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Abstract. Tabular representations have been proposed for structuring complex mathematical expressions
as they appear in the specification of programs. We argue that tables not only help in writing and checking
complex expressions, but also in their formal manipulation. More specifically, we explore the use of tabular
predicates and tabular relations in program verification and refinement.

Keywords: tabular expressions, program specification, program correctness, program development

1. Introduction

The use of tabular expressions in the specification of programs is motivated by the observation that, by the
very nature of digital computers, the input/output behaviour of programs exhibits many “discontinuities”. As
discontinuities are less common in analogue systems, tabular expressions are meant to describe discontinuities
in a more convenient way than traditional mathematics [Par92]. The present work continues this line by
exploring how the tabular representation of expressions helps in coping with discontinuities in the process
of verifying and refining programs.

The expressions we are dealing with are predicates—as they allow an abstract specification of the in-
put/output behaviour—and relations—as they model nondeterministic programs. Figure 1 gives an example
of a tabular predicate that is used to define a relation. The example is that of an elevator whose state is
represented by integer variable floor for the current floor, variable reqs, a set of integers, for the floors to
which requests exist, and variable mode with values up, down,waiting for the current direction of the eleva-
tor. We use the convention that unprimed variables refer to initial values and primed variables refer to final
values. The table specifies the operation ButtonPressed (f ) of requesting the elevator at floor f . The table
shows how the conditions that express the discontinuities are arranged along two axes, the top and the left
header. Thus the table specifies six cases.

The structure of tables offers a natural way of checking their soundness: analysing the coverage of each
header helps to determine if the specification is complete and analysing the disjointness of each header helps
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mode = waiting mode 6= waiting

f > floor reqs ′ = {f } ∧
mode ′ = up

reqs ′ = reqs ∪ {f } ∧
mode ′ = mode

f = floor reqs ′ = {} ∧
mode ′ = waiting

reqs ′ = reqs ∧
mode ′ = mode

f < floor reqs ′ = {f } ∧
mode ′ = down

reqs ′ = reqs ∪ {f } ∧
mode ′ = mode

Fig. 1. A tabular predicate used for defining the relation ButtonPressed (f )

to determine if the specification is consistent in the sense that there is no unwanted nondeterminism [HJL96].
In the example, both headers cover true as the disjunction of all predicates of one header is true, and both
headers are disjoint, as the conjunction of any two header predicates of one header is false.

Compared to using conditional expressions for case splits, nested structures are avoided, making the
whole expression easier to parse and making it less likely that cases are overlooked. Compared to (finite)
state diagrams for expressing state transitions like in the example, it is again less likely that cases are
overlooked. In a sense, combinations of conditions that appear in the headers and the corresponding entry
in the body describe little scenarios. Compared to notations that describe scenarios purely as a sequence of
events, tables are more precise because they explicitly refer to a state.

Wilder and Tucker give example of the use of tables in everyday life, in computing theory, and in software
development and discuss readability issues [WT95]. They trace back early use of tables to the Babylonian
period and argue for the potential of tables.

The use of tables for software development has been demonstrated by a number of projects and tools
[Abr97, HL96, HJL96, Hen80, LMFM00, LHHR94]. Parnas proposes ten kinds of tables [Par92], which Janicki
and Khedri further unify and generalise [Jan95, JK01]. Zucker gives transformation rules between two kinds
of tables proposed by Parnas, normal function tables and inverted function tables [Zuc96]. By comparison,
here we restrict ourselves to tables representing predicates and relations. Tables have also been added to the
PVS theorem prover [ORS97]; PVS treats tables like nested conditionals.

The present work explores how tabular predicates and tabular relations help in formal manipulations
that occur in the process of verifying and refining specifications. We argue that

1. the structure of tables leads to a natural way of decomposing their manipulation, and
2. tabular manipulation rules are easier to memorise and apply than their textual counterparts.

We derive a number of theorems supporting these claims. It turns out that many of the theorems have an
intuitive interpretation, but the side conditions are less obvious. The technical contribution of this work is
to derive those less obvious side conditions.

In comparison to other treatments of tables, we give meaning to all tables, irrespective of the coverage
and disjointness of their headers. If a theorem requires certain coverage or the disjointness of headers, we
state so explicitly. We find this more insightful and mathematically pleasing than always requiring complete
coverage and disjointness; beside that, these properties are not necessarily preserved by transformations, but
we do like to give a meaning to the outcome of each transformation we consider.

We start by introducing the notation for tabular predicates together with some basic transformations
in Section 2 and study boolean operations on tabular predicates in Section 3. We continue by introducing
tabular relations together with basic transformations and operations in Section 4. One main contribution
are the verification rules in Section 5. This is followed by a discussion of refinement in Section 6 and the
other main contribution, the refinement rules in Section 7. We conclude with a summary and an outlook of
open issues.

2. Tabular Predicates

We assume that every expression e has a unique type T , written e : T . For a function f of type T → U
the application to argument e of type T is written as f e. Predicates are expressions of type Bool , with
values true and false. On predicates we use the operators ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒
(implication), ⇐ (consequence). We also use generalised conjunction ∧i ∈ I • pi and generalised disjunction
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∨i ∈ I • pi . For predicates ≡ (equivalence) has the same meaning as = except that ≡ has a lower precedence
than all other operators on predicates but = has a higher precedence. Distinguishing ≡ from = allows us to
omit parentheses in expressions like Id x y ≡ x = y and allows us to state that ≡ is always associative.

