
A Study of The Fragile Base Class Problem

Leonid Mikhajlov1 and Emil Sekerinski2

1 Turku Centre for Computer Science,
Lemmink�aisenkatu 14A, Turku 20520, Finland;

lmikhajl@aton.abo.�
2 McMaster University,

1280 Main Street West, Hamilton, Ontario, Canada, L8S4K1;
emil@ece.eng.mcmaster.ca

Abstract. In this paper we study the fragile base class problem. This
problem occurs in open object-oriented systems employing code inher-
itance as an implementation reuse mechanism. System developers un-
aware of extensions to the system developed by its users may produce a
seemingly acceptable revision of a base class which may damage its exten-
sions. The fragile base class problem becomes apparent during mainte-
nance of open object-oriented systems, but requires consideration during
design. We express the fragile base class problem in terms of a
exibility
property. By means of �ve orthogonal examples, violating the
exibility
property, we demonstrate di�erent aspects of the problem. We formulate
requirements for disciplining inheritance, and extend the re�nement cal-
culus to accommodate for classes, objects, class-based inheritance, and
class re�nement. We formulate and formally prove a
exibility theorem
demonstrating that the restrictions we impose on inheritance are suf-
�cient to permit safe substitution of a base class with its revision in
presence of extension classes.

1 Introduction

The name fragile base class problem gives a good intuitive understanding of the
problem. Classes in the foundation of an object-oriented system can be fragile.
The slightest attempt to modify these foundation classes may damage the whole
system.

The problem does not depend on the system implementation language. How-
ever, systems employing code inheritance as an implementation reuse mechanism
along with self-recursion [28] are vulnerable to it. Such systems are delivered to
users as a collection of classes. The users can reuse the functionality provided by
the system by inheriting from system classes. Moreover, when the system is an
object-oriented framework, the users can extend the system functionality by sub-
stituting its classes with derived ones. In general, system developers are unaware
of extensions developed by the users. Attempting to improve functionality of the
system, the developers may produce a seemingly acceptable revision of system
classes which may damage the extensions. In a closed system all extensions are
under control of system developers, who, in principle, can analyze the e�ect of

certain base class revisions on the entire system. Although possible in principle,
in practice this becomes infeasible [29, 23]. In an open system the fragile base
class problem requires consideration during design [32].

We have encountered several di�erent interpretations of the problem in the
technical literature on this topic. Often, during a discussion of component stan-
dards, the name is used to describe the necessity to recompile extension and client
classes when base classes are changed [15]. While being apparently important,
that problem is only a technical issue. Even if recompilation is not necessary,
system developers can make inconsistent modi�cations. Another interpretation
is the necessity to guarantee that objects generated by an extension class can
be safely substituted for objects of the corresponding base class [32]. Only in
this case, the extension class can be safely substituted for the base class in all
clients. However, objects of the extension class can be perfectly substitutable for
objects of the base class even if the latter is fragile.

At �rst glance the problem might appear to be caused by inadequate sys-
tem speci�cation or user assumptions of undocumented features, but our study
reveals that it is more involved. We consider an example which illustrates how
concealed the problem can be.

We take a more formal look on the nature of the problem. We abstract the
essence of the problem into a
exibility property and explain why unrestricted
code inheritance violates this property. By means of �ve orthogonal examples
violating the
exibility property, we demonstrate di�erent aspects of the prob-
lem. Then we formulate requirements disciplining inheritance. We extend the
re�nement calculus [8, 19, 20] with notions of classes, objects, class-based inher-
itance, and re�nement on classes. For the formalization of inheritance we adopt
a model suggested by Cook and Palsberg in [10]. We formulate, prove, and ex-
plain a
exibility theorem showing that the restrictions we impose on inheritance
are su�cient to permit substituting a base class with its revision in presence of
extension classes. Finally, we discuss related work and draw some conclusions.

2 Fragile Base Class Problem

We assume a fairly standard model of object-oriented programming employing
objects, classes, and single inheritance. A class is a template that de�nes a set of
instance variables and methods. Instantiating a class creates a new object with
instance variables initialized with initial values and method bodies de�ned by
the class. A subclass inherits instance variables and method de�nitions from a
superclass. All methods are dynamically bound. Every method has an implicit
parameter self, which must be referred explicitly when a method of the class calls
another method of the same class. Methods of a subclass can refer to methods of
a superclass through another implicit parameter super. As the problem does not
depend on the implementation language, we use a simple language-independent
notation in our examples.

Bag = class CountingBag = class

b : bag of char inherits Bag
n : int

init b= b := bj jc init b= n := 0; super.init
add(val x : char) b= add(val x : char) b=

b := b [bjxjc n := n+ 1; super.add(x)
addAll(val bs : bag of char) b=

while bs 6= bj jc do
begin var y j y 2 bs�

self.add(y);
bs := bs� bjyjc

end

od

cardinality(res r : int) b= cardinality(res r : int) b=
r := jbj r := n

end end

Bag0 = class

b : bag of char

init b= b := bj jc
add(val x : char) b= b := b [bjxjc
addAll(val bs : bag of char) b= b := b [bs

cardinality(res r : int) b= r := jbj
end

Fig. 1. Example of the fragile base class problem

2.1 Example of the Fragile Base Class Problem

We begin with an example, presented in Fig. 1, which gives an intuitive under-
standing of the problem and shows how disguised the fragile base class problem
can be.1 Suppose that a class Bag is provided by some object-oriented system,
for example, an extensible container framework. In an extensible framework user
extensions can be called by both the user application and the framework. The
class Bag has an instance variable b : bag of char, which is initialized with an
empty bag. It also has methods add inserting a new element into b, addAll in-
voking the add method to add a group of elements to the bag simultaneously,
and cardinality returning the number of elements in b.

Suppose now that a user of the framework decides to extend it. To do so,
the user derives a class CountingBag, which introduces an instance variable n,
and overrides add to increment n every time a new element is added to the bag.
The user also overrides the cardinality method to return the value of n which
should be equal to the number of elements in the bag. Note that the user is
obliged to verify that CountingBag is substitutable for Bag to be safely used by
the framework.

After some time a system developer decides to improve the e�ciency of the
class Bag and releases a new version of the system. An \improved" Bag0 im-

1 This example is adopted from [26]

plements addAll without invoking add. Naturally, the system developer claims
that the new version of the system is fully compatible with the previous one. It
de�nitely appears to be so if considered in separation of the extensions. How-
ever, when trying to use Bag0 instead of Bag as the base class for CountingBag,
the framework extender suddenly discovers that the resulting class returns the
incorrect number of elements in the bag.

Here we face the fragile base class problem. Any open system applying code
inheritance and self-recursion in an ad-hoc manner is vulnerable to this problem.

2.2 Failure of the Ad-Hoc Inheritance Architecture

Let us analyze the reasons for the failure in modifying a system relying on ad-
hoc code inheritance. Assume that we have a base class C and an extension
class E inheriting from it. We say that E is equivalent to (M mod C)2, where
M corresponds to the extending part of the de�nition of E, and the operator
mod combines M with the inherited part C. We refer to M as a modi�er [31].
Therefore, we have that C belongs to the system, while (M mod C) represents
a user extension of this system. The model of single inheritance employing the
notion of modi�ers was proved by Cook and Palsberg in [10] to correspond to
the form of inheritance used in object-oriented systems.3 For instance, in our
previous example M has the form:

M = modi�er

n : int := 0

add(x : char) b= n := n+ 1; super.add(x)
end

We accept the view that a base class and a modi�er initialize their own instance
variables.

