
Developing Components in the Presence of

Re-entrance�

Leonid Mikhajlov1, Emil Sekerinski2, and Linas Laibinis1

1 Turku Centre for Computer Science,
Lemmink�aisenkatu 14A, Turku 20520, Finland;

Leonid.Mikhajlov,Linas.Laibinis@abo.�
2 McMaster University,

1280 Main Street West, Hamilton, Ontario, Canada, L8S 4L7;
Emil.Sekerinski@mcmaster.ca

Abstract. Independent development of components according to their
speci�cations is complicated by the fact that a thread of control can
exit and re-enter the same component. This kind of re-entrance may
cause problems as the internal representation of a component can be
observed in an inconsistent state. We argue that the ad-hoc reasoning
used in establishing conformance of components to their speci�cations
that intuitively appears to be correct does not account for the presence
of re-entrance. Such reasoning leads to a conict between assumptions
that component developers make about the behavior of components in a
system, resulting in the component re-entrance problem. We formulate
the modular reasoning property that captures the process of independent
component development and introduce two requirements that must be
imposed to avoid the re-entrance problem. Then we de�ne a customized
theory of components, component systems, and component re�nement
which models the process of component development from speci�cations.
Using this theory, we prove that the formulated requirements are suÆ-
cient to establish the modular reasoning property.

1 Introduction

In this paper we study a problem which hinders the development of a compo-
nent market. One of the characteristic features of component-based systems and
standards is the fact that components are developed by independent developers
and an integration phase is either completely absent or minimized. When the
integration phase is missing as, e.g., in CI Labs OpenDoc [8], components are
composed by end users; when the integration phase is postponed, as in the case
of Sun Java Beans [16] and Microsoft COM [15], components are composed by
application developers. With both composition scenarios, components commu-
nicate by invoking each other's methods through the interfaces they implement.
Interfaces are syntactic and only syntactic compatibility of components imple-
menting them can be veri�ed in the integration phase. It has been recognized
[10,17] that the veri�cation of syntactic compatibility is insuÆcient to guar-
antee seamless interoperation of components in the resulting system. Interfaces

* Appeared in J. Wing, J. Woodcock, and J. Davis (Eds.), FM'99 { World Congress
On Formal Methods In The Development Of Computing Systems, Toulouse, France,
September 1999, Lecture Notes in Computer Science 1709, Springer-Verlag, 1999.

component Model component View
s : seq of char := hi; update() b=
get s() b= return s; print(# Model�Bget s())
get num() b= return #s; end

append(val t : seq of char) b=
s := sb t;View�Bupdate()

end

Fig. 1. Speci�cation of the Model-View component system. The operator # returns
the length of a sequence and the operator b concatenates two sequences.

should be augmented with behavioral speci�cations of the expected functionality
to stipulate the contractual obligations that the components implementing such
interfaces are required to meet. Due to the missing integration phase, it becomes
impossible to analyze semantic integrity of the composed system. Therefore, a
speci�cation and veri�cation method should provide for modular reasoning: ver-
ifying that participating components meet their contractual obligations should
be suÆcient to guarantee that the composed system operates correctly.

The independent development of components according to their speci�ca-
tions is complicated by the fact that, in general, a thread of control can exit
and re-enter the same component. Suppose that we have two communicating
components A and B, each with its own attributes. A method of component A
invokes a method of component B. At the moment when the method of B is in-
voked, instance variables of A might be in transition between consistent states.
The component B can observe and modify the state of A by calling back its
methods. Such a re-entering method invocation pattern is problematic because
B can observe A in an unexpected inconsistent state and become invalidated.
Further on we refer to this problem as the component re-entrance problem. In
order to show the implications of the component re-entrance problem on the
independent development of components, we analyze the example in Fig. 1.

Let us �rst remark on the speci�cation notation that we use in our exam-
ples. It was pointed out [13, 2, 10, 5, 6] that a speci�cation can be viewed as an
abstract program. In fact, speci�cations di�er from executable programs only
by the degree of nondeterminism and data structures that are used. Typically,
an executable program is just a deterministic speci�cation operating on imple-
mentable data structures. Such an approach to formal speci�cation is advanta-
geous, because it permits to include method calls in a component speci�cation to
�x a certain communication protocol. This approach is state-based, and in order
to specify the behavior of component methods we need to model data attributes
of this component. Even though component attributes are present in its spec-
i�cation, they cannot be accessed by clients of this component and, therefore,
can be changed in a development step. When such a change is made, component
methods must be modi�ed to work with the new attributes.

As the problem that we consider does not depend on a programming lan-
guage, in the example in Fig. 1 we use a simple speci�cation notation which
should appeal to the reader's intuition. Weakest precondition and operational
semantics for statements in this notation can be found in [2]. Note that each
statement explicitly indicates which variables it modi�es; the other variables
remain unchanged.

The example follows the Observer pattern [9], which allows separating the
presentational aspects of the user interface from the underlying application data,
by de�ning two componentsModel and View . The components Model and View

refer to each other. Note that we deliberately abstract away from the mechanism
by which such mutual reference can be achieved, because we want to keep our
component model as general as possible. Components can be static entities, such
as modules, or dynamic entities, such as objects. In the case of static entities
mutual reference can be established by mutual inclusion of syntactic interfaces,
whereas with dynamic entities it can be achieved, for example, by passing point-
ers to components as method parameters.

The speci�cation Model maintains a string s, represented by a sequence of
characters and initialized with an empty sequence. Every time a new string is
appended to the string in Model , the method update of View is called. In turn,
update calls back Model 's get s() method and prints out the number of elements
in the received string. In a component market, these speci�cations are published
and independent developers are o�ered to implement these components.

