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Abstract

In this paper we propose a novel approach to specification, development,
and verification of object-oriented frameworks employing separate interface
inheritance and implementation inheritance hierarchies. In particular, we il-
lustrate how our method of framework specification and verification can be
used to specify Java Collections Framework, which is a part of the standard
Java, Development Kit 2.0, and ensure its correctness. We propose to as-
sociate with Java interfaces formal descriptions of the behavior that classes
implementing these interfaces and their subinterfaces must deliver. Verify-
ing behavioral conformance of classes implementing given interfaces to the
specifications integrated with these interfaces allows us to ensure correctness
of the system.

The characteristic feature of our specification methodology is that the
specification language used combines standard executable statements of the
Java language with possibly nondeterministic specification statements. A
specification of the intended behavior of a particular interface given in this
language can serve as a precise documentation guiding implementation de-
velopment. Since subtyping polymorphism in Java is based on interface in-
heritance, behavioral conformance of subinterfaces to their superinterfaces
is essential for correctness of object substitutability in clients. As we view
interfaces augmented with formal specifications as abstract classes, verifying
behavioral conformance amounts to proving class refinement between spec-
ifications of superinterfaces and subinterfaces. Moreover, the logic frame-
work that we use also allows verification of behavioral conformance between
specifications of interfaces and classes implementing these interfaces. The
uniform treatment of specifications and implementations and the relation-
ships between them permits verifying correctness of the whole framework
and its extensions.

Keywords: formal specification, reasoning, object-oriented frameworks,
separate subtyping and subclassing, nondeterminism, correctness, verifica-
tion, class refinement, Java
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1 Introduction

One of the main characteristic features of object-oriented frameworks is the
extensibility, i.e., the ability of frameworks to call user extensions. In view of
this important characteristic it is critical to build user extensions which be-
haviorally conform to the part of the framework that they extend. Moreover,
frameworks themselves are usually build in a hierarchical manner, starting
with a certain basic functionality and specializing this functionality in vari-
ous directions to meet different demands. Naturally, behavioral conformance
also underlies this hierarchy, with the most general behavior at the top level
and specialized or refined behaviors at the lower levels. Verification of be-
havioral conformance both within a framework and between the framework
and its extensions is critical for ensuring correctness and reliability of the
resulting system.

In this paper we propose a specification and verification method sup-
porting development of provably correct object-oriented frameworks. The
method has been originally described in [19] in application to systems with
unified interface and implementation inheritance hierarchies. Here we fo-
cus on object-oriented frameworks employing separate interface inheritance
and implementation inheritance hierarchies and illustrate how our method
of framework development can be used to specify Java Collections Frame-
work (JCF) and ensure its correctness. Essentially, we propose to associate
with Java interfaces formal descriptions of the behavior that classes imple-
menting these interfaces and their subinterfaces must deliver. Interfaces
always have an informal semantics as expressed in their names and in the
names and parameter types of their methods, we just make this semantics
explicit and express it mathematically. Such formal specifications can be
distributed as part of the framework documentation, contributing to the
detailed understanding of its functionality and guiding extension develop-
ment. The characteristic feature of our specification methodology is that
the specification language used combines standard executable statements of
the Java language with possibly nondeterministic specification statements.
Every statement in this language has a precise mathematical meaning in the
refinement calculus as described in [19, 3]. In this paper we present only
informal explanations of the specification constructs used in specifications
of JCF interfaces.

Since subtyping polymorphism in Java is based on interface inheritance,
behavioral conformance of subinterfaces to their superinterfaces is essential
for correctness of object substitutability in clients. Our verification of behav-
ioral conformance is based on the notion of class refinement first described
in [19] and developed in [3]. One class (usually more abstract or nondeter-
ministic) is refined by another class (usually more concrete or deterministic)
if the externally observable behavior of the first class is preserved in the
second class while decreasing nondeterminism. For a detailed description of



refinement in the refinement calculus we refer to [21, 5]. Class refinement
per se is based on data refinement [14, 12, 20, 4] which takes place when
a state space is changed in a refinement step. An extensive collection of
“high level” refinement laws that has been developed within the refinement
calculus permits verification of class refinement in practice, and mechanical
verification tools that are currently being developed [8] open the possibility
of mechanized verification.

As we view interfaces augmented with formal specifications as abstract
classes, verifying behavioral conformance amounts to proving class refine-
ment between specifications of superinterfaces and subinterfaces. Moreover,
the logical framework that we use also enables verification of behavioral con-
formance between specifications of interfaces and classes implementing these
interfaces: class refinement must be established between the specification
and the implementation classes. The uniform treatment of specifications
and implementations and the relationships between them permits us to ver-
ify correctness of the original framework and then prove that user extensions
preserve this correctness, ensuring in this way the correctness of the whole
system.

The paper is organized as follows. In Sec. 2 we describe Java Collections
Framework which we use to illustrate our approach, specify the interface
Collection with its Iterator and the subinterface of Collection, List, with its
Listlterator. Our specifications are entirely based on informal descriptions
of the interface semantics as described in [6], and we reflect on the clarity and
preciseness of these descriptions. In Sec. 3 we explain the notion of class re-
finement, present a number of refinement laws, and demonstrate verification
of class refinement between the specifications of Iterator and Listlterator.
Finally, in Sec. 4 we draw some conclusions, and describe future work.

Notation. We use simply typed higher-order logic as the logical framework
in the paper. The type of functions from a type ¥ to a type I' is denoted
by ¥ — T" and functions can have arguments and results of function type.
Functions can be described using A-abstraction and we write f z for the
application of function f to argument z. Whenever necessary to clarify the
argument in the application of a function, especially in the case when the
argument is a tuple of elements, we also use brackets around the argument,
writing f(x).

The use of equality and assignment symbols deserves special attention.
The Java language uses = to denote assignment and == to denote equality
of two values, and we will follow this convention in specifications. How-
ever, being reluctant to redefine the symbol = traditionally used to denote
mathematical equality, we will also use it in logical formulas and defini-
tions, clarifying the intended meaning when necessary. In particular, we
will use = rather than == to represent logical equality on right-hand sides
of definitions and between the two parts of equational rules.
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boolean isEmpty();

boolean contains(Object €);

boolean add(Object €);

| SortedM ap | | Set | | List | boolean remove(Object e);

Iterator iterator();

boolean containsAll(Collection c);
boolean addAll(Collection c);

@ boolean removeAll(Collection c);

boolean retainAll(Collection c);

void clear();

Object[] toArray();

Object[] toArray(Object a[]);

Figure 1: Collection hierarchy

2 Specifying Java Collections Framework

As was stated in the description of JCF [6], “A collections framework is
a unified architecture for representing and manipulating collections.” This
particular framework contains three parts: interfaces, implementations, and
algorithms. In this paper we focus on the interfaces, formalizing their in-
formal descriptions as given in [6] and studying behavioral conformance
between formal specifications of interfaces and formal specifications of their
subinterfaces as we define them. The following description of JCF is based
on [6].

The interfaces at the core of JCF form a hierarchy as shown in Fig. 1.
The root of the hierarchy, the Collection interface, represents a group of
objects, known as its elements. Collection is used to pass collections around
and manipulate them when maximum generality is desired. Some Collection
specializations allow duplicate elements and others do not. Some are ordered
and others are not. For example, Set is an unordered collection that cannot
contain duplicate elements, and List is an ordered collection that can contain
duplicates.

2.1 Specifying the Collection Interface

In the Collection interface the method names suggest the intended func-
tionality, for example, the method size returns the size of the underlying
collection. The interface type Iterator returned by the method iterator is
used to access collection elements and structurally modify the collection.
In Fig. 2 we illustrate the hierarchy formed by Iterator and its subinterface
Listlterator. The methods hasNext, next, and remove check whether there
are more elements in the collection, return the next element, and remove
the current element respectively. The description of JCF states that the be-
havior of an iterator is unspecified if the underlying collection is structurally
modified while the iteration is in progress in any way other than by calling
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Object next ();
void remove ();

Listlterator

Figure 2: Iterator hierarchy

the method remove.

To specify the behavior of Collection methods we must model the under-
lying data structure the methods operate on. It appears to be rather natural
to model this data structure by a bag (multiset) of Object' elements, as we
want the collection to contain polymorphic elements, possibly duplicated or
unordered. Furthermore, to specify the history of structural modifications,
we will use an integer attribute modified which will be increased whenever
elements are added to the original collection or removed from it. We begin
with specifying the data attributes, the constructor, and the basic operations
of Collection as follows:

public interface Collection {

bag of Object elems;
int modified;
Collection() {

elems, modified = ||, 0;
}
int size() {

return min(#elems, Integer. MAX_VALUE);
}
boolean isEmpty() {

return (#elems == 0);
}
boolean contains(Object o) {

return (o € elems);
}
boolean add(Object o) {

boolean r|r == false;

if (o € elems){

choose {skip; }
or {elems, modified,r = elems + |o|, modified + 1, true; };

}

else {elems, modified,r = elems + |o|, modified + 1, true; };

Tn Java the standard class Object is a superclass of all other classes, and a variable of
type Object can hold a reference to an object of any other type.



return 7
}
boolean remove(Object o) {
boolean r|r == false;
if (o € elems){
elems, modified = elems \ o, modified + 1;
r = true;
}
return 7
}
Iterator iterator() {
Iterator i = new Iterator(this);

return ¢;

}

In this specification highlighted in bold is the original Collection interface
and the rest is the precise description of the intended behavior. The behavior
of the constructor and the methods is specified in terms of operations on
bags and integers, with # returning the number of elements in a bag, €, +,
and \ representing containment of an element in a bag, bag summation,
and element removal respectively:

#b = D ecbe

echb = be>0
b1 +be = (Ae*bie+be)
b\a = (le*(e=a)?max((be—1),0):be)

As bags are functions from elements to the number of their occurrences,
function application b e returns the number of elements e in the bag b. In
the last definition the equality on the right-hand side of definition sign =
is the logical equality. The conditional expression b?e; : ey is equal to the
expression e; if the boolean condition b holds and to ey otherwise.