When system developers state that the new version of their system is fully
compatible with the previous one, they essentially say that a revision class C 0

is a re�nement of C. We say that a class C is re�ned by a class C 0, if the exter-
nally observable behavior of objects generated by C 0 is the externally observable
behavior of objects generated by C or an improvement of it. In other words,
objects generated by C 0 must be substitutable for objects generated by C in any
possible context. Ensuring substitutability of the user extension (M mod C) for
the framework class C amounts to verifying that C is re�ned by (M mod C).

Thus, all participating parties, i.e. the system developers and its extenders,
rely on a
exibility property :

if C is re�ned by C 0 and C is re�ned by (M mod C)
then C is re�ned by (M mod C 0)

2 We read mod as modi�es.
3 In their paper modi�ers are referred to as wrappers. We prefer the term modi�er,
because the term wrapper is usually used in the context of object aggregation.

Unfortunately, the
exibility property does not hold in general, as demon-
strated by our example. In our opinion, this fact constitutes the essence of the
fragile base class problem. This consideration brings us to the question, what are
the shortcomings of inheritance and what are the restrictions we need to make
in order to evade the problem.

3 Aspects of the Problem

Now let us consider �ve examples invalidating the
exibility property and illu-
minating the shortcomings of inheritance. 4 Note that if we regard the de�nition
of a base class as the speci�cation of its functionality, we cannot blame modi�er
developers for relying on undocumented features and, therefore, inducing the
problem. The examples are orthogonal to each other, meaning that all of them
illustrate di�erent aspects of the problem.

Let us �rst brie
y introduce the used terminology. A call of a method through
the implicit parameter self is referred to as a self-call. Analogously, we refer to
an invocation of a method through the implicit parameter super as a super-call.
When an extension class invokes a base class method, we say that an up-call has
occurred; when a base class invokes a method of a class derived from it, we refer
to such an invocation as a down-call.

3.1 Unanticipated Mutual Recursion

Suppose that C describes a class with a state x, initially equal to 0, and two
methods m and n, both incrementing x by 1. A modi�er M overrides n so that
it calls m. Now, if a revision C 0 reimplements m by calling the method n, which
has an implementation exactly as it was before, we run into a problem.

C = class M = modi�er C 0 = class

x : int := 0 x : int := 0

m b= x := x+ 1 m b= self.n
n b= x := x+ 1 n b= self.m n b= x := x+ 1

end end end

When the modi�er M is applied to C 0, the methods m and n of the resulting
class (M mod C 0) become mutually recursive. Apparently, a call to either one
leads to a never terminating loop.

This example demonstrates that the problem might occur due to unexpected
appearance of mutual recursion of methods in the resulting class.

4 As we tried to keep these examples as concise as possible, they might appear slightly
arti�cial.

3.2 Unjusti�ed Assumptions in Revision Class

To illustrate the next shortcoming of inheritance, it is su�cient to provide only
the speci�cation of a base class. The base class C calculates the square and the
fourth roots of a given real number. Its speci�cation is given in terms of pre
and post conditions which state that, given a non-negative real number x, the
method will �nd such r that its power of two and four respectively equals x.

A modi�er M overrides the method m so that it would return a negative
value.5 Such an implementation of m is a re�nement of the original speci�cation,
because it reduces nondeterminism.

C = class M = modi�er

m(val x : real; res r : real) b= m(val x : real; res r : real) b=
pre x � 0
post r2 = x

r := �px
n(val x : real; res r : real) b=

pre x � 0
post r4 = x

end end

A revision C 0 of the base class implements the speci�cation of the square
root by returning a positive square root of x. The implementation of the fourth
root relies on this fact and merely calls m from itself twice, without checking
that the result of the �rst application is positive. Note that C 0 is a re�nement
of C.

C 0 = class

m(val x : real; res r : real) b=
r :=

p
x

n(val x : real; res r : real) b=
self.m(x; r); self.m(r; r)

end

Suppose now that we have an instance of a class (M mod C 0). The call to n
will lead to a failure, because the second application of the square root will get
a negative value as a parameter.

This example demonstrates that the problem might occur due to an assump-
tion in the revision class that, while a self-call, the body of a method, as de�ned
in the revision class itself, is guaranteed to be executed. However, due to inher-
itance and dynamic binding this assumption is not justi�ed.

3.3 Unjusti�ed Assumptions in Modi�er

Participants of this example are rather meaningless; however, from the more
formal point of view, they are composed from legal constructs, and therefore,

5 By convention
p
x returns a positive square root of x.

should satisfy our
exibility property. We use an assertion statement fpg, where
p is a state predicate. If p is true in a current state, the assertion skips, otherwise
it aborts. Thus, the assertion statement can be seen as an abbreviation for the
corresponding conditional.

C = class M = modi�er

l(val v : int) b= fv � 5g l(val v : int) b= skip

m(val v : int) b= self:l(v)
n(val v : int) b= skip n(val v : int) b= self:m(v)

end end

C 0 = class

l(val v : int) b= fv � 5g
m(val v : int) b= fv � 5g
n(val v : int) b= skip

end

Let us compute full de�nitions of the classes (M mod C) and (M mod C 0).

(M mod C) = class (M mod C 0) = class

l(val v : int) b= skip l(val v : int) b= skip

m(val v : int) b= self:l(v) m(val v : int) b= fv � 5g
n(val v : int) b= self:l(v) n(val v : int) b= fv � 5g

end end

It is easy to see that while C is re�ned by (M mod C), the class C is not
re�ned by (M mod C 0). Due to the presence of assertion fv � 5g in the method
n of (M mod C 0), its precondition is stronger than the one of the method n of
C, while to preserve re�nement its precondition could have only been weakened.

Therefore, the problem might occur due to an assumption made in a modi�er
that in a particular layout base class self-calls are guaranteed to get redirected
to the modi�er itself. However such an assumption is unjusti�ed, because the
revision class can modify the self-calling structure.

3.4 Direct Access to the Base Class State

Developers of a revision C 0 may want to improve the e�ciency of C by modifying
its data representation. The following example demonstrates that, in general, C 0

cannot change the data representation of C in presence of inheritance.
A base class C represents its state by an instance variable x. It declares two

methods m and n increasing x by 1 and 2 respectively. A modi�er M provides a
harmless (as it appears by looking at C) override of the method n, which does
exactly what the corresponding method of C does, i.e. increases n by 2.

C = class M = modi�er

x : int := 0

m b= x := x+ 1
n b= x := x+ 2 n b= x := x+ 2

end end

A revision C 0 introduces an extra instance variable y, initialized to 0. Methods
m and n increase x and y by 1 and by 2, but indirectly via y. Therefore, the
methods of C 0 implicitly maintain an invariant, x = y.

C 0 = class

x : int := 0; y : int := 0

m b= y := y + 1;x := y

n b= y := y + 2;x := y

end

Now, if we consider an object obj to be an instance of class (M mod C 0),
obtained by substituting C 0 for C, and the sequence of method calls obj.n;obj.m,
we face the problem. By looking at C, we could assume that the sequence of
method calls makes x equal to 3, whereas, in fact, x is assigned only 1.