Suppose that one software company decides to implement the speci�cation
of Model . To avoid counting characters in the method get num , the developers
introduce an integer attribute n to represent the number of characters in the
sequence. Accordingly, they implement a component Model 0 as follows:

componentModel
0

s : seq of char := hi;
n : int := 0;
get s() b= return s;

get num() b= return n;

append (val t : seq of char) b=
s := s b t;View�Bupdate();n := n+#t

end

Note that taking into account the speci�cation of the method update in View ,
the implementation of the method append appears to be perfectly valid. In fact,
updating the screen as early as possible is a reasonable policy.

Now suppose that another software company decides to implement a com-
ponent View0 according to the speci�cation. Note that the developers of View 0

do not have access to the code of Model 0, so the only thing they can rely on is
its speci�cation. To avoid passing a sequence of characters as a parameter, the

method update can be implemented to invoke the method get num of Model :

component View0

update() b= print(Model�Bget num())
end

Here we face the component re-entrance problem. Even though components
Model 0 and View 0 appear to implement the speci�cation correctly, their compo-
sition behaves incorrectly: the number of elements in the string s that update
prints out is wrong.

In a component market, where developments have to be independent, this
constitutes a major obstacle. However, if we view Model and View as implemen-
tations and Model 0 and View 0 as more eÆcient implementations, we see that
this problem occurs not only during development, but also during maintenance
of component systems. The formalism in which we study the problem encom-
passes both situations in a uniform way.

A recommendation known from practice suggests always to establish a com-
ponent invariant before the thread of control leaves the component. In fact, this
is the recommendation for implementing the Observer pattern as it can be found
in [9]. In the example above, the developers of Model 0 should have established
the component invariant n = #s before invoking the method update .

In this paper we present a formal analysis of the problem that supports this
requirement, but reveals that it is not suÆcient in the general case. Two further
restrictions should be imposed according to \no call-back assumptions" and \no
accidental mutual recursion" requirements.

The rest of the paper is organized as follows. We begin with a detailed anal-
ysis of the component re-entrance problem and explain why we view it as the
conict of assumptions that developers of components make about the behavior
of other components in the system. We formulate the modular reasoning prop-
erty that captures the process of independent component development. Using
simple examples, we then justify the introduction of two requirements that must
be imposed to avoid the re-entrance problem. Next we develop a customized the-
ory of components, component composition, and re�nement and prove a modular
reasoning theorem which states that the modular reasoning property reinforced
with our requirements holds in the presence of re-entrance. Finally, we o�er
a discussion of implications of the modular reasoning theorem, discuss related
work, and provide some insights on our future work.

2 The Essence of the Component Re-entrance
Problem

A component operates by communicating with an environment. Unlike in the
case of procedure libraries, the environment calls back the component's methods.
The component and its environment play symmetrical roles: the component is
a client of the environment, while the environment is a client of the component.

A B

A' B'

Fig. 2. Independence of component development. Developers can access only the com-
ponents in the corresponding hatched areas.

Therefore, we can view the entire system as consisting of only two components,
the component under consideration and the component \environment".

Let us now de�ne the notion of behavioral conformance more precisely. We
say that a system (or a component) S is re�ned by a system (or a component)
S0 if the externally observable behavior of S0 is the externally observable be-
havior of S or an improvement of it. In other words, if S0 is a re�nement of S
then it is substitutable for S in any context.1 Note that S and S0 can be, respec-
tively, a speci�cation and a more concrete speci�cation, a speci�cation and an
implementation, or an implementation and a more eÆcient implementation.

Now suppose that we have a speci�cation of a system composed of two com-
ponents A and B invoking each other's methods. Ultimately, independent devel-
opers of re�ning components A0 and B0 would like to achieve that the system
resulting from the composition of these components be a re�nement of the com-
position of the original components A and B, namely,

A compB is re�ned by A0 compB0 (1)

where comp composes two components into a component system. A composition
of two components has all the methods of both components with all mutual
method calls resolved. Due to the late integration phase, which is characteristic
of component systems, developers of a component cannot analyze the source
code of the new environment this component will be used in, and can rely only
on the original speci�cation of the system. This setting is illustrated in Fig. 2.

The behavior of a component invoking methods of another component de-
pends on the behavior of these methods. Therefore, when reasoning about the
conformance of the component A0 to the component A, the developers need to
make assumptions about the behavior of the component B. The ad-hoc method
for taking such assumptions into account is to reason about the re�nement be-
tween the results of composition of A0 and A with B:

A compB is re�ned by A0 compB; (2)

and dually for the components B0 and B:

A compB is re�ned by A compB0 (3)
1 The formal de�nition of re�nement is given in Sec.4.3.

Unfortunately, in the general case, the two requirements (2) and (3) are insuf-
�cient to establish the goal (1), as demonstrated by the previous example. In
other words, the desired property

if A compB is re�ned by A0 compB and

A compB is re�ned by A compB0

then A compB is re�ned by A0 compB0
(4)

does not hold. We believe that this fact constitutes the essence of the component
re-entrance problem. The problem occurs due to the conict of assumptions
the developers of components make about the behavior of other components
in the system. In the previous example the developers of the component View 0

assumed that at the moment when the method update is called the invariant
of the implementation of Model would hold. Similarly, the developers of Model 0

assumed that they did not need to establish the invariant before invoking update ,
because its speci�cation did not rely on it. These conicting assumptions led to
the problem during composition.

This consideration brings us to the questions how we can guide the process
of component development, so that the system composed of the re�ning compo-
nents would always be safely substitutable for the original one, and how while
developing a component one can make assumptions about the behavior of the
other components in the system, in a consistent manner.