Tabular predicates are predicates written as a disjunction of conjunctions. A tabular predicate with one
header consisting of predicates p, q , r and a body consisting of predicates s, t , u is defined by:

p q r
s t u ≡ (p ∧ s) ∨ (q ∧ t) ∨ (r ∧ u)

In general, let I be a finite and non-empty set of indices and let pv be an indexed collection of predicates
that we call a vector, with elements pvi for i ∈ I . Tables with a single header are one-dimensional. With pv
and qv vectors over the same index set, we introduce a shorthand for a table with header pv , and body qv ,
defined by generalising above example:

pv
qv ≡ ∨ i • pvi ∧ qvi

On vectors pv and qv over the same index set ¬pv , pv ∧ qv , pv ∨ qv , pv ⇒ qv , pv ⇐ qv , and pv ≡ qv
are all defined by the pointwise extension of the corresponding operators on Bool , e.g. (¬pv)i ≡ ¬pvi and
(pv ∧ qv)i ≡ pvi ∧ qvi . On occasion we identify a predicate p with a vector with all elements being p. This
also allows us to write expressions like p ∧ pv , with the meaning of (p ∧ pv)i ≡ p ∧ pvi , and similarly for
other boolean operators.

In general, an n-dimensional table has n headers; here we restrict ourselves to one- and two-dimensional
tables. Let I and J be index sets, let pv be an I -indexed vector, let qv be a J -indexed vector, and let rm be
a doubly indexed collection of predicates that we call a matrix, with elements rmi,j for i ∈ I and j ∈ J . We
introduce a shorthand for a two-dimensional tabular predicate with headers pv , qv and body rm:

qv
pv rm ≡ ∨i , j • pvi ∧ qvj ∧ rmi,j

We also use a shorthand with multiple vectors in one header, with the special case of one vector being a
single predicate:

qv rv
pv qm rm ≡ ∨i • (∨j • pvi ∧ qvj ∧ qmi,j ) ∨ (∨k • pvi ∧ rvk ∧ rmi,k )

On matrices rm and sm over the same index sets ¬rm, rm∧sm, rm∨sm, rm ⇒ sm, rm ⇐ sm, and rm ≡ sm
are all defined by the pointwise extension of the corresponding operators on Bool , e.g. (¬rm)i,j ≡ ¬rmi,j

and (rm ∧ sm)i,j ≡ rmi,j ∧ smi,j . On occasion we identify a predicate p with a matrix with all elements
being p. This also allows us to write expressions like p ∧ pm, with the meaning of (p ∧ pm)i,j ≡ p ∧ pmi,j ,
and similarly for other boolean operators. We will also identify a vector pv with a matrix with all columns
being pv . This allows us to write expressions like pv ∧ pm, with the meaning of (pv ∧ pm)i,j ≡ pvi ∧ pmi,j ,
and similarly for other boolean operators.

For a matrix rm, we define its transposition rmT to swap rows and columns, formally rmT
j ,i = rmi,j .

Transposing the body of a two-dimensional table and swapping its headers leads to an equivalent table:

Theorem 2.1 (Transposing).

qv
pv rm ≡ pv

qv rmT

Some theorems that follow involve only one header. By applying transposition, a dual theorem for the
other header follows immediately. In these cases we give only one theorem and leave out the dual one. A
direct consequence of the commutativity of disjunction is that we can swap rows and, by duality, columns
arbitrarily:

Theorem 2.2 (Swapping Rows and Columns).

qv rv
pv qm rm ≡ rv qv

pv rm qm
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A table can be split into a disjunction of two tables by separating some rows or some columns. This gives a
way of reducing the size of tables if they become too big:

Theorem 2.3 (Splitting and Joining Tables).

qv rv
pv qm rm ≡ qv

pv qm ∨ rv
pv rm

We may want to extend a table by further rows or columns in a way that preserves the meaning of the table,
perhaps in order to make some cases explicit. Dually, we may want to contract a table by deleting rows or
columns if they are redundant. The following theorem gives the condition for doing so. In its formulation we
use the fact that ≡ is associative:

Theorem 2.4 (Extending and Contracting).

qv rv
pv qm rm ≡ qv

pv qm ≡ rv
pv rm ⇒ qv

pv qm

Proof. Let us write the theorem as a ≡ b ≡ c ⇒ b. By applying Theorem 2.3, this is equivalent to
b ∨ c ≡ b ≡ c ⇒ b, which holds as b ∨ c ≡ b is indeed equivalent to c ⇒ b.

A two-dimensional table with multiple columns but a single row can be flattened into a one-dimensional
table by conjoining the header of the row to each body element. In the general case with multiple rows, we
can conjoin each row header to all elements of that row and then take the disjunctions of the columns. Given
a matrix rm, we write rmi for the vector forming the i -th row. Thus ∨i • rmi is a vector that is obtained
by disjoining the columns of rm. In the following theorem we identify vector rv with a matrix with one row:

Theorem 2.5 (Lifting and Flattening).

(a) qv
p rv ≡ qv

p ∧ rv

(b) qv
pv rm ≡ qv

∨i • pvi ∧ rmi

A one-dimensional table can be trivially lifted to a two-dimensional table by adding the row header true, i.e.
taking p = true in part (a) of above theorem. The above way of flattening a two-dimensional table always
preserves one header. Alternatively, we can flatten a table with headers pv and qv into a table with one
header consisting of all combinations of pvi ∧ qvj , as done by Zucker [Zuc96].

The possibility of lifting and flattening tables means that each theorem about a one-dimensional table
can be applied to a two-dimensional table and vice versa. We continue to give theorems only for two-
dimensional tables: after all, two-dimensional tables have a richer visual structure, which was our starting
point. Corresponding theorems for one-dimensional tables arise as simple special cases.

A vector pv is disjoint if all its elements are mutually exclusive, ¬(pvi ∧ pvk ) for all i and k with i 6= k .
Two vectors pv and qv are jointly disjoint if ¬(pvi ∧ qvj ∧ pvk ∧ qvl) for all i , j , k , l with either i 6= k or
j 6= l . If pv and qv are jointly disjoint, then the conjunction of any two elements of pv (qv) does not need
to be false in isolation but only if conjoined with an element of qv (pv). Vector pv covers (at least) c if one
of its elements is true if c is true, c ⇒ ∨i • pvi , and covers exactly c if c ≡ ∨i • pvi . Vector pv is total if it
covers true. Vector pv partitions c if it is disjoint and covers exactly c. Finally, a table is in canonical form
if all its headers are jointly disjoint and each header is total. The table in Fig. 1 is in canonical form.