An analogous problem was described by Alan Snyder in [23]. He notices
that \Because the instance variables are accessible to clients of the class, they
are (implicitly) part of the contract between the designer of the class and the
designers of descendant classes. Thus, the freedom of the designer to change the
implementation of a class is reduced". In our example, since M is allowed to
modify the instance variables inherited from C directly, it becomes impossible
to change the data representation in C 0.

3.5 Unjusti�ed Assumption of Binding Invariant in Modi�er

A class C has an instance variable x. A modi�er M introduces a new instance
variable y and binds its value to the value of x of the base class the modi�er is
supposed to be applied to. An override of the method n veri�es this fact by �rst
making a super-call to the method l and then asserting that the returned value
is equal to y.

C = class M = modi�er

x : int := 0 y : int := 0

l(res r : int) b= r := x

m b= x := x+ 1; self:n m b= y := y + 1; super:m

n b= skip n b= beginvar r�
super:l(r); fr = yg

end

end end

It is easy to see that before and after execution of any method of
(M mod C) the predicate x = y holds. We can say that (M mod C) main-
tains the invariant x = y. The full de�nition of the method m in an instance
of the class (M mod C) e�ectively has the form y := y + 1;x := x+ 1; fx = yg,
where the assertion statement skips, since the preceding statements establish the
invariant.

Now, if a revision C 0 reimplements m by �rst self-calling n and then incre-
menting x as illustrated below, we run into a problem.

C 0 = class

x : int := 0

l(res r : int) b= r := x

m b= self:n;x := x+ 1
n b= skip

end

The body of the method m in an instance of the class (M mod C 0) is e�ectively
of the form y := y + 1; fx = yg;x := x+ 1, and, naturally, it aborts.

When creating a modi�er, its developer usually intends it for a particular base
class. A common practice is an introduction of new variables in the modi�er and
binding their values with the values of the intended base class instance variables.
Such a binding can be achieved even without explicitly referring to the base
class variables. Thus the resulting extension class maintains an invariant binding
values of inherited instance variables with the new instance variables. Such an
invariant can be violated when the base class is substituted with its revision. If
methods of the modi�er rely on such an invariant, a crash might occur.

3.6 Discussion

The presented examples demonstrate di�erent aspects of the fragile base class
problem. However, this list of aspects is by no means complete. We have chosen
these aspects, because in our opinion they constitute the core of the problem.
Also among these basic aspects of the problem there are some which were ap-
parently overlooked by other researchers, as we discuss in our conclusions.

Further on in this paper we con�ne the fragile base class problem in a number
of ways. First, we consider a class to be a closed entity. This means that method
parameters and instance variables that are objects of some other classes are
textually substituted with de�nitions of the corresponding classes. Therefore,
without loss of generality we consider method parameters and instance variables
to be of simple types. Second, we consider the case when a base class revision and
extension have as many methods as the corresponding base class. Third, for the
time being we consider only functional modi�ers, i.e. modi�ers that do not have
instance variables of their own. Modeling modi�ers with state adds considerable
complexity and constitutes a topic of current separate research. We also assume
that a base class does not have recursive and mutually recursive methods. As
we have stated above, our language provides only for single inheritance.

The �rst four shortcomings of inheritance illustrated above lead to the for-
mulation of the four requirements disciplining it:

1. \No cycles" requirement: A base class revision and a modi�er should not
jointly introduce new cyclic method dependencies.

2. \No revision self-calling assumptions" requirement: Revision class
methods should not make any additional assumptions about the behavior of
the other methods of itself. Only the behavior described in the base class may
be taken into consideration.

3. \No base class down-calling assumptions" requirement: Modi�er
methods should disregard the fact that base class self-calls can get redirected
to the modi�er itself. In this case bodies of the corresponding methods in the
base class should be considered instead, as if there were no dynamic binding.

4. \No direct access to the base class state" requirement: An extension
class should not access the state of its base class directly, but only through
calling base class methods.

We claim that if disciplining inheritance according to these four requirements,
we can formulate and prove a
exibility theorem which permits substituting a
base class with its revision in presence of extension classes. In the next section
we consider a formal basis necessary for formulating this theorem.

4 Formal Basis

4.1 Re�nement Calculus Basics

This section is based on the work by Back and vonWright as presented in [3, 6{8].
The behavior of a program statement can be characterized by Dijkstra's weakest
precondition predicate transformer [11]. For a statement S and a predicate p, the
weakest precondition wp(S; p) is such that the statement S terminates in a state
satisfying the postcondition p. Since the relation between pre- and postconditions
is all we are interested in for a statement, we can identify the statement with a
function mapping postconditions to preconditions.

The predicates over a state space (type) � are the functions from � to Bool,
denoted P�. The relations from � to � are functions from � to a predicate
(set of values) over � , denoted by � $ � . The predicate transformers from �

to � are the functions mapping predicates over � to predicates over �, denoted
� 7! � (note the reversion of the direction):

P� b= � ! Bool

� $ � b= � ! P�
� 7! � b= P� ! P�

The entailment ordering p � q on predicates p; q : P� is de�ned by universal
implication:

p � q b= (8� : � � p �) q �)

The predicates true and false over � map every � : � to the boolean values
T and F, respectively. Conjunction p ^ q, disjunction p _ q, and negation :p
are all de�ned by pointwise extension of the corresponding operations on Bool.

The cartesian product of state spaces �1 and �2 is written �1 ��2. For
relations P1 : �1 $ �1 and P2 : �2 $ �2, their product P1 � P2, is a relation of

type (�1 ��2)$ (�1 � �2), where for �1 : �1, �2 : �2,
1 : �1 and
2 : �2, we
have:

(P1 � P2) (�1; �2) (
1;
2) b= (P1 �1
1) ^ (P2 �2
2)

The relational product operator is right associative.
The identity relation, Id : � $ �, is de�ned for �1; �2 : � as follows:

Id �1 �2 b= �1 = �2

A predicate transformer S : � 7! � is said to be monotonic if for all predi-
cates p and q, p � q implies S p � S q. Statements from � to � are identi�ed
with monotonic predicate transformers from � to � . Statements of this kind
may be concrete, i.e. executable, or abstract, i.e. speci�cations, and may have
di�erent initial and �nal state spaces.

The sequential composition of statements S : � 7! � and T : � 7! � is mod-
eled by their functional composition. Let q be a predicate over �, then

(S;T) q b= S (T q):

Meet of (similarly-typed) predicate transformers is de�ned pointwise:

(S u T) q b= (S q ^ T q)

Meet of statements models nondeterministic choice between executing state-
ments S and T . It is required that both alternatives establish the postcondition.
For predicate transformers S1 : �1 7! �1 and S2 : �2 7! �2, their product
S1�S2 is a predicate transformer of type �1��2 7! �1��2 whose execution
has the same e�ect as simultaneous execution of S1 and S2:

(S1 � S2) q b= ([q1; q2 j q1 � q2 � q � S1 q1 � S2 q2)

The abort statement does not guarantee any outcome or termination, there-
fore, it maps every postcondition to false. The magic statement is miraculous,
since it is always guaranteed to establish any postcondition. The skip statement
leaves the state unchanged. For any predicate q : P�

abort q b= false
magic q b= true
skip q b= q:

For a predicate p : P� , the assertion fpg it behaves as abort if p does not
hold, and as skip otherwise. The guard statement [p] behaves as skip if p holds,
otherwise it behaves as magic. Let q be a predicate over � , then:

fpg q b= p ^ q

[p] q b= p) q

Given a relation P : � $ � , the angelic update statement fPg : � 7! � and
the demonic update statement [P] : � 7! � are de�ned by:

fPg q � b= (9
 : � � (P �
) ^ (q
))
[P] q � b= (8
 : � � (P �
)) (q
))

When started in a state �, both fPg and [P] choose a new state
 such that
P �
 holds. If no such state exists, then fPg aborts, whereas [P] can establish
any postcondition.