Finally, the statement choose S; or ... or S,, used in the specifica-
tion of the method add, represents a nondeterministic choice between the
alternatives S; through S,,.2

Although the specifications of the constructor and the methods intu-
itively are quite straightforward, a few points are of interest here. First of
all, assignment of a bag to a variable of type bag of Object, as in the con-
structor, results in the corresponding variable containing the value which

’Dijkstra’s nondeterministic choice statement is usually written as Si] ... [ S, or
SiM...M8y,, eg. in [10, 5]. Here we use the syntax choose S; or ... or S, instead
because we believe that it improves readability.



is equal to the value being assigned, in this case |||, with equality on bags
defined as follows:

bl==02 = (Ve*ble = b2e)

The description of method contains in [6] states that this method “re-
turns true if and only if this Collection contains at least one element e such
that (o == null 7 e == null : o.equals (¢))”. Looking up the description
of method Object.equals, we see that “for any reference values z and y, this
method returns true if and only if z and y refer to the same object (z ==
has the value true)”. Our specification states that the object reference o, be
it a null or a non-null value, is one of the elements in the bag elems, which
directly corresponds to the above description, still being more succinct and
concise.

The description of method add states that it ensures that the current
Collection instance contains the specified element, returning true if Collection
changed as a result of the call and false if it does not permit duplicates and
already contains the specified element. The nondeterministic choice opera-
tor choose used in our specification allows us to express these variations in
the behavior succinctly and precisely: if the element to be added is already
present in the current instance of Collection, this element can either be
added to Collection or the addition of the element can be skipped, with the
choice between the options made nondeterministically. When the element
is not present, it is necessarily added to Collection. The declaration and
initialization of a local variable r is equivalent to the declaration followed by
assigning 7 the boolean value false. Further on in specifications we will use
this kind of initialization along with nondeterministic initialization where a
local variable is initialized according to some predicate.

The method remove is described as an operation removing an element e
such that (o == null 7 e == null : o.equals (e)), if Collection contains one
or more such elements. Further it is stated in [6] that this method “returns
true if the Collection contained the specified element (or equivalently, if the
Collection changed as a result of the call)”. In our specification we stipulate
that if o is present in Collection at least once, its number of occurrences is
decreased by one and the method returns true.

The iterator returned in the identically named method of the Collection
interface is constructed by calling the constructor Iterator and passing it
the reference to the current instance of Collection. Although Iterator is
just an interface which cannot be used to produce instances, we provide
its formal specification in the same way as for Collection, and by giving
the specification of Iterator’s constructor, we define the precise meaning of
its invocation in the method Iterator of Collection. An implementation of
Iterator will have to define its own constructor, and an implementation of
Collection will then return an instance created by this constructor in the
method Iterator.
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Figure 3: Simultaneous modification of a collection by different iterators

Before presenting a formal specification of the Iterator interface, let us
consider a collaboration between a collection and iterators attached to it.
As described in [6], “Iterator.remove is the only safe way to modify a col-
lection during iteration; the behavior is unspecified if the underlying col-
lection is modified in any other way while the iteration is in progress.”
Obviously, this description is rather ambiguous, because it is unclear the
behavior of which methods is unspecified, and how modifications are be-
ing monitored, and what it means for an iteration to be in progress. To
get an intuitive understanding of object interaction in this case, let us con-
sider Fig.3. Suppose that two iterators ¢; and ¢o are used to iterate over
a collection implemented as a list, as shown in Fig.3(a). Now, if we exe-
cute ig.next();i1.next(); i1.remove(), the iterator iz will be indexing a non-
existing list element, as shown in Fig. 3(b). Further invocations of methods
on 39 will produce erroneous results or simply abort. However, the itera-
tor i1, which has carried out the structural modification of the underlying
collection, will continue to work correctly. Accordingly, we have to specify
the conditions under which iterators can be sure that the underlying data
structure hasn’t been structurally modified. The data attribute modified of
Collection can be used for this purpose. Maintaining in Iterator an invariant
that its own modified data attribute is equal to the one of the underlying
Collection, helps solve the problem. Furthermore, the description of method
remove states that this method can be called only once per call to nezt. To
reflect this requirement in the specification, we maintain a data attribute
canRemove and set it to true after resetting the next element and to false
after removing the current element. The interface Iterator can, therefore,
be specified as follows:

public interface Iterator {
Collection col;
bag of Object current;
boolean canRemove;
int modified;
Object next;

invariant T == col !=null A
(canRemove = next € current)
interclass invariant intI == current C col.elems A

modified == col.modified

7



Tterator Collection ¢) {
assert ¢ != null;
col, current, canRemove, modified, next = ¢, ||, false, c.modified,, null;
}
boolean hasNext() {
return current C col.elems;
}
Object next() {
assert current C col.elems;
[next = e|e € (col.elems \ current)];
current, canRemove = current + |next|, true;
return next;
}
void remove() {
assert canRemove;
col.elems, col.modified = col.elems \ next, col.modified + 1;
current, canRemove, modified = current \ nest, false, modified + 1;

next = null;

}
}

As elements in a bag cannot be indexed, we use the data attribute current
to store the elements of the underlying collection that have been returned
by the method nezt in the current iteration. The attribute nezt stores the
element returned by the last call to the method next. The class invari-
ant I states that the iterator is always attached to an existing collection
(col '= null) and that the next element to be removed is one of the elements
currently “indexed” (canRemove = nezt € current). This class invariant
holds of all Iterator instances during their whole life cycle, being established
by the constructor and preserved by all the methods. Apart from the class
invariant, Iterator maintains another invariant int/ which captures the in-
variance in relation between the attributes of Iterator and the attributes
of Collection that it aggregates, stating that the elements returned by the
method nezt are always in the underlying collection (current C col.elems)
and that structural modifications made so far have been made by the current
instance of Iterator (modified == col.modified). This invariant is different
from the class invariant proper in that it is maintained mutually by Iterator
and Collection. We choose to call this invariant “interclass invariant” to re-
flect that, on the one hand, it is an invariant established by the constructor
and preserved by all the methods of Iterator, and, on the other hand, it is
the predicate which cannot be assumed to hold of all Iterator instances at
all times because Iterator alone cannot guarantee its preservation between
method calls to its methods. In other words, creating an instance of Iterator
through calling the constructor establishes int/, and, although there are no



guarantees that intl holds at all moments in a life cycle of this instance, if
it does then a call to any method of Iterator will preserve it. Note that the
methods add and remove of Collection break intl which suggests potential
behavioral problems with structural modification of the underlying collec-
tion by different iterators. The interclass invariant of a particular Iterator
instance will be preserved only if this instance is used by the underlying
collection to structurally modify itself through calls to Iterator methods. In
this respect, the fact that Collection has the method add, while Iterator
does not, might indicate the possibility of inadequate framework design.

Bertrand Meyer in [17] discusses the problem of interclass invariants,
although in a slightly different setting with two classes maintaining mutual
references to each other, and proposes to do run-time monitoring of these
invariants, effectively adding them to pre- and post-conditions of methods in
the classes whose attributes are related through such invariants. We define
the semantics of the interclass invariant construct similarly, by adding it as
the implicit assert condition in the end of the class constructor and the
implicit assume \ assert conditions in, respectively, the beginning and the
end of every class method. Proving consistency of a class with respect to its
class invariant and interclass invariant amounts to verifying that both kinds
of invariants are established by the class constructor and preserved by all
its methods.

The additional operations on bags used in the specification of Iterator
are defined as follows:

blgbg = (Ve'blegbge)
b1 Cby = by Cby A #b1 < #bo
bl\ b2 = ()\6 ° max((b1 6—b2 6), 0))

Apart from standard Java language constructs we use the multiple assign-

ment statement zi,...,z, = ei1,...,e, which stands for a simultaneous
assignment of expressions e1, ..., e, to variables z1,...,x, respectively. As-
suming that z1,...,2, do not occur free in ey, ..., e,, multiple assignment

can always be rewritten as a sequential composition of the corresponding in-
dividual assignments in arbitrary order. Moreover, we use two specification
statements, assertion and nondeterministic update. The assertion statement
assert p, where p is a boolean-valued expression, skips if p holds in a cur-
rent state and aborts otherwise.> The nondeterministic update [z = z' | ]
assigns z a value z’ satisfying a boolean condition b; if such a value cannot
be found, the execution stops.