3 Modular Reasoning Required

Apparently, it would be desirable if for establishing re�nement between com-
posed systems it would be suÆcient to verify re�nement between the corre-
sponding components. In other words, we would like the following property to
hold:

if A is re�ned by A0 and
B is re�ned by B0

then A compB is re�ned by A0 compB0

However, establishing re�nement between the participating components is
complicated due to their mutual dependence. In principle, we can say that a
component is re�ned by another component if the systems resulting from the
composition of these components with an arbitrarily chosen component are in
re�nement:

A is re�ned by A0 b= A compB is re�ned by A0 compB; for any B

In fact, it is possible to prove that this de�nition of re�nement indeed establishes
the property (4) for the case of mutually dependent components. Unfortunately,
this de�nition of re�nement is too restrictive to be used in practice. According to
this de�nition, one can only re�ne bodies of methods around method invocations,
without being able to assume anything about the called methods.

For the de�nition of component re�nement to be useful in practice it should
permit to make assumptions about the context in which the component under
consideration operates. As the context (environment) of a component can be
seen as the other component, we would like the following modular reasoning

property to hold:

if A is re�ned by A0 in context of B and

B is re�ned by B0 in context of A
then A compB is re�ned by A0 compB0

In the case when the complete context is assumed in a re�nement step, the
modular reasoning property is equivalent to the property (4). However, as was
demonstrated by the previous example, the conclusion of the modular reasoning
property does not hold in this case. In order to establish re�nement between the
composed systems, it is necessary to restrict the assumptions that component
developers can make about the context in which the component is going to
operate. To identify the restrictions that should be imposed on the assumptions
about the component context, let us consider two counter examples invalidating
the property (4).

In the following example we use an assertion statement fpg, where p is a
state predicate. If p is true in the current state, the assertion skips, otherwise
it aborts. Therefore, the assertion statement can be seen as an abbreviation for
the conditional if p then skip else abort.

component A component B
m1(valres x : int) b= fx > 5g;x := 5; n(valres x : int) b=
m2(valres x : int) b= fx > 0g;x := 5 A�Bm1(x)

end end

component A0 component B0

m1(valres x : int) b= fx > 0g;x := 5; n(valres x : int) b=
m2(valres x : int) b= B�Bn(x) fx > 5g;x := 5

end end

If we expand the bodies of the method m2 in the composed systems then we
have:

(A compB) ::m2 = fx > 0g;x := 5 (A0 compB) :: m2 = fx > 0g;x := 5
(A compB0) :: m2 = fx > 0g;x := 5 (A0 compB0) ::m2 = fx > 5g;x := 5

Therefore,

(A compB) ::m2 is re�ned by (A0 compB) ::m2 and
(A compB) ::m2 is re�ned by (A compB0) ::m2

However, it is not the case that

(A compB) :: m2 is re�ned by (A0 compB0) ::m2

Due to the presence of assertions, the precondition x > 5 of (A0 compB0) ::m2

is stronger than the precondition x > 0 of (A compB) :: m2, while to preserve
re�nement, preconditions can only be weakened.

This example motivates us to formulate the following \no call-back assump-

tions" requirement:

While developing an implementation of a method, implementations

of other methods of the same component cannot be assumed; their

speci�cations should be considered instead.

As the behavior of the environment serving as a context depends on the behavior
of the component under consideration, assuming that the environment is going
to call back on the re�ned component would implicitly modify the speci�cation.

However, there exists another aspect of the component re-entrance problem
which cannot be handled by simply restricting the context for re�nement. The
following rather trivial example illustrates this aspect of the problem.

component A component B
m(res r : int) b= r := 5 n(res r : int) b= r := 5

end end

component A0 component B0

m(res r : int) b= B�Bn(r) n(res r : int) b= A�Bm(r)
end end

It is easy to see that a call to any method in the composition A0 compB0 of the
re�ned components leads to a never terminating recursion of method invocations.
Obviously, such a behavior does re�ne the behavior of the original system. In
fact, a similar problem was described by Carroll Morgan in [13]. He mentions
that in case of mutually dependent modules their independent re�nements can
accidentally introduce mutual recursion. Based on this example, we formulate
the following \no accidental mutual recursion" requirement:

Independent development of components should not introduce unex-

pected mutual recursion.

We claim that if the \no call-back assumptions" and \no accidental mutual
recursion" requirements are satis�ed, then the modular reasoning property holds.
For proving this claim formally we develop a customized theory of components,
component systems, and their re�nement.

4 Formalization of Components, Composition, and
Re�nement

We formalize components, component systems, and re�nement between them
within the re�nement calculus [2, 13]. For simplicity, we assume that compo-
nents do not have self-calls and component implementations do not introduce
new methods. Here we only consider components which do not have recursive
and mutually recursive methods. Our model is tailored speci�cally to allow for
reasoning about the properties under consideration.

4.1 Statements and Statement Re�nement

This subsection is based on the work by Ralph Back and Joakim von Wright as
presented in [2{4]. The re�nement calculus is a logical framework for reasoning
about correctness and re�nement of imperative programs. The language used to
express programs and speci�cations is essentially Dijkstra's language of guarded
commands, with some extensions. Each command of this language is identi�ed
with its weakest precondition predicate transformer. Therefore, program state-
ments are modeled as functions that map postconditions to preconditions.

The predicates over a state space (type) � are functions from � to Bool ,
denoted by P�. The relations from � to � are functions from � to a predicate
(set of values) over � , denoted by � $ � . The predicate transformers from �

to � are functions mapping predicates over � to predicates over �, denoted
by � 7! � (note the reversion of the direction), or by Ptran(�) in the case of
� 7! �.