A statement S is said to be conjunctive if

S (^i 2 I � pi) = (^i 2 I � S pi);

where I 6= �. An arbitrary conjunctive statement can be represented by a se-
quential composition fqg; [Q] for some predicate q and relation Q.

Assignment can be modeled as an update statement. If the state space � is
partitioned by variables x : T and y : U , i.e. � = T � U , then

x := e b= [R]; where R (x; y) (x0; y0) = (x0 = e ^ y0 = y):

A speci�cation statement with a precondition over the initial state space and
a postcondition relating initial and �nal state spaces is de�ned by a sequential
composition of assertion and demonic update:

pre p post q b= fpg; [R];where q (x; y) = 8(x0; y0) �R (x; y) (x0; y0)

For statements S and T of the same type and a predicate p, the conditional
is de�ned by:

if p then S else T � b= ([p];S) u ([:p];S)

The re�nement ordering S v T , read S is re�ned by T , on statements
S; T : � 7! � is de�ned as a universal entailment:

S v T b= (8q : P� � S q � T q)

For example, a speci�cation statement is re�ned if its precondition is weak-
ened and the postcondition is strengthened:

pre p post q v pre p0 post q0

if p � p0 and q0 � q

Other rules for re�nement of speci�cations into programs and transforming pro-
grams are given in [3, 19, 12].

An iteration statement is de�ned by the least �xed point of a function F

with respect to the re�nement ordering:

while p do S od b= � F;

where F X = if p then S;X else skip �

According to the theorem of Knaster-Tarski [30], a monotonic function has a
unique least �xed point in a complete lattice. Statements form a complete lattice
with the re�nement orderingv, and the statement if p(x) then S;X else skip �

is monotonic with respect to v in X , therefore, � F exists and is unique. Intu-
itively, de�ning iteration in this way implies that a non-terminating loop behaves
as abort.

A block construct allows temporary adding a new local state component to
the present global state. An entry statement enter adds a new state component
to the present state and initializes it in accordance with a given predicate p. An
exit statement exit removes the added state component.

enter z j p b= [P];
where P (x; y) (z0; x0; y0) = (x0 = x ^ y0 = y ^ p (z0; x0; y0))

exit z b= [Q];
where Q (z; x; y) (x0; y0) = (x0 = x ^ y0 = y)

Accordingly, the block construct is de�ned as follows:

beginvar z j p � S end b= enter z j p;S; exit z

In general, di�erent state spaces can be coerced using wrapping and unwrap-
ping operators. Statements S and S0 operating on state spaces � and �0 respec-
tively can be combined using a relation R : �0 $ � which, when lifted to predi-
cate transformers, gives the update statements fRg : �0 7! � and [R�1] : � 7! �0.
We use these statements to de�ne wrapping and unwrapping operators as follows:

unwrapping : S #R b= fRg;S; [R�1]
wrapping : S0 "R b= [R�1];S0; fRg

Thus, after wrapping we have that S #R and S0 "R operate on the state spaces
�0 and � respectively. Sometimes it is necessary to wrap a statement operating
on an extended state into a relation R. In this case we consider the relation
R to be automatically extended into Id�R or R� Id. For example, to wrap a
statement S : � � � 7! � � � , the relation R : �0 $ � is extended to R� Id.

The wrapping and unwrapping operators are left associative and have the
lower precedence than the relational product. Further on, we make use of the
following

wrapping rule : S "R#R v S

For tuples of statements we have:

(S1; :::; Sn)"R b= (S1 "R; :::; Sn "R)
(S1; :::; Sn)#R b= (S1 #R; :::; Sn #R)

4.2 Formalization of Classes and Modi�ers

We model classes as self referential structures as proposed by Cook and Palsberg
in [10]. This model applies to most mainstream object-oriented languages like
C++, Java and Smalltalk. However, in our formalization classes have internal
state, unlike in their model.

For simplicity, we model method parameters by global variables that both
methods of a class and its clients can access. We precede a formal method pa-
rameter with a keyword val to indicate that the method only reads the value of
this parameter without changing it. Similarly, we precede the formal parameter
with res to indicate that the method returns a value in this parameter.

In practice a call of a method mj by a method mi of the same class has
the form self:mj . Due to inheritance and dynamic binding such a call can get
redirected to a de�nition of mj in an extension class. We model the method mi

as a function of an argument self:mj . In general, a method of a class may invoke
all the other methods of the same class. Thus if there are n methods in the class
we have

mi = �(x1; :::; xn):ci;

where ci is a statement representing the body of the method mi and xj stands
for self:mj . Accordingly, we de�ne a class C by

C = (c0; cm);where cm = �self � (c1; :::; cn);

and where c0 : � is an initial value of the internal class state and self is an
abbreviation for the tuple x1; :::; xn. We assume that cm is monotonic in the self
parameter. For our purposes it su�ces to model the state space of all parameters
of all methods as an extra component � of the class state space. Thus cm has
the type

((� �� 7! � ��)� :::� (� �� 7! � ��))!
((� �� 7! � ��)� :::� (� �� 7! � ��)):

We declare the class C, de�ned in this way, as follows:

C = class c := c0; m1 b= c1; :::;mn b= cn end

A class can be depicted as in Fig. 2. The incoming arrow represents calls to the
class C, the outgoing arrow stands for self-calls of C.

In our model classes are used as a templates for creating objects. Objects
have all of the self-calls resolved with the methods of the same object. Modeling
this formally amounts to taking the least �xed point of the function cm. For
tuples of statements (c1; ::; cn) and (c01; :::; c

0

n), where ci and c0i are of the same
type, the re�nement ordering is de�ned elementwise:

(c1; :::; cn) v (c01; :::; c
0

n) b= c1 v c01 ^ ::: ^ cn v c0n

C
self

Fig. 2. Illustration of a class

Statement tuples form a complete lattice with the above re�nement ordering.
Also cm is monotonic in its argument. These two conditions are su�cient to
guarantee that the least �xed point of the function cm exists and is unique. We
de�ne the operation of taking the least �xed point of a class by taking initial
values of its instance variables and taking the least �xed point of its methods
cm:

� C b= (c0; � cm)

Fig. 3 illustrates taking the �xed point of the class C.

C
self

Fig. 3. Illustration of taking a �xed point of C

If we model objects as tuples of instance variable values and method bodies,
then taking the least �xed point of the class C corresponds to creating an object
of this class:

create C b= � C

It su�ces to consider only those modi�ers which rede�ne all methods of the
base class. In case some method should remain unchanged, the corresponding
method of the modi�er calls the former via super.

A modi�er L =modi�er m1 b= l1; :::;mn b= ln end is modeled by a func-
tion

L = �self � �super � (l1; :::; ln);
where self and super are abbreviations of the tuples x1; :::; xn and y1; :::; yn re-
spectively. We assume that L is monotonic in both arguments. See Fig. 4 for an
illustration of modi�ers. As with the class diagram, the incoming arrow repre-
sents calls to methods of the modi�er, whereas the outgoing arrows stand for
self and super-calls of the modi�er.

