
Class Re�nement and Interface Re�nement in

Object-Oriented Programs�

Anna Mikhajlova1 and Emil Sekerinski2
1 Turku Centre for Computer Science, �Abo Akademi University

Lemmink�aisenkatu 14A, Turku 20520, Finland
2 Dept. of Computer Science, �Abo Akademi University

Lemmink�aisenkatu 14A, Turku 20520, Finland

Abstract. Constructing new classes from existing ones by inheritance
or subclassing is a characteristic feature of object-oriented development.
Imposing semantic constraints on subclassing allows us to ensure that
the behaviour of superclasses is preserved or re�ned in their subclasses.
This paper de�nes a class re�nement relation which captures these se-
mantic constraints. The class re�nement relation is based on algorithmic
and data re�nement supported by Re�nement Calculus. Class re�nement
is generalized to interface re�nement, which takes place when a change
in user requirements causes interface changes of classes designed as re-
�nements of other classes. We formalize the interface re�nement relation
and present rules for re�nement of clients of the classes involved in this
relation.

1 Introduction

It has been widely recognized that design and development of object-oriented
programs is di�cult and intricate. The need for formal basis of object-oriented
development was identi�ed by many researchers. We demonstrate how formal
methods, in particular, Re�nement Calculus of Back, Morgan, and Morris [4,20,
21], can be used for constructing more reliable object-oriented programs.

A characteristic feature of object-oriented program development is a uniform
way of structuring all stages of the development by classes. The programming
notation of Re�nement Calculus is very convenient for describing object-oriented
development because it allows us to specify classes at various abstraction lev-
els. The speci�cation language we use is based on monotonic predicate trans-
formers, has class constructs, supports subclassing and subtype polymorphism.
Besides usual imperative statements, the language includes speci�cation state-
ments which may appear in method bodies of classes leading to abstract classes.
One of the main bene�ts o�ered by this language is that all development stages
can be described in a uniform way starting with a simple abstract speci�cation
and resulting in a concrete program.

We build a logic of object-oriented programs as a conservative extension of
(standard) higher-order logic, in the style of [6]. An alternative approach is un-
dertaken by Abadi and Leino in [2]. They develop a logic of object-oriented

� Appeared in J. Fitzgerald, C. Jones, P. Lucas (Eds.) Fourth International Formal
Methods Europe Symposium, FME'97, Graz, Austria, September 1997, Lecture Notes
in Computer Science 1313, Springer-Verlag, 1997.

programs in the style of Hoare, prove its soundness, and discuss completeness
issues. Naumann [22] de�nes the semantics of a simple Oberon-like programming
language with similar speci�cation constructs as here, also based on predicate
transformers. Sekerinski [24, 25] de�nes a rich object-oriented programming and
speci�cation notation by using a type system with subtyping and type param-
eters, and also using predicate transformers. In both approaches, subtyping is
based on extensions of record types. Here we use sum types instead, as sug-
gested by Back and Butler in [7]. One motivation for moving to sum types is to
avoid the complications in the typing and the logic when reasoning about record
types: the simple typed lambda calculus as the formal basis is su�cient for our
purposes. Another advantage of moving to sum types is that we can directly
express whether an object is of exactly a certain type or of one of its subtypes
(in the record approach, a type contains all the values of its subtypes). Using
summations also allows us to model contravariance and covariance on method
parameters in a simple way. Finally, to allow objects of a subclass to have di�er-
ent (private) attributes from those of the superclass, hiding by existential types
was used in [24, 25]. It turned out that this leads to complications when rea-
soning about method calls, which are not present when using the model of sum
types. In the latter, objects of a subclass can always have di�erent attributes
from those of the superclass.

Constructing new classes from existing classes by inheritance, or subclassing,
is one of characteristic features of object-oriented program development. How-
ever, when a subclass overrides some methods of its superclass, there are no
guarantees that its instances will deliver the same or re�ned behaviour as the
instances of the superclass. We de�ne a class re�nement relation and relate the
notion of subclassing to this relation. When a class C0 is constructed by sub-
classing from C and class re�nement holds between them, then it is guaranteed
that any behaviour expected from C will necessarily be delivered by C0.

Class re�nement as de�ned here is based on data re�nement [15, 14, 19, 5].
The de�nition generalizes that of Sekerinski [24] by allowing contravariance and
covariance in the method parameters, and by considering constructor methods.
Class re�nement has also been studied in various extensions of the Z speci�cation
languages, e.g. [16, 17], but only between class speci�cations and not implemen-
tations. Other approaches on \behavioural subtyping" of classes [3, 18, 10] also
make a distinction between the speci�cation of a class and its implementation.
By having speci�cation constructs as part of the (extended) programming lan-
guage, this distinction becomes unnecessary.

Subclassing requires that parameter types of a method be the same in the sub-
class and in the superclass or, at most, subject to contravariance and covariance
rules, as described in [9, 1]. However, sometimes a change in user requirements
causes interface changes of classes designed as re�nements of other classes. We
formalize the interface re�nement relation as a generalization of class re�nement,
and present rules for re�nement of clients of the classes involved in this relation.
Interface re�nement has also been considered by Broy in [8], but for networks of
communicating components rather than for classes.

2

Paper Outline: In Section 2 we present the required concepts of the Re�ne-
ment Calculus formalism. In Section 3 we explain our model of objects, classes,
subclassing, and subtyping polymorphism. Section 4 de�nes the class re�nement
relation. In the following section we generalize class re�nement to interface re�ne-
ment, formalize implicit client re�nement, and discuss explicit client re�nement.
Finally, we conclude with considering applications of our work.