The entailment ordering p � q on predicates p; q : P� is de�ned as universal
implication on booleans, i.e.

p � q b= (8� : � � p:�) q: �)

The conjunction and disjunction on predicates [and \ are de�ned pointwise.
The predicates true and false over � map every � : � to the boolean values T
and F, respectively. The re�nement ordering S v T , read S is re�ned by T , on
statements S; T : � 7! � is de�ned by universal entailment:

S v T b= (8q : P� � S: q � T : q)

A predicate transformer S : � 7! � is said to be monotonic if for all predi-
cates p and q, p � q implies S: p � S: q. Statements from � to � are identi�ed
with monotonic predicate transformers from � to � . Statements of this kind
may be concrete, i.e. executable, or abstract, i.e. speci�cations. The re�nement
calculus includes all standard program statements, such as assignments, condi-
tionals, and loops. Here we only present the de�nitions of the constructs that
are used later in the paper.

The sequential composition of statements S : � 7! � and T : � 7! � is mod-
eled by their functional composition, for q : P�,

(S;T): q b= S: (T : q)

The statement abort does not guarantee any outcome or termination, there-
fore, it maps every postcondition to false. The statement magic is miraculous,
since it is always guaranteed to establish any postcondition. The statement skip
leaves the state unchanged. Thus, we have:

abort: q b= false magic: q b= true skip: q b= q

The assertion statement fpg indicates that the predicate p is known to hold
at a certain point in the program. The assertion fpg behaves as abort if p does
not hold, and as skip otherwise. Formally, it is de�ned as follows:

fpg: q b= p \ q

The language supports two kinds of non-deterministic updates which, in fact,
represent speci�cation statements. Given a relation P : � $ � , the angelic up-

date fPg : � 7! � , and the demonic update [P] : � 7! � are de�ned by

fPg: q: � b= (9 : � � P :�: ^ q:) [P]: q: � b= (8 : � � P :�:) q:)

When started in a state �; fPg angelically chooses a new state such that P :�:
holds, while [P] demonically chooses a new state such that P :�: holds. If no
such state exists, then fPg aborts, whereas [P] behaves as magic. Traditional
pre-postcondition speci�cations can be easily expressed in the re�nement calcu-
lus. For example, a speci�cation with the precondition x > 0 and postcondition
x0 > x, where x0 stands for the new value of the program variable x, can be
expressed by the statement fpg; [P], where p: x = x > 0 and P :x:x0 = x0 > x.

The cartesian product of state spaces � and � is written � � � . For pred-
icates p : P� and q : P� , their product p � q is a predicate of type P(� � �)
de�ned by

(p� q): (�;) b= p: � ^ q:

For relations P1 : �1 $ �1 and P2 : �2 $ �2, their product P1 � P2, is a
relation of type (�1 � �2)$ (�1 � �2), where for �1 : �1, �2 : �2, 1 : �1, and
2 : �2, we have:

(P1 � P2): (�1; �2): (1; 2) b= (P1: �1: 1) ^ (P2: �2: 2)

For predicate transformers S1 : �1 7! �1 and S2 : �2 7! �2, their product
S1�S2 is a predicate transformer of type �1��2 7! �1��2 whose execution
has the same e�ect as the simultaneous execution of S1 and S2:

(S1 � S2): q b= ([q1; q2 j q1 � q2 � q � S1: q1 � S2: q2)

The cross products operators are not associative in the sense that, e.g., S1�
(S2�S3) 6= (S1�S2)�S3. As di�erent associations of the cross product operators
are isomorphic to each other, for simplicity we disregard the non-associativity.

A statement S operating on the state space � can be coerced to operate on
the state space �0 using an encoding operator # with a relation R : �0 $ �

[3]. By lifting the relation R to the level of predicate transformers, we get the
update statements fRg : �0 7! � and [R�1] : � 7! �0 that can be used to de�ne
the encoding operator # as follows:

S#R b= fRg;S; [R�1]

Note that the statement S #R operates on the state space �0. For tuples of
statements, the encoding operator is de�ned elementwise. The encoding operator
is left-associative and has a higher precedence than function application.

The encoding operator can be used to de�ne data re�nement in terms of
ordinary re�nement [19]. A statement S : Ptran(�) is data re�ned by a statement
S0 : Ptran(�0) via a relation R : �0 $ �, connecting concrete and abstract
states, if S concretely coerced with R is re�ned by S0, i.e.

S vR S0 b= S#R v S0

A statement is said to be indi�erent with respect to an encoding relation
if it does not operate on the state component coerced with the relation. An
indi�erent statement skip� S is characterized by the following property:

(skip� S)#(R� Id) v (skip� S)

Relations of the form R� Id and Id � P are said to be orthogonal to each
other. Further on, we use the following property of the encoding operator for the
orthogonal relations R� Id and Id � P :

S#(R� Id)#(Id � P) = S#(Id � P)#(R� Id) = S#(P �R)

Forward functional composition is denoted by Æ and de�ned in the usual way:

(f Æg): x b= f: (g: x)

Repeated function application fn is de�ned inductively by

f0: x = x

fn+1: x = fn: (f: x)

4.2 Components and Composition

As we have mentioned, any component system can be seen as consisting of two
components A and B. Suppose that A has m and B has n methods. The compo-
nents communicate by invoking each other's methods and passing parameters.
For simplicity, we model method parameters by global variables that methods of
both components can access in turns. For every formal parameter of a method
we introduce a separate global variable which is used for passing values in and
out of components. It is easy to see that parameter passing by value and by
reference can be modeled in this way. As due to encapsulation the type of the
internal state of the other component is not known, we say that the body of a
method of the component A has the type Ptran(� � � � �), where � is the
type of A's internal state, � is the type of global variables modeling method
parameters, and � is the type variable to be instantiated with the type of the
internal state of the other component during composition. As the internal state
of the other component is not accessible, we assume that methods of A operate
only on their internal state and the state representing method parameters and
are, therefore, of the form S � skip. Similarly, methods of B have bodies that
are of the form skip� S and of the type Ptran(���� �), where � is the type
variable.