The assertion assert ¢ != null stipulates that the constructor creates a
new Iterator instance only under the condition that the collection referred

3The syntax of the assertion statement is different in [5] where the semantics of this
statement is defined; it is written as {p} instead of assert p that we use here. Using the
syntax {p} to denote assertions in Java specifications would be confusing, as the curly
brackets are used to delineate blocks.



by c is some existing object, otherwise the constructor aborts. The method
next returns a next object in the underlying data structure only under the
condition that the end of the structure hasn’t been reached, as expressed
in the assertion assert current C col.elems. Note that the element to be
returned by this method is chosen nondeterministically from the elements
in the underlying collection that haven’t been returned by nezt in the current
iteration run. This element is added to the bag of currently iterated elements
current and the boolean flag canRemove is set to true, permitting removal
of the next element. In turn, the method remove agrees to remove the next
element only if canRemove holds in a state, encoding the requirement that
remove can be called only once per call to nezt.

Note that in the specification of Iterator we directly modify data at-
tributes of the aggregated collection col. Normally, in object-oriented pro-
gramming such practice is rightfully criticized for breaking encapsulation
and is recommended against. In specifications, however, we will permit such
direct access and modification because this significantly simplifies specifica-
tions, as there is no need to specify the behavior solely in terms of method
calls on the aggregated objects. There is no danger of breaking encapsu-
lation because implementations can (and usually will) use completely dif-
ferent attributes for achieving what is required in the specification, and in
the implementations direct access to data attributes of another class will be
completely eliminated and substituted with method calls preserving encap-
sulation.

Now we can continue with specifying the bulk operations of Collection
as follows:

public interface Collection {

boolean containsAll(Collection c) {
assert ¢ != null;

return c.elems C elems;

}

boolean addAll(Collection c) {
assert ¢ I= null A (c == this = c.elems == |]);
bag of Object old,int cm | old == elems A cm == c.modified;
[elems, modified = e,m|e == elems + c.elems A

m > modified A c.modified == cm];

return old = elems;

}

boolean removeAll(Collection c) {
assert ¢ = null A (c == this = c.elems == ||);
boolean r,int cm |r == false A cm == c.modified;

if (Je e €c.elemsAe € elems) {
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[elems, modified = e, m | e == elems \ toSet(c.elems) A
m > modified A c.modified == cm];
r = true;
b
return 7
}
boolean retainAll(Collection c) {
assert ¢ = null A (c == this = c.elems == ||);
boolean r,int cm |r == false A cm == c.modified;
if (3e * e € c.elems Ae € elems) {
[elems, modified = e,m | e == elems \ toSet(elems \ toSet(c.elems)) A
m > modified A c.modified == cm];
r = true;
b
return 7
}
void clear() {
elems = ||;
[modified = m|m > modified];
}
}

The specification of method containsAll is quite straightforward: under
the condition that the reference to the incoming Collection is non-null this
method returns true if all elements in the incoming Collection are present
in the current instance of Collection. Note that in the specification it is
assumed that the incoming Collection is an instance of the specification
class Collection whose attribute elems is a bag of Object elements. The
behavior of this method in the case when an instance of some other class
implementing the interface Collection is passed as input is underspecified.
The implementation of containsAll will have to be polymorphic and deliver
the behavior as specified in Collection.containsAll regardless of the dynamic
type of the input argument.

The informal description of method addAll states that the behavior of
this operation is undefined if the incoming Collection is modified while the
operation is in progress. To express this restriction in the specification, we
use the local variable ¢cm to keep the number of modifications made to ¢ up to
the moment it was passed as input to addAll. Elements of ¢ are guaranteed
to be added to the current Collection only if cm remains equal to c.modified
during the whole operation. Also it is mentioned in [6] that the behavior
of addAll is undefined if the incoming Collection is the current instance
of Collection and is nonempty. We address this restriction by stating the
corresponding assertion in the beginning of the method specification.

11



Note how this specification of addAll uses specification constructs to
express the required complex functionality. On the one hand, we avoid
unnecessary details, such as checking whether the current Collection gets
modified as a result of each call to add and simply return the result of
comparing the original bag with the resulting one. This specification is inef-
ficient but it succinctly and clearly captures the intended behavior. On the
other hand, we do not oversimplify the specification sacrificing preciseness:
writing just elems = elems + c.elems would certainly make the specification
of this method shorter, but wouldn’t express the necessary requirement that
the collection ¢ cannot be modified during the addition. An implementation
of addAll will add elements iteratively, and in order to meet the requirement
about non-modification of ¢ it will have to check that this requirement is
satisfied before adding each element of c.

Surprisingly, the informal description of method removeAll does not stip-
ulate the requirement that the incoming collection ¢ cannot be modified dur-
ing its execution. However, based on the statement that “After this call re-
turns, this Collection will contain no elements in common with the specified
Collection” we can justify the need for such a requirement. Suppose that,
while iterating over c, an element which already has been removed from the
current Collection is added again to c¢ before the iterator used in removeAll.
When the execution of removeAll completes, the current Collection will still
have some elements in common with ¢. Similarly the result of removeAll
can be undefined if some elements of ¢ are externally removed during the
iteration. It is also easy to see that the behavior of this method becomes
undefined if the current Collection is passed to it as an input argument.
In the specification we address all these requirements using the correspond-
ing assertions and the nondeterministic assignment statement. The latter
states that the new value assigned to elems is equal to the difference be-
tween the current Collection and the set obtained from converting the bag
of elements in ¢; in addition, it is stipulated that ¢ does not undergo any
structural modifications: its modified attribute remains unchanged. The
function toSet used in this specification is defined for a bag b as follows:

toSet(b) = {e|be>0}

The function returning the difference between a bag b and a set s is given
as follows:

b\s = (Xe*(e€s)?0:be)

In the specification of method retainAll we state that the new value as-
signed to elems contains only the elements that are common to the original
bag elems and the incoming c.elems. The same non-modification require-
ments as in removeAll are imposed on ¢ for similar reasons. Finally, the
method clear results in assigning to elems the empty bag |].

12



The next two methods to be specified deal with converting Collection
to an array. The first method toArray is described in [6] as one return-
ing an array containing all of the elements in the current Collection. It is
stated that “the returned array will be ’safe’ in that no references to it are
maintained by Collection”. As such this is a rather vague description of the
behavior, because it is unclear whether elements of the original collection
are copied to the returned array by reference or by value. When writing a
formal specification we must address this issue, and we choose to copy the
collection elements by value rather than by reference, which appears to be
safer than copying by reference.

The behavior of the second toArray method is described as follows: “Re-
turns an array containing all of the elements in this Collection, whose run-
time type is that of the specified array. If Collection fits in the specified ar-
ray, it is returned therein. Otherwise, a new array is allocated with the run-
time type of the specified array and the size of this Collection. If Collection
fits in the specified array with room to spare (i.e., the array has more ele-
ments than Collection), the element in the array immediately following the
end of the collection is set to null.” We specify the two array conversion
methods as follows:

public interface Collection {

Object[] toArray() {
Object[]la = new Object|[#elems];
bag of Object be|be == elems;
for (i =0;i < #elems;i =1+ 1) {
[a[i],be = a,b|la ¢ be A (3a’ * a' € be A at==a"t Ab==be\d']
};
return a;
}
Object[] toArray(Object af]) {
Class typeOfArray = a.getClass().getComponent Type();
bag of Object be|be == elems;
if (a.length() < #elems) {
Object[]c = new typeOfArray[#elems];
for (¢ = 0;i < #elems;i =i+ 1) {
[c[i],be =c,blc¢be A (3c' * ¢ €be A ct==ct A
b==be\c A c.getClass() == typeOfArray)]
};
return c;
}
else {
for (¢ = 0;i < #elems;s =i+ 1) {

13



[a[i],be = a,b|a ¢ be A (Fa' * o’ €Ebe A at==da"t A
b==be\a A a.getClass() == typeOfArray))

b

a[f#elems] = null;

return a;

b
}
}

One interesting point to note here is the use of method invocations
getClass and getComponentType. Although the precise definitions of these
methods, supported by the array interface, are not available, we include
these method invocations in the specification of method toArray to indi-
cate that these methods should be called in implementations of Collection.
Being partial, such a specification of the behavior of toArray is neverthe-
less very useful, as it succinctly describes the intended actions and guides
implementation development.

This concludes our specification of Collection and now we can specify
the interface List which extends Collection.

2.2 Specifying List and ListIterator

A List is an ordered Collection sometimes called a sequence. In addition
to the operations inherited from Collection, the interface List includes op-
erations for positional access, search for a specified object in the list, list
iteration, and range operations on the list. In addition to the ordinary
Iterator, List provides a richer Listlterator that allows one to traverse the
list in either direction, modify the list during iteration, and obtain the cur-
rent position of the iterator. The interfaces of List and Listlterator are
shown in Fig. 4.

