[5] F. Courtois and D. L. Parnas. Formally specifying a communication protocol using the trace as-
sertion method. Technical Report CRL Report No. 269, McMaster University, Hamilton, Ontario,
Canada, 1993.

[6] V. Diekert and G. Rozenberg, editors.The Book of Traces. World Scientific, Singapore, 1995.

[7] H. Ehrig and B. Mahr.Fundamentals of Algebraic Specification 1: Equations and Initial Seman-
tics. EATCS Monographs in Theoretical Computer Science. Springer-Verlag, Berlin ; New York,
1985.

[8] S. Eilenberg.Automata, Languages and Machines, volume A. Academic Press, New York, 1974.

[9] R. Fräisse.Theory of Relations. North Holland, 1986.

[10] Jifeng He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robinet and R. Wil-
helm, editors,European Symposium on Programming, Lecture Notes in Computer Science 213.
Springer-Verlag, 1986.

[11] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking of require-
ments specification.ACM Transactions on Software Engineering and Methodology, 5(3):231–261,
1996.

[12] D. M. Hoffman. The trace specification of communication protocols.IEEE Transactions on
Computers, 34(12):1102–1113, 1985.

[13] J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages and Computations.
Addison-Wesley, Reading, MA, 1979.

[14] M. Iglewski, M. Kubica, and J. Madey. Trace specification of non-deterministic multi-object mod-
ules. Technical Report 95-05(205), Institute of Informatics, Warsaw University, Warsaw, Poland,
1995.

[15] M. Iglewski, J. Madey, and K. Stencel. On fundamentals of the trace assertion method. Technical
Report RR 94/09-6, Universit´e du Québecà Hull, Hull, Canada, 1994.

[16] M. Iglewski, J. Mincer-Daszkiewicz, and J. Stencel. Some experiences with specification of non-
deterministic modules. Technical Report RR 94/09-7, Universit´e du Québecà Hull, Hull, Canada,
1994.

[17] R. Janicki. Towards a formal semantics of parnas tables. In17th International Conference on
Software Engineering, pages 231–240, Seattle, Washington, USA, 1995. ACM Press.

[18] R. Janicki and M. Koutny. Structure of concurrency.Theoretical Computer Science, 112(1):5–52,
1993.

[19] R. Janicki, D. L. Parnas, and J. Zucker. Tabular representations in relational documents. In C. Brink
and G. Schmidt, editors,Relational Methods in Computer Science. Springer-Verlag, 1997.

39

[20] N. Lynch and M. Tuttle. An introduction to input/output automata.CWI Quarterly, 2(3):219–246,
1989.

[21] N. Lynch and F. Vaandrager. Forward and backward simulations: I. untimed systems.Information
and Computation, 121(2):214–233, 1995.

[22] J. McLean. A formal foundations for the abstract specification of software.Journal of the ACM,
31(3):600–627, 1984.

[23] H. D. Mills. Stepwise refinement and verification in box-structure systems.Computer, pages
23–26, 1988.

[24] T. Norvell. On trace specifications. CRL Report 305, McMaster University, Hamilton, Canada,
1995.

[25] D. Parnas. A technique for software module specification with examples.Communications of the
ACM, 15(5):330–336, 1972.

[26] D. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured programs.IEEE
Transactions on Software Engineering, 20(12):948–976, 1994.

[27] D. Parnas and Y. Wang. The trace assertion method of module interface specification. Technical
Report 89–261, CIS, Queen’s University, 1989.

[28] S. J. Prowell. Sequence-Based Software Specification. Ph.D. Thesis, University of Tennessee,
1996.

[29] G. Rozenberg and R. Varraedt. Subset languages of Petri nets.Theoretical Computer Science,
26:301–323, 1983.

[30] G. Schmidt and T. Str¨ohlein. Relations and Graphs: Discrete Mathematics for Computer Scien-
tists. EATCS Monographs in Theoretical Computer Science. Springer-Verlag, Berlin ; New York,
1993.

[31] A. J. van Schouwen. The A-7 requirements model: Re-examination for real time systems and an
application to monitoring systems. Technical Report 90–276, Queen’s University, 1990.

[32] A. J. van Schouwen. On the road to practical module interface specification. InLecture presented
at McMaster Workshop on Tools for Tabular Notations, McMaster University, Hamilton, Ontario,
Canada, 1996.

[33] Y. Wang. Specifying and Simulating the Externally Observable Behaviour of Modules. Ph.D.
Thesis, McMaster University, 1994. also CRL Report 292, TRIO.

[34] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor,Handbook of Theoretical Computer
Science, volume 2, pages 675–788. Elsevier Science, 1990.

40

Biographies

Ryszard Janickiis a Professor at the Department of Computing and Software, McMaster University,
Hamilton, Canada. He received the M.Sc. degree in Applied Mathematics from the Warsaw University
of Technology, Poland in 1975, and the Ph.D. and Habilitation in Computer Science from the Polish
Academy of Sciences, Warsaw, Poland in 1977 and 1981 respectively. He taught computer science
and mathematics at the Warsaw University of Technology, Poland in 1975-1984, Aalborg University,
Denmark in 1984-86, before joining McMaster in 1986. He was a Visiting Scholar at University of
Newcastle upon Tyne, U.K., in 1982 and a Visiting Professor at Bordeaux University, France, in 1994-
95.

He published more than 80 papers and co-authored a monograph. His research interests include
concurrency theory, fundamentals of software engineering, ranking theory, and relational methods in
computer science.

Emil Sekerinskiis Assistant Professor at the Department of Computing and Software, McMaster Univer-
sity, Hamilton, Canada. He studied computer science in Stuttgart and Karlsruhe, Germany, and received
the diploma in computer science and the doctoral degree from the University of Karlsruhe, in 1989
and 1994, respectively. He had positions atÅbo Akademi, Turku, Finland, 1995-1997 before joining
McMaster in 1997.

He published more than 20 papers and co-edited a book. His research interests include mathe-
matical specification and development techniques, object orientation, concurrent and reactive systems,
programming languages and programming tools.

41

