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Abstract. In this paper we put forward a concurrent object-oriented program-
ming language in which concurrency is tightly integrated with objects. Concur-
rency is expressed by extending classes with actions and allowing methods to be
guarded. Concurrency in an object may be hidden to the outside, thus allowing
concurrency to be introduced in subclasses of a class hierarchy. A disciplined
form of intra-object concurrency is supported. The language is formally defined
by translation to action systems. Inheritance and subtyping is also considered.
A theory of class refinement is presented, allowing concurrent programs to be
developed from sequential specifications. Our goal is to have direct rules for ver-
ification and refinement on one hand and a practical implementation on the other
hand. We briefly sketch our implementation. While the implementation relies on
threads, the management of threads is hidden to the programmer.

1 Introduction

The reason for having concurrency in programs is that concurrency occurs naturally
when modeling the problem domain, is to make programs more responsive, and is to
exploit the potential speedup offered by multiple processors. It has been argued that
objects can be naturally thought of as evolving independently and thus concurrently;
objects are a natural “unit” of concurrency. Yet, current mainstream object-oriented lan-
guages treat concurrency independently of objects: typically concurrency is expressed
in terms of threads that have to be created separately from objects.

In this paper we put forward a notation for writing truly concurrent object-oriented
programs. Sequential object-oriented programs are expressed in terms of classes fea-
turing attributes and methods. We keep this paradigm and extend it by augmenting
classes by actions and adding guards to methods. While methods need to be invoked,
actions are executed autonomously. Atomicity of attribute access is guaranteed by al-
lowing only one method or action to be active in an object at any time. Concurrency is
achieved by having active methods and actions in several objects.

We also suggest a theory for developing concurrent object-oriented programs out of
sequential ones, recognizing that concurrent programs often arise from sequential speci-
fications. Class hierarchies are commonly used to express specification-implementation
relationships. We envisage continuing to do this with concurrent classes by treating
concurrency in the same way an implementation issue as the choice of a data structure.
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Thus we may have a class serving as a specification and subclasses of it being sequential
or concurrent implementations.

For a general overview of concurrent object-oriented languages we refer to [10]. Our
work shares with the πoβλ approach by Jones et al. [14, 16] the use of synchronous com-
munication between objects and the use of objects for restricting interference. While
πoβλ is defined in terms of the π calculus, a process algebra, the definition of our lan-
guage is in terms of action systems. We do not directly support early return and delegate
statements as πoβλ does, but we do support inheritance and subtyping. Earlier related
work includes the POOL family of languages [1], where communication between con-
current objects is done by rendezvous. Hoare-style verification rules for a language that
includes statements for sending and receiving synchronous messages are given in [2].
Here we consider instead only (synchronous) method calls, where entrance to objects
is regulated by method guards.

Several approaches have emerged from extending action systems to model concur-
rent objects, as there is an established theory of data refinement and atomicity refine-
ment of action systems [3, 6]. Action systems with procedures by Back and Sere [5]
and Sere and Walden [23] resemble concurrent objects, except that action systems can-
not be created dynamically like objects. Bosangue, Kok and Sere [8, 9] apply action
systems to model dynamically created objects. Büchi and Sekerinski [11] take this fur-
ther by defining inheritance and subtyping and justify the refinement rules with respect
to observable traces. However, both approaches enforce strict atomicity of actions: if
an action (or method) contains several method calls that may block, either all are ex-
ecuted or the whole action is not enabled. Thus, these approaches do not allow direct
translation to efficient code. The Seuss approach of Misra [20] is also action-based
but additionally considers fairness between actions. Guarded methods are distinguished
from unguarded methods, with the syntactic restriction that there can be only one call
to a guarded method per action and this must be the first statement. Other restrictions
are that object cannot be created dynamically and there is no inheritance.

The goal of the presented work is on one hand to have a simple theory of program
development and on the other hand to have an efficient and practical implementation.
This paper is the result of several iterations towards this goal, starting with [4]. To
test our ideas, we have developed a prototypical compiler for our language [17]. A
key concept is to weaken the strict atomicity of methods and actions: when a method
call transfers control to another object, the lock to the first object is released and a new
activity in that object can be initiated. Section 2 introduces the language and gives some
examples.

Our approach to making the theory simple is to start with a formal model of concur-
rent modules and to express all other constructs by translations into this “core”. Only
translations that are needed have to be applied and all formal reasoning is done in the
core. The formalization is done within the Simple Theory of Types. Section 3 formal-
izes that core, on top of which Section 4 defines classes, objects, inheritance, subtyping,
and dynamic binding and discusses verification and refinement. Section 5 extends this
to concurrent objects. Section 6 sketches the implementation of the language. We con-
clude with a discussion of the proposed model and the kind of concurrency it leads and
with observations of the limitations of the current work.
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2 A Concurrent Object-Oriented Language

We start by giving the (slightly simplified) formal syntax of the language in extended
BNF. The construct a | b stands for either a or b, [a] means that a is optional, and {a}
means that a can be repeated zero or more times:

class ::= class identifier [ inherit identifier ] [ extend identifier ]
{attribute | initialization |method | action} end

attribute ::= attr variableList
initialization ::= initialization (variableList )statement
method ::= method identifier (variableList , res variableList )

