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Abstract

The trace assertion method is a formal state machine based method for specifying module inter-
faces. A module interface specification treats the module as a black-box, identifying all module’s
access programs (i.e. programs that can be invoked from outside of the module), and describing
their externally visible effects. In the method, both the module states and the behaviors observed
are fully described by traces built from access program invocations and their visible effects. A
formal model for the trace assertion method is proposed. The concept of step-traces is introduced
and applied. The stepwise refinement of trace assertion specifications is considered. The role of
non-determinism, normal and exceptional behavior, value functions and multi-object modules are
discussed. The relationship with algebraic specifications is analyzed. A tabular notation for writing
trace specifications to ensure readability is adapted.

Keywords. Module interface specifications, trace assertion method, state machines, Mealy ma-
chines, step-sequences, relational model, nondeterminism, module refinement, tabular notation.

1 Introduction

Software modules, viewed as “black boxes” [25, 23], hide some design decisions and provide abstract
data types. They can be specified using titaee assertion methodA trace is a complete history

of the visible behavior of a module. It includes all events affecting the module, eventually with the
outputs produced. Formally a trace is a sequence of events. The fundamental principle is that a trace
specification describes only those features of a module (or an object in general) that are externally
observable and the central idea of the approach is that traces can be divided into clusters and each
cluster is represented by a single canonical trace.

The trace assertion method was first formulated by Bartussek and Parnas in [3], as a possible answer
for problems with algebraic specifications [7, 34], which will be discussed later. It also can avoid the
problem of overspecification in model-oriented specifications, e.g. [1]. A typical example is the use
of a sequence for specifying a stack module, wHltksSH will append the new element either at the
front or the tail of the sequence, the choice being arbitrary. In the trace assertion method, this decision
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is avoided. Since its introduction the method has undergone many modifications [12, 22, 27, 33]. In
recent years, there has been an increased interest in the trace assertion method [14, 16, 15, 24, 28, 32].
However, a satisfactory foundation has not yet been developed.

The trace assertion method is based on the following postulates:

Information hiding[25, 23] is a fundamental principle for specification.

Sequenceare simple and powerful tool for specifying abstrabfects

Explicit equationsare preferable ovamplicit equationdike those of algebraic specifications.

State machineare simple and powerful tool for specifyimgodules

For many applications state machines are better than algebras, and their use for specification is growing
[1, 2, 11]. State machines (not necessary finite) are equivalent to algebras. This relationship differs for
different machines and algebras, but the general idea of relationship may be illustrated as follows:

i(p,a)=q < ap) =q,
N——— N—_——
state machine algebra

whered is a transition function of a state machine wélas a function name, ara(p) is a function
nameda applied top. See [8, 4] and Section 15.

The term “trace” has at least two different meanings. One it that a trace is just a sequence of events,
actions, operations, or systems calls, i.e. it is a sequence of specially interpreted elements. The other
meaning is that a trace is an element of a partially commutative monoid, where the monoid operation
is concatenation (see [6]). In the second case the name “Mazurkiewicz traces” is often used [6, 18]

. Traces in the first sense can be treated as a special case of the second (the independency relation is
empty, i.e. no commutativity at all). The “step-traces” used in this paper lie somewhere between the
first and the second meaning.

The contributions of this paper to the trace assertion method are:

e The role ofnondeterminismwhich caused some problem in the previous models is explained.
e The concept oéxceptional behavioif formally analyzed.
e The role of value functions, in particular for nondeterministic modules, is discussed.

e The use ofstep-tracego overcome difficulties with asymmetry caused by the use of ordinary
traces is proposed.

e A notion of refinementor trace assertion specifications is introduced.

e The use ofbstract state constructoffer the problem of finding canonical traces is certain situa-
tions is suggested.

o A formal model formulti-objectmodules is proposed and discussed.



Overview. In the next section we introduce and briefly discuss three simple modules. These modules
are used to illustrate the major problems and solutions. In Section 3 the question “What is an atomic
observable event?” is discussed. Section 4 reviews the fundamentals of the relational model of programs
and of program refinement. The automata model for module specifications is introduced in Section 5,
together with a notion of module refinement and a simulation condition. A module access-program
may return some values, but is it absolutely necessary to specify this fact by a separate output value
function? This problem is discussed in Section 6. Objects described by sequences and the concept of
step-sequences are discussed in Section 7, while automata with states specified by the step-sequences
are analyzed in Section 8. The formal concept of a trace assertion specification is given in Section 9.
The special instances of the trace assertion specification in Mealy form and the controversial use of
invisible actions are discussed respectively in Sections 10 and 11. Exceptional behavior is discussed in
Section 12. The idea is that misuses can be modeled separately and eventually they may be added to
the pure trace specification as an enhancement. Section 13 defines a format for the trace specification
technique. All the examples from Section 2 are formally specified in this format. Refinement with
these examples is illustrated in Section 14. Section 15 deals with multi-object modules. The uniquely
labeled sets of step-traces are introduced and used as a specification tool. The relationship between
trace assertions and algebraic specifications is analyzed in Section 16. The last section contains final
comments.

2 Introductory Examples

We shall use the following examples of modules: Stack, Unique Integer, Very Drunk Stack and Drunk
Stack. Each module is designed to implement a single object. The Stack module provides three access
programs,

e PUSH(i): enters an integaron the stack,
e POP: takes no arguments and removes the top of the stack, and
e TOP: takes no arguments and returns the value which is on the top of the stack.

Intuitively, a state of the stack is determined by the finite sequence of integers, the last element of the
sequence represents the top of the stack, and the first represents the bottom. Note that every sequence
of properly used access programs leads to exactly one state. For inBid&t€4).PUSH1).POP.
PUSH(7).TOPandPUSH(4).PUSH(7) both lead to the statét, 7). They could be seen as equivalent

and we can choose for instance the trBtéSH4).PUSH(7) as acanonical tracerepresenting the state

(4,7).

The Unique Integer module provides only one access program,

e GET: does not take any argument and returns an integer value from the set of integers a machine
can represent.

The only restriction on the return value is that it cannot be any value that was returned by pekibus
invocations. Intuitively the state of Unique Integer is determined by the set of all integers that were
returned by all previouSET invocations. In this case the sequence, G&T.GET.GET, corresponds

to any set{iy, i, i3}, whereiy, io andis are distinct integers. However, the invocationGET is only
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a part of a single observable event, an invocatioG&T returns an integei, so the full observable
event is a pai{GET, i), or, more convenienthyGET:i. A pair GET:i is a call-response event, with the
call GET and the response Any trace built fromGET:i pairs describes one state. For instance both
GET:5.GET:1.GET:8, andGET:1.GET:5.GET:8, describe the statgl, 5,8}. They could be seen as
equivalent and we can choose for instafeT:1.GET:5.GET:8 as the canonical trace. However, since
the order ofGET's is not important, quite opposite, it may cause some problems when imposed, we will
use a canonicatep-trace(GET:1.GET:5.GET:8), as a state descriptor. The operatormakes the
order irrelevant, i.e(GET:1.GET:5.GET:8) = (GET:8.GET:1.GET:5), etc. (see Section 7).

Both Stack and Unique Integer can be modeled by state machines (automata) for which every
trace describes exactly one state. The difference is that for Unique Integer traces are built from pairs
(call, responsg while for Stack calls alone are sufficient. The case when traces built from calls alone
are sufficient are calledutput independent

Module Drunk Stack is the same as Stack except that access pre@&behaves differently,

e POP: if the length of the stack is one removes the top element, if the length is greater than one
removes either the top element or the two top elements of the stack.

Now the tracdPUSH7).PUSH4).PUSH(1).PUSH(3).POPmay lead to two stateg7, 4, 1) and(7, 4).
Adding outputs to the events does not change the situation sinc€b&HhandPOPproduce no output.
However, each state is unambiguously described by an appropriate trace buit8hkhcalls. For in-
stancePUSH(7).PUSH(4).PUSH(1) describes the stat&, 4, 1), and only this state, so canonical traces
can be built. However, the tracédJSH7).PUSH4).PUSH(1) and PUSH(7).PUSH(4).PUSH(1).
PUSH(3).POP may no longer be considered as equivalent, they lead to different sets of states. They
could be interpreted asmilar since the sets of states they represent are not disjoint, and they both belong
to the samelusterof traces. The cluster of traces they belong to is the set of all traces that may lead to
the statg7, 4, 1). This cluster is unambiguously represented by the tPA¢8H7).PUSH4).PUSH(1).
The progranPUSHis “sober” so it can be used to specify canonical traces.

The use of output independent traces is sufficient for Drunk Stack. It can also be modeled by a
non-deterministic state machine with states unambiguously described by canonical traces.

The Very Drunk Stack has two “drunk” access prograd@P andPUSH Access program$OP and
POPare the same as for Drunk Stack, while the behavid?W@EHis the following,

e PUSH(i): enters an integereither once or twice on the stack.

In this case the tracBUSH(7).PUSH4) leads to(7,4), (7,7,4), (7,4,4), or (7,7,4,4). Moreover,
each trace which does not lead to the empty stack, may lead to at least two different states. Thus
canonical traces, interpreted as traces that can unambiguously describe states, cannot be defined. We
need to proceed differently. One way is to observe that the éTate is the only state that can be
reached by both the trad®JSH(7).PUSH(4) and the tracd®USH(7).PUSH4).POP.POP. Thus the
set of traces

{PUSH(7).PUSH4) , PUSH7).PUSH4).POP.POP}

could be used as a trace descriptor of the staté). One may observe that every state can unambigu-
ously described in this sense by a finite set of traces. Modeling states of modules by sets of canonical
traces was proposed in [24]. However, we reject such an approach. The sets of traces that describe states



can be large and complex even for relatively simple, non-deterministic modules. We believe such an
approach will result in a complex and unreadable specification. We propose the use of abstract construc-
tor programs instead. In the case of Very Drunk Stack, all states can easily be specifieddsyract
constructor(invisible) programpush (i) which pushes exactly once on the stack. The specification
obtained is simple and natural (see Section 13, Figures 8 and 9).

3 Alphabet

Since a trace specification describes only those features of a module that are externally observable, the
guestion arises what an atomic observation is. What constitutes an alphabet from which the traces are
built? We consider two kinds of observations:

e call events likePUSH(5), and
e call-response events lIKBET:5.

Letf be the name of an access program anéhietit(f ) andoutpu(f) be the sets of possible argument
and result values. Thegnature sidf ) is the triple:

sig(f) = (f, input(f), outputf)).
We assume that neithérput(f) nor outpu(f) are empty by havingnput(f) = {nil} andoutpu(f) =
{nil} as default. For example:

sig(PUSH) = (PUSH integer, {nil }),
sig(TOP) = (TOP, {nil}, integer),
sig(POP) = (POP, {nil}, {nil}).