[Collection |———»fint size(); Iterator | boolean hasNext (;
boolean isEmpty(); Object next ();
void remove ();

l Set l l List }—P ListIterator listiterator(); Listlterator |—> boolean hasPrevious();
Listlterator listlterator (int i); Object previous();
int indexOf(Object 0); int nextl ndex();
int lastl ndexOf(Object 0); int previousl ndex();

SortedSet] List subList(int from, int to); void set(Object 0);
Object get(int i); void add(Object o);
Object set(int i, Object 0);
void add(int i, Object 0);
Object remove(int i);
boolean addAll(int i, Collection c);

Figure 4: List and ListIterator interfaces
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It appears to be natural to model the underlying data structure of List
by a sequence of Object elements. As before, to specify the history of struc-
tural modifications, we will use an integer attribute modified which will be
increased whenever elements are added to the original list or removed from
it. We begin with specifying the data attributes, the constructor, and the
operations inherited from Collection:

public interface List extends Collection {
seq of Object elems;
int modified;
List() {
elems, modified = (), 0;
}
int size() {
return min(#elems, Integer. MAX_VALUE);
}
boolean isEmpty() {
return (#elems == 0);
}
boolean contains(Object o) {
return (o in elems);
}
boolean add(Object o) {
elems, modified = elems ™ (o), modified + 1;
return true;
}
boolean remove(Object o) {
boolean r|r == false;
if (o in elems){
[elems = e| (31,12 *
Ii7 (o) "la=clems A ~(0oinli) A1 la =e)];
modified = modified + 1;
r = true;
}
return 7
}
Iterator iterator() {
Iterator i = new ListIterator(this);

return ¢;
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Specifications of the constructor and the methods size, isEmpty, and
contains are quite straightforward with the membership operation in on
sequences defined as follows:

einl = (FN|0<i<#leli]=e¢)

To improve readability we use the notation [[7] rather than the function
application [ % to represent the i’th element of the sequence .

The method add appends the specified element to the end of List,
whereas the method remove removes the first occurrence of the specified
element from List. The iterator returned by the identically named method
is an instance of Listlterator which is an extension of Iterator. In addition to
the methods of Iterator, Listlterator provides methods allowing positional
access through an index.

The bulk operations and the array conversion operations of List are
specified similarly to those of Collection:

public interface List extends Collection {

boolean containsAll(Collection ¢) {
assert ¢ != null;
return c.elems C toBag(elems);
}
boolean addAll(Collection c) {
assert ¢ = null A (c == this = c.elems == ());
seq of Object old,int cm | old == elems A c¢cm == c.modified;
[elems, modified = e,m | 3¢’ *
toBag(e') == c.elems A e == elems e’ A
m > modified A c.modified == cm];
return old != elems;
}
boolean removeAll(Collection c) {
assert ¢ = null A (c == this = c.elems == ());
boolean r,int cm |r == false A cm == c.modified;

if (Je * e € c.elems Aein elems) {

[elems, modified = e,m|e == remAll(elems, toSet(c.elems)) A
m > modified A c.modified == cm)];
r = true;
b
return 7;
}
boolean retainAll(Collection c) {
assert ¢ = null A (c == this = c.elems == ());
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boolean r,int cm|r == false A cm == c.modified;
if (3e * e €c.elems Ae € elems) {
[elems, modified = e, m |
e == remAll(elems, toSet(elems) \ toSet(c.elems)) A
m > modified A c.modified == cm];
r = true;
b
return 7;
}
void clear() {
elems = ();
[modified = m|m > modified];
}
}

The specifications of array conversion methods are similar to those of Collection
and we omit them for the lack of space. The function toBag used in the
specifications of methods containsAll and addAll is given as follows:

[ it =)
toBag(l) = { toBag(front) + |e] if I = front = (e)

The function remAll used in the specifications of methods removeAll and
retainAll is given as follows:

() if 1 =)
remAll(l,s) = remAll(front, s) ifl =front " (e) Ne€s
remAll(front, s)” (e) ifl =front"(e) Neé¢s

Before proceeding with the specification of the new methods of List,
let us present the specification of Listlterator. In this specification we use
[[f..t] to denote a subsequence of the given sequence [ between indices f
and ¢ inclusive. We define this function to be total, returning a subsequence
starting at index f and ending at index t, if these indices are such that
0 < f <t < #1, returning part of the sequence within range f..#[ — 1 if the
lower index f satisfies 0 < f < t but the upper index t is greater than #{—1,
and returning an empty sequence if the indices f and ¢ are misplaced in some
way, being in the wrong order or reaching outside the bounds 0..#] — 1.

{1t fo< f=t<+#l
4 = I[f.t—1]"([t) fO< f<t<#l
Ut =3 =1 1> -1

() otherwise

The specification of ListIterator can now be given as follows:
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public interface ListIterator extends Iterator {
List lst;
int ind;
boolean canModify;
int modified;
invariant J == st != null

interclass invariant intJ == —1 < ind < #lst.elems A
(canModify = 0 < ind < #lst.elems) A
modified = lst.modified

ListIterator (List 1) {

assert | != null;

Ist, ind, modified, canModify = 1, —1,l.modified, false;
}

boolean hasNext() { boolean hasPrevious() {
return ind < #lst.elems — 1; return ind > 0;

} }

Object next() { Object previous() {
assert ind < #lst.elems — 1; assert ind > 0;
ind, canModify = ind + 1, true; ind, canModify = ind — 1, true;
return Ist.elems[ind]; return Ist.elems[ind];

}

int nextIndex() { int previousIndex() {
return min (ind + 1, #lIst.elems); return max (ind — 1, —1);

} }

void remove() {
assert canModify;
Ist.elems = Ist.elems[0..ind — 1]
Ist.elems[ind + 1..#tst.elems — 1];
ind, modified, canModify = ind — 1, modified + 1, false;
Ist.modified = modified;
}
void set(Object o) {
assert canModify;
Ist.elems[ind] = o;
}
void add(Object o) {
ind = ind + 1;

[Ist.elems = 5| 381,82 * s == 81" {0) 82 A
Ist.elems == 51" s2 A s[ind] == o];
canModify, modified = false, modified + 1;

lst.modified = modified;
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Just as Iterator is used to iterate over its aggregated Collection, Listlterator
is used to iterate over List. The class invariant J of Listlterator states that
at all times it aggregates a non-null reference to a List instance. In addition,
the interclass invariant intJ states that the integer-valued index ind is used
to iterate over Ist.elems and can range in the interval [—1..#[st.elems], with
valid index values being in the interval [0..#Ist.elems — 1]. The data field
canModify is similar to canRemowve of Iterator and is used to regulate the
order of calls to next and previous before calls to remove, add, and set.
Finally, the data field modified is used to regulate structural modifications
made to the underlying list.

In the description of List interface in [6] the index is said to always be
between two elements, the one that would be returned by a call to previous
and the one that would be returned by a call to next. With this layout
the index has n + 1 valid positions for the list of size n, starting with 0
and ending with n. In our opinion this intuitive picture is somewhat con-
fusing, especially in the two boundary cases when the index is before the
first element or past the last one. In fact, this layout is so confusing that
we have found contradicting descriptions of method behavior. For example,
in the section describing the interface List the method nextInder is said
to return list.size() + 1 when the cursor is after the final element, whereas
in the documentation describing Listlterator proper it is stated that this
method “returns list size if the list iterator is at the end of the list”. Ap-
parently, the confusion arises because of the ambiguity of the valid values
of the index pointing between elements rather than at elements. With our
specification the index positions —1 and #lIst.elems are boundary, whereas
if the index ind is in the interval [0..#lst.elems — 1] inclusive, it points to
the elements Ist.elems|[0] through Ist.elems[#lst.elems — 1]. Having decided
on the relationship between the index and the list elements, we can spec-
ify the behavior of Listlterator constructor and methods unambiguously.
Namely, in the constructor the index is set to the boundary position —1.
The methods next and previous first check that moving the index to the
next (previous) position would not take it outside the bounds, then incre-
ment (decrement) it and return the currently indexed list element. The
method nezxtInder returns the minimum between ind 4+ 1 and the size of
the list, whereas the method previousIndex returns the maximum between
ind — 1 and the boundary value —1. Obviously, the specifications of these
methods are not only unambiguous but also very concise.

The specifications of methods remove and set are quite straightforward
but the specification of add is worthy of a few comments. Let us first
consider it description in [6]: ”The element is inserted immediately before
the next element that would be returned by next, if any, and after the next
element that would be returned by previous, if any. (If the list contains
no elements, the new element becomes the sole element on the list.) The
new element is inserted before the implicit index: a subsequent call to next
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would be unaffected, and a subsequent call to previous would return the new
element. (This call increases by one the value that would be returned by a
call to nextIndex or previousIndex.)” The first sentence in this description
is somewhat equivocal because it is unclear whether the element is inserted
before the next element that would be returned by next if the inserted
element wouldn’t have been inserted, or it is inserted before the next element
that would be returned by nezt if we call next after a call to add. In the
first case, the result of add should be insertion of the new element into the
position after the implicit index, whereas in the second case, the element
returned by the method nezt depends not only on the position where the
new element is inserted but also on the position where the implicit index
is placed as the effect of add. Only the following sentences clarify that the
intention is to place the new element into the position “before the implicit
index”.