[when expression do ]statement
action ::= action [ identifier ] [when expression do ]statement
statement ::= assert expression |

identiferList := expressionList |
identiferList :∈ expressionList |
identifier.identifier (expressionList , identifierList ) |
identifier := new identifier (expressionList ) |
begin statement{ ; statement} end |
if expression then statement [ else statement ] |
while expression do statement
var variableList • statement

variableList ::= identifierList : type{ , identifierList : type}
identifierList ::= identifier{ , identifier}
expressionList ::= expression{ , expression}

A class is declared by giving it a name, optionally stating the class being inherited or
extended, and then listing all the attributes, initializations, methods, and actions. Ini-
tializations have only value parameters, methods may have both value and result pa-
rameters, and actions don’t have parameters. Both methods and actions may optionally
have a guard, a boolean expression. Actions may be named, though the name does not
carry any meaning. The assertion statement assert b checks whether boolean expres-
sion b holds. If it holds, it continues, otherwise it aborts. The assignment x := e assigns
simultaneously the values of the list e to the list x of variables. The nondeterministic
assignment statement x :∈ s selects an element of the set s and assigns it to the list x
of variables. This statement is not part of the programming language, but is included
here for use in abstract programs. A method call o.m(e,z) to object o takes the list e as
the value parameters and assigns the result to the list z of variables. The object creation
o := new C(e) creates a new object of class C and calls its initialization with value
parameter e. We do not further define identifier and expression.

We illustrate the constructs of the language by a series of examples. Consider the
problem of ensuring mutual exclusion of multiple users accessing two shared resources.
A user can perform a critical section cs only if that user has exclusive access to both
resources. We assume each resource is protected by a semaphore. Semaphores and users
are represented by objects, with a semaphore having a guarded method:
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class Semaphore
attr n : integer
initialization n := 1
method P

when n > 0 do n := n−1
method V

n := n + 1
end

class User
attr s, t : Semaphore
initialization (a,b : Semaphore)

s, t := a,b
method doCriticalSection

begin s.P ; t.P ; cs ; s.V ; t.V end
end

We assume that all statements only access and update attributes of the object itself
and local variables, except for method calls that may access and update the state of
other objects. All statements are executed atomically up to method calls. Thus in class
Semaphore the method V is always executed atomically, as is the initialization. The
method P may block if the guard is not true, but once the method is enabled, it is
also executed atomically. The method doCriticalSection may block at the calls s.P and
t.P. In this case some other activity must first call the V method of the corresponding
semaphore before execution can resume.

The next example is about merging the elements of two bounded buffers into a third
buffer. Buffers and mergers are represented by objects:

class Buffer
attr b : array of Object
attr in,out,n,max : integer
initialization (m : integer)

in,out,n,max := 0,0,0,m ; b := new Object[m]
method put(x : Object)

when n < max do in,b[in],n := (in + 1) mod max,x,n + 1
method get(res x : Object)

when n > 0 do out,x,n := (out + 1) mod max,b[out],n−1
end

class Merger
attr in1, in2,out : Buffer
attr a1,a2 : boolean
attr x1,x2 : Object
initialization (i1, i2,o : Buffer)

in1, in2,out,a1,a2 := i1, i2,o, false, false
action copy1

when a1 do begin a1 := false ; in1.get(x1) ; out.put(x1) ; a1 := true end
action copy2

when a2 do begin a2 := false ; in2.get(x2) ; out.put(x2) ; a2 := true end
end

After creating a new merger object m, the actions of m can execute in parallel with
the remaining program, including other Merger objects. Actions cannot be called, they
can be initiated automatically whenever they are enabled. Action copy1 is enabled if
a1 is true. Once copy1 is initiated, it may block at either the call in1.get(x1) or the call
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out.put(x1). In this case another activity in the same object may be initiated or may
resume (if it was blocked). Initiating an activity here means starting either copy1 or
copy2 again. Since a1 is false at these points, copy1 is disabled and cannot be initiated
a second time. On the other hand, copy2 may be initiated and come to conclusion or
block at the call in2.get(x2) or the call out.put(x2). Hence for example the situation
may arise that both actions are blocked at the out.put calls. Thus Merger can buffer two
elements.

The last example is the observer design pattern, expressed as an abstract program.
The pattern allows that all observers of one subject perform their update methods in
parallel:

class Observer
attr sub : Subject
initialization (s : Subject)

begin sub := s ; s.attach(this) end
method update . . .

end

class Subject
attr obs,notifyObs : set of Observer
initialization

obs,notifyObs := {},{}
method attach(o : Observer)

obs := obs∪{o}
method notify

notifyObs := obs
action notifyOneObserver

when notifyObs �= {} do
var o : Observers •

begin o :∈ notifyObs ; notifyObs := notifyObs−{o} ; o.update end
end

As soon as execution of the action notifyOneObserver in a subject s reaches the call
o.update, control is passed to object o and another activity in s may be initiated or may
resume. In particular, the action notifyOneObserver may be initiated again, as long as
notifyObs is not empty, i.e. some observers have not been notified. Thus at most as many
notifyOneObserver actions are initiated as there are observers and all notified observers
can proceed concurrently. New observers can be added at any time and will be updated
after the next call to notify.

3 Statements, Procedures, Modules, and Concurrency

We introduce the “core” language into which the object-oriented constructs are trans-
lated. The definition is done in terms of higher order logic, as the type system of higher
order logic is close to that of Pascal-like languages. We assume there are some basic
types like boolean and integer. New types can be constructed as functions X→ Y and
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products X×Y, for given types X and Y. Function application is written as f (x) or sim-
ply f x and a pair as (x,y) or simply x,y. For convenience we also assume that further
type constructors like set of T and bag of T are available.