2 Re�nement Calculus

A predicate over a set of states � is a boolean function p : � ! Bool which
assigns a truth value to each state. The set of predicates on � is denoted P�.
The entailment ordering on predicates is de�ned by pointwise extension, so that
for p; q : P�,

p � q b= (8� : � � p �) q �)

A relation from � to � is a function P : � ! P� that maps each state � to
a predicate on � . We write

� $ � b= � ! P�

to denote a set of all relations from � to � . This view of relations is isomorphic
to viewing them as predicates on the cartesian space ��� . The identity relation

and the composition of relations are de�ned as follows:

Id x y b= x = y

(P ;Q) x z b= (9y � P x y ^ Q y z)

A predicate transformer is a function S : P� ! P� from predicates to
predicates. We write

� 7! � b= P� ! P�

to denote a set of all predicate transformers from� to � . Program statements in
Re�nement Calculus are identi�ed with weakest-precondition monotonic predi-
cate transformers that map a postcondition q : P� to the weakest precondition
p : P� such that the program is guaranteed to terminate in a �nal state satis-
fying q whenever the initial state satis�es p. A program statement S need not
have identical initial and �nal state spaces, though if it does, we write S : �(�)
instead of S : � 7! �.

The re�nement ordering on predicate transformers is de�ned by pointwise
extension, for S; T : � 7! � :

S v T b= (8q : P� � S q � T q)

The re�nement ordering on predicate transformers models the notion of total-
correctness preserving program re�nement. For statements S and T , the relation
S v T holds if and only if T satis�es any speci�cation satis�ed by S.

3

The abort statement maps each postcondition to the identically false predi-
cate false, and the magic statement maps each postcondition to the identically
true predicate true. The abort statement is never guaranteed to terminate, while
the magic statement is miraculous since it is always guaranteed to establish any
postcondition.

Sequential composition of program statements is modeled by functional com-
position of predicate transformers. For S : � 7! � , T : � 7! � and q : P�,

(S;T) q b= S (T q)

The program statement skip� is modeled by the identity predicate transformer
on P�.

Given a relation P : � $ � , the angelic update statement fPg : � 7! � and
the demonic update statement [P] : � 7! � are de�ned by

fPg q � b= (9 : � � (P �) ^ (q))

[P] q � b= (8 : � � (P �)) (q))

When started in a state �; fPg angelically chooses a new state such that P �

holds, while [P] demonically chooses a new state such that P � holds. If
no such state exists, then fPg aborts, whereas [P] behaves as magic, i.e. can
establish any postcondition.

Ordinary program constructs may be modeled using the basic predicate
transformers and operators presented above. For example, in a state space with
two components (x : T; y : S), an assignment statement may be modeled by the
demonic update:

x := e b= [R]; where R (x; y)(x0; y0) = (x0 = e) ^ (y0 = y)

Our speci�cation language includes speci�cation statements. The demonic spec-

i�cation statement is written [x := x0 � b], and the angelic speci�cation statement

is written fx := x0 � bg, where b is a boolean expression relating x and x0.
The program variable x is assigned a value x0 satisfying b. These statements
correspond to the demonic and the angelic updates respectively:

x := x0 � b b= R; where R (x; y)(x0; y0) = b ^ (y0 = y)

We also have an assertion, written fpg, where p is a predicate stating a
condition on program variables. This assertion behaves as skip if p is satis�ed
and as abort otherwise.

Finally, the language supports local variables. The construct j[var z � S]j
states that the program variable z is local to S:

j[var z � S]j b= [Enterz];S; [Exitz]; where

Enterz (x; y)(x0; y0; z0) b= (x0 = x) ^ (y0 = y) and
Exitz (x; y; z)(x0; y0) b= (x0 = x) ^ (y0 = y)

4

The semantics of other ordinary program constructs, like multiple assign-
ments, if-statements, and do-loops, is given, e.g. in [6].

Data re�nement is a general technique by which one can change the state
space in a re�nement. For statements S : �(�) and S0 : �(�0), let R : �0 $ �

be an abstraction relation between the state spaces � and �0. The statement S
is said to be data re�ned by S0 via R, denoted S vR S0, if

fRg; S v S0; fRg

Alternative and equivalent characterizations of data re�nement using the inverse
relation R�1, are then

S; [R�1] v [R�1];S0 S v [R�1];S0; fRg fRg;S; [R�1] v S0

These characterizations follow from the fact that fRg and [R�1] are each others
inverses, in the sense that fRg; [R�1] v skip and skip v [R�1]; fRg.

Re�nement Calculus provides laws for transforming more abstract program
structures into more concrete ones based on the notion of re�nement of pred-
icate transformers presented above. A large collection of algorithmic and data
re�nement laws is given in [6,20, 12].

Sum Types and Operators. In our speci�cation language we widely employ
sum types for modeling subtyping polymorphismand dynamic binding. The sum
or disjoint union of two types � and � is written � + � . The types � and �

are called base types of the sum in this case. Associated with the sum types,
are the injection relations1 which map elements of the subsets to elements of the
superset summation:

�� : � $ � + � �� : � $ � + �

and projection relations which relate elements of summation with elements of
their subsets:

�� : � + � $ � �� : � + � $ �

In fact, the projection relation is an inverse of the injection relation for the
corresponding subset of the summation.

We de�ne the subtype relation as follows. The type � is a subtype of �0,
written � <: �0, if � = �0, or � <: � or � <: � 0, where � + � 0 = �0. For
example, � <: � +� 0 and, or course, � + � 0 <: � + � 0. If � is a subtype of �0,
we can always construct the appropriate injection �� : � $ �0 and projection
�� : �0 $ �. The subtype relation is reexive, transitive and antisymmetric.

A summation operator combines statements by forming the disjoint union
of their state spaces. This operator is de�ned in [7] by extension from the

1 In fact, the injections are functions rather than relations, but for our purposes it is
more convenient to treat them as relations.