For a finite seE of access program names, gignature sigE) is the set of all signatures éfc E:

sig(E) = {sig(f) | f € E}.

GivenE, thecall-response alphabeg is the set of all possible triples, writtéx):g of access program
names, arguments, and return values:

Ag ={f(x):g | f € E,x € input(f),y € outpuif)}.

We adopt the convention of omittingjl in signatures. For example, for the stack modules we have
E = {PUSH TOP, POP} and:

Ag = {PUSH(i) | i € integer} U {TOPI |i € integer; U {POP}.

For a given sekt of access program names, we also definecté alphabetXg and theresponse
alphabetOg:

Ye ={f(x) | f € E,x e input(f)},

O ={d| 3f € E.d € outpuif)}.
Note that the sequences of call-response event occurrences are what is really observed. However, one

may abstract away from the output values, if states can be unambiguously described by sequences of
call event occurrences only.



4 Relational Model of Programs

We review the fundamentals of the relational model of programs (e.g. [30]). Data refinement is in-
troduced according to [10], except that, rather than taking relations extended by a bottom element,
“demonic relational composition” and “demonic refinement” is used.

We write S <+~ T for the set of all relations betweehand T, formally defined aS «— T = 25xT,
For relationsQ € S« T andR € T < U, the relational compositio® o R, the relational imag€|s|
of a sets C S and the relational imag®(x) of an elemenk € Sare defined as follows:

QoR={(x2)|3y.xQyAyR3Z,
Qs ={y|Ix.xQyAXE€ s},
Qx) ={y[xQy}.

Here,x Q ystands for(x,y) € Q. If Q is interpreted as a (possibly nondeterministic) program over
initial state spacé& and final state spack, then thedomainof Q, i.e. the set of all initial states which
are related to at least one final state, is the precondition for which execut@mvif terminate with a
defined outcome. Outside its domain, progr@may not terminate.

Using the notatiorQ(x) for the image of underR suggests that we may equivalently vi€nas a
set valued function. In particular, where convenient, we define a rel@ioy an equation of the from
Q(x) = efor all x.

The sequential (demonic) compositi@h; R is Q o R restricted to those initial states for whi€h
leads to intermediate states in whihs defined. I1fx Q yandy is not in the domain oR, thenx is not
in the domain oQ ; R:

Q:R={(x2) [X(QeRzA (Vy.xQy=R(y) # 0)}.

AssumeQ, Q' € S« S RelationQ' is an (algorithmic) refinement @ if Q' is “more deterministic”
thanQ and the domain o) is not smaller than the domain @t

QL Q & (. QX #0=Q(x) CQX) AQ(X) #0).

Now assume thaD is as above an@ € S « S. LetRbe a relation between the state space® ahd
Q,i.e. Re S« S. Then@ is a data refinement @ via R means:

QLRQ & (. Q(X) #0 = (RoQ)(X) C (QoR)(X) A (RoQ)(x) # 0).

Algorithmic refinement is a special case of data refinemént;;y Q' & Q C Q whereld is the
identity relation. Refinement is reflexive and transitive in the sensetatQ and forQ” € 8’ — S’
andR € S « S":

QLrRAANQ Cr Q"= QLrr Q"

Sequential composition is monotonic with respect to refinement:

PCrRPAQLCRQ =P;QCgrFP; Q.



5 Automata

The standard automata model is used for module specifications by associating signatures with the al-
phabet, similarly to [20]. Data refinement is used for forward simulation of automata. Simulations of
automata are further discussed in in [10, 21].

Let A be an alphabetA* be the set of all sequences built from the element& ohcluding the
empty sequence denoted by For every two sequencesy € A*, their concatenation is denoted by
x.y. A (nondeterministic) automatofis a quadruple,

A= (Ausug7sj)7

whereA is the alphabetSis the (finite or infinite) set of stateg,is the transition relationg € A —
S« S ands, € Sis the initial state.
The extended transition relatiari € A* — S« S is defined for everx € A* anda € A as:

o*(e) =Id,
o*(xa) = 0*(X) ; 0(a).

We use automata for specifying modules: Thesa&onsists of sequences of call-responses, th8iset

the state private to the module in the sense that it is only accessed through calls to the module, the state
S is the initial state of the module, and the functie@apecifies the change of the module’s state for each
possible call. Formally, for a given signatufea module specificatioA is an automaton:

A= (AEa Sﬂ Q?S))

The set_(A) = {x € A* | p*(X)(s) # 0} contains all valid sequences of call-responses of the module,
i.e. describes theormal behaviorf the module.
Module A is transition deterministidf |o(b)(s)| < 1 for all b € Ag ands € S. ModuleA is output
deterministicif for all a € g there exists at most oree € Og such thato(a:d) # 0, wheref is the
empty relation. Modulé\ is deterministicif it is both transition deterministic and output deterministic.
Abstraction in the module specification is achieved in two ways. First, the automaton may be non-
deterministic, thus hiding implementation decisions. Secondly, the automaton can use a more abstract
state space than would be required for an (efficient) implementation. Abstraction is formalized by intro-
ducing a refinement relation between modules. Module refinement is defined in terms of the observable
behavior, which ultimately are the possible values returned after a sequence of calls. We first decompose
o into a transition relations € ¥ — (S« S), or ¢ for short, and a value relation, € ¥ — (S— 0),

or v for short:
6(a) = U{e(ad) | d € O},
V(@) = {(s,d) | o(ad)(s) # 0}

The extended transition relatioif € ¥* — (S < S), is defined bys*(¢) = Id and §*(x.a) =
§*(x) ; 6(a). The response relation € X+ « O, orr for short, defines the set of all possible responses
(outputs) after a non-empty sequence of calls, starting from the initial state:

r(x.a) = (6" (x) ; v(a))(s0)-

For a given signatur&, letA = (Ag, S 0,%) andA’ = (Ag, S, ¢/, §,) be module specifications with
the same alphabet but possibly different state space, transition function and initial stated’ Than
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behavioral refinemendf A, written A < A/, if after any sequence of calls for whidhreturns some
defined outputd’ returns also at least one output value and all the possible outputs returAed/twyld
also possible foA:

A<A Sralrp.

Note that behavioral refinement is expressed without direct reference to the statasad#’. If fol-
lows immediately that behavioral refinement is reflexive and transitive. For example, given appropriate
definitions of the modules, we would have:

Very Drunk Stack< Drunk Stack and Drunk Stack Stack

Let E be a signature, let € Ag — S «— Sando € Ag — S « S be transition relations
with the same alphabet but different state space, arfd lhet a relation betwee@andS. We note that
Ag C Yg x Og. Transition relatione is data-refined by, written o Cr o/, means that for a given
initial state and access program call, the outputs which are possible/veite also possible with (the
nondeterminism in selecting a response may be reduced) and the final states which are possible for
are also possible with (the nondeterminism in selecting a final state may be reduced), where the initial
and final states are related \RaMoreover, whenever for a given initial state and access program call at
least one response and final state are defingdtimere must be also at least one response and final state
defined byy’ (the domain must not be reduced), where the initial and final stated are relafedRda
this, letg € Y x S+ O x She a relation which is isomorphic wbut makes-g part of the initial
state space an@ part of the final state space. Data refinement is defined in termsod o’ :

oCr¢ & 0 Ciaxr 0,
(&) o (d,t) & s (o(ad)) t.

Module specificatio simulates Avia simulation relatiorR if the initial values are in relatioRR and
the transition relations are data refined Ria

ACRA &R A0CRO.

If for some relationR moduleA’ simulates moduld, thenA’ is a behavioral refinement & Hence
this gives a practical way of establishing module refinement:

Proposition 5.1 For a given signature E, let A= (Ag,S o0,%) and A = (Ag, S, ¢, ¥,) be module
specifications. If RE S« S then:
ACRA = A<A.

For the purpose of the proof we need two lemmas. First, we generalize data refinement to allow different
relations for the initial and final state space. Assuine § «— S, Q € § < S, T€ § < S, and
U e S « S,. Datarefinement o by Q' via T, U is defined by:

QLruQ & (V. QX) #0 = (ToQ)(X) € (QoU)(X) A (ToQ)(x) #0).

Ordinary data refinement is a special case sQcer Q' < Q Cr 1 Q. Sequential composition is
monotonic with respect to generalized data refinement in the sense that, assuming addRoaally
S —~SReS < S,andvVes « S

QLru Y@ ARCyyvR =Q;RCryvQ; R.
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For removing a data refinement on the initial state we have that foQaRyx, X’

XxRXAQERr Q = (Qx) # 0 = Q(X) € Q(x) AQ(X) # 0).

Proof of Proposition 5.First, we observe that by definitiod Cr A’ implies o Cigxr é’. From this,
we can show that for arg € >:

U{e(ad) | d € 0} CrJ{d'(ad) | d € O}.

This is done by expanding the definitions and some subsequent simplifications. By the definition of
da(a), this is equivalent to:
Yae X . 5A(a) Cr 5A/(a.).

With the monotonicity of sequential composition and by using induction over the lengtle af* we
conclude:
VX € X . 0a(X) Cr on (X).

Furthermore, from the definition oh andp Cig«r é’ we get:
Vae X .va(a) Crig Vo ().

Again, this is done by expanding the definitions and some subsequent simplifications. From these two,
using the monotonicity lemma above, we have:

VxeX*,ae X . 6p(X);va(@) Crid op (X) 5 var ().

As 5 R g, holds by the assumption th&t Cr A, we can apply above lemma for removing data
refinement on the initial state and get:

vxeX*aeX. (64X ;va(@) () #0 =
(0a (%) 5 v (8)(s) € (GA(X) 3 Va(@))(s0) A (3 (X) 5 Vv () () # 0.

By the definition ofr this is equivalent to:
Vxe X ae X . ra(xa) # 0= ry(xa) Cra(xa) Ara(xa) #0,

which again is equivalent i, C ra/, and hence implied < A'. [ ]

6 Mealy Machines

In contrast to automata, Mealy machines specify the next state and the output by separate functions. For
a given signatur&, a Mealy machiné is a tuple,

= (AEv S7 57 v, SO)

whereAg are call-responses of signatlEeSis the (finite or infinite) set of state§,c g — S« Sis
the state transition relation,c g — S — Og, § € Sis the initial state, and all valid call-responses
of § andv are according ta\g:

Vae Yg,s€S.d(a)(s) # 0 = av(a)(s) € Ag
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My 5 } & @2 g o ob2s) = (%)

Figure 1: The Mealy machine with = {a,b}, O = {1,2,3}, or thedeterministicautomaton with
A ={al,a2,bl,b2,b3}. The states; is initial.