Now that we know the exact behavior of Listlterator, we can proceed
with specification of List operations for positional access, search, and range
extraction.

public interface List extends Collection {

ListIterator listIterator() {
ListIterator itr = new ListIterator(this);
return 4tr;

}

ListIterator listIterator(int i) {
assert 0 < ¢ < #elems;

ListIterator itr = new ListIterator(this);
itr.and = 1;
return str;

}

int indexOf(Object o) {
return min ({7 | elems[i] == o} U {—1});

}

int lastIndexOf(Object o) {
return max ({i | elems[i] == o} U {—1});

}

List subList(int from, int to) {
assert 0 < from < to < #elems;
seq of Object s|(Vi|from < i < to * elems[i] == s[i — from]);
List sub = new List();
sub.elems, sub.modified = s, 0;

return sub;
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Object get(int i) {
assert 0 < ¢ < #elems;
return elems|[i];

}

Object set(int i, Object o) {
assert 0 < i < #elems;

Object s|s == elems][i];
[elems = e|Ts1,52 * elems == 517 (s) 82 A #51 ==14 A e ==s51" (0)  s2];
return s;

}

void add(int i, Object o) {
assert 0 <1 < #elems;
[elems = e|Ts1,82 * elems ==s1" 82 A #s1==1 A e==1s51_ (0)  82];
modified = modified + 1;
}
Object remove(int i) {
assert 0 < ¢ < #elems;
Object o | o == elems][i];
[elems = e| 381,82 = elems == 817 (0) 82 A #s1 ==1i A e == 81~ 82];
modified = modified + 1;
return o;
}
boolean addAll(int i, Collection c) {
assert 0 <14 < #elems A (c == this = c.elems == ||);

Tterator itr = c.iterator();

int cm, seq of Object s,0ld|s == () A old == elems A cm == c.modified;

while (itr.hasNezt()) {s = s itr.nezt(); };

[elems, modified = e, m | (351,82 * elems == 817 82 A #s1==14 A
e==151" 8 s2) A m > modified A c.modified == cm];

return old = elems;

The first two methods construct new Listlterator instances, setting their
indices to —1 and the specified index ¢ respectively. The next two methods
indezOf and lastIndexOf return the indices of the first and the last occur-
rence of the specified element in the current List, or —1 if it does not contain
this element. We specify these methods by saying that the returned index
is, respectively, the minimal and the maximal element of the set containing
all indices at which the list element is equal to the specified element or —1,
if this set is empty. The description of method subList, whose specification
is given next, states that the returned list is a portion of the current List
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between the specified from index, inclusive, and to index, exclusive. We
specify this behavior by constructing a subsequence s of elems such that the
elements of s are equal to the elements of elems starting at index from and
finishing at index fto — 1. A new List instance initialized with this subse-
quence is then returned as the result of method subList. The specifications of
methods set, add, and remowve are rather straightforward and hardly require
further explanation. The behavior of method addAll adding the specified
Collection at a specified position is very similar to the ordinary addAll. The
only interesting point here is that the informal description of this method
stipulates that the new elements will appear in the current List in the order
that they are returned by the specified Collection’s iterator. We address this
requirement by iteratively constructing from Collection elements a sequence
and adding this sequence at the specified position in the current list.

3 Ensuring Correctness of JCF

As was already mentioned in the introduction, correctness of a framework
can be ensured by verifying behavioral conformance between classes whose
instances are intended for polymorphic substitution in clients. In systems
with separate interface inheritance and implementation inheritance hier-
archies, such as JCF, subtyping polymorphism is based on interface in-
heritance. Therefore, there are two ways of achieving polymorphic reuse,
through passing instances of classes implementing an interface where objects
with this interface are expected and through substituting objects of subin-
terface type for objects of superinterface type. In the first case, the concrete
class must be shown to refine the specification of the interface it implements.
In the second case, verifying behavioral conformance between the superin-
terface objects and the subinterface objects amounts to proving class refine-
ment between the specification of the original interface and the specification
of its subinterface. These two cases are illustrated in Fig.5. The classes
AbstractCollection, ConcreteCollection and SpecialCollection are different
implementations of Collection interface and the classes AbstractList and
LinkedList are different implementations of List interface. Both Collection
and List interfaces are augmented with formal specifications of the in-

AbstractCollection |

% ConcreteCollection ]
% Special Collection ]

AbstractList |

LinkedList |

Figure 5: Behavioral conformance in systems with separate interface inher-
itance and implementation inheritance hierarchies

22



tended behavior. If we verify that the specification of Collection is re-
fined by its implementations, i.e. if we prove class refinements Collection
C AbstractCollection, Collection T ConcreteCollection and Collection T
SpecialCollection, then clients specified to work with a variable ¢ of type
Collection will continue to work correctly if c is assigned an instance of any
of the classes AbstractCollection, ConcreteCollection and SpecialCollection.
Similarly, using an instance of AbstractList or LinkedList in the context
where it is viewed as an object of type List will be correct if List C
AbstractList and List C LinkedList.

Moreover, since List is a subinterface of Collection, instances of
AbstractList and LinkedList can be used in the context where an object
of type Collection is expected. If we verify that Collection = List then by
transitivity AbstractList and LinkedList, as well as all other correct imple-
mentations of List, will be refinements of Collection.

We will illustrate the verification of class refinement by proving that
Iterator is refined by Listlterator. But first we would like to explain the no-
tion of refinement is more detail. For a formal treatment of class refinement
we refer to [19, 3, 2].

3.1 Formal Background: Class Refinement

3.1.1 Semantics, Correctness and Refinement of Program State-
ments

Every program statement has a weakest precondition predicate transformer
semantics. A predicate transformer S : (I' — Bool) — (X — Bool) is a
function from predicates on I' to predicates on . We write

Y—=T = (I' - Bool) = (¥ — Bool)

to denote the type of all predicate transformers from 3 to I'. A statement
with initial state in 3. and final state in I" determines a monotonic predicate
transformer S : ¥ — T that maps any postcondition state predicate ¢ :
I' — Bool to the weakest precondition state predicate p : ¥ — Bool such
that the statement is guaranteed to terminate in a final state satisfying ¢
whenever the initial state satisfies p. In the refinement calculus program
statements are identified with the monotonic predicate transformers that
they determine. For details of the predicate transformer semantics, we refer
to [5].

The total correctness assertion p {| S [} ¢ is said to hold if the statement S
can be used to establish the postcondition ¢ when starting in the set of states
p. Formally, the total correctness assertion p {| S [} ¢ is defined to be equal
to p C S g, which means that p is stronger than the weakest precondition
of S with respect to q.

23



A statement S is refined by a statement S’, written S T S’, if any
condition that we can establish with the first statement can also be estab-
lished with the second statement. Formally, S C S’ is defined to hold if
p{SFag=p{S [ g, for any p and ¢q. Refinement is reflexive and transi-
tive.

The refinement calculus provides rules for transforming more abstract
program structures into more concrete ones based on the notion of refine-
ment of statements presented above. For example, we have the following
law for assignment introduction:

assert by; [z =12'|by)] T z=e¢, ifby = bolz' + €] (1)

This law states that a nondeterministic assignment to = a new value satis-
fying the boolean expression b under the condition that b; holds initially
is refined by a deterministic assignment of an expression e to z if by is
stronger than by with all variables z’ substituted with e. For example,

[n = n'|n'? == n] is refined by n = —/n because assertion of a universally
true predicate true always skips, so that [n = n/|n/2 == n] is the same as
assert true;[n = n'|n'? == n], and also because true = ((—/n)? == n).

Effectively, this law expresses the fact that decreasing nondeterminism is a
refinement.

3.1.2 Data Refinement of Program Statements

Data refinement is a general technique by which one can change data rep-
resentation in a refinement. Assume that statements S and S’ operate on
state spaces ¥ and X' respectively, i.e. S: X — X and S’ : ¥/ — ¥'. Let
R : Y — ¥ — Bool be a relation between the state spaces ¥’ and . Fol-
lowing [4], the statement S is said to be data refined by the statement S’ via
the relation R, denoted S Cg S’, if coercing the concrete state ¥’ to the
abstract state X followed by executing S is refined by executing S’ followed
by coercing the concrete state to the abstract:

SCrS = {R}hSCS;{R}

The angelic nondeterministic assignment { R} used here coerces the concrete
state to the abstract. Usually, if the concrete state is represented by the
variable ¢ : ¥’ and the abstract one by the variable a : 3, the relation R
applied to ¢ and a is equal to some boolean expression ¢ which may refer
to a,c and other program variables over the global state. The abstraction
statement { R} written in terms of program variables will then have the form
{a = d'|tla + d']}, where t[a + @] is t with all occurrences of a substituted
with d'.