Statements The core statements are as follows. Let X be the type of the program state
and p : X→ boolean be state predicate. The assertion {p} does nothing if p is true and
aborts otherwise. The guard [p] does nothing if p holds and blocks otherwise. If S and T
are statements then S ; T is their sequential composition. The choice S�T selects either
S or T nondeterministically. If Q is a relation, i.e. a function of type X→ Y→ boolean,
then [Q] is a statement that updates the state according to relation Q, choosing one state
nondeterministically if several final states are possible and blocking it no final state
according to Q exists. All further statements are defined in terms of these five core
statements. These five statements can for example be defined by higher order predicate
transformers, i.e. function mapping predicates (the postconditions) to predicates (the
preconditions) as done by Back and von Wright [7].

States are typically tuples and program variables are used to selects components of
the state tuple. For example, if the state space is X = integer× integer and variables x,y
are used to refer to the two integer components, then a state predicate p can be defined
as p(x,y) = (x > y). We assume the state space is understood from context, allowing
us to write boolean expressions instead of state predicates in assertions and guards, for
example the assertion {x > y}.

We define skip = {true} = [true] to be the statement that does nothing, abort =
{false} to be the statement that always aborts, and wait = [false] to be the statement that
always blocks. Assume b is a boolean expression. The assertion statement assert b is
synonymous to {b}. The guarded statement when b do S and the conditional statements
if b then S and if b then S else T are defined as:

when b do S =̂ [b] ; S
if b then S =̂ ([b] ; S)� [¬b]
if b then S else T =̂ ([b] ; S)� ([¬b] ; T)

Suppose x : X and y : Y are the only program variables. The assignment statement x := e
updates x and leaves y unchanged. The nondeterministic assignment statement x :∈ s
assigns x an arbitrary element of the set s and leaves y unchanged. If s is the empty set
then the statement blocks. Both are defined in terms of an update statement:

x := e =̂ [Q] where Q(x,y)(x′,y′) = (x′ = e)∧ (y′ = y)
x :∈ s =̂ [Q] where Q(x,y)(x′,y′) = (x′ ∈ s)∧ (y′ = y)

The declaration of a local variable var x :∈ s • S extends the state space by x, executes S,
and reduces the state space again. The initial value of x is chosen nondeterministically
from the set s. If s is the empty set then the statement blocks. We write var x : X • S or
simply var x • S if an arbitrary element of type X is chosen initially.

var x :∈ s • S =̂ [Q] ; S ; [R] where Qy(x′,y′) = (x′ ∈ s)∧ (y′ = y)
R(x,y)y′ = (y′ = y)

Following theorem gives laws for transforming statements into equivalent ones. We let
e[x\f ] stand for simultaneously substituting variables x by expressions f in e:
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Theorem (Equational Laws). Assume x,y are disjoint lists of variables.

x := e = x :∈ {x′ | x′ = e} (1)

x :∈ {x′ | b} ; y :∈ {y′ | c} = x,y :∈ {x′,y′ | b∧ c[x\x′]} (2)

var x • x,y :∈ {x′,y′ | b} = y :∈ {y′ | ∃x,x′ • b} (3)

For a statement S and predicate b, we let wp(S,b) be the weakest precondition for S
to terminate and to establish postcondition b. The enabledness domain or guard of
statement S is defined by grd S = ¬wp(S, false) and the termination domain by trm S =
wp(S, true). The weakest liberal precondition wlp(S,b) is the weakest precondition for
S to establish b provided S terminates. We give selected laws:

Theorem (Weakest Preconditions).

wlp(x := e,b) = b[x\e] (4)

wlp(x :∈ s,b) = ∀x ∈ s • b (5)

wlp(S ; T,b)⇐ wlp(S,wlp(T,b)) (6)

The refinement of statement S by T, written S� T, means that T terminates whenever S
does, T is disabled whenever S is, and T is “more deterministic” than S. In the predicate
transformer model, S � T holds if for any postcondition q, whenever S establishes q
so does T. Data refinement S�R T generalizes (algorithmic) refinement by relating the
initial and final state of S and T with relation R. We allow R to refine only part of the
state, i.e. if the (initial and final) state space of S is X×Z, the state space of T is Y×Z,
then it is sufficient for R to relate X to Y. We write Id for the identity relation and × for
the parallel composition of relations:

S �R T =̂ S ; [R× Id]� [R× Id] ; T

We give selected laws about data refining statements; they naturally generalize when
only a specific component of a larger state space is refined.

Theorem (Refinement Laws). Assume that relation R relates X to Y and the state
space includes Z. Variables x,y,z refer to the corresponding state components:

x := e �R y := f if Rxy⇒ Ref (7)

{a} ; x := e �R {b} ; y := f iff a∧Rxy⇒ b
and a∧Rxy⇒ Ref

(8)

x := e �R y :∈ {y′ | d} if Rxy∧d⇒ Rey′ (9)

{a} ; x := e �R {b} ; y :∈ {y′ | d} iff a∧Rxy⇒ b
and a∧Rxy∧d⇒ Rey′

(10)

x :∈ {x′ | c} �R y :∈ {y′ | d} if Rxy∧d⇒∃x′ • c∧Rx′ y′ (11)

{a} ; x :∈ {x′ | c} �R {b} ; y :∈ {y′ | d} iff a∧Rxy⇒ b
and a∧Rxy∧d⇒∃x′ • c∧Rx′ y′

(12)

z :∈ {z′ | c} �R z :∈ {z′ | d} if Rxy∧d⇒ c (13)