For every Mealy machin® we can construct an automatégy,

Ay = (AEv S7 0, SO)

over the same alphabétg, same sef of states, same initial statg and the transition relation €
Ag — S« Sdefined by:

e _ [ 8@ if v(@)(s) = d
o(@d)(s) = { 0 ifva)(s) #d

The automatory, is equivalent to the Mealy machimé in the sense that the set of valid call-response
sequences d¥l andAy, are identical. Figure 1 illustrates the relationship betwdesmdAy. However,

not every automaton, even not every deterministic automaton, can be interpreted as a Mealy machine.
In Figure 1, if one adds an arrow frogj to s; labeled bya:2, the new automaton cannot be interpreted

as a Mealy machiné.

We may use both Mealy machines and standard automata as the backbone of our model. The de-
scriptive power of Mealy machines is at best the same as transition deterministic automata, only notation
is different, more complex in our opinion. It might occasionally be convenient to use Mealy machines
instead of standard automata. As an example, we define simulation of Mealy machines which implies
simulation of the corresponding automata. Assunthg- (Ag, S 9,v,S ) andM’ = (Ag, S, 8, V, 5))

we define:
M ERM/@SOR%/\(SER(S//\VER\/
VERV & VseSdeS,acXe.sRs$=v(a)(s) =V(a)s)

Proposition 6.1 M Cgr M’ = Ay Cr Aw'.

!Sincev € ¥ — S— O, thenv(s, a) can be equal to 1 or 2 but not both. Extending ¢ — (S < ) does not help,
since it does not indicate thatl leads froms; to s; anda:2 from s; to ss.
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Figure 2. (a) Total order defined by the sequeadtea.c.b.d and (b) Weak order defined by the sequence
a.(a.c.b).(b.c).a.b.

Proof SupposeM = (Ag, S 6,v,5) andM’ = (Ag, S,d,v,s,). We have to show thag) R g, and
0 Cr o wherep(ad)(s) = d(a)(s) if v(a)(s) = d and( otherwise, and similarly’(a:d)(s) = ¢'(a)(s)
if V'(a)(s) = d and() otherwise. The first part follows immediately frah Cr M’, the second part can
be shown to hold by first unfolding the definitions. [

The difference is that here the refinements) @ndv are dealt with separately, which may be of
practical advantage.

In general the standard automata provide a better and simpler model. In particular adding non-
determinism to value functions in Mealy formalism is problematic and, although possible, is seldom
done, because the formalism becomes complex. In [27, 33, 15, 24] Mealy machines were used and we
believed that resulted in unnecessary complexity and formal problems [33].

After deciding to use automata as a backbone of the specification technique, the next question is
how to describe the set of states in an as abstract as possible way, i.e. in a way which does not commit
to implementation decisions prematurely.

7 Defining Objects by Sequences

The ingenuity of the trace assertion method ([3]) is to use traces (i.e. some kind of sequences) not
only as a medium to describe behavior, but to specify states as well. Sequences are easy to specify and
understand and, since we observe only traces of call-responses, they provide anyway the entire visible
information.

Let A be an alphabet (possibly infinite), and¥et A*. Not assuming an interpretation of elements
of A, what kind of structure carbe, what kind of information caxcontain?

Considerx = a.b.a.c.b.d. The sequence can be interpreted astatal order tg of the occurrences of
elements ofA, as illustrated in Figure 2(a). By an occurrenceaafe mean a paifa, i), wherei is a
natural number indicating the occurrence.

Consider now the sequenge= a.b.c.d and suppose that we have the additional information that the
order between the occurrencesab, c,d does not matter. To express this, we introduce a partial
operator(-) which takes glain sequence and removes the order of its elements. Sequences where each
element of the alphabet occurs at most once are called plain. The set of all plain sequencessover
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denoted byPlain(A). We can interpref-) as transforming a plain sequence into the corresponding set,
for example(y)” can be interpreted a&, b, c, d}.

By mixing “(-)” with standard concatenation “.”, we obtain sequencesdika.c.b).(b.c).a.b. Such
sequences are used especially in concurrency theory. They are si@fedequencesr subset lan-
guageq[18, 29]). They representeak(or stratified partial orders([9, 18]). Figure 2(b) illustrates this
relationship.

Formally step-sequences are constructed as sequences over the df@et where for every
family of setsX, Fin(X) = {X | X € X A Xiis finite}. In this sense owa.(a.c.b).(b.c).a.b corresponds
to the sequence of setga}.{a, c, b}.{b,c}.{a}.{b}.

From Szpirlajn theorem [9] it follows that every partial order corresponds uniquely to the set of all its
total extensions. In particular every sét= {ay, ..., a,} is a partial order with empty ordering relation,
and it can be seen as a description of the set of all total order that can be built from the eleménts of
Since finite total orders can be specified as sequences, the,set. , a,} can be seen as a description
of all plain sequences built froray,. .. a,. For instancea, b, c} can be seen as a description of the set
of sequences$a.b.c,a.cb,b.a.c,b.ca cab,cb.a}.

In general a step-sequence can are be interpreted as a set of all sequences corresponding to all
total extensions of the weak orders specified by the step-sequence. For instance the step-sequence
a.(b.a).c.(a.c) defines the set of sequencdsi.b.a.c.a.c,a.a.b.ca.c,ab.ac.caaab.cc.a}. The set
of sequences corresponding to the step-sequence from Figure 2(b) consists of 12 elements, including
for instancea.a.c.b.b.c.a.b anda.b.c.a.c.h.ab

Formally, the set of step-sequences oxerdenoted(A*), is the smallest set of sequences over
A UA{{(,)} such that:

e everyx € A* is a step-sequence,
e if x € Plain(A), then(x) is a step-sequence,
¢ if xandy are step-sequences, thepis a step-sequence.

In addition to the above concatenation “.” on step-sequences, we dafie concatenatigrdenoted
by “—". Weak concatenation with an empty step-sequence is defined by:

X—e=X and e—y=Yy.

For non-empty step-sequencesmandy, the idea ofx — y is to merge the last “step” of with the

first “step” of y. If the result of the concatenation of the last and first “step”, respectively, is plain,
then we have for instanc@.b) — ¢ = (ac) — b = a.(b.c), (ab) — (c.d.e) = (ab.cd.e), and
(a.(a.b)) — ((c.d).a) = a.(a.b.c.d).a.

For non-plain step-sequences,” can be illustrated as follows: ik = (a.b).c.{(a.c) andy =
(a.b).a.cthenx —y = (ab).c.(ab.c).a.c, i.e. the last step of, (a.c), is merged with the first step
(a.b) of y. We would also like to write expressions lik&.b).c.(a.c)) — ((a.b).a.c) = (a.b).c.((a.c) —
(a.by).a.c.

Formally, weak concatenation can be defined as follows. Since every hon-empty step seguences
can be expressed &s= x;.«a, y = .y1, Wherea = (t) ora = a, § = (s) or 3 = b, t ands are plain,
t#£e¢ S#¢ abe A, we can defin—y in this case by:

X—y = X.(a—3).y1
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The interpretation of step-sequences is given by a mageng (A*) — 227, Letse{(x) denote the
set of all elements of\, from which the stringc € A* is built. For examplese{a.b.c.a.c) = {a, b, c}.
The mappingsemmay be defined as follows:

1. Vx e A* . senix) = {x},
2. Vx € Plain(A) . senf(x)) = {y € Plain(A) | set(x) = sety)},

3. ¥x,y € (A*) . senfx.y) = sen{x).senty),

where “” in “senix).senty)” denotes the standard concatenation of sets of sequences (see [13]). For
instancesenf(a.b.c)) = {a.b.c,a.c.b,b.a.c,b.c.a,c.a.b,c.b.a}, senta.(b.a).c.(a.c)) = {a.b.a.c.ac,
aab.cac,abac.caa aab.cc.a}.

The two views of step sequences, sequences of sets and sets of sequences, are compatible in the
sense that two step sequenceyg € (A*) are equalx = vy, if and only if they are equal in their
interpretations as sets of sequensesiix) = senty).

For all x,y € (A*) we will say thatx is a prefix of y if there isz € (A*) such thaty = x.z or
y = Xx—z For everyt € (A*) and everya € A we shall writea € t if ais contained irt. For instance
a € b.(a.b), anda ¢ b.b.c. We use step-sequences to specify states of automata.

8 Trace Only Automata

LetA = (A, S p,%) be an automaton. We shall say tdtas thecanonical trace propertyct-property)

if for every states € Sthere is a traces € A* such thatp*(Xs)(s) = {s}. Not every automaton has
ct-property and every transition-deterministic automaton has ct-property. The automaton from the left
hand side of Figure 3 does not have ct-property (the automaton can then “generate” only twodrates
aand it has three states). Frequently there is more thangsatisfyingo*(xs)(sy) = {s}. For example

for the automaton from Figure 1 and the stajeve have § is initial here)o*(b:2.(a:2)')(s;) = {3},

for everyi > 0.

If A has ct-property we may define a setoafnonical traceq27]. A set of traceCanTr € A*
is canonicalif for every s € Sthere is exactly ongs € CanTr, its unique representation, such that
0*(Xs)(S) = {s}. AutomatonA is isomorphic toA® = (A, CanTr, o Xs,), Where o (a)(xs) =
{Xsys-- 3%} <= 0(@)(s) ={s1,...,%}

Automata likeA® are calledtrace only automataince their states are defined in terms of traces.
Mealy machine counterparts of trace only automata are used extensively for the trace assertion method,
e.g. [14, 16, 15, 24, 27, 33]. The problem is that using traces may frequently result in a kind of asym-
metry which makes the specification less readable than expected. Consider the automaton on the right
hand side of Figure 3. It occurs typically as part of a greater automaton. Thesigaignambiguously
defined by two traces.a.b anda.b.a. Each of them can be chosen as a canonical orzea.lf is chosen,
then the canonical trace= a.a is a prefix ofa.a.b, hence we have(b)(x) = {x.b}. The canonical
tracey = a.b is not a prefix ofa.a.b, sop®(a)(y) # {y.a}. The asymmetry is induced by the choice of
a canonical trace, the automaton itself is symmetrical, from the state reachs, in two steps, using
bothaandbin any ordera.borb.a. Such asymmetry makes some specifications unnecessarily complex.
The Unique Integer module is a classical example, but the problem occurs frequently in real modules
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(@) (b)

Figure 3: (a) Example of an automaton which does not have ct-property and (b) Example of asymmetry
when canonical traces are used.

as well. The asymmetry disappears when step-traces are used to identify states. When $hésstate
identified bya.(a.b), then botha.b anda.a are prefixes oé.(a.b) (a.(a.b) = (a.b)—a = (a.a) —Db).