L self

super

Fig. 4. Illustration of modi�ers

Under the condition that the signatures of modi�er methods match those
of the base class, the modi�er can be applied to an arbitrary base class. The
modi�er does not access the state of the base class directly, but only by making
super-calls. As the state space of the base class is unknown until modi�er ap-
plication, we say that the methods of the modi�er L operate on the state space
���, where � is a type variable to be instantiated with the type of the internal
state of the base class while modi�er application, and � is a type of the state
component representing all parameters of all methods of the modi�er. Hence,
the type of L is as follows:

((��� 7! ���)� :::� (��� 7! ���))!
((��� 7! ���)� :::� (��� 7! ���))!

((��� 7! ���)� :::� (��� 7! ���))

Two operatorsmod and upcalls can be used for creating an extension class
from the base class C and the modi�er L:

L mod C b= (c0; �self � lm self (cm self))
L upcalls C b= (c0; �self � lm self (� cm))

In both cases the modi�er L is said to be applied to the base class C. See Fig. 5
for an illustration of modi�er application. Note that in case of themod operator
self-calls of C become down-calls; whereas, with the upcalls operator self-calls
of C remain within C itself.

L

su
p

er

self

C

se
lf

L

su
p

er
C

self

self

Fig. 5. Illustration of operators mod and upcalls

Application of the modi�er L instantiates its type variable � with the type
� of the base class C. Hence, the classes created by the application of L to C

have methods operating on the state space � ��.

4.3 Re�nement on Classes

Before de�ning re�nement of classes, we �rst consider data re�nement of state-
ments. Let S : � 7! � and S0 : �0 7! �0 be statements and R : �0 $ � a rela-

tion between the state spaces of these statements. We de�ne data re�nement
between S and S0 as in [8]:

S vR S0 b= S v S0 "R or, equivalently,
S vR S0 b= S #R v S0

We can express class re�nement in terms of re�nement on abstract data types
[14, 4, 12]. An abstract data type T can be represented in the form

T = (t0; tp);

where t0 is an initial value of an internal state of type �, and tp is a tu-
ple of procedures modifying this internal state. The procedures are of type
(� ��) 7! (� ��), where � is the state space component representing all
parameters of all procedures. We say that the abstract data type T = (t0; tp) is
data re�ned by an abstract data type T 0 = (t00; tp

0) via a relation R : �0 $ � if
initialization establishes R and all procedures preserve R:

T vR T 0 b= R t00 t0 ^ tp vR�Id tp
0

By convention, when R is equal to Id, the subscript on the re�nement relation
is omitted.

Now class re�nement can be de�ned as follows. Let C be as de�ned in the pre-
vious section and C 0 = (c00; cm

0), where cm0 self = (c01; :::; c
0

n), and R : �0 $ �,
then

C vR C 0 b= � C vR � C 0:

Class re�nement ensures that all objects of the re�ning class are safely substi-
tutable for objects of the re�ned class. This notion of class re�nement allows
the instance variables of C 0 extend those of C or to be completely di�erent. The
re�nement relation can be also applied to a pair of abstract or concrete classes.

5 Flexibility Theorem

Recall that the
exibility property has the form

if C is re�ned by (L mod C) and C is re�ned by D
then C is re�ned by (L mod D);

where C is a base class, L a modi�er and D a revision of the class C. As was
illustrated in the previous sections, this property does not hold in general. In
the following sections we formulate, prove, and explain a
exibility theorem,
which provides for safe substitutability of C with (L mod D) by strengthening
the premises of the
exibility property, following the requirements formulated in
Sec. 3.6.

5.1 Formulating and Proving Flexibility Theorem

Consider classes C, D and a modi�er L, such that C = (c0; cm) with cm =
�self � (c1; :::; cn), D = (d0; dm) with dm = �self � (d1; :::; dn), and L = �self �
�super � (l1; :::; ln). As we have assumed that the classes and the modi�er do not
have recursive and mutually recursive methods, it is always possible to rearrange
their methods in linear order so that each method calls only previous ones. We
assign an index to every method with respect to this order. We assume that the
corresponding methods in C, D and L receive the same index. Without loss of
generality, we can consider the case when for every distinct index there is only
one method. We represent methods by functions of the called methods:

C1 = �() � c1; ::: Cn = �(x1; :::; xn�1) � cn
D1 = �() � d1; ::: Dn = �(x1; :::; xn�1) � dn
L1 = �() � �(y1) � l1; ::: Ln = �(x1; :::; xn�1) � �(y1; :::; yn) � ln

There are no free occurrences of self and super in Ci, Di and Li. Thus, for
example, for the class C we have that:

cm = �self � (C1 (); C2 (x1); :::; Cn (x1; :::; xn�1))

Let R : �0 $ � be a relation coercing the state space component �0 of the
revision D to the component � of the base class C. Now we can formulate the

exibility theorem:

Flexibility Theorem Let C, D be the classes, L the modi�er, and R the state
coercing relation as de�ned above. Then the following holds:

� C vR (d0; dm ((� cm)#(R � Id))) ^ � C v � (L upcalls C))
� C vR (L mod D)

Proof In accordance with the de�nition of abstract data type re�nement, we
�rst need to show that R d0 c0) R d0 c0, which is trivially true.

Next we need to show the following goal:

snd(� C) vR�Id dm ((� cm)#(R � Id)) ^ snd(� C) v snd(� (L upcalls C)))
snd(� C) vR�Id snd(� (L mod D))

Note that in this goal data re�nement relations connect tuples of predicate trans-
formers, which correspond to the method bodies with all self and super-calls
resolved with the methods of the same class. Thus, we can rewrite this goal as

(C1; : : : ; Cn) vR�Id (D1; : : : ;Dn) ^ (C1; : : : ; Cn) v (L1; : : : ;Ln))
(C1; : : : ; Cn) vR�Id (M1; : : : ;Mn);

where C, D, L, and M are de�ned as follows:

C1 = C1 (); ::: Cn = Cn (C1; :::; Cn�1)
D1 = D1 ()#(R � Id); ::: Dn = Dn (C1; :::; Cn�1)#(R� Id)
L1 = L1 () C1; ::: Ln = Ln (L1; :::;Ln�1) (C1; :::; Cn)
M1 = L1 () T1; :::Mn = Ln (M1; :::;Mn�1) (T1; :::; Tn)
T1 = D1 (); ::: Tn = Dn (M1; :::;Mn�1)

Here C are the method bodies of the methods C1; :::; Cn with all self-calls re-
cursively resolved with C. The statements D represent dm ((� cm)#(R � Id)),
where each Di is a method body of the method Di with all self-calls resolved
with properly coerced C. The statements L represent the least �xed point of
(L upcalls C) methods. Note how M and T jointly represent the least �xed
point of (L mod D) methods. The statements M stands for the methods of
the modi�er L with calls to self resolved with M themselves and calls to super
resolved with T . On the other hand, the statements T represent methods of the
revision D with calls to self resolved with M.

Rather than proving the goal above, we prove the stronger goal

(C1; : : : ; Cn) vR�Id (D1; : : : ;Dn) ^ (C1; : : : ; Cn) v (L1; : : : ;Ln))
(L1; : : : ;Ln) vR�Id (M1; : : : ;Mn) ^ (D1; : : : ;Dn) v (T1; : : : ; Tn)

from which the target goal follows by transitivity. For proving this stronger goal
we need the wrapping theorem

Li (M1; : : : ;Mi�1)"(R � Id) (D1; : : : ;Di)"(R � Id) v
(Li (M1; : : : ;Mi�1) (D1; : : : ;Di))"(R � Id)

proved in Appendix.