The behavior of a component method depends on the behavior of the methods
it invokes. We can model a method of the component A as a function of a tuple
of method bodies returning a method body2:

ai b= �Bb � abi
2 We accept the following scheme for naming variables: a variable starting with a
capital letter represents a tuple of variables; the second letter b in the name of a
variable means that it represents a method body (statement) or a tuple of method
bodies.

If we introduce an abbreviation 	n to stand for 	 � :::� 	 with n occurrences
of 	 , we can write out the type of ai as Ptran

n(�����)! Ptran(�����),
where n is the number of methods of B. Methods of B are de�ned in the same
manner, but have the type Ptran

m(� � � � �) ! Ptran(� � � � �), where
m is the number of methods in B. We assume that every method is monotonic
in its argument. Accordingly, we can collectively describe all methods of A as a
function A given as follows:

A b= (�Bb � (ab1; :::; abm)) : Ptran
n(� ��� �)! Ptranm(� ��� �)

Therefore, the component A is a tuple (a0; A), where a0 : � is an initial value of
the internal state and A is the function as de�ned above. The de�nition of the
component B is similar but with the corresponding di�erences in typing.

Composing components A and B results in a component system that has
methods of both components with all mutual calls resolved. The methods of the
component A in the composed system can be approximated by A:B:Abort,
where Abort is a tuple of abort statements. Using functional composition, this
can be rewritten as (AÆB):Abort. Methods in such an approximation behave
as the methods of A with all external calls redirected to B, but with external
calls of B aborting rather then going back to A. Hence a better approximation
of the methods of A in the composed system would be (AÆBÆAÆB):Abort,
and yet a better one (AÆBÆAÆBÆAÆB):Abort, etc. The desired result is then
the limit of this sequence. This limit can be expressed as the least �xed point
(� AÆB), which is the least Xb with respect to the re�nement ordering on tuples
of statements such that Xb = (AÆB):Xb. Choosing the least �xed point means
that a non-terminating sequence of calls from A to B and back is equivalent to
abort, which is the meaning of a non-terminating loop. According to the theorem
of Knaster-Tarski [18], a monotonic function has a unique least �xed point in a
complete lattice. Statements form a complete lattice with the re�nement ordering
v and the function (AÆB) is monotonic in its argument, therefore, (� AÆB)
exists and is unique. Similarly, the methods of the component B in the composed
system are de�ned by (� BÆA).

The component system resulting from the composition of the components A
and B can now be de�ned as follows:

(A compB) b= ((a0; b0); (� AÆB; � BÆA))

Note that during composition, the type variables � and �, representing unknown
state spaces of the components B and A, get instantiated with � and � respec-
tively, so that the composed system has methods operating on the state space
� ��� � .

4.3 Re�ning Components and Component Systems

Let A : Ptrann(�����) ! Ptranm(�����) and A0 : Ptrann(�0����) !
Ptranm(�0 � � � �) be methods of components A and A0, respectively. We

say that A is data re�ned by A0 in the context of component B via a relation
R� Id � Id if

A
B

vRA
0
b= (� AÆB)#(R � Id � Id) v A0: (� BÆA)#(R� Id � Id))

For methods of components B and B0 we have a similar de�nition but via a
relation Id � Id � P .

As method bodies of the componentsA0 and B0 are indi�erent to the relations
Id�Id�P and R�Id�Id respectively, we use the following encoding propagation
lemma :

(A0:Xb)#(Id � Id � P) v A0:Xb#(Id � Id � P)
(B0:Yb)#(R� Id � Id) v B0:Yb#(R� Id � Id)

The proof of this lemma can be found in [12].
We say that A = (a0 : �;A : Ptrann(� ��� �) ! Ptranm(� ��� �)) is

re�ned by A0 = (a00 : �
0; A0 : Ptrann(�0����)! Ptranm(�0����)) in the

context of B, if there exists a relation R : �0 $ � such that this relation holds
between the initial values, and methods of A are data re�ned by methods of A0

in the context of B via the relation R� Id � Id . Formally,

A
B

v A0 b= (9R � (R:a00: a0) ^ A
B

vRA
0)

For the components B = (b0 : �;B) and B0 = (b00 : �
0; B0) the de�nition of re-

�nement is similar, only that the initial values are connected via a relation
P : � 0$ � and methods of B are data re�ned by methods of B0 in the context
of A via the relation Id � Id � P .

We say that the component system A compB is re�ned by the component
system A0 compB0, if there exist such relations R and P that initial values of
these component systems are related via the relation R�P and tuples of method
bodies are related via the relation R� Id � P . Formally, we have:

A compB v A0 compB0 b=
(9R;P � (R� P): (a00; b

0
0): (a0; b0) ^

(� AÆB)#(R� Id � P) v (� A0ÆB0) ^
(� BÆA)#(R� Id � P) v (� B0ÆA0))

5 Modular Reasoning Theorem

Our objective is to prove that the modular reasoning property holds for mutually
dependent components if the \no call-back assumptions" and \no accidental
mutual recursion" requirements are satis�ed. First we formulate and prove the
modular reasoning theorem which captures the mathematical meaning of the
modular reasoning property reinforced with the requirements. Then we explain
how the requirements are reected in the assumptions of the theorem. As the
\no accidental mutual recursion" requirement is non-modular, in the sense that
it requires checking for the absence of mutual recursion in the system composed
from re�ning components, we then discuss techniques which permit to satisfy
this requirement in a modular fashion.