For an automatoA with ct-property, we define the sétC (A*) of canonical step-traced et g be
an extension op defined on the Cartesian product of the statespaith traces

Bt) - {Q* (9 X € serit) A (4,2 & semit) . °(y) = " (2)
)  otherwise

Now, letC be any subset ofA*) satisfying:
1. Vt € C. 35 € S Vx € sent) o*(X)(S) = {s},

The symboH! denotes “there exists exactly one”. Note that the ct-property implies the existence of (at
least oney.

What if an automaton does not have the ct-property? First we must note that such a situation occurs
rather seldom in practice. The Drunk Stack has the ct-property, Very Drunk Stack does not, but neither
of them is a part of any real system. They were chosen to illustrate potential problems. But if the best
and most readable model of a module is an automaton-like structure without ct-property, we can use
a concept similar tdabeled transition systerf2]. In contrast to automata, each arrow in a transition
system has a unique name. The elementd adttached to arrows in automata are callabdels in
transition systems. By “labeled transition system” we mean that each arrotwbadtachments, a
unigue name, and a not necessarily unique label. We do not need each arrow to be unique, we need only
the ct-property, so the following construction is proposed.

An automaton with the alphabet of state constructisra tuple

A= (A7T75397S))7

whereA is the alphabet) is the state constructoralphabet,Sis the set of states; is the transition
relation,p € (AUTY) — S« S ands, € Sis the initial state. The transition relatiermust satisfy the
following conditions:
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1. VaeY,seS. |o(a)(s)] <1,
2.V, €S. (JaeA . s €p(@)(s1) & JaeX.pla)(s) ={s}).

The setL(A) = {x € A* | p*(X)(s) # 0} describes the normal behavior of the module. The elements

of T do not occur inL(A). We do notassumeA N YT = (. The first condition says tha restricted to

T is a transition-deterministic automaton. Hence the ct-property is guaranteed. The second condition
guarantees that each arrow is marked by one elemehtarid one element &f. Since automata with

state constructors alphabet do always have ct-property, their states can always be specified as canonical
step-sequences.

Every automaton may be extended to an equivalent automaton with state constructor alphabet by
simply definingY = {(s,a,9) | S € o(v)(s)}, and extending onto Y by o(s,a,s)(s) = {s'}. This
construction results in a labeled transition system, and is of a very little use in practice, but is always
possible.

9 Trace Assertion Specifications

Trace assertion specifications emerge when using canonical traces for the states of module specifica-
tions. More precisely, given a signatugea trace assertion specificatidi is a module specification

TA= (AEv Ca 0, tO)v

whereC C (Af) is a set of step-traces such that every step-ttatescribes unambiguously one state,
and this is the state the sequemce sentt) leads to:

vt € C,x € sentt) . o*(X)(to) = {t}.

For the Stack and Drunk Stack modulgscan just be the set of all sequences of typgSH(i,).
PUSH(iz). ... .PUSH(ix), and for instance:

o(TOP4)(PUSH(5).PUSH7).PUSH4)) = {PUSH5).PUSH(7).PUSH(4)}
o(TOP8)(PUSH(5).PUSH7).PUSH4)) =10
o(PUSH(5))(PUSH(5).PUSH(7).PUSH4)) = {PUSH(5).PUSH(7).PUSH(4).PUSH(5) }
The access program call@DPbehaves differently in Stack than in Drunk Stack, for example:
o(POP)(PUSH(5).PUSH7).PUSH4)) = {PUSH(5).PUSH7)}
for Stack, while for Drunk Stack:
o(POP)(PUSH(5).PUSH7).PUSH4), POP) = {PUSH(5).PUSH(7), PUSH(5) }.

For the Unique Integer module, the getan be defined as the set of all step-sequeGEST:i; .GET:
i2. ... .GETik), whereij = iy < j = k, and for instance:

o(GET:7)(GET:3.GET:6.GET:9) = {(GET:3.GET:6.GET9.GET:7)}
— {(GET:3.GET6.GET:7.GET9)}
o(GET:3)(GET:3.GET:6.GET:9) = )
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The Very Drunk Stack cannot be modeled (in a natural wayyAgs defined above.
Given a trace assertion specificatibA, we define the competence functien C x ¥ — Bool =
{0, 1}, in the following way:

o foifvde 0. gad)t) =0
A3 =9 it 3d € O . plad)(t) £ 0

The notion of competence function follows from [24]. It defines what is a misuse.(t|a) = 0,
then the use o& at the state described ltyis a misuse. For both Stack and Drunk Stack we have:
k(e,POP) = k(g,TOP) = 0, andx(tyy, PUSH()) = 0, if ty represents the full stack. Otherwise
k(t,a) = 1. For the Unique Integet;(t, GET) = 0 only if t represents the state where all available
integers are used.

Letr : (A*) — (¥*) be a projection mapping, for amyd € A andx,y € (A*) defined by:

m(e)=¢e, wad)=a  w(xy)=7X)nxly), 7)) = (7))
For exampler(a;:d;.ax:dz.a3:05.a4:ds) = a;.a.83.a4, andn(a3.(a2.b:2).(a3.a2)) = a.(a.b).(a.a).

A trace assertion specificatidr is output independerit for every x,y € L(TA),

x=y & n(x) =m(y),

otherwise it isoutput dependentf TAis output independent thencan be interpreted as a one-to-one
function, sor—! is a function onr(L(TA)).

Both Stack and Drunk Stack are output independent while Unique Integer is not. Note that in
[27, 33] and others the output independent trace assertion specifications are called deterministic while
output dependent are called non-deterministic.

In our terminology, both Stack and Unique Integer are transition deterministic, while Drunk Stack is not.
Transition determinism does not imply output independence and output independence does not imply
transition determinism. Unique Integer is transition deterministic but output dependent, Drunk Stack is
not transition deterministic but output independent.

10 Mealy Form of Trace Assertion Specifications

If TA is output independent, it may be represented as a kind of a Mealy machine, with a separate
specification of the output function. Most trace assertion models in the literature are based on Mealy
machines. We think that, in general, the automata concept is better, but for the output indepéisdent

the Mealy model also leads to equally readable specification. It also helps to explain the relationship
with algebraic specifications (see Chapter 16).

Lemma 10.1 If TA is output independent then, for alEtC, a e ¥, and allde O,

o@d)(t) £0 = (vd' #d. o(ad)(t) = ).
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Proof. Suppose that there aded’ € A*, a € C, such thad # d', andp(a:d)(t) # 0, o(a:d’)(t) # 0.
Hence for allx € sentt), x.ad # x.ad’, while r(x.ad) = 7(x).a = 7(t.ad’), a contradiction. |

Lemma 10.1 says that for output independBftfor everyt € C, a € X, there existat mostoned € O
such that(ad)(t) is not empty.

Given anoutput independerttace assertion specification, we define the mappin@ — #(C) <«
m(C), thecalls only transition functionas

6(a)(m(t)) = m(e(ad)(t))

and the mapping : ¥ — 7(C) — O U {nil}, theoutput value functioms follows:

(d if3de 0. o(ad)(t) £ 0
v((t),8) = {nil v O . plad)(t) - 0

Lemma 10.1 guarantees the well-definednessasfdv.
Proposition 10.2 If TA is output independent and deterministic then for @l¢ C, ad € A:
scp(ad)(t) < w(s) €d(a)(n(t)) Av(a)(x(t)) =d.

Proof. (=) From the definitions of andv.

(<) Supposss ¢ p(ad)(t). We have to consider two cases.

Case 1o(ad)(t) = (. From the definition of, we havev(a)((t)) = nil # d.

Case 2.0(a:d)(t) # (0. Thend(a)(r(t)) = w(e(a:d)(t)). If 7(s) € d(a)(w(t)) then there exists' € C
such thatr(s) = 7 (<), a contradiction, sinc&Ais output independent. ]

Proposition 10.2 guarantees that for output indepen@dst the mapping is completely defined by
andv.
The Stack is output independent, so instead of

o(TOP4)(PUSH(5).PUSH7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH4)},
one can write equivalently, as commonly used in the existing literature:

5(TOP)(PUSH(5).PUSH(7).PUSH(4)) = {PUSH(5).PUSH(7).PUSH4)},
V(TOP)(PUSH(5).PUSH(7).PUSH4)) = 4.

Proposition 10.2 allows to represent any output independent trace assertion specification in an equiv-
alent form, which is called th®lealy form Formally the Mealy form offAis defined by:

TAYeaY — (Ag 7(C), 8,V to).

For every trace assertion specificatidA, not necessary output independent, an explicate value
functionv, : ¥ — C < O can be defined ag,(a)(t) = {d | o(a:d)(t) # 0}. Butv, differs fromv.
The functionv can only be defined for an output independ&At occurs together with and cannot be
derived formé. The mapping, is redundant, it is derived from.
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For the Unique Integer module which is outi#pendenbne may just write

o((GET:3.GET:6.GET9), GET7) = {(GET:3.GET6.GET:9.GET:7)},
o((GET3.GET:6.GET:9), GET:) = 0 if i € {3,6,9},

or one may write equivalently:

o((GET:3.GET6.GET9), GET7) = {(GET:3.GET6.GET:7.GET9)},
o((GET:3.GET6.GET9), GETi) = 0 if i € {3,6,9},
V,((GET:3.GET:6.GET:9), GET) = {i |i ¢ {3.6,9}}.

The second way is longer and, in our opinion, does not increase readability. It is used in [33] and others.

All the concepts introduced so far do not allow to model Very Drunk Stack in a natural way. The reason

is that in this case the natural states of the stack, i.e. the sequences of integers, cannot be unambiguously
described by the sequences of call-responses. The solution we suggested in Section 2 is to introduce a
state constructgoushi (i) to describe the stack states.

11 Trace Assertion Specifications with State Constructors

Given a signatur&, atrace assertion specification with state constructgran automaton
TTA= (AEa T? Ca o, t0)7

with the alphabef of state constructors where, as for trace assertion specificafigng,\'*) is the set
of canonical step-traces

vVt e C,x € senft) . o*(X)(ty) = {t}.
We do not assumAg N T = (), although it may often happen. The element&lof Ag areinvisible
(abstract).
For the Very Drunk Stack module, the $&is the set of all abstract invisible cafsish (i), wherei

is any available integer, aritlis the set of all sequencesishi(i1). ... .push(ix). In this case we have
AgN 7Y = (. For instance

o(TOP4)(push (5).push(7).pushi(4)) = {push(5).push(7).push4)}
o(TOPS)(pushi(5).push (7).pushi(4)) =0
o(PUSH(5))(push.(5).push (7).pushi(4)) = {

0o(POP)(pusHh (5).push(7).pushi(4)) = {push (5).push (7), pusi(5)},
where

t; = push (5).pushi(7).push(4).push (5),

to = push (5).pushi(7).push(4).push (5).push (5).