5

summation of types. For S1 : �1 7! �1 and S2 : �2 7! �2, the summation
S1 + S2 : �1 +�2 7! �1+ �2 is a predicate transformer such that the e�ect of
executing it in some initial state � depends on the base type of �. If � : �1 then
S1 is executed, while if it is of type �2, then S2 is executed.

The summation operator was shown to satisfy a number of useful properties.
The one of interest to us is that it preserves re�nement, allowing us to re�ne
elements of the summation separately:

S1 v S01 ^ S2 v S02) (S1 + S2) v (S01 + S02)

Product Types and Operators. The cartesian product of two types � and
� is written � � � . The product operator combines predicate transformers by
forming the cartesian product of their state spaces. For S1 : �1 7! �1 and
S2 : �2 7! �2, their product S1 � S2 is a predicate transformer of type �1 �
�2 7! �1 � �2 whose execution has the same e�ect as simultaneous execution
of S1 and S2.

In addition to many other useful properties, the product operator preserves
re�nement:

S1 v S01 ^ S2 v S02) (S1 � S2) v (S01 � S02)

For S : � 7! � we de�ne lifting to a product predicate transformer of type
�� � 7! �� � as S � skip� . When lifting is obvious from the context, we will
simply write S instead of S � skip� .

A product P �Q of two relations P : �1 $ �1 and Q : �2 $ �2 is a relation
of type (�1 ��2)$ (�1 � �2) de�ned by

(P � Q) (�1; �2)(1; 2) b= (P �1 1) ^ (Q �2 2)

3 Specifying Objects and Classes

Object-oriented systems are characterized by objects, which group together data,
and operations for manipulating that data. The operations, called methods, can
be invoked only by sending messages to the object. The complete set of messages
that the object understands is characterized by the interface of the object. The
interface represents the signatures of object methods, i.e. the name and the types
of input and output parameters. As opposed to the interface, the object type is
the type of object attributes. We consider all attributes as private or hidden, and
all methods as public or visible to clients of the object. Accordingly, two objects
with the same public part, i.e. the same interface, can di�er in their private part,
i.e. object types.

We focus on modeling class-based object-oriented languages, which form the
mainstream of object-oriented programming. Accordingly, we take a view that
objects are instantiated by classes. A class is a pattern used to describe objects
with identical behaviour through specifying their interface. Speci�cally, a class

6

describes what attributes each object will have, the speci�cation for each method,
and the way the objects are created. We declare a class as follows:

C = class
attr1 : �1; : : : ; attrm : �m

C (p :) = S;

Meth1 (g1 : �1) : �1 = T1;

: : :

Methn (gn : �n) : �n = Tn
end

Class attributes (attr1; : : : ; attrm) abbreviated further on as attr have the corre-
sponding types �1 through �m. The type of attr is then � = �1� : : :��m

2. A
class constructor is used to instantiate objects and is distinguished by the same
name as the class. Due to the fact that the constructor concerns object creation
rather than object functionality, it is associated with the class rather than with
the speci�ed interface. We take a view that the constructor signature is not part
of the interface speci�ed by the class. The statement S : �(� �) representing
a body of the constructor initializes the attributes using input p : 	 .

Methods Meth1 through Methn speci�ed by bodies T1; : : : ; Tn operate on
the attributes and realize the object functionality. Every statement Ti is, in
general, of type �(� � �i��i), where � is the type of class attributes, �i and
�i are the types of input and output parameters respectively. A method may
be parameterless with both �i and �i the unit type (), have only input or only
output parameters. When a method has an output parameter, a special variable
res : �i represents the result and assignment to this variable models returning
a value in the output parameter. The signature of every method is part of the
speci�ed interface.

The object type speci�ed by a class can always be extracted from the class
and we do not need to declare it explicitly. We use � (C) to denote the type of
objects generated by the class C. Naturally, � (C) is just another name for �.

Being declared as such, the class C is modeled by a tuple (K;M1; : : : ;Mn),
where

K = [Enterattr];S; [Exitp]

Mi = [Enterres];Ti; [Exitgi]; for i = 1,. . . , n.

Further on we will refer to K as the constructor and to M1; : : : ;Mn as the
methods, unless stated otherwise.

Instantiating a new variable of object type by class C is modeled by invoking
the corresponding class constructor:

c:C(e) b= [Enterp]; p := e;K; c := attr; [Exitattr]

Naturally, a variable of object type can be local to a block:

j[var c : C(e) � S]j b= [Enterc]; c:C(e);S; [Exitc]

2 We impose a non-recursiveness restriction on � so that none of �i is equal to �.
This restriction allows us to stay within the simple-typed lambda calculus.

7

Often a class aggregates objects of another class, i.e. some attributes can be
of object types. In this case the class declaration states the object types of these
attributes, but only the constructor invocation actually introduces new objects
into the state space and initializes them.

Invocation of a method Methi (gi : �i) : �i on an object c instantiated by
class C is modeled as follows:

d := c:Methi (g) b= [Enterattr]; [Entergi];
attr := c; gi := g;Mi; c := attr; d := res;
[Exitres]; [Exitattr]

As an example of a class speci�cation consider a class of bank accounts. An
account should have an owner, and it should be possible to deposit and withdraw
money in the currency of choice and check the current balance. We present the
speci�cation of the class Account in Fig. 1.

Account = class

owner : Name;balance : Currency

Account (name : Name; sum : Currency) = owner := name; balance := sum;

Deposit (sum : Currency; from : Name;when : Date) =
fsum > 0g; balance := balance + sum;

Withdraw (sum : Currency; to : Name;when : Date) =
fsum > 0 ^ sum � balanceg; balance := balance � sum;

Owner () : Name = res := owner;

Balance () : Currency = res := balance

end

Fig. 1. Speci�cation of bank account

Obviously, this speci�cation only demonstrates the most general behaviour
of bank accounts. For example, when specifying Deposit, we only state that
balance is increased by sum and leave the changes to the other input parameters
unspeci�ed. We would like to subclass from Account more concrete account
classes. Let us consider speci�cation of subclasses more closely.