A table with one of its headers having overlapping elements can be successively transformed into an equiv-
alent table with a disjoint header by replacing pairs of rows or columns with overlapping header elements.
Suppose s, t are possibly overlapping predicates:

Theorem 2.6 (Removing Header Overlap).

qv s t
pv rm sv tv ≡ qv s ∧ ¬t ¬s ∧ t s ∧ t

pv rm sv tv sv ∨ tv

Repeatedly applying the above rule yields a table with a disjoint upper header; as there is choice in applying
the rule, the resulting tabular structure is not uniquely determined. The following rule allows transforming
any header into a total one while preserving the meaning of the table:



Exploring Tabular Verification and Refinement 5

mode = waiting mode 6= waiting
f = floor reqs ′ = {} reqs ′ = reqs
f 6= floor reqs ′ = {f } reqs ′ = reqs ∪ {f }

mode = up mode = waiting mode = down
f > floor mode ′ = up mode ′ = up mode ′ = down
f = floor mode ′ = up mode ′ = waiting mode ′ = down
f < floor mode ′ = up mode ′ = down mode ′ = down

Fig. 2. Predicates requestsReq (upper table) and modeReq (lower table) expressing the requirements how the variables reqs
and mode, respectively, have to change when the button for calling the elevator at floor f is pressed.

Theorem 2.7 (Making Header Total).

qv
pv rm ≡ qv ¬ ∨ j • qvj

pv rm false

Hence, with above two rules any header can be transformed into an equivalent one that partitions true.
While this gives us the option of transforming a table into an equivalent canonical one, we do not require
each well-defined table to be in canonical form. By comparison, Parnas [Par92] and Zucker [Zuc96] consider
such tables not to be proper (for that reason they use a slightly different terminology) and PVS [ORS97]
generates proof obligations to ensure properness.

We consider further means of transforming tables that turn out to be useful intermediate steps when
combining larger tables. We can replace table elements while preserving the meaning of the table:

Theorem 2.8 (Replacing Table Elements).

(a)

 q qv
p r · · ·
pv · · · · · ·

≡
q qv

p r ′ · · ·
pv · · · · · ·

 ⇐ (p ∧ q ⇒ (r ≡ r ′))

(b)
(

q qv
pv rv · · · ≡ q ′ qv

pv rv · · ·

)
⇐ (∧i • pvi ∧ rvi ⇒ (q ≡ q ′))

Replacing a header element is not necessarily going to preserve disjointness and coverage of the header, but
may be used to achieve disjointness or a specific coverage. If tables are used to specify operations, we may
replace table elements to move all conditions on the inputs to the headers and all conditions on the outputs
to the body. Next we give a theorem that allows to split a row or column and to join two rows or columns:

Theorem 2.9 (Splitting and Joining Rows and Columns).

q ∨ r · · ·
pv sv · · · ≡ q r · · ·

pv sv sv · · ·

When using tables for specification, we separate concerns by using a number of tables describing related
issues. For further analysing and for combining these tables we typically need to rewrite them in order to
make their headers identical.

Example 2.1 (Harmonising Tables). Consider harmonising the predicates requestsReq and modeReq in
Fig. 2. They specify separately the requirements on the transitions of variables reqs and mode. For conjoining
these requirements we need—as shown later—to make their headers identical. We assume that up, down,
waiting are the only values of mode. For harmonising the left headers we decide to split the header element
f 6= floor of requestsReq into f > floor and f < floor according to Theorem 2.9. For harmonising the upper
headers we decide to join the mode = up and mode = down columns of modeReq according to Theorem 2.9,
after first replacing mode ′ = up and mode ′ = down with mode ′ = mode according to Theorem 2.8 (a). The
result is shown in Fig. 3.

We now describe a general procedure for harmonising tables. Suppose we have two tables given, in each of
which we have singled out one header element that we want to harmonise. Let these be called q and t , i.e. let
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mode = waiting mode 6= waiting
f > floor reqs ′ = {f } reqs ′ = reqs ∪ {f }
f = floor reqs ′ = {} reqs ′ = reqs
f < floor reqs ′ = {f } reqs ′ = reqs ∪ {f }

mode = waiting mode 6= waiting
f > floor mode ′ = up mode ′ = mode
f = floor mode ′ = waiting mode ′ = mode
f < floor mode ′ = down mode ′ = mode

Fig. 3. The predicates requestsReq and modeReq of Fig. 2 harmonised to have identical headers.

the two tables be of the form:
q qv

pv rv rm and t tv
sv uv um

If q ≡ t , then these two header elements are already identical and we can continue harmonising the remaining
header elements. Suppose now that q ⇒ t . Then with Theorem 2.9 we transform the right table such that
we get:

q qv
pv rv rm and q ¬q ∧ t tv

sv uv uv um

Thus we arrive at two tables that have one header element in common and can continue harmonising the
remaining header elements. For example, we can apply this theorem to the tables in Fig. 2 by observing that
f > floor ⇒ f 6= floor and hence split f 6= floor into f > floor and ¬(f > floor) ∧ f 6= floor , arriving at the
same table as in Fig. 3. Now let q and t be arbitrary predicates. By applying Theorem 2.9 to both tables
we get:

q ∧ t q ∧ ¬t qv
pv rv rv rm and q ∧ t ¬q ∧ t tv

sv uv uv um

Repeated application of this step results in two tables with their header elements either pairwise equal or
pairwise disjoint. If the header elements are disjoint, i.e. ¬(q ∧ t) holds, then we trivially harmonise those
by adding the header element of the other table and making the new body elements false, i.e. we arrive at:

q t qv
pv rv false rm and q t tv

sv false uv um

In the next section we give theorems about operation on tables that require tables to have identical headers.