We prove the goal by induction on the index of methods. Here we only
present the inductive step of the proof, because the base step can be proved
similarly. The inductive assumption for the inductive case states that when the
participating entities have n methods, the goal holds. After transformations, our
proof obligation for the case of n+ 1 methods is:

(C1; : : : ; Cn+1) vR�Id (D1; : : : ;Dn+1) ^ (C1; : : : ; Cn+1) v (L1; : : : ;Ln+1) ^
(L1; : : : ;Ln) vR�Id (M1; : : : ;Mn) ^ (D1; : : : ;Dn) v (T1; : : : ; Tn))

Ln+1 vR�Id Mn+1 ^ Dn+1 v Tn+1

We prove this goal as follows:

Ln+1 vR�Id Mn+1 ^ Dn+1 v Tn+1
=
�
de�nitions, de�nition of data re�nement

	
Ln+1 (L1; : : : ;Ln) (C1; : : : ; Cn+1) v

(Ln+1 (M1; : : : ;Mn) (T1; : : : ; Tn+1))"(R � Id) ^ Dn+1 v Tn+1

(
�
monotonicity of Ln+1; assumption (L1; : : : ;Ln) v (M1; : : : ;Mn)"(R � Id);
assumption (C1; : : : ; Cn+1) v (D1; : : : ;Dn+1)"(R � Id);wrapping theorem

�
Ln+1 (M1; : : : ;Mn)"(R � Id) (D1; : : : ;Dn+1)"(R � Id) v

Ln+1 (M1; : : : ;Mn)"(R � Id) (T1; : : : ; Tn+1)"(R � Id) ^ Dn+1 v Tn+1
(�

monotonicity of Ln+1

	
(D1; : : : ;Dn+1)"(R � Id) v (T1; : : : ; Tn+1)"(R � Id) ^ Dn+1 v Tn+1

(�
monotonicity of wrappers, assumption (D1; : : : ;Dn) v (T1; : : : ; Tn)

	
Dn+1 v Tn+1

=
�
de�nitions

	
Dn+1 (C1; : : : ; Cn)#(R � Id) v Dn+1 (M1; : : : ;Mn)

(
�
monotonicity of Dn+1; assumption (C1; : : : ; Cn+1) v (L1; : : : ;Ln+1) then
assumption (L1; : : : ;Ln) v (M1; : : : ;Mn)"(R � Id)

�
Dn+1 (M1; : : : ;Mn+1)"(R � Id)#(R � Id) v Dn+1 (M1; : : : ;Mn)

(�
wrapping rule

	
Dn+1 (M1; : : : ;Mn) v Dn+1 (M1; : : : ;Mn)

= T

2

5.2 Interpretation and Implications of Flexibility Theorem

Let us consider how the requirements of Sec. 3.6 are re
ected in the
exibility
theorem and what are the consequences of this theorem.

In our formalization the \no cycles" requirement is handled by the fact that
we have rearranged methods in the participating classes and the modi�er in
linear order, and assigned the same index to the corresponding methods. Thus
mutual recursion of methods cannot appear. In practice the unanticipated mu-
tual recursion can be avoided if methods of a revision class and a modi�er do not
introduce self-calls to the methods which are not self-called in the corresponding
methods of the base class.

The \no revision self-calling assumptions" requirement states that, while rea-
soning about the behavior of a revision class method, we should not assume the
behavior of the methods it self-calls, but should consider instead the behavior
described by the base class. This requirement together with the �rst assumption
of the
exibility property is formalized as the �rst conjunct in the antecedent
of the
exibility theorem, � C vR (d0; dm ((� cm)#(R � Id))). As we have ex-
plained above, the application of dm to the properly coerced (� cm) returns a
tuple of methods of D with all self-calls redirected to methods of C.

The \no base class down-calling assumptions" requirement states that, while
reasoning about the behavior of modi�er methods, we should not assume the
behavior of those modi�er methods to which self-calls of the base class can
get redirected. Instead we should consider the corresponding methods of the
base class. This requirement along with the second assumption of the
exibility
property is handled by the second conjunct in the antecedent of the
exibility
theorem, � C v � (L upcalls C). As we have explained earlier, if a modi�er is
applied to the base class using the upcalls operator, self-calls of the base class
remain within the base class itself.

The \no direct access to the base class state" requirement is addressed by
our formalization of modi�ers. As we have stated above, methods of a modi�er

always skip on the � component of the state space, thus excluding the possibility
of direct access to the base class state.

The re�nement calculus allows for reasoning about correctness of re�nement
between statements or programming constructs in general. In this respect it does
not di�erentiate between abstract speci�cation statements and executable ones.
Therefore, our results are applicable to any group consisting of a base class, its
extension, and a modi�cation of the base class. In particular, two scenarios are
of interest:

{ A base class C is a speci�cation class, i.e. its methods contain speci�cation
statements, and C 0 is its implementation;

{ A base class C is an executable class and C 0 is its revision.

The fragile base class problem was �rst noticed while framework maintenance,
and corresponds to the second scenario. However, this problem applies to the
�rst scenario as well.

6 Related Work and Conclusions

The fragile base class problem is of particular importance for object-oriented
software development. As soon as one de�nes a base class, an extension, and
wants to change the base class, one faces this problem. Even in case of a large
closed system this problem becomes non-trivial and painful to deal with. In case
of an open system it becomes crucial.

The name fragile base class problem was introduced while discussing compo-
nent standards [32, 15], since it has critical signi�cance for component systems.
Modi�cation of components by their developers should not a�ect component ex-
tensions of their users in any respect. Firstly, recompilation of derived classes
should be avoided if possible [15]. This issue constitutes a syntactic aspect of
the problem. While being apparently important, that problem is only a tech-
nical issue. Even if recompilation is not necessary, component developers can
make inconsistent modi�cations. This aspect of the problem was recognized by
COM developers [32] and led them to the decision to abandon inheritance in
favor of forwarding as the reuse mechanism. Although solving the problem, this
approach comes at the cost of reduced
exibility. On the other hand, inheritance
proved to be a convenient mechanism for code reuse. This consideration brought
us to the following question: \How can we discipline code inheritance to avoid
the fragile base class problem, but still retain a signi�cant degree of
exibility
in code reuse?"

We have encountered several research directions which are related to ours.
The �rst direction combines research on semantics of object oriented languages
with ensuring substitutability of objects. Hense in [13] gives a denotational se-
mantics of an object-oriented programming language. His model provides for
classes with state, self-referencing, and multiple inheritance. The latter is de-
scribed using wrappers of Cook and Palsberg [10]. However, a number of notions

crucial for our purposes, such as, e.g. re�nement ordering on classes, are not de-
�ned. Various approaches to substitutability of objects are presented in [1, 17,
18]. However, they do not model self-calls in classes in presence of inheritance
and dynamic binding.