3.1 Subclassing

Subclassing 3 is a mechanism for constructing new classes from existing ones by
inheriting some or all of their attributes and methods, possibly overriding some
attributes and methods, and adding extra methods. We limit our consideration

3 We prefer the term subclassing to implementation inheritance because the latter
literally means reuse of existing methods and does not, as such, suggest the possibility
of method overriding.

8

of class construction to inheritance and overriding. Addition of extra methods
is a non-trivial issue because of inconsistencies possibly introduced by extra
methods which become apparent in presence of subtype aliasing, and is treated
in another study.

We describe a subclass of class C as follows:

C0 = subclass of C
attr01 : �

0

1; : : : ; attr
0

p : �
0

p

C0 (p :) = S0;

Meth1 (g1 : �1) : �1 = T 0

1;

: : :

Methk (gk : �k) : �k = T 0

k

end

Class attributes attr01; : : : ; attr
0

p have the corresponding types �0

1 through
�0

p. Some of these attributes are inherited from the superclass C, others over-
ride attributes of C, and the other ones are new. The class C0 has its own
class constructor without inheriting the one associated with the superclass. The
bodies T 0

1; : : : ; T
0

k override the corresponding Meth1; : : : ;Methk body de�nitions
de�ned in C. The bodies of methods named Methk+1; : : : ;Methn are inherited
from the superclass C. The class C0 is modeled by a tuple (K0;M 0

1; : : : ;M
0

n),
where the statements K 0 and all M 0

i are related to S0; T 0

1; : : : ; T
0

n as described
above.

We view subclassing as a syntactic relation on classes, since subclasses are
distinguished by an appropriate declaration. Syntactic subclassing implies con-
formance of interfaces, in the sense that a subclass speci�es an interface con-
forming to the one speci�ed by its superclass. In the simple case the interface
speci�ed by a subclass is the same as that of the superclass. In the next section
we explain how this requirement can be relaxed.

As an example of subclassing consider extending the class Account with a
list of transactions, where every transaction has a sender, a receiver, an amount
of money being transferred, and a date. We specify a record type representing
transactions as follows:

type Transaction = record
from : Name; to : Name; amount : Currency; date : Date

end

Here Name, Currency and Date are simple types. Date is a type of six digit
arrays for representing a day, a month, and a year, for example as `251296' for
December 25, 1996.

Now we can specify in Fig. 2 a class of bank accounts based on sequences
of transactions. Notice that we specify only the overriding methods, Owner and
Balance are inherited from the superclass Account.

9

AccountP lus = subclass of Account

owner : Name;balance : Currency; transactions : seq of Transaction

AccountP lus (name : Name; sum : Currency) =
owner := name; balance := sum; transactions := hi;

Deposit (sum : Currency; from : Name;when : Date) =
fsum > 0g; j[var t : Transaction � t := (from;owner; sum;when);
transactions := transactionsb hti; balance := balance + sum]j;

Withdraw (sum : Currency; to : Name;when : Date) =
fsum > 0 ^ sum � balanceg;
j[var t : Transaction � t := (owner; to; sum � (�1); when);
transactions := transactionsb hti; balance := balance � sum]j

end

Fig. 2. Speci�cation of account based on transactions

3.2 Modeling Subtyping Polymorphism

To model subtyping polymorphism, we allow object types to be sum types. The
idea is to group together an object type of a certain class and object types
of all its subclasses, to form a polymorphic object type. A variable of such
a sum type can be instantiated to any base type of the summation, in other
words, to any object instantiated by a class whose object type is the base type
of the summation. We will call the object types of only one class ground and
summations of object types polymorphic. Since a ground object type uniquely
identi�es the class of objects, we can always tell whether a certain object is an
instance of a certain class.

A sum of object types, denoted by � (C)+ is de�ned to be such that its base
types are � (C) and all the object types of subclasses of C. For example, if D is
the only subclass of C with the object type � (D), then � (C)+ = � (C) + � (D).
Naturally, we have that

� (C) <: � (C)+ and � (D) <: � (C)+:

A variable c : � (C)+ can be instantiated by either C or D. The subsumption

property holds of c, namely, if c : � (C) and � (C) <: � (C)+ then c : � (C)+. This
property is characteristic of subtype relations, it means that an object of type
� (C) can be viewed as an object of the supertype � (C)+.

Suppose a method Methi is speci�ed in both C and D by statements Mi

and M 0

i respectively. An invocation of Methi on an object c of type � (C)+ is
modeled as follows:

c:Methi() b=
0
@ [Enterattr];

attr := c;Mi; c := attr;
[Exitattr]

1
A+

0
@ [Enterattr0];

attr0 := c;M 0

i ; c := attr0;
[Exitattr0]

1
A

10

where attr : � and attr0 : �0 are attributes of C and D respectively. Modeling
an invocation of a method having input and output parameters is similar to
method invocation on a non-polymorphic object.

Being equipped with subtyping polymorphism,we can allow overriding meth-
ods in a subclass to be generalized on the type of input parameters or specialized
on the type of output parameters. In the �rst case this type rede�nition is con-
travariant and in the second covariant4. When one interface is the same as the
other, except that it can rede�ne contravariantly input parameter types and
covariantly output parameter types, this interface conforms to the original one.

As an example of using polymorphic object types let us consider a client of
the classes Account and AccountP lus, a bank which maintains a sequence of
accounts and can transfer money from one account to another. The speci�cation
of the class Bank is presented in Fig. 3.