3. Operations on Tabular Predicates

We give some basic theorems about common boolean operators applied to tables. The negation of a table
can be shown to hold by establishing that each body element is false. A negation in front of a table can be
distributed into its body under certain conditions:

Theorem 3.1 (Table Negation).

(a) ¬
(

qv
pv rm

)
≡ ∧ i , j • pvi ∧ qvj ⇒ ¬rmi,j

(b) ¬
(

qv
pv rm

)
⇒ qv

pv ¬rm if pv , qv are total

(c) ¬
(

qv
pv rm

)
⇐ qv

pv ¬rm if pv , qv are jointly disjoint

(d) ¬
(

qv
pv rm

)
≡ qv

pv ¬rm
if pv , qv are total
and jointly disjoint
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Proof. Part (a) follows immediately from the definitions and logic. For (b) we get by applying the definitions:

¬(∨i , j • pvi ∧ qvj ∧ rmi,j ) ⇒ (∨i , j • pvi ∧ qvj ∧ ¬rmi,j )
≡ (∨i , j • pvi ∧ qvj ∧ rmi,j ) ∨ (∨i , j • pvi ∧ qvj ∧ ¬rmi,j )
≡ ∨i , j • pvi ∧ qvj

Hence the proof shows that totality of pv and qv is both necessary and sufficient. For (c) we get by applying
the definitions:

¬(∨i , j • pvi ∧ qvj ∧ rmi,j ) ⇐ (∨i , j • pvi ∧ qvj ∧ ¬rmi,j )
≡ ¬((∧i , j • pvi ∧ qvj ∧ rmi,j ) ∧ (∧i , j • pvi ∧ qvj ∧ ¬rmi,j ))
≡ ¬(∧i , j , k , l • pvi ∧ qvj ∧ rmi,j ∧ pvk ∧ qvl ∧ ¬rmk ,l)

We proceed by analysing two cases: if i , j = k , l then rmi,j ∧¬rmk ,l is false and therefore the whole predicate
true. Now if i , j 6= k , l then pvi ∧ qvj ∧ pvk ∧ qvl is false due to the disjointness assumption, hence the whole
predicate is true as well, which concludes the proof of (c). Finally, (d) follows from both (b) and (c).

Two tables with equal headers can be conjoined by taking the conjunction of the corresponding body elements
under certain conditions:

Theorem 3.2 (Table Conjunction).

(a) qv
pv rm ∧ qv

pv sm ⇐ qv
pv rm ∧ sm

(b) qv
pv rm ∧ qv

pv sm ≡ qv
pv rm ∧ sm if pv , qv are jointly disjoint

In the proof we make use of following lemma:

Lemma 3.1.

(a) (∨k • pk ) ∧ (∨k • qk ) ⇐ ∨ k • pk ∧ qk
(b) (∨k • pk ) ∧ (∨k • qk ) ≡ ∨ k • pk ∧ qk if k 6= l ⇒ ¬(pk ∧ ql)

Proof of Theorem 3.2 We introduce a new index k for the pair i , j and rewrite (a) as (∨k • pqk ∧ rmk ) ∧
(∨k • pqk ∧ smk ) ⇐ ∨k • pqk ∧ rmk ∧ smk with pqi,j ≡ pvi ∧ qvj . This allows us to apply Lemma 3.1 (a) in
the first step of following proof:

(∨k • pqk ∧ rmk ) ∧ (∨k • pqk ∧ smk )
⇐ ∨k • pqk ∧ rmk ∧ pqk ∧ smk

≡ ∨k • pqk ∧ rmk ∧ smk

We prove (b) in a similar way by introducing k for the pair i , j and rewriting it as (∨k • pqk ∧ rmk ) ∧
(∨k • pqk ∧ smk ) ≡ ∨k • pqk ∧ rmk ∧ smk with pqi,j ≡ pvi ∧ qvj . As pv , qv are jointly disjoint we have
k 6= l ⇒ ¬(pqk ∧ pql), allowing us to apply Lemma 3.1 (b) in the first step of following proof:

(∨k • pqk ∧ rmk ) ∧ (∨k • pqk ∧ smk )
≡ ∨k • pqk ∧ rmk ∧ pqk ∧ smk

≡ ∨k • pqk ∧ rmk ∧ smk

Two tables with equal headers can be disjoined by taking the disjunction of the corresponding body elements:

Theorem 3.3 (Table Disjunction).

qv
pv rm ∨ qv

pv sm ≡ qv
pv rm ∨ sm

We give two theorems about implications s ⇒ t . In the first one either s or t is a tabular predicate and
the other one a simple predicate. This can be used for showing that a tabular specification s has a certain
property t by s ⇒ t . Alternatively, given some specification s we can show that it has property t expressed
in tabular form. In the second theorem both s and t are tabular predicates.



8 E. Sekerinski

Theorem 3.4 (Predicate-Table Implication).

(a)
(

qv
pv rm ⇒ s

)
≡ (∧i , j • pvi ∧ qvj ∧ rmi,j ⇒ s)

(b)
(

s ⇒ qv
pv rm

)
⇒ (∧i , j • s ∧ pvi ∧ qvj ⇒ rmi,j ) if pv , qv are jointly disjoint

(c)
(

s ⇒ qv
pv rm

)
⇐ (∧i , j • s ∧ pvi ∧ qvj ⇒ rmi,j ) if pv covers s and qv covers s

(d)
(

s ⇒ qv
pv rm

)
≡ (∧i , j • s ∧ pvi ∧ qvj ⇒ rmi,j )

if pv covers s and qv covers s
and pv , qv are jointly disjoint

(e)
(

s ⇒ qv
pv rm

)
≡ s ⇒ qv

s ⇒ pv s ⇒ rm

(f)
(

s ⇒ qv
pv rm

)
≡ qv

pv s ⇒ rm
if pv , qv are total
and jointly disjoint

Parts (a) to (d) allow the implication to be established by considering each case that the tables describes
in turn, thus decomposing a possibly large proof into a number of smaller ones. In (b) to (c) where the
table is on the right hand side of the implication, we need side conditions about coverage or disjointness. By
contrast, (e) does not have side conditions and preserves the structure of the table. However, in this case
the implication distributes into the table body as well as into the headers. In (f) the implication distributes
into the table body only, but now under the side condition of totality and disjointness.