5.1 Formulating and Proving the Theorem

Modular Reasoning Theorem. Let components A, B, A0, and B0 be given as

follows:

A = (a0 : �;A : Ptrann(� ��� �)! Ptranm(� ��� �));
B = (b0 : �;B : Ptranm(���� �)! Ptrann(���� �));
A0 = (a00 : �

0; A0 : Ptrann(�0 ��� �)! Ptranm(�0 ��� �));
B0 = (b00 : �

0; B0 : Ptranm(���� � 0)! Ptrann(���� � 0))

Then we have:

A
B

v A0 ^ (a)

B
A

v B0 ^ (b)
(9k � 8Xb � (� A0ÆB0) = (A0ÆB0)k: Xb) ^ (c)
(9l � 8Yb � (� B0ÆA0) = (B0ÆA0)l:Yb)) (d)

A compB v A0 compB0

Proof Expanding the de�nitions and making simple logical transformations, we
get three subgoals

1: (R:a00: a0) ^ (P : b00: b0)) (R� P): (a00; b
0
0): (a0; b0)

2: A
B

vRA
0 ^ B

A

vPB
0 ^ (c) ^ (d)) (� AÆB)#(R� Id � P) v (� A0ÆB0)

3: A
B

vRA
0 ^ B

A

vPB
0 ^ (c) ^ (d)) (� BÆA)#(R� Id � P) v (� B0ÆA0)

where R and P are �xed but arbitrary relations. The �rst subgoal is obviously
true. To prove the second and the third subgoals, we �rst prove the following
lemma.

Lemma. For functions A, B, A0 and B0 de�ned as above, relations R : �0 $ �

and P : � 0 $ � , and any natural number k, we have:

A
B

vRA
0 ^ B

A

vPB
0) (� AÆB)#(R� Id�P) v (A0ÆB0)k: (� AÆB)#(R� Id�P)

Proof We prove this lemma by induction over k.
Base case:

(A0ÆB0)0: (� AÆB)#(R� Id � P)

= fde�nition of f0g

(� AÆB)#(R� Id � P)

Inductive case:
Assuming (� AÆB)#(R � Id � P) v (A0 ÆB0)k: (� AÆB)#(R � Id � P), we
calculate:

(� AÆB)#(R� Id � P)

v finduction assumptiong

(A0ÆB0)k: (� AÆB)#(R � Id � P)

= fthe property of encoding operator for the orthogonal relationsg

(A0ÆB0)k: (� AÆB)#(R � Id � Id)#(Id � Id � P)

v fassumption A
B

vRA
0g

(A0ÆB0)k: (A0: (� BÆA)#(R� Id � Id))#(Id � Id � P)

v fencoding propagation lemma g

(A0ÆB0)k:A0: (� BÆA)#(R � Id � Id)#(Id � Id � P)

= fthe rule for encoding with orthogonal relationsg

(A0ÆB0)k:A0: (� BÆA)#(Id � Id � P)#(R� Id � Id)

v fassumption B
A

vPB
0g

(A0ÆB0)k:A0: (B0: (� AÆB)#(Id � Id � P))#(R� Id � Id)

v fencoding propagation lemma g

(A0ÆB0)k:A0:B0: (� AÆB)#(Id � Id � P)#(R� Id � Id)

= fthe property of encoding operator for the orthogonal relationsg

(A0ÆB0)k:A0:B0: (� AÆB)#(R � Id � P)

= ffk+1: x = fk: (f: x); de�nition of compositiong

(A0ÆB0)k+1: (� AÆB)#(R � Id � P) 2

Now using this lemma we can prove the second subgoal of the Modular

Reasoning Theorem. Assume A
B

vRA
0, B

A

vPB
0, and 8Xb � (� A0 ÆB0) = (A0 Æ

B0)k: Xb, for �xed but arbitrary k. The conclusion is then proved as follows:

(� AÆB)#(R� Id � P)

v fLemmag

(A0ÆB0)k: (� AÆB)#(R � Id � P)

= fassumption (c), instantiating Xb with (� AÆB)#(R� Id � P)g

(� A0ÆB0)

The proof of the third subgoal is similar. 2

5.2 Interpretation and Implications of the Theorem

Let us consider how the requirement \no call-back assumptions" is reected
in the formulation of the theorem. In fact, this requirement is not captured
by a separate assumption in the theorem, rather the de�nition of component
re�nement in context accommodates for it. As stipulated by this requirement,
when re�ning the component A to A0 we should not assume that the component
B calls back methods of A0, because in doing so we would implicitly modify the
speci�cation of the component system. The speci�cation of method bodies of A is

mathematically de�ned by (� AÆB), whereas the speci�cation of method bodies
of B is de�ned by (� BÆA). Accordingly, re�nement between the speci�cation
of method bodies of A and the implementation of methods of A0 in the context
of the speci�cation of method bodies of B is expressed as follows:

(� AÆB)#(R� Id � Id) v A0: (� BÆA)#(R � Id � Id)

Here the encodings are necessary for adjusting the state spaces of the partici-
pating components. The same requirement for the re�nement between B and B0

in context of A is treated similarly.

Unlike in the case of \no call-back assumptions", the \no accidental mutual
recursion" requirement is captured in the assumptions (c) and (d) of the theorem
explicitly. Let us consider the assumption (c) (the assumption (d) is treated
similarly):

(9n � 8Xb � (� A0ÆB0) = (A0ÆB0)k:Xb)

In this formula (A0ÆB0)k is the function resulting from composing the function
(A0ÆB0) with itself n � 1 times. The intuition here is as follows. If the result
of applying the function (A0 ÆB0) to an arbitrary tuple of method bodies a
�nite number of times is equal to the complete unfolding of method invocations
between A0 and B0, then the bodies of methods of A0 are completely de�ned.
This, of course, can only be achieved if the unfolding terminates, i.e. there is no
in�nite mutual recursion.