Bank = class

accounts : seq of �(Account)

Transfer (from : �(Account); to : �(Account); s : Currency; d : Date) =
fsum > 0g;
j[var sender; receiver : Name �
sender := from:Owner(); receiver := to:Owner();
from:Withdraw(s; receiver; d); to:Deposit(s; sender; d)]j

end

Fig. 3. Speci�cation of bank using accounts

A subclass of Bank can rede�ne the method Transfer with input parameters
of types � (Account)+ to meet the contravariant constraint. The new bank will be
able to work with bothAccount andAccountP lus instances in this case, provided
that the accounts attribute is rede�ned to be of type seq of � (Account)+.

4 Class Re�nement

When a subclass overrides some methods of its superclass, there are no guaran-
tees that its instances will deliver the same or re�ned behaviour as the instances
of the superclass. Unrestricted method overriding in a subclass can lead to an
arbitrary behaviour of its instances. When used in a superclass context, such sub-
class instances may invalidate their clients. For example, the Deposit method of
Account can be overridden so that the money is, in fact, withdrawn from the
account instead of being deposited. Then the owner of the account will actually
be at a loss.

Therefore, we would like to ensure that whenever C0 is subclassed from C,
any behaviour expected from C will necessarily be delivered by C0. For this
purpose, we introduce the notion of class re�nement between C and C0.

4 For a more extensive explanation of covariance and contravariance see, e.g. [1].

11

Consider two classes C = (K;M1; : : : ;Mn) and C0 = (K 0;M 0

1; : : : ;M
0

n) such
that K : 	 7! � and K0 : 	 0 7! �0 are the corresponding class construc-
tors, and all Mi : � � �i 7! � ��i and M 0

i : �
0 � � 0

i 7! �0 ��0

i are the
corresponding methods. The input parameter types of the constructors and the
methods are either the same or contravariant, such that 	 <: 	 0 and �i <: � 0

i .
The output parameter types of the methods are either the same or covariant,
�0

i <: �i.
We de�ne the re�nement of class constructors K and K0 with respect to a

relation R as follows:

K vR K0 b= f�	g; K v K0; fRg (1)

where R : �0 $ � is an abstraction relation coercing attribute types of C0 to
those of C, and �	 is the projection relation coercing 	 0 to 	 .

The re�nement of all corresponding methods Mi and M
0

i with respect to the
relation R is de�ned as

Mi vR M 0

i b= fR� ��i
g; Mi v M 0

i ; fR� ��0

i
g (2)

Here R is as above, ��i
: � 0

i $ �i projects the corresponding input parameters,
and ��0

i
: �0

i $ �i injects the corresponding output parameters. Obviously,
when �i = � 0

i , the projection relation ��i
is taken to be the identity relation Id .

The same holds when �i = �0

i, namely, ��0

i
= Id .

Now we can de�ne the class re�nement relation as follows.

De�nition 1 (Class re�nement). The class C is re�ned by the class C0, writ-
ten C v C0, if for some abstraction relation R : � (C0)$ � (C)

1. The constructor of C0 re�nes the constructor of C as de�ned in (1)
2. Every method of C0 re�nes the corresponding method of C as de�ned in (2).

The class re�nement relation shares the properties of statement re�nement
and is, thus, reexive and transitive.

Theorem 2. Let C;C0 and C00 be classes. Then the following properties hold:

1. C v C
2. C v C 0 ^ C0 v C00) C v C00

Declaring one class as a subclass of another raises the proof obligation that
the class re�nement relation holds between these classes. This is a semantic con-
straint that we impose on subclassing to ensure that behaviour of subclasses
conforms to the behaviour of their superclasses and, respectively, that the sub-
classes can be used in the superclass context.

As an example of class re�nement consider the classes Account and
AccountP lus. Since the latter is declared as a subclass of the former, we get
a proof obligation Account v AccountP lus. Under the abstraction relation
R (o0; b0; t0)(o; b) = (o0 = o)^ (b0 = b); where o; b correspond to owner; balance
of Account and o0; b0; t0 correspond to owner; balance; transactions of
AccountP lus, this proof obligation can be discharged, but we omit the proof
for the lack of space.

12

5 Interface Re�nement

Subclassing requires that parameter types of a method be the same in the sub-
class and in the superclass or, at most, subject to contravariance and covari-
ance rules. However, sometimes, a change in user requirements causes interface
changes of classes designed as re�nements of other classes.

When the new interface is similar to the old one, we can identify abstraction
relations coercing the new method parameters to the old ones. For every pair
of corresponding methods we need to �nd two such relations, for input and
output parameters. The rôle of these parameter abstraction relations is crucial
for interface re�nement of classes and for re�nement of their clients. Let us �rst
de�ne the interface re�nement relation between classes with respect to these
relations.

Consider two classes C = (K;M1; : : : ;Mn) and C0 = (K0;M 0

1; : : : ;M
0

n)
with attribute types � and �0 respectively, such that K : 	 7! � and
K 0 : 	 0 7! �0 are the class constructors, and all Mi : � � �i 7! � ��i and
M 0

i : �
0 � � 0

i 7! �0 ��0

i are the corresponding methods.
Let R : �0 $ � be an abstraction relation coercing attribute types of C0 to

those of C, and I0 : 	 0 $ 	 an abstraction relation coercing the corresponding
input parameter types. We de�ne the re�nement of class constructors K and K 0

through R and I0 as follows:

K vR;I0 K
0 = fI0g; K v K0; fRg (3)

Obviously, (3) is a generalization of (1) with I0 = �	 when the input types are
contravariant.