Lemma 3.2.

(a) (∧k • pk ⇒ qk ) ⇒ (∨k • pk ∧ qk ) if ∨k • pk

(b) (∧k • pk ⇒ qk ) ⇐ (∨k • pk ∧ qk ) if k 6= l ⇒ ¬(pk ∧ pl)
(c) (∧k • pk ⇒ qk ) ≡ (∨k • pk ∧ qk ) if ∨k • pk and k 6= l ⇒ ¬(pk ∧ pl)

Proof of Theorem 3.4 The proof of (a) is straightforward. For the proof of (b) we make use of Lemma 3.2 (b)
with k replaced by the pair i , j , as pv , qv are jointly disjoint:

L.H .S . ≡ s ⇒ (∨i , j • pvi ∧ qvj ∧ rmi,j )
⇒ s ⇒ (∧i , j • pvi ∧ qvj ⇒ rmi,j )
≡ ∧i , j • s ⇒ (pvi ∧ qvj ⇒ rmi,j )
≡ R.H .S .

For the proof of (c) we make use of Lemma 3.2 (a) with k replaced by the pair i , j , as s ⇒ ∨i • pvi and
s ⇒ ∨j • qvj :

L.H .S . ≡ s ⇒ (∨i , j • pvi ∧ qvj ∧ rmi,j )
⇐ s ⇒ (∧i , j • pvi ∧ qvj ⇒ rmi,j )
≡ ∧i , j • s ⇒ (pvi ∧ qvj ⇒ rmi,j )
≡ R.H .S .

Part (d) follows from both (b) and (c). For (e) we have:

L.H .S . ≡ s ⇒ (∨i , j • pvi ∧ qvj ∧ rmi,j )
≡ ∨i , j • s ⇒ pvi ∧ qvj ∧ rmi,j

≡ ∨i , j • (s ⇒ pvi) ∧ (s ⇒ qvj ) ∧ (s ⇒ rmi,j )
≡ R.H .S .

Part (f) follows from (d) and Lemma 3.2 (c).

We continue with a theorem that combines two tables with identical headers.

Theorem 3.5 (Table Implication).
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(a)
(

qv
pv rm ⇒ qv

pv sm

)
⇐ ∧ i , j • pvi ∧ qvj ∧ rmi,j ⇒ smi,j

(b)
(

qv
pv rm ⇒ qv

pv sm

)
⇒ qv

pv rm ⇒ sm if pv , qv are total

(c)
(

qv
pv rm ⇒ qv

pv sm

)
⇐ qv

pv rm ⇒ sm if pv , qv are jointly disjoint

(d)
(

qv
pv rm ⇒ qv

pv sm

)
≡ qv

pv rm ⇒ sm
if pv , qv are total
and jointly disjoint

Part (a) allows the implication to be established by considering each case that the tables describes in turn,
thus decomposing a possibly large proof into a number of smaller ones. Parts (b) to (c) preserve the structure
of the table, but require either totality or disjointness; we remind that totality can always be satisfied by
first applying Theorem 2.7.

Proof. For (a) we have:

L.H .S . ≡ (∨i , j • pvi ∧ qvj ∧ rmi,j ) ⇒ (∨i , j • pvi ∧ qvj ∧ smi,j )
≡ ∧i , j • pvi ∧ qvj ∧ rmi,j ⇒ (∨i , j • pvi ∧ qvj ∧ smi,j )
⇐ ∧i , j • pvi ∧ qvj ∧ rmi,j ⇒ pvi ∧ qvj ∧ smi,j

≡ R.H .S .

Parts (b) to (d) follow immediately from Theorem 3.1 (b) to (d) for negations and Theorem 3.3 for disjunc-
tions by rewriting the leftmost implication as a disjunction with a negation.

We conclude with a theorem about the equivalence of tables with identical headers. Part (a) of the theorem
allows equivalence to be established by considering each case the tables describe in turn, while parts (b) and
(c) preserve the structure of the tables:

Theorem 3.6 (Table Equivalence).

(a)
(

qv
pv rm ≡ qv

pv sm

)
⇐ ∧ i , j • pvi ∧ qvj ⇒ (rmi,j ≡ smi,j )

(b)
(

qv
pv rm ≡ qv

pv sm

)
⇐ qv

pv rm ≡ sm if pv , qv are jointly disjoint

(c)
(

qv
pv rm ≡ qv

pv sm

)
≡ qv

pv rm ≡ sm
if pv , qv are total
and jointly disjoint

Proof. For (a) we have:

L.H .S . ≡ (∨i , j • pvi ∧ qvj ∧ rmi,j ) ≡ (∨i , j • pvi ∧ qvj ∧ smi,j )
⇐ ∧i , j • pvi ∧ qvj ∧ rmi,j ≡ pvi ∧ qvj ∧ smi,j

≡ ∧i , j • pvi ∧ qvj ⇒ (rmi,j ≡ smi,j )
≡ R.H .S .

Parts (b) and (c) follow from applying Theorem 3.5 (c) and (d) for implication in both directions and then
applying Theorem 3.2 (a) and (b), respectively.