{a} ; z :∈ {z′ | c} �R {b} ; z :∈ {z′ | d} if a∧Rxy⇒ b
and a∧Rxy∧d⇒ c

(14)
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S1 ; S2 �R T1 ; T2 if S1 �R T1 and S2 �R T2 (15)

S1�S2 �R T1�T2 if S1 �R T1 and S2 �R T2 (16)

The iteration statement Sω repeats S an arbitrary number of times, as long as S is en-
abled. If S never becomes disabled, then Sω aborts. Iteration Sω is defined as the least
fixed point (with respect to the refinement relation) of the equation X = (S ; X)� skip.
The while statement while b do S is defined in terms of iteration, with the additional
restriction that upon termination ¬b must hold:

while b do S =̂ ([b] ; S)ω ; [¬b]

Modules. A module declares a number of variables with initial values as well as a num-
ber of procedures. The procedures operate on the local variables and possibly variables
declared in other modules either directly or by calling other procedures. Formally a
module is a pair (init,proc) where init is the initial local state and proc is a tuple of
statements. The syntax for defining a module with a two variables p,q of types P,Q
with initial values p0,q0 and a single procedure m is as follows:

module K
var p : P := p0

var q : Q := q0

procedure m(u : U, res v : V)
M

end

Formally we have K = (init,proc) with init = (p0,q0) and proc = M. The (initial and
final) state space of the body M of m is U×V×X, where X is the state space of the
whole program, which includes P and Q as components. Again, K.p or simply p is the
name used to select the corresponding state component. Procedure names are used for
selecting the components of proc: we write K.m or simply m in order to refer to state-
ment M. A procedure call m(e,z) extends the state space by the formal value and result
parameters, copies the actual value parameters to the formal parameters, executes the
procedure body, and copies the formal result parameters to the actual result parameters:

m(e,x) =̂ var u,v • u := e ; m ; x := v

Within modules other modules may be referred. The state space of the whole program
is the combined state space of all modules of that program.

Concurrency. Concurrency is introduced by adding actions to modules. These actions
may access variables of that module and variables of other modules, either directly or
through procedures. Actions that access disjoint sets of variables may be executed in
any order or in parallel. Module actions are executed atomically, i.e. either an action
is enabled and can be carried to completion or it is not enabled (in contrast to class
actions that are atomic only up to method calls). Formally a concurrent module is a
triple (init,proc,act) where in addition act is the combined action of the module. We
use following syntax for defining a module with actions a and b:
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module K
var p : P := p0

var q : Q := q0

procedure m(u : U, res v : V)
M

action a
A

action b
B

end

We have K = (init,proc,act) with init = (p0,q0), proc = M, and act = A�B. All actions
are combined into a single action and the names of the actions do not carry any meaning.
The state space of act is the state space of the whole program, which includes P and Q
as components.

Definition (Module Refinement). Module K = (init,proc) with variables p is refined
by module K′ = (init′,proc′,act) with variables p′ through relation R, written K �R K′,
if:

(a) for the initialization: R init init′
(b) for every procedure m:

(b.1) procedure refinement: K.m�R K′.m
(b.2) procedure enabledness: grd K.m∧R p p′ ⇒ grd K′.m∨grd act

(c) for the action:
(c.1) action refinement: skip�R act
(c.2) action termination: R p p′ ⇒ trm(do act od)

The loop do S od repeats S as long as it is enabled. It is defined as Sω ; [¬grd S]. Com-
pared to the while loop, the guard is implicit in the body. Condition (a) requires that
the initializations are in the refinement relation. Condition (b.1) requires that each pro-
cedure of K is refined by the corresponding procedure of K′. While refinement by itself
allows the guard to be weakened, condition (b.2) requires that whenever K.m is enabled,
either K′.m or act must be enabled. Condition (c.1) requires that the effect of the ac-
tion act is not visible when viewed from K. Finally, condition (c.2) requires that act
eventually disables itself, hence cannot introduce non-termination.

The definition can be applied when K′ has no action by taking act = wait. As
grd wait = false condition (b.2) simplifies to grd K.m∧ r⇒ grd K′.m and condition (c)
holds by default.

Module refinement can be generalized in several ways: K may also be allowed to
have an action, allowing to increase the concurrency of an already concurrent module
[23]. Both K and K′ can exhibit finite stuttering and the generalized rule can be shown
to be correct with respect to trace refinement [11]. We have restricted the refinement
relation to relate only the local variables. The refinement relation can be generalized to
include global variables, at the expense of losing compositionality [11, 23].
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4 Objects

We distinguish between the class and the type of an object. The class defines the at-
tributes and the methods of objects. We define a class in terms of a module with one
variable for each attribute, one procedure for each method, and an extra variable for the
objects populating that class. The variables map each object of the class to the corre-
sponding attribute values. Each procedure takes an additional value parameter, this, for
the object to which the procedure is applied. We assume the type Object is infinite and
contains the distinguished element nil. All objects are of type Object. We write x :/∈ s
as a shorthand for x :∈ s:

class C
attr p : P
initialization (g : G)

I
method l(s : S, res t : T)

L
method m(u : U, res v : V)