Let R : �0 $ � be as before, and Ii : � 0

i $ �i and Oi : �0

i $ �i be
abstraction relations coercing the corresponding input and output parameter
types. We de�ne the re�nement of corresponding methods Mi and M 0

i through
R; Ii and Oi as follows:

Mi vR;Ii;Oi
M 0

i = fR� Iig; Mi v M 0

i ; fR� Oig (4)

Obviously, (4) is a generalization of (2) with Ii = ��i
when the inputs are

contravariant, i.e. �i <: �
0

i , and with Oi = ��0

i
when the outputs are covariant,

i.e. �0

i <: �i.

De�nition 3 (Interface re�nement). The class C is interface re�ned by the
class C0, written C vI;O C0, with respect to parameter abstraction relations
I = (I0; I1; : : : ; In) and O = (O1; : : : ; On) if for some abstraction relation
R : � (C 0)$ � (C)

1. The constructor of C0 re�nes the constructor of C as de�ned in (3)
2. Every method of C0 re�nes the corresponding method of C as de�ned in (4).

Being de�ned as such, interface re�nement of classes is a generalization of
class re�nement. When every Ii and Oi is the identity relation or the projection

13

and injection relations respectively, interface re�nement is specialized to class
re�nement. The interface re�nement relation has the basic properties required
of a re�nement relation, i.e. reexivity and transitivity.

Theorem 4. Let C;C0 and C00 be classes. Then the following properties hold:

1. C vId;Id C

2. C vI;O C0 ^ C 0 vI0 ;O0 C00) C vI0;I;O0 ;O C00

where the relational compositions I0; I and O0;O on tuples of relations are taken

elementwise.

Proof. The proof of (1) follows directly from reexivity of statement re�nement
by taking the abstraction relation R to be Id . To prove (2) we assume that
C vI;O C0 and C0 vI0;O0 C 00 hold for abstraction relations R and R0 respectively.
We then show that methods Mi;M

0

i and M 00

i of the corresponding classes C;C0

and C 00 have the property:

fR� Iig;Mi v M 0

i ; fR�Oig ^ fR0 � I0ig;M
0

i v M 00

i ; fR
0 � O0

ig)

f(R0;R)� (I0i; Ii)g;Mi v M 00

i ; f(R
0;R)� (O0

i;Oi)g

The proof of the property is as follows:

f(R0;R)� (I 0i; Ii)g;Mi v M 00

i ; f(R
0;R)� (O0

i;Oi)g

= lemma (P ;P 0) � (Q;Q0) = (P �Q); (P 0 � Q0)

f(R0 � I0i); (R� Ii)g;Mi v M 00

i ; f(R
0 �O0

i); (R�Oi)g

= homomorphism of angelic update statement fPg; fQg = fP ;Qg

fR0 � I0ig; fR� Iig;Mi v M 00

i ; fR
0 �O0

ig; fR�Oig

(assumption fR� Iig;Mi v M 0

i ; fR� Oig

fR0 � I0ig;M
0

i; fR�Oig v M 00

i ; fR
0 � O0

ig; fR� Oig

(assumption fR0 � I0ig;M
0

i v M 00

i ; fR
0 �O0

ig

M 00

i ; fR
0 �O0

ig; fR�Oig v M 00

i ; fR
0 � O0

ig; fR� Oig

= reexivity of statement re�nement

true

The proof of the corresponding property for constructors is similar. 2

Theorem 2 follows by specializing I and O appropriately.
As an example of interface re�nement consider our previous speci�cation

of transactions, accounts and banks. Suppose that facing the start of the new
century, we'd like to change the type of dates so that it's possible to specify a
four-digit year:

type NewDate = array [1::8] of Digit

Accordingly, we de�ne a new transaction record type NewTran which is the
same as Transaction except that the date �eld is now of type NewDate. We

14

construct a new class of accounts using NewTran transactions as shown in
Fig. 4.We omit speci�cations ofOwner andBalance methods which are straight-
forward, and a speci�cation of Withdraw, which is similar to that of Account
with a local variable of type NewTran rather than Transaction.

NDAccount = class

owner : Name; balance : Currency; transactions : seq of NewTran

NDAccount (name : Name; initSum : Currency) =
owner := name; balance := initSum; transactions := hi;

Deposit (sum : Currency; from : Name;when : NewDate) =
fsum > 0g; j[var t : NewTran � t := (from; owner; sum;when);
transactions := transactionsb hti; balance := balance + sum]j;

: : :

end

Fig. 4. Speci�cation of account based on NewTran

It can be shown that AccountP lus vI;O NDAccount , where
I = (Id � Id ; Id � Id � D; Id � Id � D; Id ; Id) and O = (Id ; Id ; Id ; Id). The
abstraction relation D : NewDate $ Date is de�ned so that for constants `1'
and `9' of type Digit and for any d : Date and d0 : NewDate:

D(d0)(d) = (d0[1::4] = d[1::4])^ (d0[5::6] = `1'`9') ^ (d0[7::8] = d[5::6])

Now let us consider how parameter abstraction relations can be used for
re�nement of clients of the interface re�ned classes. Interface changes in class
methods certainly a�ect clients of the class. Examining the ways the clients get
a�ected allows us to discover the situations when the clients can bene�t from the
interface re�nement of their server classes but need not be changed in any way.
We can also establish conditions under which the clients can be systematically
changed to use the re�ned server classes. For every OldClass and NewClass,
such that NewClass is designed as a re�nement of OldClass but speci�es a
di�erent interface, we distinguish two ways clients of OldClass can be a�ected
and changed.

5.1 Implicit Client Re�nement

This kind of client re�nement happens when it is impractical or impossible to
rede�ne clients of OldClass, but is, however, desirable that they work with
NewClass which may o�er a more e�cient implementation or improved func-
tionality to new clients, like in our example. We can implicitly re�ne clients by
employing a so-called forwarding scheme illustrated in Fig. 5 using the OMT
notation [23]. In this diagram the link with a triangle relates a superclass with

15

OldClass

Wrapper NewClass
impl

Fig. 5. Illustration of forwarding

a subclass with the superclass above. The link with a diamond shows an aggre-
gation relation, i.e. that Wrapper aggregates an instance of NewClass in the
attribute impl.