4. Tabular Relations

A relation between elements of types X and Y is a function of type X → Y → Bool . We define the constant
relations ⊥ (empty relation), > (universal relation), Id (identity relation), and for relations P and Q the
operations P (complement), P−1 (inverse), P∩Q (intersection), P∪Q (union), P◦Q (relational composition)
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as well as the predicates P ⊆ Q and P ⊇ Q (inclusion):

⊥ x y ≡ false (P ∪Q) x y ≡ P x y ∨Q x y
> x y ≡ true (P ∩Q) x y ≡ P x y ∧Q x y
Id x y ≡ x = y (P ◦Q) x y ≡ (∃z • P x z ∧Q z y)
P x y ≡ ¬P x y (P ⊆ Q) ≡ (∀x , y • P x y ⇒ Q x y)
P−1 x y ≡ P y x (P ⊇ Q) ≡ (∀x , y • P x y ⇐ Q x y)

The above defines ⊥ and > to be polymorphic relations on two arbitrary types and Id to be a polymorphic
relation between elements of the same type. A relation P is functional if P−1 ◦ P ⊆ Id and injective if
P ◦ P−1 ⊆ Id . Relation P is called a condition if P ◦ > = P . The domain ∆P of a relation P is defined
by ∆P = P ◦ >. A relation P is total if ∆P = >, or equivalently Id ⊆ P ◦ P−1. Relation P is surjective if
∆P−1 = >, or equivalently Id ⊆ P−1 ◦ P . We make use of generalised union ∪i ∈ I • Pi and generalised
intersection ∩i ∈ I • Pi , for arbitrary index set I . We use the following facts about relations:

Lemma 4.1. Let P ,Q ,Pi ,Qi be relations and C a condition:

(a) P ◦ (∪i ∈ I • Qi) = ∪ i ∈ I • P ◦Qi

(b) (∪i ∈ I • Pi) ◦Q = ∪ i ∈ I • Pi ◦Q
(c) P ◦ (∩i ∈ I • Qi) ⊆ ∩ i ∈ I • P ◦Qi

(d) (∩i ∈ I • Pi) ◦Q ⊆ ∩ i ∈ I • Pi ◦Q
(e) P ◦ (∩i ∈ I • Qi) = ∩ i ∈ I • P ◦Qi if P is functional
(f) (∩i ∈ I • Pi) ◦Q = ∩ i ∈ I • Pi ◦Q if Q is injective
(g) (C ∩ P) ◦Q = C ∩ (P ◦Q)

Tabular relations are defined in analogy to tabular predicates using generalised intersection and union. Let
PV and QV be vectors of relations and let RM be a matrix of relations:

QV
PV RM ≡ ∪i , j • PVi ∩QVi ∩ RMi,j

All operations on relations are pointwise extended to operations on vectors and matrices. On occasion we
identify a relation P with a vector or a matrix with all elements being P . For example, this allows us to
write P ◦ PV , with the meaning of (P ◦ PV )i = P ◦ PVi . There is a direct relationship between tabular
predicates and tabular relations. Let pv and qv be vectors of predicates, let rm be a matrix of predicates,
let PV and QV be vectors of relations, and let RM be a matrix of relations. If

PVi x y ≡ pvi , QVj x y ≡ qvj , RMi,j x y ≡ rmi,j

then the following two definitions of relation S are equivalent:

S = QV
PV RM , S x y ≡ qv

pv rm

This relationship between tabular predicates and tabular relations allows us to switch between them as
convenient. This also allows us to lift all theorems on tabular predicates to tabular relations as needed. In
particular the notions of disjointness and coverage carry over to relations.

Standard and Inverted Tables. We define standard and inverted tabular relations following Parnas
[Par92]. A tabular relation is called standard if all its headers are conditions. If we take the table in Fig. 1 for
defining the relation ButtonPressed (f ) over the variables mode and reqs, then that table is standard. The
headers are made up of expressions over the initial state only and the body is made up of expressions relating
the initial and final state. We think of the flow in the table going from both headers to the body [JK01]. A
tabular relation is called inverted if the body and all but one header are conditions. If we take the table in
Fig. 4 for defining the relation ButtonPressedMode (f ), then that table is inverted. The left header and the
body are made up of expressions over the initial state only and the upper header is made up of expressions
over the final state. We think of the flow in the table going from the left header to the body and from there
to the upper header. A typical use of inverted tables is if there are a large number of different conditions for
only a few possibilities for the outcome. While other kinds of tables are conceivable, we consider here only
tables that are either standard or inverted.
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mode ′ = up mode ′ = down mode ′ = waiting
f > floor true false false
f = floor mode = up mode = down mode = waiting
f < floor false true false

Fig. 4. Example of an inverted table

Consistency and Completeness. Tabular representations can help in formulating and analysing the
consistency and completeness of a specification given by a relation. In its simplest form, consistency is defined
as the relation being deterministic and completeness as the relation being total. For tabular specifications,
consistency and completeness can be defined in a more liberal way through disjointness and coverage. We
argue that this typically better suits the problem at hand with some small examples. Consider relation P x x ′
defined by:

x < 0 x = 0 x > 0
x ′ = −x false x ′ = x

If we define completeness to mean that all headers are total, i.e. cover true, then above table is complete,
even though P as a relation is not total. While P could be equivalently defined with the middle column left
out, the inclusion of it indicates that partiality in the case of x = 0 is intentional; this kind of redundancy
allows checks to be carried out. Consider relation Q x x ′ defined by:

x < 0 x = 0 x > 0
x ′ = −x true x ′ = x

If we define consistency to mean that all headers are disjoint, then above table is consistent, even though
Q as a relation is nondeterministic. By confining nondeterminism to the body of tables the source of non-
determinism is more local: unintentional nondeterminism through overlaps in header conditions of (possibly
large) tables cannot occur. We point out that an overlap in a header does not necessarily imply that the
relation is nondeterministic. Consider relation R x x ′ defined by:

x ≤ 0 x ≥ 0
x ′ = −x x ′ = x

In this case we could argue whether this is a good style of writing a specification or not. Heitmeyer et al.
[HJL96] report on detecting numerous errors in specifications of embedded systems through analysing tables
for disjointness and coverage.