M
end

=̂ module C
var C : set of Object := {}
var p : Object→ P
procedure new(g : G, res this : Object)

this :/∈ C∪{nil} ; C := C∪{this} ; I
procedure l(this : Object,s : S, res t : T)
{this ∈ C} ; L

procedure m(this : Object,u : U, res v : V)
{this ∈ C} ; M

end

Within a method body attribute p is referred to by this.p. In general, referencing x.p
amounts to applying the function p to x. Creating a new object x of class C with initial-
ization parameter e amounts to calling the new procedure of class C. Calling the method
m of an object x of class C amounts to calling the procedure m of class C with x as the
additional parameter that is bound to this in m:

x.p =̂ p(x)
x := new C(e) =̂ C.new(e,x)
x.m(f ,z) =̂ C.m(x, f ,z)

We follow the practice of using class names as if they were types in variable declara-
tions, e.g. c : C. While the type of c is Object, the class name C is used to determine the
module to which method calls to c go. The class name can also be used by the compiler
to forbid certain assignments. We illustrate these concepts by an example of points in a
plane.

class Point
attr x : integer
attr y : integer
initialization (x : integer,y : integer)

this.x, this.y := abs(x),abs(y)
method distance(p : Point, res d : integer)

d := abs(this.x−p.x)+ abs(this.y−p.y)
method copy(res p : Point)

p := new Point(this.x + 2, this.y + 2)
end
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Class Point translates to following module. We write f [a← b] for modifying function
f to return b for argument a. The assignment x.p := e, or equivalently p(x) := e, stands
for p := p[x← e]. For convenience we continue to write x.p instead of p(x):

module Point
var Point : set of Object := {}
var x : Object→ integer
var y : Object→ integer
procedure new(x : integer,y : integer, res this : Object)

this :/∈ Point∪{nil} ; Point := Point∪{this} ;
this.x, this.y := abs(x),abs(y)

procedure distance(this : Object,p : Object, res d : integer)
{this ∈ Point} ; d := abs(this.x−p.x)+ abs(this.y−p.y)

procedure copy(this : Object, res p : Point)
{this ∈ Point} ; new(this.x + 2, this.y + 2,p)

end

We sketch how to verify invariance properties of classes. For example, consider showing
that (this.x ≥ 0)∧ (this.y ≥ 0) is an invariant of class Point: this requires proving that
I defined as ∀ this ∈ Point • (x(this) ≥ 0)∧ (y(this) ≥ 0) is an invariant of the module
Point. This holds if the initial values imply the invariant, (Point = {})⇒ I, and each
procedure preserves the invariant, I ⇒ wlp(Point.new, I), I ⇒ wlp(Point.distance, I),
and I⇒ wlp(Point.copy, I). For new we have by using (4), (5), and (6):

wlp(Point.new, I)
= wlp(this :/∈ Point∪{nil} ; Point := Point∪{this} ;

x(this),y(this) := abs(x),abs(y),∀p ∈ Point • (x(p)≥ 0)∧ (y(p)≥ 0))
⇐ wlp(this :/∈ Point∪{nil} ; Point := Point∪{this},

∀p ∈ Point • (x[this← abs(x)](p)≥ 0)∧ (y[this← abs(y)](p)≥ 0))
⇐ ∀this :/∈ Point∪{nil} • ∀p ∈ Point∪{this} •

(x[this← abs(x)](p)≥ 0)∧ (y[this← abs(y)](p)≥ 0))
⇐ I

While we allow references this.a to attributes of the object itself to be abbreviated by a,
care has to be taken as this involves a hidden function application, which is the source
of aliasing. For example, consider adding method tile to class Point:

method tile(p : Point)
p.x := x + 2 ; p.y := y

We might be tempted to conclude that the postcondition p.x = x + 2 is always estab-
lished. Expanding the body to x(p) := x(this)+2 ; y(p) := y(this) and the postcondition
to x(p) = x(this)+ 2 makes it evident that this is only true if initially this �= p, i.e. the
postcondition does not hold for the call p.tile(p), with p ∈ Point.

We turn our attention to inheritance. Suppose C is as earlier and class D inherits
from C, while adding attributes and methods and redefining the initialization and some
methods. We call C the superclass of D and D the subclass of C. This corresponds to
defining a module D that uses module C:
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class D inherit C
attr q : Q
initialization (h : H)

J
method m(u : U, res v : V)

M′
method n(w : W, res y : Y)

N
end

=̂ module D
var D : set of Object := {}
var q : Object→ Q
procedure new(h : H, res this : Object)

this :/∈ C∪{nil} ; C := C∪{this} ;
D := D∪{this} ; J

procedure l(this : Object,s : S, res t : T)
{this ∈ D} ; C.l(this,r,s)

procedure m(this : Object,u : U, res v : V)
{this ∈ D} ; M′

procedure n(this : Object,w : W, res y : Y)
{this ∈ D} ; N

end

Those methods that are not explicitly redefined in D are defined in D as forwarding the
call to C. Method bodies may contain calls to other methods of the same class, either to
the same object, this.m(e,z) or to another object, x.m(e,z). The call this.m(e,z) is also
written m(e,z). A method body in D may also contain a super-call super.m(e,z). In this
case the call goes to the inherited class, i.e. the immediate superclass. This also applies
to inheritance hierarchies with more than two classes:

super.m(e,z) =̂ C.m(e,z)