The idea behind such kind of forwarding is to introduce a subclass of
OldClass, Wrapper, which aggregates an instance of NewClass and forwards
OldClass method calls to NewClass through this instance. This has also been
identi�ed as a reoccuring design pattern by Gamma et al. in [11]. Clients of
OldClass can work with Wrapper, which is a subclass of OldClass, but have
all the bene�ts of working with NewClass if

OldClass v Wrapper and Wrapper vI;O NewClass

Consider again our example. The client Bank wants to use NDAccount but
cannot do so since the latter speci�es the interface di�erent from that speci�ed by
AccountP lus. We can employ the forwarding scheme by introducing in Fig. 6 a
new class AccountWrapper which aggregates an instance of NDAccount and for-
wards AccountP lus method calls to NDAccount via this instance. Speci�cations
of Withdraw and Balance are straightforward and we omit them for brevity.
The function ToNewDate (old : Date) : NewDate converts dates from the old
format to the new one. In fact, this function can be modeled by the statement
[D�1], where D : NewDate $ Date is as before. Provided that the necessary
proof obligations are discharged, clients of AccountP lus, such as Bank, are im-
plicitly re�ned to work with NDAccount via AccountWrapper.

AccountWrapper = subclass of AccountP lus

impl : �(NDAccount)

AccountWrapper (name : Name; initSum : Currency) =
impl:NDAccount(name; initSum);

Deposit (sum : Currency; from : Name;when : Date) =
fsum > 0g; j[var d : NewDate �
d := ToNewDate(when); impl:Deposit(sum;from; d)]j;

Owner () : Name = res := impl:Owner();
: : :

end

Fig. 6. Speci�cation of wrapper class for implicit interface re�nement

16

Wrapper = subclass of OldClass

impl : �(NewClass)

Wrapper (p :) = j[var e : 	 0 � [e := e0 � I�1

0
p e0]; impl:NewClass(e)]j;

Methi(gi : �i) : �i =
j[var ci : �

0

i ; di : �
0

i � [ci := c0i � I
�1

i
gi c

0

i];
di := impl:Methi(ci); fres := res0 � Oi di res

0g]j;
: : :

end

Fig. 7. Schema of wrapper class for implicit interface re�nement

Since wrapper classes are of a very speci�c form, proof obligations can be
considerably simpli�ed. Consider a typical wrapper class as given in Fig. 7. The
demonic speci�cation statements transform the input parameters of OldClass
to the input parameters of NewClass using the corresponding parameter ab-
straction relations Ii; i = 0; : : : ; n. Similarly, the angelic speci�cation statements
transform the output parameters of NewClass back to the output parameters
of OldClass. For the class Wrapper with such a structure, we have the following
theorem.

Theorem 5. For parameter abstraction relations I = (I0; I1; : : : ; In) and O =
(O1; : : : ; On) the following property holds:

OldClass vI;O NewClass) OldClass v Wrapper

The form of speci�cation statements gives insight into suitable restrictions
when choosing the parameter abstraction relations Ii and Oi. If I

�1
i is partial,

then the corresponding speci�cation statement can be magic and, thus, is not
implementable. Hence, Ii has to be surjective, i.e. relate all possible values of
the old input parameters to some values of the new input parameters. Likewise,
if Oi is non-deterministic (not functional), then the result res : �i is chosen
angelically, and is, therefore, not implementable. Hence Oi must be deterministic
(functional), i.e. relate values of the new result parameters di : �

0

i to at most
one value of the old result parameters res : �i.

5.2 Explicit Client Re�nement

This kind of client re�nement happens quite often in the process of object-
oriented development. After NewClass has been developed, using OldClass

may become impractical and undesirable, and therefore, a client OldClient of
OldClass should be explicitly changed to work with NewClass instead. We can
construct NewClient by re�nement fromOldClient. Unfortunately, there are no
guarantees that the interface of NewClient will conform to that of OldClient.
Accordingly, we must consider two cases, when NewClient is a subclass of
OldClient and when it is its interface re�nement.

17

When the object type � (OldClass) and the types causing the interface change
of OldClass to NewClass are not part of OldClient interface, the re�nement
of OldClient, NewClient, can be its subclass. In other words, NewClient can
specify the interface conforming to that ofOldClient. Naturally, every class using
OldClient can then use NewClient instead and is implicitly re�ned without
respeci�cation.

We feel that there is a strong connection between parameter abstraction rela-
tions with respect to which interface re�nement is de�ned and explicit re�nement
of clients of the re�ned classes. Investigating how clients can be explicitly re�ned
based on the parameter abstraction relations for the server classes remains the
topic of current research.

6 Conclusions

Our approach is suited for documenting, constructing, and verifying di�erent
kinds of object-oriented systems because of its uniform way of specifying a pro-
gram at di�erent abstraction levels and the possibility of stepwise development.
We have de�ned the class re�nement relation and the interface re�nement re-
lation which allow a developer to construct extensible object-oriented programs
from speci�cations and assure reliability of the �nal program.

Our model of classes, subclassing, and subtyping polymorphism can be used
to reason about the meaning of programs constructed using the separate sub-
classing and interface inheritance hierarchies, like in Java [13], Sather [26], and
some other languages. In that approach interface inheritance is the basis for
subtyping polymorphism, whereas subclassing is used only for implementation
reuse. By associating a speci�cation class with every interface type, we can rea-
son about the behaviour of objects having this interface. All classes claiming
to implement a certain interface must re�ne its speci�cation class. Subclassing,
on the other hand, does not, in general, require establishing class re�nement
between the superclass and the subclass.