Operations on Tabular Relations. The domain of a tabular relation in standard form can be determined
by taking the domain of each body element. Assume BV and CV are vectors of conditions:

Theorem 4.1 (Table Domain).

∆
(

CV
BV PM

)
= CV

BV ∆PM

Proof. This follows from Lemma 4.1 (b) and (g), and the definition of ∆.

We study how relational composition distributes into tables. If the first operand of a relational composition
is a tabular relation in standard form, we can distribute the second operand into the table body. If the
second operand of a relational composition is a tabular relation, we get only inclusion, even if the relation is
in standard form. However, we get equality if the first operand is functional:

Theorem 4.2 (Table Composition).

(a) CV
BV PM ◦ Q = CV

BV PM ◦Q

(b) S ◦ QV
PV RM ⊆ S ◦QV

S ◦ PV S ◦ RM
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(c) S ◦ QV
PV RM = S ◦QV

S ◦ PV S ◦ RM if S is functional

Proof. Part (a) follows from Lemma 4.1 (b) and (g). For (b) we make use of Lemma 4.1 (a) and (c):

L.H .S . = S ◦ (∪i , j • PVi ∩QVj ∩ RMi,j )
= ∪i , j • S ◦ (PVi ∩QVj ∩ RMi,j )
⊆ ∪i , j • (S ◦ PVi) ∩ (S ◦QVj ) ∩ (S ◦ RMi,j )
= R.H .S .

The proof of (c) is similar, except that we use Lemma 4.1 (a) and (e).

5. Tabular Verification

We use relations to model nondeterministic programs. A relation of type X → Y → Bool models a program
with initial state space X and final state space Y . The domain ∆P of a program P is interpreted either as
the enabledness domain (or guard) of P or as the termination domain (or precondition) of P . The weakest
precondition [P ]C of program P to establish postcondition C characterises those initial states in which P
is never going to lead to a state outside C :

[P ]C = P ◦ C

If ∆P is interpreted as the enabledness domain or program P , then [P ]C characterises those initial states
in which either P is not enabled or P is enabled and leads to a state in C . If ∆P is interpreted as the
termination domain of program P , then [P ]C characterises those initial states in which either P does not
terminate or P terminates and leads to a state in C . In this case we would refer to [P ]C as the weakest liberal
precondition. Leaving both interpretations open, we uniformly refer to [P ]C as the weakest precondition for
P to establish C .

The weakest precondition can equivalently be defined in terms of predicates. We assume that the state
consists of a vector xv of variables and that the initial and final state space are products of the same type:

Theorem 5.1 (Weakest Precondition).

[P ]C xv xv ′ ≡ ∀xv ′ • P xv xv ′ ⇒ C xv ′ xv ′

Proof. We observe that if C is a condition, the C xv yv ≡ C xv zv for arbitrary, not necessarily distinct
xv , yv , zv . We also note that if C is a condition, the [P ]C is also a condition, allowing us to conclude that
[P ]C xv xv ′ = [P ]C xv xv ′′. With this the theorem follows from the definition of [P ]C .

A typical use of weakest preconditions is for checking invariance properties: an operation P establishes
condition C if [P ]C = > and P preserves C if C ⊆ [P ]C . Consequently we give theorems for deducing
that a weakest precondition—if expressed as a predicate—is either universally true or is weaker than a given
precondition. We make use of the following facts about weakest preconditions. Assume P ,Pi are relations,
for an arbitrary index set I , and B ,C are conditions:

Lemma 5.1.

(a) [∪i ∈ I • Pi ]C = ∩ i ∈ I • [Pi ]C
(b) [B ∩ P ]C = B ∪ [P ]C

We give some theorems for determining weakest preconditions of operations in tabular form. For a matrix
PV and a condition C let [PM ]C stand for PM with the weakest precondition applied to each element,
formally ([PM ]C )i,j = [PMi,j ]C :

Theorem 5.2 (Tabular Weakest Precondition).

(a) CV
BV [PM ]C ⊆

[
CV

BV PM

]
C if BV , CV are total

(b) CV
BV [PM ]C ⊇

[
CV

BV PM

]
C if BV , CV are jointly disjoint
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(c) CV
BV [PM ]C =

[
CV

BV PM

]
C if BV , CV are total

and jointly disjoint

Proof. For (a) we make use of Theorems 4.2 (a) and of 3.1 (b) lifted to relations:

L.H .S . = CV
BV PM ◦ C

= CV

BV PM ◦ C

⊆ CV

BV PM ◦ C

= R.H .S .

The proof of (b) is analogous, except that we use Theorem 3.1 (c) instead. Finally, (c) follows from both (a)
and (b).

We note that typically only (c) is useful as (a) results in a precondition that may be too restrictive and (b)
may not result in a precondition for the given postcondition at all. While (c) allows the precondition to be
determined by considering each case in the body of the program in turn, it does have the side conditions of
totality and disjointness. We give an alternative theorem that does not have these side conditions but allows
only inclusion to be shown, although it gives a necessary and sufficient condition for it. Thus it can always
be used to verify that a tabular relation under a given precondition establishes a given postcondition:

Theorem 5.3 (Tabular Verification).

B ⊆
[

CV
BV PM

]
C ≡ ∧ i , j • B ∩ BVi ∩ CVj ⊆ [PMi,j ]C

Proof. We make use of Lemma 5.1:

L.H .S . ≡ B ⊆ [∪i , j • BVi ∩ CVj ∩ PMi,j ]C
≡ B ⊆ ∩i , j • [BVi ∩ CVj ∩ PMi,j ]C
≡ ∧i , j • B ⊆ [BVi ∩ CVj ∩ PMi,j ]C

≡ ∧i , j • B ⊆ BVi ∩ CVj ∪ [PMi,j ]C
≡ ∧i , j • B ∩ BVi ∩ CVj ⊆ [PMi,j ]C
≡ R.H .S .