A trace assertion specification with state constructoré\ defines the following normal behavior
L(YTA) = {xe A" | ¢"(X)(to) # 0}.

Note thatY is not involved inL(YTA). The output independenfTA, the Mealy form of an output
independenf TA, and the competence functierare defined analogously as foA.
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Introducing invisible state constructors is cleaglyainstthe philosophy of the trace assertion method

as formulated in [3]. One of the advantages claimed in [3] was no need for hidden functions to specify
modules with delays. The algebraic specifications of those modules have required hidden functions. On
the other hand, what we really want is to specify the visible behavior of a module in the most easy and
readable yet precise way. The states are auxiliary concepts, and the invisible calls seem to serve well as
the state constructors.

12 Enhancements and Exceptional Behavior

Large specifications are best developed and presented in a number of steps of increasing complexity. In
particular, we suggest that the first step describes the normal behavior and exceptional behavior is added
in the second (or later) step. The second step can be seeneahamcemensf the first step, in the
sense that it additional behavior is specified while the original is preserved.

Let us take the stack module and a traece PUSH(i; ).PUSH(i>). . ... PUSH(i,). Suppose that the
stack has a bounal i.e. t is a state of the full stack, and consider the trace:

t.PUSH(ins1) = PUSH(i;).PUSH(s). ... .PUSH(in).PUSH(ins1).

Since we cannot prevent such an access program call to occur, the question arises what behavior this
trace describes. Defining the transition relation to be empty in this case allows nontermination. Alterna-
tively, we can specify tha®USH(i,.1) should be ignored or that it replaced the previous top element.

However, in any case the state structure of the module is independent of its exceptional behavior.
All states of the stack are entirely defined by its normal behavior.

Let TA = (Ag,C, 0, 1)) be a trace assertion specification.x(t,a) = 0 then for alld € O, we have
o(a:d)(t) = 0, which means thaa att is a misuse and it does not generate any normal behavior. In
principle, an enhancement ®A consists in defining new such that’ (a:d)(t) # 0 whenk(t,a) = 0.

It is a structure complimentary fbA. Formally, an enhancemeahhTA) of TAis a triple

enr(TA) = (AE’u C/a Q/)a

where: Ag is anenhanced call-response alphapét C (Af,) is anenhanced set of canonical trages
o € Ap — C' «— (C'is anenhanced transition relatigrwhich is defined only if the transition relation
of TAis not defined,

VteC.Vae Xe. K (t,a) =1= k(t,a) =0,

wherer andx’ are the competence functionsThandenh(TA), respectively.

The enhancemergnh(TA) is calledplain if Agr C Ag, andC’ C C. Non-plainenTA) means that
there are some special error recovery states and some separate error recovery procedure. We shall not
consider such examples in this paper.

For Stack and Drunk Stack a plain enhancement can be defined by:

o (POP)(e) = ¢ (TOP)(¢) = {&} and o (PUSH())(tun) = {trun}

wherety, is the canonical step-trace corresponding to the full stackegae)(t) = () for the rest of
t,a, andd. For the Unique Integer module the enhancement can be defined by:

o (GET:nil) (ta)) = {tan }
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wherety is the canonical trace corresponding to the state where all available integers are used up, and
o (ad)(t) = 0 for all othert, a, andd.

Enhancements describing exceptional behavior are typically output independent, hence can be repre-
sented in a Mealy formiAg/, 7(C’), §’, V). The definition is practically identical as for output indepen-
dentTAs. The only difference is that the enhancements do not possess initial step-traces.

For Stack and Drunk Stack the plain form of an enhancement can be defined by:

5/(POP)(E) = (5,(TOP)(E) = {e}, (5,(PUSH(d))(tfu||) = {tu }, \/(TOP)(tfu”) = nil,
andd’(a)(t) = 0 for the rest oft anda.

We obtain theenhanced trace assertion specification BOyAtaking the composition (union) dfAand
the enhancemernh(TA): The full specification is just a union @A andenh(TA), ETA= TAUenhTA),
ie.

ETA= (Ag UAg,CU CI, o U Q/, ty).

Hencep™ = o U ¢ satisfieso™ € (AUAg) — (CUC') <« CUC',and forallt € CUC(',a €
AgUAp,de OU O,

o _ Jo(t,ad) ifteCAk(t,a)=1
o™ (ad)(t) = {g’(t, ad) otherwise

Proposition 12.1 For any plain enhancement efifA):
TA < TAUenHTA)

Proof. Sinceenh(TA) is plain, we have thaETA = TAU enHTA) = (Ag,C,0 U ¢/, 1y). We apply
Proposition 5.1 withR = Id. Refinement follows immediately from the above observation that
defines additional behavior onlyif(t,a) = 0. ]

For every output independeBTAwe can standardly built its Mealy forBTAY€aY. |n a very similar
way we may define an enhancement for the trace assertion specification with state constructors as a
composition of a trace assertion specification with state constructors and its enhancement.

13 Specification Format

To be useful in practice, the trace assertion technique must provide some specification formats. Two
such formats are described and later used. Any trace assertion specification in the standard form con-
sists of four sectionsSyntax, Canonical Step-trace Definition, Trace AssertiamdDictionary. A

trace assertion specification in thMealy formconsists of five sectionsSyntax, Canonical Step-trace
Definition, Trace Assertions, Output ValuesdDictionary.

In the Mealy form theSyntaxsection is just a table which specifies for each module access-program
namef € E, the possible inputéput(f) and by the number of arguments each program takes and
the type of each argument, and the possible outputsu{f) by the type of each return value. In the
standard form it also specifies call-response formats for all access programs.
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In the Canonical Step-trace Definitiosection, the predicateanonicaland the initial canonical
step-trace are defined. In general this could be a complex definition with a tabular notation involved
(c.f. [27, 33]). However, in the majority of (well thought of) cases this is a relatively simple formula.
The convention

[e(xi)“(:j
as a shorthand fa(x).€(X+1). ... .€X) ande if k < j, is often used.
In the standard form the Trace Assertions section is a sequence of trace assertions of the form

ofad)(t) = {tr,... . &}

for all callsa defined in the Syntax section. The tra¢gs, . .., tx are the canonical step-traces. Since
o is a total function it must be defined for every possidlandd. The convention that empty relations
or sets, respectively, are specified by omission is used. If for particular valuga ahdd, the value
of the functiong(a:d)(t) does not appear in the Trace Assertions section this meang(tha(t) = (.
In the Mealy form the Trace Assertions section is a sequence of trace assertions of thi¢afgtin=
{t1,..., &}

To specify transition deterministic trace assertions the following tabular notation i.used

| Conditions| Trace Patterns Equivalence]
conditiorl | patternl(t) this_c’

o(ad)(t) =

The columnEquivalencedefines the canonical step-tratesuch thato(a:d)(t) = {t'}. Sincet here
is a variablet’ could be different for different, the columnsConditionsand Trace Patternsare used
to specify all different cases. The coluriirace Patternsontains appropriate patterns (or their char-
acteristic predicates) fdr while the columnConditionscontains predicates on the trace and argument
variables. The first row above should be réfacbnditionl and patteri(t) thenp(a:d)(t) = {this.c'}.
The columnsConditionsand Trace Patternscan be omitted if not needed. The empty cells in those
columns denote the predicatee.

For trace assertions which are not transition deterministic the tabular notation is slightly different,
namely:

| Conditions| Trace Patterng Clusters |
conditiornl atternL (t t t t t
o(ad)(t) = It p (t) 1,1 ‘ 1,2 | L3 ‘ 1,4
conditior? patterr2(t) to.1 to.2

In this case the rows should be read as follows:

if conditionl and patterd(t) thenp(ad)(t) = {t; 1,t12,t1 3,t1.4},

if conditior2 and patteri2(t) theno(ad)(t) = {t2.1,t22},
etc. Since in this case the canonical step-traces do not represent equivalence classes but some clusters
of traces the third column has now the na@lasters

For the Mealy form we have also tl@utput Valuesection, which defines the value functienA
similar tabular notation is used, in this case a table consists of the colOonditions, Trace Patterns
andValue Thenil values are specified by omission.

2See [17, 19, 26] for details on tabular notation.
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Syntax of Access Programs

| Name | Argument| Value | Call-Response Formi

POP POPnIl
PUSH | integer PUSH(d):nil
TOP integer TOPRd

Canonical Step-traces
canonicalt) < t= [PUSHd)]_, A0 <n < size
to =&

Trace Assertions

| Trace Patterns| Equivalence]

o(POP)(t) =[ t = sPUSH({) s
% t=c¢ €
\ Condition | Equivalence]
o(PUSH(d))(t) =[ lengtht) < size | t.PUSHd) |
% lengtht) = size t |

| Condition | Trace Patterns| Equivalence]
o(TOPd)(t) = t = sPUSH() t
% d=nil t=c¢ €

Dictionary
size: the size of the stack
length(t) : the length of the trace

Figure 4: Enhanced Trace Assertion Specification for Stack Module

The Dictionary section provides the definitions of the terms, auxiliary functions, types and other
structures that are used in the body of the specification. The Dictionary section is rather short for simple
examples.

The format forenhancedrace assertion specification is basically the same as the described above. The
only difference is that new rows that correspond to the enhancement are added. We use the convention
that all the rows added by the enhancement are marked by the symbol “%” at the beginning.