To illustrate data refinement laws, let us present the rule for data refine-
ment of demonic nondeterministic assignment:

assert p;[a,u = a',u' | b)] Cg assert p';[c,u = c,u'|bo], (2)

24



ifpAt=pandpAtAby = (Fa *b A1)

Here t' is equal to t with all occurrences of a,c and u substituted with o', ¢/
and v/, i.e. t' =t[a,c,u « d',d,u']. According to this rule, for example, the
nondeterministic assignment to a variable e of some element of a nonempty
set s is refined by the nondeterministic assignment to e of some element of
a nonempty sequence [:

assert s I=0;[s,e =s",¢'|e' € s] Cr
assert [ 1= ();[l,e=1',€'|Fi* 0<i<#l A€ ==1[i]]

Here Rl s = (Ve * e € s == einl) and verification of the necessary
preconditions can be done using the basic properties of sets and sequences.

Presenting other rules of data refinement is outside the scope of this
paper and we refer the interested reader to [5, 21] which contain large col-
lections of refinement rules.

3.1.3 Class Refinement

Class refinement is defined to hold between classes C' and D if there exists a
relation R such that the constructor of C' is data refined by the constructor
of D with respect to R and every method of C' is data refined by the corre-
sponding method of D with respect to R. Suppose that the constructors of
C and D with input parameters go and g of types I'g and I'j) are specified by
statements K and K’ of types I'g — X x I'g and I'y — X' x T'jj respectively.
Further suppose that a relation R : 3 <> ¥/ coerces the attributes d of D to
the attributes ¢ of C; if D has the same attributes as C, this relation is the
identity relation Id, if D inherits all the attributes of C' and adds some new,
this relation is the projection. Similarly, a relation @ : T <+ Ty coerces the
input parameter gj, to the input parameter go. In case the input parame-
ters are of the same type, ) is equal to the identity relation. Constructor
refinement with respect to the relations ) and R is defined as follows:

{Q}; K C K';{R x True}

Here the relational product R x True relates pairs of states (d, g() and (c, go)
so that R holds of d and ¢ and True holds of g and go. As the values of the
input parameters in the end of the constructors are irrelevant, coercing them
using the relation True will always succeed. In terms of program variables
for the attributes ¢ of C' and d of D the rule for constructor refinement can
be expressed as follows:

{90=61Q g, ¢'}; K C K';{c,g0 =¢,¢'|Rd '}

Consider now refinement of statements M; and M that specify the be-
havior of some method called Meth; in C' and D respectively. Formally,
a method with input parameters g; : I'; and an output parameter d; of
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type A;, operating on the attributes of type X is a statement of type
YxIx A;— X xT; x A;. As the types of input and return parameters of
Meth; in C and D are necessarily identical, we can coerce the parameters
using the identity relation. Refinement of methods with the respect to the
relation R coercing the corresponding attributes is then given as follows:

{Rx Id}; M; T M!;{R x Id}

In terms of program variables for the attributes ¢ of C' and d of D the rule
for method refinement can be expressed as follows:

{c=d|Rd};M; C M;{c=Cc|Rdc}

If D has new methods there is an additional proof obligation that every
new method of D preserves the set of reachable states of C. This require-
ment is necessary because if new methods take an instance of D into a
state which is perceived as unreachable in the context of C, clients of D
may get invalidated. In practice, the set of reachable states is preserved by
all non-modifying methods and by modifying methods that refine an arbi-
trary composition of the original methods. For a formal treatment of class
refinement and consistency in the presence of new methods see [2].

When classes have explicit invariants, apart from proving class refine-
ment it is necessary to verify that the classes are consistent with respect to
the corresponding class invariants, and that these class invariants are related
via an abstraction relation. Namely, if I is the invariant of C' (in the case
when the interclass invariant of C is different from true, the invariant I is
the conjunction of the class invariant and the interclass invariant, otherwise
it is just the class invariant), we have to prove that the constructor of C
establishes I and all methods of C preserve I. Let the constructor of C' be
specified by a statement K, then verification of establishing I by K amounts
to proving that the total correctness assertion true {| K [} I holds. If K has
some precondition p, e.g. places some restrictions on input parameters, then
we have to conjoin p to the precondition of the correctness assertion, getting
to prove p {{ K [} I, which means that if p holds in the beginning then K
guarantees to establish I in the end. Similarly, verification of preserving the
invariant I by a method M; of C requires verifying the correctness asser-
tion I {| M; [} I. If M itself has a precondition p;, this correctness assertion
becomes I A p; {| M; [} I.

Coercing an abstract invariant using an abstraction relation produces an
invariant on a concrete state that restricts the possible values of the concrete
state as the abstract invariant restricts the possible values of the abstract
state. More formally, if ¢ and ¢ are the program variables representing an
abstract and a concrete states respectively, I and J are boolean expressions
on ¢ and c representing the corresponding invariants, and R is an abstraction
relation, then I can be expressed on the concrete state c as (Ja* R caAl).
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In verifying class refinement between C and D, we have to prove that the
invariant J of D is stronger than or equal to the invariant I of C' with
respect to R, i.e. J = (Ja * t A I). Verifying that this relation between
the invariants holds, allows us to make sure that instances of D preserve the
invariant of C' with respect to the abstraction relation, which is important if
they are to be dynamically substituted for instances of C'. Moreover, if D is
a subclass of C, self-referential method invocations in C' can get redirected
to D. To prevent such a down-call of a subclass method from a superclass
method from aborting, the subclass invariant must be equal to the superclass
invariant with respect to the abstraction relation, i.e. J = (Ja * tAT), with
= standing for logical equality. This condition guarantees that both C and
D preserve mutual invariants, which is a critical requirement in the presence
of subtyping polymorphism and possible self-referential calls between C' and
D. For a detailed discussion of these issues we refer to [18]. In the next
subsection we will illustrate all these concepts and requirements with an
example of proving class refinement between Iterator and Listlterator, both
having non-trivial class invariants.

3.2 Proving Class Refinement in Practice

In proving the class refinement Iterator T Listlterator we have to select
an abstraction relation coercing the attributes Ist, ind, canModify, modified
of Listlterator to the attributes col, current, canRemove, modified, next of
Iterator. To distinguish between the attributes modified in the two classes,
we will call cm the one in Iterator and Im the one in Listlterator. Also, for
convenience we will abbreviate (col, current, canRemove, cm, next) by attr
and (Ist, ind, canModify,Im) by attr'.
The abstraction relation R can now be given as follows:

Rattr' attr = I' AN J A Q lst col A canModify == canRemove A
(canModify = next == Ist.elems[ind]) A
toBag(lst.elems[0..ind]) == current

Here I' and J' are the combined class and interclass invariants of Iterator
and Listlterator with the modified parameter called c¢m in Iterator and Im
in Listlterator, and @ is an abstraction relation coercing List to Collection:

r = col '= null N current C col.elems A cm == col.modified N
(canRemove = next € current)

J! = st '=null N =1 < ind < F#lst.elems A Im == Ist.modified N
(canModify = 0 < ind < #lst.elems)

Qlc = (I==null N c==null) V(I '=null A c'= null A

toBag(l.elems) == c.elems A l.modified == c.modified)
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We distinguish the relation @) because it will be used not only as a part of R,
but also as an abstraction relation coercing constructor input parameters.

3.2.1 Proving Constructor and Method Refinement

We begin with proving data refinement between the constructors of Iterator
and Listlterator with respect to the relations Q and R. The goal we have
to prove is as follows:

{e= Q1Y

assert ¢ = null;

col, current, canRemove, cm, next = c, ||, false, c.modified , null

C

assert [ '= null; Ist, ind, canModify, Im = [, —1, false, l.modified;

{col, current, canRemove, cm, next,c = col’, cur’,r',cm’,n', |

R (Ist, ind, canModify, Im) (col’, cur',r', em' n')}

Deterministic assignment can always be rewritten as angelic nondetermin-
istic assignment, according to the rule

r=e = {z=1|1" ==¢} (3)
Also, assertion can be propagated inside an adjacent angelic assignment,

assert p;{r =2'|b} = {z=4"|p A b} 4)

{z =1'|b};assert p = {z=21'|p[z+ 2'] A b} (5)

Applying these rules we get
{e=d|Q1d N =null};
{col, current, canRemove, cm, next = col’, cur’,r', cm',n’ |
col' ==c A cur' == ||| A 1’ == false A ecm' == c.modified A n' == null}
C
{Ist, ind, canModify,Im = Ist', ind’',m', Im’ |
I'=null Alst' ==1 A ind' == —1 A m' == false A Im' == l.modified};
{col, current, canRemove, cm, next,c = col’, cur’,r', ecm’, n', |
R (Ist, ind, canModify,Im) (col’, cur',r', em’,n")}

Two angelic assignment statements can be merged together according to the
following rule:

{z=d'|b}i{y=9|c} = {zy=2"9|bAcz« 2T} (6)
As the abstraction statement removes concrete attributes, replacing them
with abstract ones, application of the above rule gives us the following:

{col, current, canRemove, cm, next,c = col’, cur’,r',cm’ . n', ¢
Qlcd ANd'=null A col' ==c" A cur’ == || A
r' == false A ecm! == ¢ .modified N n' == null}

c

{col, current, canRemove, cm, next,c = col’, cur’,r',cm’, n', ¢ |
I''=null A R (I,—1, false,l.modified) (col’, cur’,r', em' ,n")}

/|
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Using the rule
b=c) = {z=1|b}C{z=1"c} (7)
we can now reduce the proof to

Qlcd AN '=null A col' == A cur’ == || A

r' == false A cm' == ' .modified N n' == null
=
I'=null A col' '= null A cur' C col'.elems N cm' == col'.modified A

(r"=n'€cur’) Nl l=null N =1 < =1 < #l.elems A
l.modified == l.modified N (false = 0 < —1 < #l.elems — 1)
Q1 col' A false == 1" A (false = n' == l.elems[—1]) A
toBag(l.elems[0.. — 1]) == cur’

Applying simple logic transformations, we reduce this goal to true, complet-
ing our proof of constructor refinement.