The second direction of related research is oriented towards developing a
methodology for specifying classes to make code reuse less error prone. The
key idea of extending a class speci�cation with speci�cation of its specialization
interface was presented �rst by Kiczales and Lamping in [16]. This idea was
further developed by Steyaert et al. in [26]. In fact the second paper considers
the fragile base class problem in our formulation (although they do not refer to it
by this name). The authors introduce reuse contracts \that record the protocol
between managers and users of a reusable asset". Acknowledging that \reuse
contracts provide only syntactic information", they claim that \this is enough to
�rmly increase the likelihood of behaviorally correct exchange of parent classes".
Such syntactic reuse contracts are, in general, insu�cient to guard against the
fragile base class problem.

Our �rst example is, in fact, adopted from [26]. They blame the revision Bag0

of the base class for modifying the structure of self-calls of Bag and, therefore,
causing the problem. They state that, in general, such method inconsistency can
arise only when a revision chooses to eliminate a self-call to the method which
is overridden in a modi�er. From this one could conclude that preserving the
structure of self-calls in a revision would safeguard against inconsistencies. Our
examples demonstrate that this is not the case.

Our analysis reveals di�erent causes of the Bag/CountingBag problem. The
extension class CountingBag relies on the invariant n = jbj binding values of
the instance variable n with the number of elements in the inherited instance
variable b. This invariant is violated when Bag is substituted with Bag0 and,
therefore, the cardinality method of the resulting class returns the incorrect
value. Apparently, this problem is just an instance of the \unjusti�ed assumption
of the binding invariant in modi�er" problem presented in Sec. 3.5.

As a potential solution to this problem one can specify methods add and
addAll as consistent methods as was �rst suggested in [16]. This means that the
extension developers would be disallowed to override one without overriding the
other. However, recommendations of Kiczales and Lamping are based only on
empirical expertise, thus it is not clear whether they apply in the general case.
We believe that such methodology should be grounded on a mathematical basis,
and developing such methodology constitutes the ultimate goal of our research.

Stata and Guttag in [24, 25] elaborate the idea of specialization interfaces
by providing a mathematical foundation in behavioral subtyping style [1, 17].
They introduce class components, which combine a substate of a class and a
set of methods responsible for maintaining that state, as units of modularity
for the specialization interface. Such class components are overridable, i.e. an
extension class may provide its own implementation of an entire class component.
Even though they do not consider substitution of a base class with a revision
in presence of extensions, many of their �ndings are related to ours. However,

they specify methods in terms of pre and post conditions which in our opinion
is not expressive enough to capture the intricacies of the example in Sec. 3.5.
Furthermore, Stata in [25] states that class components are independent if \the
instance variables of a component may be accessed only by the methods in
the component", and one component \depends only on the speci�cation of the
other component, not on its implementation". It is possible to construct an
example, similar to the one presented in Sec. 3.5, which has two class components
independent according to the independence requirement above, yet overriding in
a subclass one of these components, following its speci�cation, leads to a crash.

The application of formal methods to analyzing the fragile base class problem
gives us an opportunity to gain a deeper insight into the problem, which was
impossible without it. In fact, only the \direct access to base class state" prob-
lem was known from the literature. The other problems where noticed while
attempting to formally prove the
exibility property. The correspondence be-
tween the requirements we formulate and good programming style guidelines is
not incidental. We believe that our theory provides a mathematical foundation
for the empirical expertise.

Application of the re�nement calculus to formalizing classes makes our class
semantics more succinct. The re�nement calculus also gives us a mathematical
framework for formal reasoning about substitutability of objects. Note also that
we express class re�nement through abstract data type re�nement which is a well
established theory. This allows applying a large collection of re�nement laws for
veri�cation.

By formulating the problem in terms of the
exibility property and formally
proving it, we demonstrate that the restrictions imposed on inheritance are suf-
�cient to circumvent the problem.

The analysis of the fragile base class problem has revealed that the inher-
itance operator mod is not monotonic in its base class argument. The mono-
tonicity property

if C is re�ned by C 0 then (M mod C) is re�ned by (M mod C 0)

is stronger than the
exibility property. If inheritance were monotonic, not
only the fragile base class problem would be avoided, but also the extension
(M mod C) would be fully substitutable with the new extension (M mod C 0),
whenever C is substitutable with C 0. Extra restrictions should be imposed on
inheritance to make it monotonic. Examining these restrictions is the subject
of our future research. E�ects of disciplining inheritance, the way we propose,
on component and object-oriented languages and systems require separate con-
sideration and also constitute the subject of future research. The other research
direction is in generalizing the results by relaxing the con�nements on the prob-
lem that we have made and weakening the restrictions we have imposed on the
inheritance mechanism.

Acknowledgments

We would like to thank Ralph Back, Joakim von Wright, Anna Mikhajlova, Jim
Grundy, Wolfgang Weck, Martin B�uechi, and Linas Laibinis for a lot of valuable
comments.

References

1. P. America. Designing an object-oriented programming language with behavioral
subtyping. Foundations of Object-Oriented Languages, REX School/Workshop, No-
ordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in
Computer Science, pp. 60{90, Springer{Verlag, 1991.

2. Apple Computer, Inc. OpenDoc programmer's guide. Addison-Wesley Publishing
Company, Draft. Apple Computer, Inc., 9/4/95.

3. R.J.R. Back. Correctness preserving program re�nements: proof theory and appli-
cations.vol. 131 of Mathematical Center Tracts. Amsterdam: Mathematical Center,
1980.

4. R.J.R. Back. Changing data representation in the re�nement calculus. 21st Hawaii
International Conference on System Sciences, 1989.

5. R.J.R. Back and M.J. Butler. Exploring summation and product operators in the
re�nement calculus. Mathematics of Program Construction, 1995, volume 947 of
Lecture Notes in Computer Science, Springer{Verlag, 1995.

6. R. J. R. Back, J. von Wright. Re�nement Calculus I: Sequential Nondeterminis-
tic Programs. In Stepwise Re�nement of Distributed Systems, pp. 42{66, Springer{
Verlag, 1990.

7. R. J. R. Back, J. von Wright. Predicate Transformers and Higher Order Logic. In
REX Workshop on Semantics: Foundations and Applications, the Netherlands, 1992

8. R.J.R. Back, J. von Wright. Re�nement Calculus, A Systematic Introduction.
Springer{Verlag, April 1998.

9. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471{522, 1985.

10. W. Cook, J. Palsberg. A denotational semantics of inheritance and its correctness.
OOPSLA'89 Proceedings, volume 24 of SIGPLAN Notices, pp. 433{443, October
1989.

11. E.W.Dijkstra, A discipline of programming. Prentice{Hall International, 1976.
12. P.H.B. Gardiner and C.C. Morgan. Data re�nement of predicate transformers.
Theoretical Computer science, 87:143-162, 1991.

13. A. V. Hense. Denotational semantics of an object-oriented programming language
with explicit wrappers. Volume 5 of Formal Aspects of Computing, pp. 181.207,
Springer{Verlag, 1993.

14. C.A.R. Hoare. Proofs of correctness of data representation. Acta informatica, 1(4),
1972.

15. IBM Corporation. IBM's System Object Model (SOM): Making reuse a reality.
IBM Corporation, Object Technology Products Group, Austin, Texas.

16. G. Kiczales, J. Lamping. Issues in the design and speci�cation of class libraries.
OOPSLA'92 Proceedings, volume 27 of SIGPLAN Notices, pp. 435{451, October
1992.

17. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811{1841, November 1994.

18. A. Mikhajlova, E. Sekerinski. Class re�nement and interface re�nement in object-
oriented programs. FME'97: Industrial Applications and Strengthened Foundations
of Formal Methods, volume 1313 of Lecture Notes in Computer Science, Springer{
Verlag, 1997.