Figures 4, 5, 6, 7, 8 present various forms of trace assertion specifications of the Stack, Drunk Stack
and Very Drunk Stack modules in the specification format described above.
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Syntax of Access Programs

| Name | Argument| Value |
POP
PUSH | integer
TOP integer

Canonical Step-traces
canonicalt) < t= [PUSHd)]lL; A0 <n < size
to =£

Trace Assertions

| Trace Patterns| Equivalence]

§5(POP)(t) =[ t = sPUSH() s
% t=c¢ €
\ Condition | Equivalence]
d(PUSH(d))(t) =| lengtht) < size t.PUSH(d)
% lengtht) = size t

| Trace Patterng Equivalence]
5(TOP)(t) = or  S(TOP)t) =[  t#c t
% t=c¢ t

Values

| Trace Patterns| Value |
V(TOP)(t) =| t = sPUSH(d) d
% t=c¢ nil

Dictionary
size: the size of the stack
length(t) : the length of the trace

Figure 5: Mealy Form of the Enhanced Trace Assertion Specification for Stack Module
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Syntax of Access Programs

| Name| Value | Call-Response Forms
| GET | integer | GETd |

Canonical Step-traces
canonicalt) < t= ([GETd]L;) A0 <n<sizeA (d =d <i=))
t() =&

Trace Assertions

\ Condition | Equivalence]
o(GETd)(t) =| lengtht) < limit A\GETd¢t | t—GETd
% length(t) = limit A d = nil t

Dictionary

limit : the number of available integeiimit = maxinteger— mininteger+ 1
maxinteger: the maximum available integer

mininteger: the minimum available integer

length(t) : the length of the trace

Figure 6: Enhanced Trace Assertion Specification for Unique Integer Module

14 Refining Modules

We illustrate the refinement of trace assertion specifications by showing that Drunk Stack is refined by
Stack. From the Trace Assertion section in Figure 4 we get following transition relagifum Stack:

os(POP)(t, 1) < 3d,s. (t=sPUSHd) At =s)V(t=c At =¢)

& 3d.t=t.PUSHd) V (t=c At =¢),
0os(PUSH())(t,t') < (length't) < sizent’ = t.PUSH()) V (lengtht) = sizent’ =t),
os(TOPA)(t,t") < 3s. (t=sPUSHd) At =t)v(d=nilAt=cAt =¢).

We transformp into g such thata, t) ¢ (d,t') < t (o(ad)) t' (see Section 5):

os(PUSH(), t)(nil,t') < og(PUSH(d)
os(TOP, t)(d, t') & os(TOPA)(t,

7t/)7

os(POP t)(nil,t') < os(POP)(t,t')
t
t).

é
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Syntax of Access Programs

| Name | Argument| Value | Call-Response Formi

POP POPnIl
PUSH | integer PUSH(d):nil
TOP integer TOPd

Canonical Step-traces
canonicalt) < t= [PUSHd)]lL; A0 < n < size
to =&

Trace Assertions

\ Trace Patterns | Clusters |
t = PUSH(d) e
POP)(t) =
o(POPIY) = — < PUSHd,) PUSHG,) || SPUSH,) s
% t=e¢ €
\ Condition | Equivalence]
o(PUSH(d))(t) =[ lengtht) < size | t.PUSHd) |
% lengtht) = size t |
| Condition | Trace Patterns| Equivalence]
o(TOPd)(t) = t = sPUSH() t
% d=nil t=c¢ €
Dictionary

size: the size of the stack
length(t) : the length of the trace

Figure 7: Enhanced Trace Assertion Specification for Drunk Stack Module
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Syntax of Access Programs

| Visible Name| Abstract Name| Argument| Value | Call-Response Forms

POP POPNIl
PUSH integer PUSH(d):nil
TOP integer TOPd

\ \ push | integer | \ pusH (d) |

Canonical Step-traces
canonicalt) < t= [push(d)]L, A0 <n<size
to =£

Trace Assertions

\ Trace Patterns | Clusters |
t = pushi.(d) €
POP)(t) =
o (1 t = spush(d;).push(dy) || spushi(d;) | s
% t=¢ €
\ Condition | Cluster |
length(t) < size— 1 || t.push(d).pushi(d) | t.pushi(d)
PUSH(d))(t) =
ol Hd)®) length(t) = size— 1 t.pushi(d)
% lenghit) = size t
| Condition | Trace Patterns| Equivalence]
o(TOPd)(t) = t— sPUSHJ) t
% d=nil t=c¢ €
Dictionary

size: the size of the stack
length(t) : the length of the trace

Figure 8: Enhanced Trace Assertion Specification for Very Drunk Stack Module
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From the Trace Assertion section in Figure 7 we get the following transition relaggrior Drunk
Stack:

ops(POP)(t,t) < 3d,dy,dg,s. (t =PUSHd) At = &)V
(t =sPUSH(d;).PUSHdy) A (t' = sPUSH(d;) Vt' = s)Vv
(t=ecAt =¢)
& dd, dy,dy .t = t,PUSFKd) Vi= t,PUSH(dl)PUSFKdQ)\/,
(t=ecAt =¢)
ops(PUSH(d))(t,t") < (length(t) < sizent’ = t.PUSH()) V (length(t) = sizent’ =t),
ops(TOPd)(t,t') < 3s. (t=sPUSHd) At =t)vV(d=nilAnt=cAt =¢).

We transformpps into gps:

@DS(POP, t)(l’]”,t/) = QDs(POP)(t,t/),
ops(PUSH(), t)(nil,t') < ops(PUSH(d))(t,t'),
ops(TOP, t)(d, t/) < ops(TOPd)(t, /).

For showing simulation between Drunk Stack and Stack, we have to find a reRii@tween the
canonical traces of Drunk Stack and those of Stack subse(x,y) be a relation between sequenaes
andy which holds if elements of occur in the same order i i.e. subseds the smallest relation such
that for any sequencesy and elemen&:

subse¢e,c) and subse(x,y) = subse@x.a,y.a) and subsefx,y) = subse(x,y.a).

Intuitively, the canonical traces of Drunk Stack correspond to those of Stack with Boi&E(d) ele-
ments interspersed. Hence we define:

R(t,t') & subsed’,t).

The first condition for Stack to simulate Drunk Stack uskgs that the initial tracdy = e of Drunk
Stack andy = ¢ of Stack are in relatioR, which holds trivially. The second conditionggs Cigxr 0s:
which is defined as:

ops(a,t) # 0 = ((Id x R) o gs)(a,t) C (dpso (Id x R))(a,t) A ((Id x R) o gs)(a,t) # 0,

wherea are all the calls of Drunk Stack and Stack, anénges over all canonical trances of Drunk
Stack. We consider the casas= POP, a = PUSH), anda = TOP separately. Foa = POP,
we have thatps(POP,t) # () for any canonical traceand similarly gs(POP,t) # (). AsRis a total
relation, it is easy to see théfld x R) o gs)(POP,t) # () for any canonical traceé Hence above
condition simplifies in this case to:

((Id x R) 0 gs)(POP,t) C (opso (Id x R))(POP,t),
which is equivalent to:
(3t . subsedt’,t) A (3d . ' =t".PUSH) V (' = e At" = ¢)))

= (3. (3d,d;,dp . t = t'.PUSH(d) Vt = t'.PUSH(d;).PUSH(dy) V (t=c At = ¢))
Asubsed”,t')),
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for all t’. This holds according to the rules of logic and above definitiorsudfseq The cases
a = PUSH() anda = TOP follow similarly. In total, this establishes Drunk StaClg Stack, which
according to Proposition 5.1 implies Drunk StaclStack.

Trace assertion specifications like Stack can be further refined into modules with a “more concrete” state
space. For example, a Stack implementation could use an/Aaaag integelN, related to the canonical
traces of Stack by

R(t,A,N) & N = length(t) A t = A[1..N],

whereA[1..N] selects the subsequenceAfvith the firstN elements. Such refinement steps can be
carried out in a standard way, e.g. [10, 21]. However, this establishes a link between abstract trace
assertion specifications and efficient implementations.

15 Multi-Object Modules

In practical applications, it is not unusual that a module is designed to implement several independent
homogeneous objects. For example in some applications, one may need to design a (multi-object)
stack module that implements two or, in general, any number of stacks, plus for instance the stack
concatenatioroperation. The module may Iself-initializing, i.e. the first use dPUSH(stacknamei)

creates a stacktacknameor may require object generator likew(stackname. A natural way of
modeling such modules is to define the global states as sets of states of individual modules, with the
empty set as the initial state. We already know how to specify individual states (by canonical step-traces)
and relationships between them (by trace assertions). Note that the sets can be specified by sequences,
the sequence{a, b, c}” specifies the set consisting of the elememtb, c. This convention is used for

years and is easy to understdndVe need only an apparatus to make the states of individual objects
distinct, to transform global states by both global calls (lkacatenatewhich affects more than one
individual state, onew; which create a new local state), and local calls (&SH, which affects only

one local state). The states of individual objects may be made distinct by adding individual labels to
them. Forinstancéstack — PUSH3).PUSH(5), stack — PUSH(3).PUSH(1).PUSH(8), stackd

¢} may represent a global state consisting of three statdak, stack, stackd, where the local state

of stack is PUSH(3).PUSH(4), the local state oftack is PUSH(3).PUSH(1).PUSH(8) andstackd

is empty. Thestackl, stack andstackd areunigue labelsattached to appropriate canonical step-traces,
creatinglabeled step-tracesThis lead us to the concept ohiquely labeled sets

15.1 Uniquely Labeled Sets

Let X be a set and be a set ofabels A subsetY of £ x X is alabeled setWe shall writeny — x € £x X
instead of(a, x) € £ x X. If £ ={1,2,3}, X = {a,b} then{l — a,1 — b,2 — a} is an example of a
labeled set.

AsetX C £ x Xisuniquely labeledf for all « € £ and for allx,y € X,

(a—=xXeX Na—yed) & x=Y.

%In a sensda, b, ¢} and(a.b.c) describe the same object, only the interpretation is different, see Section 7.
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X is uniquely labeled if every element of it has an unambiguous label. For exdmple a,2 — a}
is uniquely labeled, whild1 — a, 1 — b,2 +— a} is not. Thefamily of all uniquely labeled setsver
L x Xis denoted by/ (L, X). Note that) is uniquely labeled, and for evey € U(L, X), |X| < |L].
In particular we are interested in the famif§( L, (A*)), whereA is an alphabet.

For every uniquely labeled st C £ x X, let £L(X') be the set of all its labels,

LX)={aeLlL]|IxeX a—Xxe X}
For everya € £ and everyX’ € U(L, X), let
X|la=x and X|a=a—X

if o — x € X for somex, and undefined otherwise. For instanc&’i= {1 — a,2 — b} thenX|1 = a
andX |1 =1 +— a, while X|3 and X’ || 3 are undefined. The operatpis called“projection” and|| is
called“selection”. Note thatt' || a = o — X|a, if X|« is defined.

For every two uniquely labeled set§ ), we define the operation- and® as follows:

X —=Y=X\{a—XxeX |acL)}U),
XY =XUY\{a—Xx|xeXNac L(X)NLDY)}.

Note thatt «— ), X @ ) are always uniquely labeled add® Y = Y @ X, but it may happen that
X «— )Y # )Y «— X. The operation— replaces elements of by the elements o} with the same
labels. IfL(X) C L(Y)thenX «— Y =Y. If LIX)NL(Y) =0thenX¥ — Y =XUY =X Y. For
instance{1 — a,2 +— b} < {1 — b} = {1+ b,2 — b}, and{l — a,2 — b}®{1 — b} = {2 — b}.
The operator— is called thdabeled replacementhe operatoe is an auxiliary operator that is used to
define concatenation and weak concatenation for the elemetfisCof A*)).