The \no accidental mutual recursion" requirement is non-modular in the
sense that it requires checking for the absence of mutual recursion in the system
composed from re�ned components. We envision several approaches to satisfying
this requirement in a modular manner. For example, component methods in
the original speci�cation can be marked as atomic if they do not call other
methods. While re�ning a component, atomic methods must remain atomic and
non-atomic ones can introduce new calls only to atomicmethods. Although being
apparently restrictive, this approach guarantees the absence of accidental mutual
recursion in the re�ned composed system. With another approach, we can assign
to every method an index which indicates the maximal depth of method calls
that this method is allowed to make. This approach apparently only works if
the original speci�cation does not have mutually recursive method calls. For
example, a method m which does not invoke any other method will have index
0, whereas a method n invoking m will have index 1. If a method invokes several
methods with di�erent indices, it is assigned the maximal of these indices plus
one. With the original speci�cation annotated in this manner we can require
that, while re�ning a method, calls to methods with indices higher than the
indices of the methods that were called before cannot be introduced. However,
the detailed analysis of the di�erent methods for establishing the \no accidental
mutual recursion" requirement in a modular manner is outside the scope of this
paper.

6 Discussion, Conclusions, and Related Work

We study a problem which hinders independent development of components in
the presence of re-entrance. A formal analysis of this problem allowed us to rec-
ognize the essence of the problem in the conict of assumptions that developers
of components make about the behavior of other components in the system.

Problems related to compositionality of systems have been and remain a sub-
ject of intensive studies in the formal methods community, e.g. [7]. In particu-
lar, compositionality of concurrently executing processes communicating through
global variables has been the focus of formal analysis by Abadi and Lamport in
[1]. However, the setting that they consider is rather di�erent from our, as we
consider sequential communication of components.

Problems with re-entrance are also often discussed in the context of con-
current programming. In a multithreaded environment several instances of the
same procedure modifying global variables can be executed simultaneously. One
thread of control can enter the procedure and, before the end of the proce-
dure is reached, a second thread of control can re-enter the same procedure.
Apparently, such a situation is problematic because the second instance of the
procedure might observe the global variables in an inconsistent state, or it can
modify these global variables and then the �rst instance will observe them in an
inconsistent state.

The problem that we consider is suÆciently di�erent from the re-entrance
problem as known in concurrent programming to deserve a separate name, the
\component re-entrance problem". There are two scenarios in which this problem
can occur; �rstly, when components are independently developed from speci�-
cations and, secondly, during independent maintenance of components.

One of the recommendations in concurrent programming is to circumvent the
re-entrance problem by avoiding the re-entrance setting, which can be achieved
using various locking mechanisms. In object-oriented and component-based pro-
gramming the re-entrance setting can be avoided by following what is known
as the \push" communication style. Adhering to this style requires passing to
a client component all the data it might possibly need as method parameters.
Apparently, such an approach to component communication is rather ineÆcient,
and it is often preferable to pass to the client component just a reference to itself
and permit it to obtain all the data it might need. However, the latter approach,
which is often referred to as the \pull" approach, matches the re-entrance setting.

Several researchers have pointed out that components should specify rele-
vant information about their environments, such as required interfaces [14]. It
was also recognized that accidental reuse does not lead to the development of
robust maintainable systems [9]. To be really useful, reuse must be pre-planned
by system developers. Agreeing with these ideas, we advocate a speci�cation
method where component environments are described by abstract speci�cations
of their behavior. We believe that the speci�cation of the environment should be
split into components specifying certain interfaces to indicate the communica-
tion protocol between the components. As the speci�cations of the environment
components can be given in terms of abstract mathematical data structures

and non-deterministic speci�cation statements, this would permit a multitude
of di�erent implementations.

Similar problems occurring during maintenance of mutually dependent com-
ponents have been mentioned by several researchers, e.g., Bertrand Meyer in [11]
and Clemens Szyperski in [17]. Meyer considers the setting with two mutually
dependent classes whose invariants include each other's attributes. His method
for veri�cation of conformance between two implementations of one class requires
that the new implementation respect the invariant of the original implementa-
tion. He notices that this requirement alone is not suÆcient for establishing cor-
rectness of the composed system and refers to this problem as \indirect invariant
e�ect". He then makes the conjecture that mirroring such interclass invariants
in the participating classes would be suÆcient to avoid the problem. Although
we disagree with the practice of stating interclass invariants, it appears that the
problem considered by Meyer is just a special case of the component re-entrance
problem as formulated in this paper. As our examples demonstrate, preserving
invariants, taken alone, does not eliminate the problem.

Szyperski describes a similar problem but sees it rather as an instance of
the re-entrance problem as occurring in concurrent systems. He reiterates the
common recommendation for avoiding the problem, which suggests to establish a
component invariant before invoking any external method. Interestingly enough,
the recommendation to re-establish the invariant before all external method
calls does not follow from the speci�cation and is rather motivated by empirical
expertise. As demonstrated by our examples, this recommendation, although
being necessary, is insuÆcient.