19. C. C.Morgan. Programming from speci�cations. Prentice-Hall, 1990.
20. J. M. Morris. A theoretical basis for stepwise re�nement and the programming
calculus. Science of Computer Programming, 9, 287{306, 1987.

21. C. P�ster, C. Szyperski. Oberon/F framework. Tutorial and reference. Oberon mi-
crosystems, Inc., 1994.

22. D. Pountain, C. Szyperski. Extensible software systems. Byte Magazine, 19(5):
57{62, May 1994. http://www.byte.com/art/9405/sec6/art1.html.

23. A. Snyder. Encapsulation and Inheritance in Object-Oriented Programming Lan-
guages. OOPSLA '86 Proceedings, volume 21 of SIGPLAN Notices, pp. 38{45, 1986.

24. R. Stata, J. V. Guttag. Modular reasoning in the presence of subtyping. OOPSLA
'95 Proceedings, volume 30 of SIGPLAN Notices, pp. 200{214, 1995.

25. R. Stata. Modularity in the presence of subclassing. SRC Research Report 145,
Digital Systems Research Center, 1997.

26. P. Steyaert, Carine Lucas, Kim Mens, Theo D'Hondt. Reuse contracts: managing
the evolution of reusable assets. OOPSLA'96 Proceedings, volume 31 of SIGPLAN
Notices, pp. 268{285, 1996.

27. B. Stroustrup. The C++ programming language. Addison-Wesley, 1986.
28. C. Szyperski. Independently extensible systems. Software engineering potential
and challenges. Proceedings of the 19th Australasian Computer Science Conference
Melbourne, Australia, February 1996.

29. D. Taenzer, M. Gandi, S. Podar. Problems in object-oriented software reuse. Pro-
ceedings ECOOP'89, S. Cook (Ed.), Cambridge University Press Nottingham, July
10-14, 1989, pp. 25{38.

30. A. Tarski. A Lattice Theoretical Fixed Point Theorem and its Applications. volume
5 of Paci�c J. Mathematics, pp. 285{309, 1955.

31. P. Wegner, S. B. Zdonik. Inheritance as an incremental modi�cation mechanism
or what like is and isn't like. Proceedings ECOOP'88, volume 322 of Lecture Notes
in Computer Science, pp. 55{77, Springer-Verlag, Oslo, August 1988.

32. S. Williams and C. Kinde. The Component Object Model: Technical Overview.
Dr. Dobbs Journal, December 1994.

Appendix

Before proving the wrapping theorem, we �rst need to consider a number of
theorems and laws of the re�nement theory.

Without loss of generality, an arbitrary statement calling proceduresm1; :::;mn

can be rewritten as

begin var l j p � do g1 ! m1;S1 [] ::: []gn ! mn;Sn od end

which, using the while statement, is equivalently expressed as

begin var l j p �while (g1 _ :::_ gn) do [g1];m1;S1 u ::: u [gn];mn;Sn od end

for some initialization predicate p, guards gi, and conjunctive statements Si.
Further on we write Si for i = 1::n as an abbreviation for S1 u ::: u Sn.

In particular, we can represent the body of an arbitrary method mi of a
modi�er in the following form:

mi = begin var l j p�
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj];xj ;Sj for j = 1::i� 1 u
[g0j]; yj ;S

0

j for j = 1::i
od

end

for some local variables l, initialization predicate p, guards [gi], [g
0

i], and con-
junctive statements Si; S

0

i.
We make use of the following rules for data re�nement of sequential composi-

tion of statements, nondeterministic choice of statements, and while statement
presented in [8]:

; rule : (S1;S2)#R v (S1 #R); (S2 #R)
u rule : (S1 u S2)#R v (S1 #R u S1 #R)
while rule : while g do S od#R v while fRg g do [[R] g]; (S #R) od

We de�ne an indi�erent statement [8] as a statement that does not refer
to components of the state coerced by a data re�nement relation. We say that
the statement S : � �� 7! � ��, which modi�es only the � component of the
state, is indi�erent toR : � ��$ � ��, which modi�es only the � component
of the state. We employ the following result for calculating a data re�nement of
an indi�erent statement:

indi�erence rule : S #R v S;where S is conjunctive and indi�erent to R

In case when a guard g of the while statement is indi�erent towards a relation
R, it is possible to show that the while-loop rule can be slightly modi�ed:

indi�erent while rule : while g do S od#R v while g do S #R od

Wrapping Theorem Let L;M; T and R be as de�ned in Sec. 5, then

Li (M1; : : : ;Mi�1)"(R � Id) (T1; : : : ; Ti)"(R� Id) v
(Li (M1; : : : ;Mi�1) (T1; : : : ; Ti))"(R � Id)

Proof If we denote (R � Id) by P , we can rewrite our goal as was described
above:0
BBBBBB@

begin var l j p�
while g1 _ ::: _ gi�1

_ g01 _ ::: _ g0i do

[gj];Mj "P ;Sj for j = 1::i � 1 u
[g0j]; Tj "P ;S0

j for j = 1::i
od

end#P

1
CCCCCCA
v

0
BBBBBB@

begin var l j p�
while g1 _ ::: _ gi�1

_ g01 _ ::: _ g0i do

[gj];Mj ;Sj for j = 1::i � 1 u
[g0j]; Tj ;S

0

j for j = 1::i
od

end

1
CCCCCCA

Consider the typing of the participating constructs. If the type of the local
variable l is �, then state predicates p, gj , g

0

j and statements Sj are working on
the state space ��� ��, but they skip on the state component of type �.
Thus, application of the appropriately extended relation P e�ectively coercing
�0 into � cannot in
uence these constructs, in other words, they are indi�erent
to P .

We prove the theorem by re�ning the left hand side to match the right hand
side:

begin var l j p�
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj];Mj "P ;Sj for j = 1::i� 1 u
[g0j]; Tj "P ;S0j for j = 1::i

od

end#P
= f de�nition of block g

(enter l j p;
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj];Mj "P ;Sj for j = 1::i� 1 u
[g0j]; Tj "P ;S0j for j = 1::i

od;
exit l)#P

v f ; rule g
(enter l j p)#P ;
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj];Mj "P ;Sj for j = 1::i� 1 u
[g0j]; Tj "P ;S0j for j = 1::i

od#P ;
(exit l)#P

v f enter and exit are conjunctive and indi�erent to P, thus
indi�erence rule, indi�erent while rule g
enter l j p;
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

([gj];Mj "P ;Sj for j = 1::i� 1 u
[g0j]; Tj "P ;S0j for j = 1::i)#P

od;
exit l

v fu rule; ; rule g
enter l j p;
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj]#P ;Mj "P #P ;Sj #P for j = 1::i� 1 u
[g0j]#P ; Tj "P #P ;S0j #P for j = 1::i

od;
exit l

v f[gj] are indi�erent to P, and Sjare conjunctive,
thus indi�erence rule; wrapping rule g
enter l j p;
while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do

[gj];Mj ;Sj for j = 1::i� 1 u
[g0j]; Tj ;S0j for j = 1::i

od;
exit l

= f de�nition of block g
beginvar l j p �

while g1 _ ::: _ gi�1 _ g01 _ ::: _ g0i do
[gj];Mj ;Sj for j = 1::i� 1 u
[g0j]; Tj ;S0j for j = 1::i

od

end

2