We illustrate these issues with classes Point1D and Point2D:

class Point1D
attr x : integer
method setX(x : integer)

this.x := x
method scale(s : integer)

this.x := this.x× s
end

class Point2D inherit Point1D
attr y : integer
method setY(y : integer)

this.y := y
method setXY(x,y : integer)

this.setX(x) ; this.setY(y)
method scale(s : integer)

super.scale(s) ; this.y := this.y× s
end

These classes translate to following modules:

module Point1D
var Point : set of Object := {}
var x : Object→ integer
procedure new(res this : Object)

this :/∈ Point1D∪{nil} ; Point1D := Point1D∪{this}
procedure setX(this : Object,x : integer)
{this ∈ Point1D} ; this.x := x

procedure scale(this : Object,s : integer)
{this ∈ Point1D} ; this.x := this.x× s

end
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module Point2D
var Point2D : set of Object := {}
var y : Object→ integer
procedure new(res this : Object)

this :/∈ Point2D∪{nil} ; Point1D := Point1D∪{this} ;
Point2D := Point2D∪{this}

procedure setX(this : Object,x : integer)
{this ∈ Point2D} ; Point1D.setX(this,x)

procedure setY(this : Object,y : integer)
{this ∈ Point2D} ; this.y := y

procedure setXY(this : Object,y : integer)
{this ∈ Point2D} ; setX(this,x) ; setY(this,y)

procedure scale(this : Object,s : integer)
{this ∈ Point2D} ; Point1D.scale(this,s) ; this.y := this.y× s

end

Inheritance does not affect the creation of objects, i.e. if D inherits from C then x :=
new D(e) = D.new(e,x). A key point of the definition of inheritance is that a new object
of class D becomes also a member of class C, that is D is a subtype of C. Subtypes
correspond to subsets between the members of the class, C ⊆ D. Assuming c,d are
objects, the type test c is D tests whether c is indeed an object of class D. The type cast
d := c as D aborts if c is not an object of class D and assigns c to d otherwise. Assuming
D is a subtype of C and c is declared to be of class C, the method call c.m(e,z) is
bound dynamically, i.e. the actual class of c rather than the declared class determines
the module to which the call goes. This generalizes to class hierarchies involving more
than two classes accordingly:

c is D =̂ c ∈ D
d := c as D =̂ {c ∈D} ; d := c
c.m(e,z) =̂ if c ∈ D then D.m(c,e,z) else C.m(c,e,z)

Within the bodies of the methods of class D attributes of class C may be referred to.
The type system would either allow or forbid this according to visibility declarations;
we do not explicitly indicate visibility here. However, we note that if modification of
C attributes is allowed in D, then an invariant shown to hold for C objects does not
necessarily hold for D objects. Such an invariant has also to be shown to be preserved
by D methods.

We can also define inheritance without subtyping, which we call extension. When
class E extends class C, the methods of E may refer to the attributes of C, but creating
an E object does not make it a C object. Methods are not inherited and no super-calls
are possible (although one could generalize this). Hence this only allows sharing of
attribute declarations. In case of extension the type system would forbid assignments
between E and C objects:
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class E extend C
attr q : Q
initialization (h : H)

J
method m(v : U, res v : V)

M′
method n(w : W, res y : Y)

N
end

=̂ module E
var E : set of Object := {}
var q : Object→ Q
procedure new(h : H, res this : Object)

this :/∈ D∪{nil} ; D := D∪{this} ; J
procedure m(this : Object,u : U, res v : V)
{this ∈ D} ; M′

procedure n(this : Object,w : W, res y : Y)
{this ∈ D} ; N

end

Now we show how class refinement translates to module refinement. We give an exam-
ple that involves creation of auxiliary objects and creation of garbage—objects to which
there is no reference. Consider following class S for defining a store in which we only
record whether the store is empty or full:

class S
attr f : boolean
initialization

f := false
method full(res r : boolean)

r := f
method store

f := true
end

= module S
var S : set of Object := {}
var f : Object→ boolean
procedure new(res this : Object)

this :/∈ S∪{nil} ; S := S∪{this} ;
this.f := false

procedure full(this : Object, res r : boolean)
{this ∈ S} ; r := this.f

procedure store(this : Object)
{this ∈ S} ; this.f := true

end

In the refinement LS the boolean attribute f becomes a link l to another object of class
LS. Initially l is nil and is set to some object of class LS in store. Hence, repeated calls
to store will generate garbage:

class LS
attr l : LS
initialization

f := nil
method full(res r : boolean)

r := l �= nil
method store

l := new LS
end

= module LS
var LS : set of Object := {}
var l : Object→Object
procedure new(res this : Object)

this :/∈ LS∪{nil} ; LS := LS∪{this} ;
this.l := nil

procedure full(this : Object, res r : boolean)
{this ∈ LS} ; r := this.l �= nil

procedure store(this : Object)
{this ∈ LS} ; new(this.l)

end

We show refinement between modules S and LS with relation R defined by:

R(S, f )(LS, l) = (S ⊆ LS)∧ (∀s ∈ S • f (s) = (l(s) �= nil))
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Condition (a) of module refinement, R({}, f )({}, l), holds immediately. To show condi-
tion (b.2) for new we rewrite the bodies using (1) and (2):

S.new = this,S, f := {this′,S′, f ′ |
(this′ /∈ S∪{nil})∧ (S′ = S∪{this′})∧ (f ′ = f [this′ ← false])}

LS.new = this,LS, l := {this′,LS′, l′ |
this′ /∈ LS∪{nil})∧ (LS′ = LS∪{this′})∧ (l′ = l[this′ ← nil])}

Refinement is now established by first applying (11) and then eliminating LS′, l′,S′, f ′
by the one-point rule:

S.new�R LS.new
= (S ⊆ LS)∧ (∀s ∈ S • f (s) = (l(s) �= nil))∧ (this′ /∈ LS∪{nil})∧