For simplicity we consider only single inheritance, but multiple inheritance
does not introduce much complication. With a suitable mechanism for resolv-
ing clashes in method names, multiple inheritance has the same semantics as
we give for single inheritance. Namely, ensuring that a subclass D preserves
behaviour of all its declared superclasses C1; : : : ; Cn requires proving class re-
�nements C1 v D; : : : ; Cn v D for every corresponding superclass-subclass pair.

Using formal speci�cation and veri�cation is especially important for open
systems, such as object-oriented frameworks and component-based systems.
Frameworks incorporate a reusable design for a speci�c class of software and
dictate a particular architecture of potential applications. When building an ap-
plication, the user needs to customize framework classes to speci�c needs of this
application. To do so, he must understand the message ow in the framework
and the relationship among the framework classes. The intrinsic feature of open
component-based systems is a late integration phase, meaning that components

18

are developed by di�erent manufacturers and then integrated together by their
users.

A �ne-grained speci�cation can accurately describe the �xed behaviour of
classes. In this respect, such a speci�cation is a perfect documentation of a
framework or a component, because the user does not have to decipher ambigu-
ous, incomplete, and often outdated verbal descriptions. Neither is it necessary to
confront the bulk of source code to gain a complete understanding of the system
behaviour. The programming notation we use allows the developer to abstract
from implementation details and specify classes with abstract state space and
non-deterministic behaviour of methods, expressing only the necessary function-
ality. Moreover, a certain implementation can be a commercial secret, whereas
a concise and complete speci�cation distributed instead of source code enables
the user to understand the functionality and protects corporate interests.

Formal veri�cation in the form of establishing a class re�nement relation
between speci�cations and their implementations guarantees that any behaviour
expected from the speci�cations will be delivered by the implementations.

It has been acknowledged that frameworks are usually developed using a
spiral model that takes feedback from actual use of the framework into account.
It can be expected that such development iterations may result in an interface
change of some classes. In this case, interface re�nement can be used to verify
behavioural compatibility of the corresponding classes and the rules for interface
re�nement of clients can be used to re�ne the whole framework.

Acknowledgments

We would like to thank Ralph Back for a number of fruitful discussions and
Martin B�uchi for useful comments.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Theory and

Practice of Software Development: Proceedings / TAPSOFT '97, volume LNCS
1214, pages 682{696. Springer, April 1997.

3. P. America. Designing an object-oriented programming language with behavioral
subtyping. In J.W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foun-
dations of Object-Oriented Languages, REX School/Workshop, volume LNCS 489,
pages 60{90, New York, N.Y., 1991. Springer-Verlag.

4. R. J. R. Back. Correctness Preserving Program Re�nements: Proof Theory and
Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,
Amsterdam, 1980.

5. R. J. R. Back. Changing data representation in the re�nement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

6. R. J. R. Back and J. von Wright. Re�nement calculus I: Sequential nondetermin-
istic programs. In W. P. deRoever J. W. deBakker and G. Rozenberg, editors,
Stepwise Re�nement of Distributed Systems, pages 42{66. Springer-Verlag, 1990.

19

7. R.J.R. Back and M.J. Butler. Exploring summation and product operators in the
re�nement calculus. In B. M�oller, editor, Mathematics of Program Construction,
1995, volume LNCS 947. Springer-Verlag, 1995.

8. M. Broy. (Inter-)Action Re�nement: The Easy Way. In M. Broy, editor, Program
Design Calculi, pages 121{158, Berlin Heidelberg, 1993. Springer-Verlag.

9. L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471{522, 1985.

10. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through speci�ca-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering, pages 258{267, Berlin, Germany, 1996.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley, 1995.

12. P.H. Gardiner and C.C. Morgan. Data re�nement of predicate transformers. The-
oretical Computer Science, 87(1):143{162, 1991.

13. J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Sun Microsys-
tems, Mountain View, 1996.

14. J. He, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. In B. Robinet
and R. Wilhelm, editors, European Symposium on Programming, volume LNCS
213. Springer-Verlag, 1986.

15. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271{281, 1972.

16. K. Lano and H. Haughton. Reasoning and re�nement in object-oriented spec-
i�cation languages. In O. Lehrmann Madsen, editor, European Conference on
Object-Oriented Programming '92, volume LNCS 615. Springer-Verlag, 1992.

17. K. Lano and H. Haughton. Object-Oriented Speci�cation Case Studies. Prentice{
Hall, New York, 1994.

18. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811{1841, 1994.

19. C. C. Morgan. Data re�nement by miracles. Information Processing Letters,
26:243{246, 1988.

20. C. C. Morgan. Programming from Speci�cations. Prentice{Hall, 1990.
21. J. M. Morris. A theoretical basis for stepwise re�nement and the programming

calculus. Science of Computer Programming, 9:287{306, 1987.
22. D. A. Naumann. Predicate transformer semantics of an Oberon-like language.

In Ernst-R. Olderog, editor, Programming Concepts, Methods and Calculi, pages
460{480. International Federation for Information Processing, 1994.

23. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modelling and Design. Prentice Hall, Englewood Cli�s, 1991.

24. E. Sekerinski. Verfeinerung in der Objektorientierten Programmkonstruktion. Dis-
sertation, Universit�at Karlsruhe, 1994.

25. E. Sekerinski. A type-theoretic basis for an object-oriented re�nement calculus. In
S.J. Goldsack and S.J.H. Kent, editors, Formal Methods and Object Technology.
Springer-Verlag, 1996.

26. C. A. Szyperski, S. Omohundro, and S. Murer. Engineering a programming lan-
guage { the type and class system of Sather. In Proceedings, First Intl Conference
on Programming Languages and System Architectures, volume LNCS 782, Zurich,
Switzerland, 1994. Springer.

20