The elements of{(L, (A*)) are calleduniquely labeled sets of step-sequenaesl the elements of
L x (A*) labeled step-sequencetn particular() anda +— ¢ are labeled step-sequences. For every
1,72 € U(L, (A*)) we defineconcatenatiorf.” and weak concatenatiof—" by:

.2 ={a—thb|la—ttenAa—tyen}U(n @)
T1VT2:{al—>t1vt2‘Oz'—>t1€T1/\Oé'—>t2€7'2}U(T1@7'2)

Clearly ;.75 and — 7» are elements dff (£, (A*)). For instance if, = {1 — ¢,2 — a.(b.a),3 —
aa}andm = {1 — ab,2 — (c.d)}, then we have .72 = {1 — ab,2 — a.(b.a).(cd),3 — aa},
T1—1 ={l—ab,2— a(bac.d),3— aa}.

We also extend the operater for anya € £, 7 € U(L, (A*)),a € A by:

acT & Jte (A").a—terT,
aeT & dael.dte (A*) . a—teTANact.

For instance2 € {1 — aa,2 — a.(b.a)}, but3 ¢ {1 — aa2— a(ba)},be {1l — aa2—
a(b.a)}, butc ¢ {1+— aa2— a(b.a}.
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15.2 Multi-Objects Trace Assertion Specifications

Let TA = (Ag,C, 0,tp) be a trace assertion specification, andddie a set of labels. By fiee multi-
object trace assertion specificatigenerated bfAand £, we mean a tuple:

LTA= (£ x Ag,U(L,C), oz, 0)

where: £ x Ag is the set oflabeled call-responses{((L,C) is theuniquely labeled set of canonical
step-traceso, : £ x Ag — U(L,C) < U(L,C) is the transition relation defined for allc U/(L,C)
anda — ad € Lx A by:

. _J{r={a=t} | teoad)(r|a) } if o(ad)(r|a) # 0
oc(a— ad)(r) = {@ ’ if Z)(ad)(ﬂa) =0

The above definition assumsslf-initialization of modules, i.e. the first call initializes a given object in
the module. Without self-initialization, the user must initialize an object before the call relating to this
object. The pai(L, TA) describesCTA completely, sinceCTA is entirely specified by the specification

TA and the description of. For instancel = the set of all available namesnd TA from Figure

4 (without enhancement) describe completely the self-initializing multi-stack module. We may easily
derive that in such a case (we specify normal behavior only sodafktl — PUSH(3))(0) = {stl —
PUSH(3)}, while gz (stl — POP)(0) = 0. If 7 = {stl — PUSH3).PUSH1),st2 — ¢,st3
PUSH(5)}, then we havey.(stl — POP)(7) = {stl — PUSH(3), st — ¢,st3 — PUSH5)}, while
or(s2 — POP)(1) = (. In the sequel, except in the theory part, we shall prefer to Wi#SH(st1, 3).
PUSH(stl, 1) instead ofstl — PUSH(3).PUSH(1).

The normal behavior described IByAis given by:
L(LTA) = {x|x € (LxA)" Ao ()(0) # 0},

wherep? is the standard extension of onto (L x A)* — U(L,C) < U(L,C) (see Section 6.1).

The empty traceg, always does belong tb(LTA) since, by the definitiong}.()(0) = {0} #
(. For the self-initializing multi-stack trace assertion specificatifA we havex = PUSH(stl, 1).
PUSH(st2, 3).POP(stl) € L(LTA) sinceg}-(X)(0) = {stl — ¢, PUSH(st2,3)} # (), whilex POP(st1) ¢
L(LTA) sinceg} (x.POP(st1))(0) = 0.

For a givenLTA, let g@L denote the following transition relation, for alle U4(£,C) anda — a:d €
LXxA:
de(a—ad)(r) faer

Qwﬁ(a — ad)(r) = {@ ifadr
A multi-object trace assertion specificatitma tuple:
MTA = (LTA Agyqy, Oglob)

whereLTAas aboveAg,, is the set ofjlobal call-response eventgyop the global transitionrelation,
such that for som&gjop:

input(Egion) = Uiy (Xgiobx L"),

Oglob € Agiob — U(L,C) « U(L,C).
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We write a(aq,...,ax) € Agob, anda(aq,...,ok) :d € Agob, rather than(a, aq,..., o), and
(a,aq,...,0k,d). Forinstance, we writeew «) instead of(new o)) andconcatenat@y, , as, as) in-
stead of(concatenatgn , ag, as).

For everyMTA we definethe transition relationg € ((£xA) U Agiob) — U(L,C) — U(L,C),
where for allr € U(L£,C) andp € (LxA) U Agob:

Qg(p)(T) if pe ExA/\newgé Eglob
o(p)(r) = { A (p)(7) if pE LXAANGWE Sgion
2giob(P)(7) if p € Agiob

To create a new instance of an object, we use the access programewallXgop x £, defined by:

{r—{a—t}} ifaer

Oglob(NeWa) ) (1) = {@ if a7

In other wordss = o, U ggiob if NeW¢ Ygjop, ando = g% U oglob Otherwise.
The global programmew(«) is usually accompanied by a prograteletéa) € Ygiop x £, which
deletes the instance @A with label «:

oglob(deletéa)) (1) = {é m\{7]a}} :I g ; :

Thenormal behaviogenerated by TAis defined by:
L(MTA) = {x | x € ((LxA) U Agiob)* A 8" (x)(0) # 0}.

For instance: always does belong to(MTA) sinceg*()(0) = {0} # 0, if new deletec Xgjop, then
newa; ).newas).deletéas) € L(MTA) sinceg* (new(aq).newas).deletéas))(0) = {aq — to} # 0,
andg*(new(aq ).new(«y).deletdas).deletéay ) (0) = {0} # (), while new(«; ).deletéasy) ¢ L(MTA)
sinceg* (new«q ).deletéas))(0) = 0.

MTA is self-initializedif new ¢ Xgion, output independent TA is output independentjeterministic

if TAis deterministic anddgion(7,p)| < 1. The concepts oénhancement, full specification, Mealy

form and state constructorgan easily be introduced for multi-objects modules. The counterparts of
Lemma 10.1, Proposition 10.2 and Proposition 12.1 also do hold for multi-objects trace specifications.
Figure 9 represents a full self-initialized multi-object trace assertion specification for the Cross module
that was introduced and analyzed in [14]. The specification of the Cross module caused some problems
when the older convention and techniques were used [14]. The Cross specification is non-deterministic
and output independent. The module implements up to two sets, labeled byaeithér, each set

may containd, 1, both0 and1 or is empty. There are two local operatidNSERT, which inserts an
element into a given sef ESTwhich tests if an element is in a given set, and one global operation
CROSSwhich takes two sets and divides non-deterministically their union into two disjoint sets. The
module is self-initializing, the firstNSERTcreates a set. Figure 10 represents the full multi-objects
trace assertion specification of Multi-Stack witew concatenateanddeleteas global program calls.

The specification is deterministic, output-independent and non self-initializing.
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Labels

L ={a b}

Syntax of Access Programs

[ Name | Type | Argument| Value | Call-Response Form$ Code |
INSERT | local Oorl INSERT(x, i):nil i
TEST local Oorl Boolean TEST(*,i)d
CROSS | global CROSSIl

Local Canonical Step-traces (Coded)
canonicalt) < (t=eVvt=iVt=(i1.i2))Al,i1,i2 € {0,1} Ai1 #i2
to=¢

Local Trace Assertions

o(INSERT%, 1)) (t) _ [ Equivalence]

[t
[ Conditon | Equivalence|
o(TEST(*,i):d)(t) =[ i etAd=true t
i ¢tAd=false t

Global Canonical Step-tracegRedundant)
globalcanonica(r) < =0V ((r = {a—t} VT = {b+— t}) A canonicalt))
V(r ={a+ t1,b— t2} A canonical(t; ) A canonicaltz))

T0="0

Global Trace Assertions

6(CROSS(r) =

| Condition [ Clusters I
OerAlerAlr[=2] {a— (01),b—ec} [{a—0,b—1} [ {a— 1,b—0} | {a—¢,b— (0.1)}
OeTALgTAIT|=2 {a—¢e,b— 0} {a— 0,b— e}
1leTANOETA|T|=2 {a—e,b— 1} {a—1,b— e}
T={a—eb—e} T

% 7] < 2 T

Extended Local Trace AssertiongdRedundant, except for enhancements)

6(INSERTa, i))(r) _ [ Eauivalence |

| Condition Equivalence]
5(TEST . i)d _ a—ierANd=true T
ol Te, Dd)(r) ac€TNa—i¢rNd="alse T
% adrT T

Figure 9: Enhanced Trace Assertion Specification for (a self-initializing) Cross Module
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Labels £ =available names
Syntax of Access Programs

| Name | Type | Argument| Value | Call-Response FormsCodes|
POP local POP(x):nil
PUSH local integer PUSH(x, i):nil [
TOP local integer TOP(x)i
new global label new(x)
concatenate global | 3 x label concatenatex, *, )
delete global label deletéx)

Local Canonical Step-traces
canonicalt) < t=[d]; A0 <n<size
t() =&

Local Trace Assertions
| Trace Pattern$ Equivalence|

o(POP(x))(t) = t=sd S
% t=c¢ €
\ Condition | Equivalence]
o(PUSH(x,d))(t) = lengtht) < size t.d
% lengtht) = size t
| Condition | Trace Patterns Equivalence|
o(TOP(x)d)(t) = t=sd t
% d=nil t=¢ €

Global Canonical Traces(Redundant)
globalcanonicalr) < 7= {aj— i}, AAlL, canonicalt) A (qj = <) =1)
T0 — @

Global Trace Assertions
| Condition | Equivalence |

onewa))(1) =| ad¢r |T—{ar—c}

% aerT T
\ Condition \ Equivalence \
o(concatenat@yy, g, a3)(7) =| a1 €ETAay ETAasz €T 7 — {az — T|a1.7|az}
% a1 ¢TVadTANaséET T
| Condition | Equivalence|
@(d6|etéa))(7') = o ET T \ {7’ || a}
% ad¢rT T

Dictionary
size: the size of the stacklength(t) : the length of the trace

Figure 10: Enhanced Trace Assertion Specification for Multiple Stack Module. Extended Local Trace
Assertions are omitted as redundant.
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16 Trace Assertion Method and Algebraic Specification

There are strong similarities between the trace assertion method aalgeheaic specification method
(see [7, 34]) for specifying abstract data types. Examples of similarities are:

1. Syntax parts of trace assertion specifications correspond to signatures in algebraic specification.

2. For output-independent trace assertion specifications, trace assertions correspond to conditional
equations,

3. Canonical traces corresponds canonical terms (see [7]).

4. State constructors (as introduced in the paper to solve the problem that it is not always possible
to represent the possible states uniquely by sequences of call-response pairs of visible functions)
correspond to auxiliary/hidden functions in algebraic specification.