In fact, our \no call-back assumptions" requirement subsumes this recom-
mendation. Let us reconsider our �rst example. According to the Modular Rea-
soning Theorem, to demonstrate that Model

0 is a valid implementation ofModel

in the context of View , we would need to show that every method of Model
0

calling methods of View composed with methods of Model re�nes the corre-
sponding methods of Model composed with methods of View. Since Model and
Model 0 operate on di�erent attributes, to express, for example, in the method
append of Model

0 the behavior of a call to View :update, which calls get s of
Model , we need to coerce this call using an abstraction relation. Such an abstrac-
tion relation usually includes component invariants, and in this case includes the
component invariant n = #s of Model 0, i.e. R: (s0; n0): s b= s0 = s ^ n0 = #s0.
Note that in the de�nition of R the attributes of Model 0 are primed in order to
distinguish them from the attributes ofModel . According to the de�nition of re-
�nement in context, the proof obligation for the method append after expansion
and simpli�cation is

(s := s b t; print(#s))#R v s := s b t; (print(#s))#R;n := n +#t

The right hand side can be expanded to s := sbt; fRg; print(#s); [R�1];n := n+
#t. The abstraction statement preceding the invocation of print aborts, because
it tries to �nd an abstract value of a sequence s satisfying the invariant #s = n

which obviously does not hold at this point. Certainly, an aborting method is

not a re�nement of a non-aborting one and, therefore, Model 0 fails to correctly
implement Model in the context of View , breaching our requirement.

The requirement to re-establish a component invariant before all external
calls is rather restrictive, because re-establishing the invariant might require
a sequence of method calls to this and other components. Besides, it is not
always necessary to establish the entire component invariant before external
calls, because clients of the component can depend on some parts of the com-
ponent invariant while being indi�erent to the other parts. Szyperski in [17]
proposes to \weaken invariants conditionally and make the conditions available
to clients through test functions". In a way, he proposes to make assumptions
that component developers make about other components more explicit. This
idea can be elaborated through augmenting the speci�cation of components with
require/ensure statements stipulating assumptions and guarantees that the com-
ponents make. To avoid a conict of assumptions, the component speci�cation
can make explicit the information the component relies on and provides to other
components. For instance, every method can begin with a require condition and
end with an ensure condition. Also every method invocation can be surrounded
by an ensure/require couple. Then, while implementing a method, the developer
can assume the information as stipulated in the require condition and ought to
establish the ensure condition. Such an explicit statement of mutual assumptions
and guarantees between components would reduce the need to unfold method
invocations when verifying re�nement in context. Note that the theoretical un-
derpinning of such an approach to speci�cation of component systems is an
interpretation of the results presented in this paper, as the re�nement calculus
includes constructs for expressing the require/ensure statements.

A speci�cation and veri�cation method for component systems based on such
an approach should additionally provide for satisfying the \no accidental mutual
recursion" requirement in a modular manner. The detailed elaboration of such
a method represents the subject of current research.

As was already mentioned, we have made a number of simpli�cations in
the component model. In particular, we have assumed that components do not
have self-calls and component implementations do not introduce new methods.
Relaxing these con�nements on the component model is the subject of future
work.

Acknowledgments

We would like to express our gratitude to Anna Mikhajlova for useful comments.
Ralph Back and Joakim von Wright have provided valuable feedback on an
earlier version of this paper. Discussions with Eric Hehner and his colleagues
while presenting this work at the University of Toronto helped us to improve the
presentation of the material.

References

1. M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on
Programming Languages and Systems, 15(1):73{132, Jan. 1993.

2. R. J. R. Back and J. von Wright. Re�nement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

3. R. J. R. Back and J. von Wright. Encoding, decoding and data re�nement. Tech-
nical Report TUCS-TR-236, Turku Centre for Computer Science, Finland, Mar.
1, 1999.

4. R. J. R. Back and J. von Wright. Products in the re�nement calculus. Technical
Report TUCS-TR-235, Turku Centre for Computer Science, Finland, Feb. 11, 1999.

5. M. B�uchi and E. Sekerinski. Formal methods for component software: The re-
�nement calculus perspective. In W. Weck, J. Bosch, and C. Szyperski, editors,
Proceedings of WCOP'97, volume 5 of TUCS General Publication, pages 23{32,
June 1997.

6. M. B�uchi and W. Weck. A plea for grey-box components. Technical Report TUCS-
TR-122, Turku Centre for Computer Science, Finland, Sept. 5, 1997.

7. W.-P. de Roever, H. Langmaack, and A. Pnueli. Compositionality: The Signi�cant
Di�erence. Proceedings of COMPOS'97, volume 1536 of LNCS. Springer-Verlag,
1997.

8. J. Feiler and A. Meadow. Essential OpenDoc. Addison-Wesley, 1996.
9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
10. R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural

compositions in object-oriented systems. In Proceedings OOPSLA/ECOOP'90,
ACM SIGPLAN Notices, pages 169{180, Oct. 1990.

11. B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,
second edition, 1997.

12. L. Mikhajlov, E. Sekerinski, and L. Laibinis. Developing components in the pres-
ence of re-entrance. Technical Report TUCS-TR-239, TUCS - Turku Centre for
Computer Science, Feb. 9 1999. Tue, 9 Jan 1999 8:17:45 GMT.

13. C. C. Morgan. Programming from Speci�cations. Prentice{Hall, 1990.
14. A. Olafsson and D. Bryan. On the need for \required interfaces" of components.

In M. Muehlhaeuser, editor, Special Issues in Object Oriented Programming, pages
159{165. dpunkt Verlag Heidelberg, 1997. ISBN 3-920993-67-5.

15. D. Rogerson. Inside COM: Microsoft's Component Object Model. Microsoft Press,
1997.

16. Sun Microsystems. Java Beans(TM), July 1997. Graham Hamilton (ed.). Version
1.0.1.

17. C. Szyperski. Component Software { Beyond Object-Oriented Software. Addison-
Wesley, 1997.

18. A. Tarski. A lattice theoretical �xed point theorem and its applications. Paci�c
J. Mathematics, 5:285{309, 1955.

19. J. Wright. Program re�nement by theorem prover. In 6th Re�nement Workshop,
London, 1994. Springer{Verlag.