(LS′ = LS∪{this′})∧ (l′ = l[this′ ← nil])⇒
(∃S′, f ′ • (this′ /∈ S∪{nil})∧ (S′ = S∪{this′})∧ (f ′ = f [this′ ← false])∧
(S′ ⊆ LS′)∧ (∀s ∈ S′ • f ′(s) = (l′(s) �= nil)))

= (S ⊆ LS)∧ (∀s ∈ S • f (s) = (l(s) �= nil))∧ (this′ /∈ LS∪{nil})∧⇒
(this′ /∈ S∪{nil})∧ (S∪{this′} ⊆ LS∪{this′})∧
(∀s ∈ S∪{this′} • f [this′ ← false](s) = (l[this′ ← nil](s) �= nil))

= true

For procedure full we immediately apply (8):

S.full�R LS.full
= ((this ∈ S)∧ (S⊆ LS)∧ (∀s ∈ S • f (s) = (l(s) �= nil))⇒ (this ∈ LS))∧

((this ∈ S)∧ (S⊆ LS)∧ (∀s ∈ S • f (s) = (l(s) �= nil))⇒
(f (this) = (l(this) �= nil)))

= true

We rewrite procedure procedure S.store using the definitions. For procedure LS.store
we expand the call, rename the local variable to t, apply (1) and (2) to merge the assign-
ments, and apply (3) to eliminate the local variable:

S.store = {this ∈ S} ; this,S, f := this,S, f [this← false])}
LS.store = {this ∈ LS} ; this,LS, l := {this′,LS′, l′ | (this′ = this)∧

(∃ t • (t /∈ LS∪{nil})∧ (LS′ = LS∪{t})∧
(l′ = l[t← nil][this← t]))

Refinement of store is established by applying (10); we leave out the details of the proof.
To show condition (b.2) we first observe that grd LS.new = true, grd LS.full = true, and
grd LS.store = true, i.e. all procedures are always enabled. Therefore condition (b.2) is
immediately satisfied for all procedures. This completes the proof.

5 Concurrent Objects

Classes with actions are translated to modules with actions, such that there is one action
for each object of the class. This is formally expressed by nondeterministically assign-
ing any element of C to this before executing the action body. If C is empty, no action is
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enabled. For the time being we make the restriction that method calls can appear only
as the first statement in methods and actions.

class C
attr p : P
initialization (g : G)

I
method l(s : S, res t : T)

L
method m(u : U, res v : V)

M
action a

A
action b

B
end

=̂ module C
var C : set of Object := {}
var p : Object→ P
procedure new(g : G, res this : Object)

this :/∈ C∪{nil} ; C := C∪{this} ; I
procedure l(this : Object,s : S, res t : T)
{this ∈ C} ; L

procedure m(this : Object,u : U, res v : V)
{this ∈ C} ; M

action a
var this :∈ C • A

action b
var this :∈ C • B

end

Inheritance and subtyping works as for classes without actions. Refinement of classes
with actions translates to refinement of modules with actions. We give an example that
illustrates the concept of delaying a computation by enabling a background action. Class
Doubler allows to store an integer and to retrieve its double. Class DelayedDoubler
doubles the integer in the background and blocks if the integer to be retrieved is not yet
doubled:

class Doubler
attr x : integer
method store(u : integer)

this.x := 2×u
method retrieve(res u : integer)

u := this.x
end

class DelayedDoubler
attr y : integer
attr d : boolean
initialization d := true
method store(u : integer)

y,d := u, false
method retrieve(res u : integer)

when d do u := y
action double

when ¬d do y,d := 2× y, true
end

These classes translate to modules in the same fashion as previous examples. We give
immediately the refinement relation needed to prove that Doubler is refined by De-
layedDoubler:

R(Doubler,x)(DelayedDoubler,y,d) =
(Doubler = DelayedDoubler)∧
(∀o ∈ Doubler • (d(o)∧ y(o) = x(o))∨ (¬d(o)∧ (2× y(o) = x(o)))

We conclude this example by noting that we can alternatively express DelayedDoubler
as a subtype of Doubler, thus arriving at a class hierarchy in which concurrency is
introduced in a subclass:
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class DelayedDoubler inherit Doubler
attr d : boolean
initialization d := true
method store(u : integer)

x,d := u, false
method retrieve(res u : integer)

when d do u := x
action double

when ¬d do x,d := 2× x, true
end

Statements in classes are atomic only up to method calls. If method calls appear not
only as the first statement in methods and actions, the class has to be normalized first. A
method or action body with such a call has to be split in order to model that execution
can block at that point. If at the point of the method call there are no local variables, then
we introduce an auxiliary integer variable that is initialized to zero and incremented at
the point of the method call. For every call we also introduce an action that contains the
call and the remainder of the body. This action is enabled if the counter for that call is
positive and the action decrements the counter first. We illustrate this by an example of
a faulty merger:

class FaultyMerger
attr in1, in2,out : Buffer
attr x1,x2 : integer
initialization (i1, i2,o : Buffer)

in1, in2,out := i1, i2,o
action begin in1.get(x1) ; out.put(x1) end
action begin in2.get(x2) ; out.put(x2) end

end

Class FaultyMerger is normalized as follows:

class FaultyMerger
attr in1, in2,out : Buffer
attr x1,x2 : integer
attr at1,at2 : integer
initialization (i1, i2,o : Buffer)

in1, in2,out := i1, i2,o
action begin in1.get(x1) ; at1 := at1 + 1 end
action when at1 > 0 do begin at1 := at1−1 ; out.put(x1) end
action begin in2.get(x2) ; at2 := at2 + 1 end
action when at2 > 0 do begin at2 := at2−1 ; out.put(x2) end

end

If in1 contains sufficiently many elements, the action in1.get(x1) ; at1 := at1 + 1 can
be taken several times and overwriting x1 before the action for placing x in out is taken.
The class Merger avoids this problem with the help of an extra variable.
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thread
pool

object pool

¬inPool

inPool

inPool

Fig. 1. Illustration of the implementation. Boxes with the inPool attribute represent active objects,
the other passive objects. A thin arrow between boxes represents a reference, a thick arrows from
a thread to an object represents a reference with a lock.