However, there are major differences. Thain difference is that

1. Algebraic specification supporimplicit equations while trace assertion method usesplicit
equationsonly.

The functionsPUSH POP, andTOPoperating on non-empty stack may abstractlyrbplicitly defined
as [7]:

POP(PUSH(s a)) =s

TOP(PUSH(s, a)) = a

Less abstract, with states of the stack represented as sequences and “.” denoting concabepiatibn,
definition of the same part of stack is the following (also see [7]):

PUSHs a) = sa
POP(sa) =s
TOP(sa) =a

In the second, explicit, case we may replae€’ by ﬁ but in the first, implicit, case we cannot.
The trace assertion specification is a straight abstraction of the second casinplibi¢ definitions
might sometimes be shorter, they are usually more abstract. However, tymgpligit definitions are
considered to be more readable and easier to understand. The stack is well-known and easy to understand
module, but even here some students have encountered initial problems to understand that the implicit
equations really define the stack, while the explicit equations are practically self-explaining. For more
complex modules, as for example parts of protocols [5, 12], parts of software for aircraft control [31],
or intra-processor, inter-process communication via mailboxes [32] both defining and understanding
implicit equations might be difficult (how simple would equational definitions of the Unique Integer or
the Cross module look like?).

The second difference is

2. The underlying models for algebraic specificationastract algebra$4], while the underlying
model for trace assertion method agomata

While as we mentioned before there is similarity between automata and algebras, they are different
models. The other differences:
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3. To specify in trace assertion specifications that a function does not change the state, it is necessary
to explicitly write trace assertions expressing this, while in algebraic specification it is possible
already in the signature to express this so that there is no need for equations.

4. Trace assertion specifications provide syntactic facilities which makes it possible in certain cases
to specify a function by a single trace assertion, where the uaexfary/hidden functionge.g.
in the definition of a stack with overflow [3]) aecursive definitionge.g. in the definition of the
dequeue function for a queue [7]) are necessary in algebraic specifications.

5. State constructorshat correspond tauxiliary/hiddenfunctions are used only to handle heavy
non-determinism, while the use of auxiliary/hidden functions is much wider in algebraic specifi-
cations.

Suppose for instance thetUSHadditionally returns the value that is pushed on the top of the stack. The
trace assertion specification requires only small adjustments, in Figure 5 we need toP&jide):nil

by PUSH(d) : d in the last column of the Syntax of Access Programs; [PUSH(d)], by t =
[PUSH(d;):di]._, in the Canonical Step-traces definition (@thingif codes are used as in Figure 11),
and

\ Condition | Equivalence]
o(PUSH))(t) = lengtht) < size t.PUSH(d)
% lengtht) = size t
by:
\ Condition | Equivalence|
o(PUSH(d)d)(t) =| lengthlt) < size | t.PUSH(d):d
% lengtht) = size t

Similar minor adjustments are needed for the Mealy form of Figure 6. The algebraic specification
requires the use of aauxiliary/hiddenfunction push and may look like:

POP(pust(s, a))

s
TOP(push(s,a)) = a
PUSH(s, a) = (push(s,a), a)

wherePUSH : Stackx integer — Stackx integer. The descriptive power of trace assertion specifica-

tion and algebraic specification is the same. Every trace assertion specification can be transformed into
an equivalentanonical terms algebrg7, 34]), and for every algebraic specification, a trace assertion
specification equivalent to thmanonical terms algebraf the given algebraic specification can be con-
structed. The constructions in the general case are formally complex and tedious, even so the intuitions
seem to be clear. We will show how such transformations may look like in some special cases. Those
transformations will also emphasize similarities and differences.

A trace assertion specificatiolA = (Ag,C, o,tp) is total if it defines a transition for all calls, i.e.
k(t,a) = 1forallt € C anda € .
Let TA = (Ag,C, o,1y) be adeterministic and totatrace assertion specification. We define the
many-sorted algebra
Ata = (Sort, Sory, Sorty, . .., Sork;,; Op)
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whereSort; = C, Sorfp = Og, Sort, ..., Sori,, are the domains of the arguments of the procedures
(function calls) fromN\f;, and ) )
Op={f|feE}U{f|fe€E}

wheref andf are the functions defined as follows:
f )
o(f(di,....,dr) s d)(t) = {s} <= {:

For TArepresenting the Stack module (Figure 4) the above transformation result in the following two-
sorted function algebra

Ata = (Sort, Sorty, Sort;; Op)

with Sort = C = {[PUSHd)]L; | 0 < n < sizen d; € integer}, Sorb = O = integery {nil},
Sory = integer, Op = {PUSI—L PUSH POP POP TOP TOP} PUSH : Sort; x Sorty — Sort,
PUSH: Sor x Sorty — Sor, POP: Sor — Sort, POP: Sor — Sor, TOP: Soriy — Sort,
TOP: Sort — Sory, and for evernyt € C, and every integei.

PUSH(, i) — t.PUSH(i) if lenghtt) < size and,
PUSH({, i) =t if lenghtt) = size
PUSH({, i) = nil

POR(t.PUSH(i)) =t andPOP(c) = ,
POR(t) = nil

TOR(t) =t

TOP(t.PUSH(i)) =i andTOP(e) = nil,

We say that the “tilde” functioff is trivial if rangg(f) = {nil}, and that the “hat” functlorh is trivial if
f(t,dy,...,d) =t for everyt. For the Stack example, the functioRslSH POPandTOPare trivial.

Let AT modified o the algebra derived fromta by eliminating all trivial functions. We will consider
Amediied a5 an algebraic equivalent of the deterministic trace assertion specifitation

For non-deterministic trace assertion specifications we proceed in a similar manner, but instead of stan-
dard many-sorted algebras we have to use for instpadél algebras(see [34] chapter 3.3.5).

Consider a many-sorted algebla= (S, S, ..., S; Op). We say that a soi§ is domestidf for
everyf € Op, § is a component of the domain 6f and there exists at least oge= Op such that§
is the range of). The sort is calledoreignif it is not domestic. For instance for the two sorted algebra
that defines stack of integers, the sstdckis domestic and the soiritegersis foreign. Intuitively, the
domestic sort is defined by the algebra, and all foreign sorts are predefined by other means.

An element ofs, € § is called ageneratorof §, (see [34]), if every element &, can be derived
from sy by applying a sequence of operators (functions) flOm

To transform an algebraic specification in a trace assertion specification we have to resolve following
main problems:

1. allimplicit equations must be replaced é&yplicit ones,
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2. only one domestic sort is allowed,
3. there exists a generatgy of §,.

It appears that many algebraic specifications can be transformed into the form described above, however
the result is usually less general.

Let A = ($,S,...,S;Op) be a many-sorted algebra with explicit equations, one domestic domain
S, and supposg, is a generator of,. Without loss of generality we may assume that for efegyOp,

the domain of is of the form§ x §, x ... x §;, i.e. the value of the first argumentfobelongs td5,,

and thatS, is the set ofanonical termg7, 34] (so in the case of stack, instead(df2) € S), we have
PUSHPUSH(stack 1),2) € §).

DefineE, the set of access program nameg&as {f | f € Op}. For allf € E, we definednput(f) and
output(f) to be the smallest sets such that:

(V1,..., %) € input(f) A nil € outpulf) <— 3t,se S .f(t,vi,..., ) =Ss
(V1,..., %) € input(f) Ad € outpu(f) <« Jte S .f(t,vi,..., %) =d.

Let © be the following mapping that transforrg into a set of traces ovekg: O(sy) = e and for every
f(Vo,Vi,..., %) € S, O(F(Vo,V1,...,W%) = O(V).f(v1,...,v)nil. Now define

TA= (AEu 6(3))7 0, 6)

where:
o(f(vi,...,w)nil)(s) = {t} < f(s,vi,..., W) =t
o(f(vi,...,w)d)(s) ={s} <« f(svi,...,w) =d.

andp(a:d)(s) = 0 for all other cases. We shall considBA as a trace assertion specification that is
equivalent to the algebrd.

We believe the areas of applications for the algebraic specifications are different than for the trace asser-
tion method. The algebraic specification is better suited for defining abstract data types in programming
languages (as SML, LARCH, etc., see [34]). The trace assertion method is better suited for specify-
ing complex interface modules as for instance communication protocols [5, 12, 31, 32]. The division
follows from the general pattern of applicability of automata based and algebraic models. One may
model integers as an automaton (it is usually defined as an algebra), or may define the semantics of SCR
specification [11] as an abstract algebra (it is defined as a kind of automaton), however in both cases the
advantage as such way of modeling is hardly seen.

17 Final Comment

An automata-based model for the trace assertion method has been presented and its formal consistency
has been proven. A modified specification format based on this model has also been proposed. The
main points of the model are the following:

o the alphabet which represent observable event occurrences is built from call-response events,

37



e the structure of the trace assertion specification is entirely described on the bases of normal be-
havior only,

¢ the refinement relation captures the externally observable behavior of module specifications,

e trace assertion specifications can be refined into “more deterministic” and “more total” trace as-
sertion specifications or into module specifications with some “more concrete” state space, using
a simulation relation,

e exceptional behavior is specified separately as an enhancement of normal behavior, and such an
enhancement may be added to the trace assertion specification, leading a behavioral refinement,

e canonical step-traces (instead of canonical traces) are used to specify states for single-object
modules, and sets of canonical step-traces are used to specify states for multi-object modules.
Sequence notation is used to specify both step-traces and sets of step traces,

e Mealy forms are special cases of a more general yet simpler model,
e multi-object modules are specified using the concept of uniquely labeled sets of step-traces.

Neither the monitored events [11, 27, 33] nor non-sequential modules are considered in this paper. For
non-sequential models a possible delay between a call and its response must be modeled, so “true-
concurrency” models should rather be used [18]. We have shown that the output value functions are
redundant. The theory does not need them, and we believe they usually make specifications less read-
able. We have found the standard forms shorter and more readable than the Mealy forms. For the
output dependent trace specifications, the explicit output functions seem to be useless at all. The spec-
ification of multi-object modules is not much different than single-object modules. The trace assertion
method and algebraic specification can be seen as complimentary approaches. They have some things
in common, but substantial differences as well. The main difference is the use of implicit equations in
algebraic specifications, and explicit equations only in trace assertions. Their areas of applications seem
to be different.
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