For the proof of method refinement between the methods hasNezt as
defined in [terator and Listlterator, we would need to show that the values
returned in these methods are equal under the abstraction relation R:

R attr' attr = (current C col.elems = ind < #lst.elems — 1)

We prove the boolean equality by proving mutual implications:
1. R attr' attr = (current C col.elems = ind < #lst.elems — 1)
2. R attr’ attr = (ind < #lst.elems —1 = current C col.elems)

For the proof of the first subgoal we use a lemma ¢ C b = #c < #b,
which can easily be proved for arbitrary bags ¢ and b, to get

R attr’ attr = (Fcurrent < #col.elems = ind < #lst.elems — 1)

Using the clause toBag(lst.elems|0..ind]) == current, which is a part of
R attr’ attr, and then a lemma #toBag(l) == #I, we get

R attr’ attr =
(#(Ist.elems|0..ind]) < #col.elems = ind < #lst.elems — 1)

Assuming that ind > #lst.elems — 1 and using the definition of subsequence
we get

R attr’ attr A ind > #lst.elems —1 =
(#lst.elems < #col.elems = ind < #lIst.elems — 1)

Now from R attr’ attr we get that toBag(lst.elems) == col.elems and,
therefore, #lst.elems == # col.elems, using the abovementioned lemmas.
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We reach a contradiction in the assumptions, thus proving the goal:

R attr' attr A ind > #lst.elems — 1 A #tlst.elems == #col.elems =
(#lst.elems < Fcol.elems = ind < #lst.elems — 1)
= R attr' attr A ind > #lst.elems — 1 A #lst.elems == F£col.elems N
#lst.elems < #col.elems = ind < #lst.elems — 1)
= false = ind < #lst.elems — 1
= true

The second subgoal
R attr' attr = (ind < #tlst.elems — 1 = current C col.elems)

is proved similarly to the first subgoal, using lemmas

i <#l—1 = #[0..i] < #l and
cCONH#c<#b=cCbh

The next method refinement we must prove is between the methods
next in Iterator and Listlterator respectively. Namely, we have to prove the
following data refinement:

assert current C col.elems; [next = e|e € (col.elems \ current)];
current, canRemove = current + |next|, true; return next

Cr

assert ind < #lst.elems — 1;ind, canModify = ind + 1, true;
return Ist.elems[ind)

First of all, returning a value from a method can be modeled by assign-
ing the returned value to a variable res representing the result parameter.
Therefore, we can rewrite the above data refinement as follows:

assert current C col.elems; [next = e|e € (col.elems \ current)];
current, canRemove = current + |next|, true; res = next

Cr

assert ind < #lst.elems — 1;ind, canModify = ind + 1, true;

res = lst.elems[ind)]

Two demonic assignment statements can be merged together according to
the following rule:

[z=2|b;ly=9|c = [z,y=2",y'|bA c[x « 2']] (8)
Transforming deterministic assignments into demonic assignments and ap-
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plying this rule, we get

assert current C col.elems;

[next, current, canRemove, res = n', cur’,r’, res’ | n' € (col.elems\ current) A
cur' == current + |n'| A ' == true A res’ ==n/]

Cr

assert ind < #lst.elems — 1;

[ind, canModify, res = ind', m’, res
ind' == ind + 1 A m' == true A res’ == Ist.elems[ind']|

|
Applying the rule for data refinement of nondeterministic assignment state-

ments, we can reduce the proof of this goal to two subgoals:

1. current C col.elems A R attr' attr = ind < #tlst.elems — 1
current C col.elems N R attr’ attr A

ind' == ind +1 A m' == true A res' == Ist.elems|ind’]

=

(Feol', cur’,r', em! n'
n' € (col.elems\ current) A cur' == current + |n'| A r' == true A
res'’ ==n' A R (Ist,ind’,m',Im) (col', cur',r', em’, n'))

The first subgoal, using the logical shunting rule
pAg=T =p=(¢=r)

is reduced to the first subgoal in the proof of method refinement between
the methods hasNext and is already proved.

In the proof of the second subgoal we instantiate the existentially quanti-
fied variables by col, current + |lst.elems[ind']|, true, cm and Ist.elems[ind']
respectively, getting

current C col.elems A R attr’ attr A

ind' ==ind +1 A m' == true A res’ == Ist.elems[ind']

=

Ist.elems|ind'] € (col.elems \ current) A

current + |lst.elems[ind']| == current + |lst.elems[ind']| A
true == true A res' == Ist.elems[ind'] A col '= null A

current + |lst.elems[ind']| C col.elems A c¢cm == col.modified N

(true = Ist.elems[ind'] € current + |lIst.elems[ind']]) A

Ist = null A —1 < ind' < #lst.elems A Im == Ist.modified A
(m' = 0 <ind' < #lst.elems) A Q Ist col A m' == true A
(m' = Ist.elems[ind'] == Ist.elems[ind']) A
toBag(Ist.elems[0..ind')) == current + |lIst.elems[ind']|
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Simplifying and rewriting with the definition of R attr’ attr, we get

current C col.elems A R attr' attr

=

Ist.elems[ind + 1] € (col.elems \ current) A

current + |lst.elems[ind + 1]| C col.elems A

Ist.elems[ind + 1] € current + |lst.elems[ind + 1]| A

—1 < ind < #lst.elems — 2 \

toBag(Ilst.elems|0..ind + 1)) == current + |lst.elems[ind + 1]|

To prove this goal, we use the following lemmas:

toBag((e)) = le] (9
toBag(l1) + toBag(ls) = toBag(ly " ls) (
1[0..i + 1] = 1]0..5) " ([ + 1]) (
by ChoANe€by = by + |e|] C by (12
(Fi|0<i<#l—1¢l[i]=e) = e€ toBay(l) (
e€by Nbpe<bie = e€ (by\b) (

Proofs of these lemmas are straightforward from the definitions of the corre-
sponding bag and sequence operators. Rewriting the goal with these lemmas
and simplifying, we get

current C col.elems A R attr’ attr
=
Ist.elems[ind + 1] € col.elems N —1 < ind < #lst.elems — 2 A
current (Ist.elems[ind + 1]) < (col.elems) (Ist.elems[ind + 1]) A
toBag(Ist.elems|0..ind)) + |Ist.elems[ind + 1]| ==

current + |Ilst.elems[ind + 1]|

Finally, using the earlier proved property
current C col.elems A R attr’ attr = ind < #lst.elems — 1

and rewriting with clauses

—1 < ind < #lst.elems
toBag(lst.elems[0..ind]) == current

toBag(Ist.elems) == col.elems

from R attr’ attr, we prove this goal.

We omit the proof of Iterator.remove Cpg Listlterator.remove which
is carried out in the same manner as the proof of Iterator.next Cpgr
ListIterator.next, using the same lemmas.

32



3.2.2 Proving Preservation of Invariants

While verifying correctness of a class having explicit invariants, we should
prove that constructors of this class establish the (combined class and inter-
class) invariant and all methods preserve it. Here we will only demonstrate
how one can prove that methods preserve the invariant. We show that
the method add of Listlterator preserves the invariant J’, expressed as the
following correctness assertion:

ind = ind + 1; [Ist.elems = s | 3s1, 52 *
J'{  s==251"{(0)" sy A lst.elems == 51 "s9 A s[ind] == o|; [} J'
canModify, Im = false,Ilm + 1;lst.modified = Im

In the proof of this correctness assertion we will use the following rules,
presented and proved in [5]:

p{S1;80q = @rep{SilfrAar{S2]q) (15)
plz=ellqg = p C gz <+ ¢ (16)
plle=2"[b} ¢ = p C (V2' * b= qlz + 2] (17)

Applying rules (15) and (16) and instantiating the existentially quantified
predicate to Ji such that

Ji = lIst'=null AN —1 < ind < #list.elems + 1 A Im == Ist.modified N
(canModify = 0 < ind < #lst.elems)

we get to prove two subgoals

1. J = Ji[ind « ind + 1]
[Ist.elems = s|3s1,s2

2. Ji{ s==s1"(0)"s2 A lst.elems == 31" s9 A s[ind] ==o]; [} J'
canModify,lm = false,lm + 1; lst.modified = Im

The first subgoal obviously holds, since —1 < ind < #lst.elems = —1 <
ind +1 < #lst.elems + 1 and 0 < ind < #lst.elems = 0 < ind +1 <
#lst.elems. For proving the second subgoal we apply rules (15) and (17),
instantiating the existentially quantified predicate to J':