Suppose there are local variables at the point of the method call. These local vari-
ables form the context in which execution may resume, after possible interleaving with
other methods or action. This is modelled by storing the context in an attribute with
each object. As multiple activities may create local contexts, but the order of creation
is ignored, the contexts are stored in a bag. We illustrate this by normalizing the action
notifyOneObserver of class Subject:

attr at1 : bag of Observer
action notifyOneObserver

when notifyObs �= {} do
var o : Observers •

begin o :∈ notifyObs ; notifyObs := notifyObs−{o} ; at1 := at1 +[o] end
action notifyOneObserver

var o :∈ at1 • begin at1 := at1− [o] ; o.update end

This normalization step is required before verification and refinement can be carried out
by translating classes to modules.

6 Implementation

In order to test our ideas, we have developed a prototypical compiler for our language,
see [17] for details. The compiler currently translates to the Java Virtual Machine. We
sketch the principles of the implementation, see Fig. 1 for an illustration. The imple-
mentation relies on the restriction that method and action guards may refer only to at-
tributes of the object itself and may not contain method calls. An object that has guarded
methods is called a guarded object. An object that has actions is called an active object,
otherwise a passive object. An active object that has at least one enabled action is called
an enabled object, otherwise a disabled object.

At runtime a thread pool and an object pool are maintained. The object pool is
initially empty. When an active object is created, a pointer to it is placed in the object
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pool and only active objects are placed in the object pool. Each active object has an extra
boolean attribute inPool indicating whether a pointer to it is in the object pool. Threads
request a reference to an active object from object pool. If the object is disabled, the
thread resets the inPool attribute and removes it from the object pool. If the object is
enabled, the thread executes an enabled action and leaves the object in the object pool.
Each thread obtains a lock to an object when entering one of its methods or actions and
releases the lock when exiting the method or action. The lock is also released at a call
to another object and obtained again at re-entry from the call. If a guarded method is
called the guard is evaluated and the thread waits if the guard is false. At the exit from
a guarded object all waiting threads are notified to reevaluate the guards.

Fairness among the actions of an object is ensured by evaluating the guards in a
cyclic fashion. This is done with one additional attribute for the index of the last evalu-
ated action guard in every active object. The object pool is implemented as a dynamic
array. Fairness among the objects is ensured by retrieving active objects in a cycling
fashion. The object pool grows and shrinks like a stack: new objects are added at the
end and when an object is retrieved, its position is filled with the last object. Hence
adding objects and retrieving objects take constant time. Active objects are garbage
collected like passive objects, i.e. when there is no reference from any other object and
no reference from the object pool.

With this scheme action guards are only evaluated when a thread is searching for
an action to execute. Method guards are only re-evaluated when another thread has
exited the object and thus possibly affected the guard. The memory overhead is that
every active object requires one bit for the inPool attribute, one integer for the index
to the last evaluated action guard, and one pointer in the object pool. We are currently
experimenting with techniques to control the creation and termination of threads.

7 Discussion

A number of attempts have been made in formalizing objects with records, initiated
by the work of Cardelli [12] and leading to various type systems incorporating object-
oriented concepts. Our experience in using one such type system is that in verification
and refinement it is more in the way than helpful [22]. Understanding attributes as
mappings from object identities to their values emerges naturally in object modeling
techniques like [21], and is used in a number of formalizations of object models, e.g.
[15]. The approach of viewing a method as a procedure with an additional this parameter
is also taken in Modula-3 and Oberon-2. We find that this combination leads to a simple
model with a clear distinction between classes and types. A consequence is that objects
can only be allocated on the heap, an approach also taken in several mainstream object-
oriented languages.

One may argue about releasing the lock to an object when a method call in that
object goes to another object, hence allowing other methods to be called or actions to
be initiated. Indeed in our first implementation we retained the lock. However we found
programs to be difficult to analyze, as it is necessary to keep track of which objects
are locked by which actions. The model of releasing the lock allows some disciplined
intra-object concurrency: while several actions or methods can be initiated, only one
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can progress, thus still guaranteeing atomicity of attribute updates. In order for a class
invariant to be preserved, the class invariant has not only to be established at the end
of every method, but also before each call to another object. The need for doing so is
already recognized in sequential programs when re-entrance is possible [19].

The model presented does not define (indirectly) recursive method calls; doing so
would require taking a fixed point. The model also does not accurately capture how
self- and super-calls are resolved when methods are redefined: a super-call will always
remain in the superclass, even if calling other methods that are redefined in the subclass.
In order to model this, methods calls must not be resolved immediately, but when ob-
jects of the classes are created. A model of inheritance that delays resolution of method
calls to the time when objects are created was proposed by Cook and Palsberg [13]
and applied to studies of class refinement by Mikhajlov and Sekerinski [18]. While our
implementation follows this model, the presented theory does not capture this.
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