1. Ist !'=null N —1 <ind < #lst.elems + 1 A Im == lst.modified N
(canModify = 0 < ind < #lst.elems)
=
(Vs ® (Fs1,52 * s ==51"(0) " sa A Ilst.elems == s1 " sy A s[ind] == o)
= Ist l=null N =1 < ind < #s N Ilm == Ist.modified N
(canModify = 0 < ind < #s— 1))
2. J' { canModify,lm = false,lm + 1;Ist.modified = Im [} J'
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Using simple logic transformations, the first of these goals can be reduced
to

—1 < ind < #lst.elems + 1 A (canModify = 0 < ind < #lst.elems) A
s ==281"(0) " 89 A lst.elems == 51" 89

=

—1<ind < #s A (canModify = 0 < ind < #s — 1)

and proved using the lemma #(I; ~lo) = 11 + #la.
For the proof of the second subgoal, we apply rules (15) and (16) instan-
tiating the existentially quantified predicate to Js such that

Jo = st '=null AN —1 < ind < #lst.elems N Im == lst.modified + 1 A
(canModify = 0 < ind < #lst.elems)

The resulting subgoals

1. Ist l=null N —1 < ind < #lst.elems A Im == Ist.modified N
(canModify = 0 < ind < #lst.elems)
=
Ist '=null N —1 < ind < #lst.elems A Im + 1 == Ist.modified + 1 A
(false = 0 < ind < #lst.elems)

2. st '=null N —1 < ind < #lst.elems N Im == lst.modified + 1 A
(canModify = 0 < ind < #lst.elems)
=
Ist '=null A —1 < ind < #lst.elems A lm == Im A
(canModify = 0 < ind < #lst.elems)

hold trivially.

This completes our proof of method Listlterator.add preserving the com-
bined class and interclass invariant of Listlterator. Proofs of invariant pre-
serving for other methods of Listlterator can be carried out in a similar man-
ner. Naturally, the same principles apply to proving consistency of methods
of Iterator with respect to its combined invariant. Moreover, non-modifying
methods, such as hasNext, hasPrevious, nextIndex, and previousIndez, pre-
serve the corresponding invariants automatically.

When proving refinement between two classes having explicit invariants,
we should also verify that the concrete invariant is stronger than or equal to
the abstract invariant with respect to an abstraction relation. As in our case
Iterator and Listlterator are the specifications of the corresponding inter-
faces and Listlterator does not inherit from Iterator, a stronger requirement
that the invariants I’ and J' must be equal does not apply. Therefore, we
have only to prove that J' is stronger than or equal to I’ with respect to R,
ie.

J' = (Jattr * R attr’ attr A I')
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where attr abbreviates (col, current, canRemove, cm, next) and attr’ abbre-
viates (Ist, ind, canModify,Im), and also I’ and J' are the combined invari-
ants of Iterator and Listlterator with the modified parameter called c¢m in
Iterator and Im in Listlterator. Rewriting with the definitions of I’ and J',
we get to prove the following goal:

Ist '= null N —1 < ind < #lst.elems A Im == lst.modified A
(canModify = 0 < ind < #lst.elems)

=
(Jattr ¢ R attr' attr A col '= null A
current C col.elems N ¢cm == col.modified N

(canRemove = next € current))

Instantiating the existentially quantified variables attr so that col is in-
stantiated with a reference ¢ to an object with elems == toBag(lst.elems)
and modified == Ist.modified, canRemove is instantiated with canModify,
current with toBag(lst.elems[0..ind]), cm with c.modified, and next with
Ist.elems[ind], we can prove this goal as well.

4 Conclusions and Related Work

In this paper we present a novel approach to specification and verification
of object-oriented frameworks. The novelty of our approach is in blurring
out the difference between specifications and implementations which permits
abstracting away from implementation details in a specification, yet allow-
ing to be precise about important behavioral issues, such as, e.g., a fixed
method invocation order or an iterative execution of a particular statement.
The benefits of combining executable statements with specification state-
ments when reasoning about object-oriented and component-based systems
are described by Martin Biichi and Emil Sekerinski in [7]. In particular, they
note that a popular form of specification in terms of pre- and post-conditions
does not scale well to reasoning about object-oriented and component-based
systems, because pre- and post-conditions, being predicates, cannot contain
calls to other methods, except when the latter are pure functions. Therefore,
one has to reinvent the wheel every time when specifying the behavior of a
method implementing some functionality by calling other methods. Specifi-
cations in terms of abstract statements, as pointed out in [7], are not affected
by this scalability problem. Also, Buichi and Sekerinski note that pre- and
post-conditions, which are only checked at runtime, help to locate errors but
do not prevent them as does static analysis.

Our specification methodology is supported by a solid formal foundation:
every executable statement of the Java language as well as every specifica-
tion statement that we use has a precise mathematical meaning as described
in [19, 3]. Moreover, treating specifications and implementations in a uni-
form logical framework permits formal reasoning about their relationship
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and properties. Of particular interest is the verification of behavioral con-
formance between specifications of interfaces and implementations of these
interfaces. Verifying behavioral conformance of implementations to their
specifications as well as behavioral conformance of subinterface specifications
to the corresponding superinterface specifications permits ensuring correct-
ness of the whole system.

We illustrate our specification method by specifying a part of Java Col-
lections Framework. We have developed formal specifications of other subin-
terfaces of Collection as well, but omit them for the reasons of limited space.
In the process of specifying JCF interfaces we have identified a number of
ambiguities and inconsistencies in the informal description of the behavior
associated with the interfaces. Our specification, being both succinct and
precise, clarifies the found ambiguities and eliminates the inconsistencies.
The difference in size between the implementation of Collection’s contains
method as given in the class AbstractCollection, which is a part of the stan-
dard JCF implementation, and between our specification of this method is
quite illustrative of the general picture. In AbstractCollection the method
contains is defined by

public boolean contains(Object o) {
Iterator e = iterator();
if (o==null) {
while (e.hasNext())
if (e.next()==null) return true;
} else {
while (e.hasNext())
if (o.equals(e.next())) return true;

}

return false;

}

while in our specification it is defined by return (o € elems).

Related work in formal specification of object-oriented systems includes,
but is not limited to, [9, 11]. William Cook in [9] specifies Smalltalk-80 col-
lection class library. Although the library is organized by inheritance, Cook
argues that interface inheritance or subtyping is a logical basis for the library
organization, supporting this claim by specifying the interfaces and revealing
several problems with the current organization of the library. With the Java
Collection Library that we specify here, interface inheritance is separated
from the implementation inheritance and, since the former forms the ba-
sis for polymorphic object substitutability in client programs, we associate
behavioral specifications with interfaces, as does Cook. One of the main
differences of our work from that of Cook is that his specifications are given
in terms of pre- and post-conditions, following Pierre America’s approach in
[1], while we use a specification language combining specification statements
with executable ones. More importantly, America’s approach used by Cook
is rigorous rather than formal and the specification language does not have a
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formal semantics. In our language, as was explained above, every statement
has a precise mathematical meaning, and reasoning about our specifications
and their relation to executable Java programs can be carried out completely
formally, in a unified logical framework.

David Egle in [11] specifies the Microsoft Foundation Class Library to
evaluate Larch/C++ as a specification language. The specification lan-
guage, having no formal semantics, includes constructs like “ensures in-
formally”. The specification is based on pre- and post-conditions (called
“requires” and “ensures”, respectively) and suffers from the non-scalability
problem discussed above. The author concludes the evaluation by saying
that it is his belief that “formal specification using Larch/C++ is good for
specifying things more precisely and unambiguously, but is too rigorous in
some respects”. We, on the other hand, believe that our specification of Java
Collections Framework is both precise and general enough to permit different
implementations: the possibility to include method calls in the specification
eliminates the need for approximating the behavior of these methods in pre-
and post-conditions, whereas the availability of nondeterministic statements
allow us to abstract away from unnecessary implementation details and ex-
press the behavior common to several implementations.

The detailed elaboration of our formalization of object-oriented con-
structs and mechanisms, as described in [19, 3], opens the possibility of
mechanized reasoning and mechanical verification. An interesting recent
work by Bart Jacobs et al. in [15] reports a work in progress on building
a front-end tool for translating Java classes to higher-order logic in PVS
[22]. The authors state that “current work involves incorporation of Hoare
logic [13], via appropriate definitions and rules in PVS”, and present in [15]
a description of the tool “directly based on definitions”. In this work we
test the applicability of the theoretic foundation for reasoning about object-
oriented programs developed in [19, 3]. This theoretic foundation is based
on the logical framework for reasoning about imperative programs. A tool
supporting verification of correctness and refinement of imperative programs
and known as the Refinement Calculator [16] already exists and extending
it to handling object-oriented programs, including Java programs, appears
to be only natural.

There are a few issues that we haven’t addressed in this project, in
particular, the role of exceptions, their relation to assertion statements and
their formal semantics are left as a topic for future work. Method early
returns are treated somewhat informally: we assume that every method
returning the result inside the conditional statement or inside the loop can
be rewritten to an equivalent one returning the result as the last operation.
Formal treatment of early returns represents an interesting research topic.
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