For the case that the table is given by a tabular predicate and the postcondition by a predicate, we can give
the analogue of Theorem 5.2. For brevity, we give only the analogue of Theorem 5.2 (c). We assume that
the state consists of a vector xv of variables. If pm is a matrix of predicates, we write ∀x • pm for every
matrix element universally quantified over x , formally (∀x • pm)i,j ≡ (∀x • pmi,j ). Let f [xv\ev ] stand for
expression f with each variable in xv simultaneously substituted by the corresponding expressions in ev .

Theorem 5.4 (Weakest Precondition with Predicates). If standard relation P and condition C are
given by

P xv xv ′ ≡ cv
bv pm , C xv xv ′ ≡ c

and if bc, cv are total and jointly disjoint we have:

[P ]C xv xv ′ ≡ cv
bv ∀xv ′ • pm ⇒ c[xv\xv ′]

Proof. The theorem follows from Theorems 5.2 (c) and 5.1.

Next we give a theorem that does not have the side conditions of totality and disjointness of the headers
and does not even require the table to be in standard form. Hence it can also be applied to inverted tables:
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mode = waiting mode 6= waiting
f > floor floor /∈ {f } floor /∈ reqs ∪ {f }
f = floor floor /∈ {} floor /∈ reqs
f < floor floor /∈ {f } floor /∈ reqs ∪ {f }

Fig. 5. The condition [ButtonPressed (f )]FloorNotInReqs expressed by a tabular predicate over the variables mode, reqs.

Theorem 5.5 (Tabular Verification with Predicates). If conditions B ,C and relation P are given by

B xv xv ′ ≡ b , P xv xv ′ ≡ qv
pv rm , C xv xv ′ ≡ c

we have:

B ⊆ [P ]C ≡ ∧ i , j • b ∧ pvi ∧ qvj ∧ rmi,j ⇒ c[xv\xv ′]

Proof. We make use of Theorem 5.1:

L.H .S . ≡ B xv xv ′ ⇒ ([P ]C ) xv xv ′

≡ b ⇒ (∀xv ′ • P xv xv ′ ⇒ C xv ′ xv ′)
≡ b ⇒ (∀xv ′ • P xv xv ′ ⇒ c[xv\xv ′])
≡ b ⇒ ((∨i , j • pvi ∧ qvj ∧ rmi,j ) ⇒ c[xv\xv ′])
≡ ∧i , j • b ⇒ (pvi ∧ qvj ∧ rmi,j ⇒ c[xv\xv ′])
≡ R.H .S .

Example 5.1 (Verifying Invariant). We illustrate how to verify that an invariant is preserved by an
operation in tabular form. Consider the table in Fig. 1 for defining the relation ButtonPressed (f ) over the
variables mode and reqs. We want to show that the current floor cannot be in the set of requested floors,
formally expressed by condition NoReqForFloor :

FloorNotInReqs (mode, reqs) (mode ′, reqs ′) ≡ floor /∈ reqs

Applying Theorem 5.5 to show that FloorNotInReqs ⊆ [ButtonPressed (f )]FloorNotInReqs results in six
proof obligations, one for each body element:

1. floor /∈ reqs ∧ f > floor ∧mode = waiting ∧ reqs ′ = {f } ∧mode ′ = up ⇒ floor /∈ reqs ′

2. floor /∈ reqs ∧ f > floor ∧mode 6= waiting ∧ reqs ′ = reqs ∪ {f } ∧mode ′ = mode ⇒ floor /∈ reqs ′

3. floor /∈ reqs ∧ f = floor ∧mode = waiting ∧ reqs ′ = {f } ∧mode ′ = waiting ⇒ floor /∈ reqs ′

4. floor /∈ reqs ∧ f = floor ∧mode 6= waiting ∧ reqs ′ = reqs ∧mode ′ = mode ⇒ floor /∈ reqs ′

5. floor /∈ reqs ∧ f < floor ∧mode = waiting ∧ reqs ′ = {f } ∧mode ′ = down ⇒ floor /∈ reqs ′

6. floor /∈ reqs ∧ f < floor ∧mode 6= waiting ∧ reqs ′ = reqs ∪ {f } ∧mode ′ = mode ⇒ floor /∈ reqs ′

All six proof obligations can easily be seen to hold. We emphasise how the structure of the table leads to
decomposing a larger proof into six smaller ones; we also observe that if one of the six proof obligations
would not hold, then the source of the error can be easily traced back.

Alternatively we can verify the invariant by first deriving the weakest precondition for operation to
establish the invariant and then showing in a second step that the invariant implies the weakest precondition.
As ButtonPressed (f ) is defined by a table in standard form and the table headers are total and jointly
disjoint, we apply Theorem 5.4 to determine the weakest precondition. The result after simplifications is
given in Fig. 5. As both headers cover true we can apply Theorem 3.4 (c) to show that floor /∈ reqs implies
the table. This again results in six proof conditions that are identical to the six above after eliminating the
primed variables in those with the one-point rule.

Vector Tables. Of the various tables Parnas proposes we also consider vector tables, see Fig. 6. The upper
header of a vector table is a vector of predicates, the left header is a vector of variables, and the body is a
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door = closing ∧
mode = up

door = closing ∧
mode = down

door ′ = closed closed
motor ′ = up down
mode ′ = mode mode

door = closing ∧
mode = up

door = closing ∧
mode = down

door ′ = closed ∧
motor ′ = up ∧
mode ′ = mode

door ′ = closed ∧
motor ′ = down ∧
mode ′ = mode

Fig. 6. An example of a vector table (left) and an equivalent predicate table (right).

matrix of expressions. The meaning of this table is that the variable to the left is equal to all the expressions
of that row. Vector tables have a two-dimensional structure, but are here defined in terms of one-dimensional
predicate tables. Let emj stand for the j -th column of matrix em, formally (emj )i = emi,j . Let yv be a
vector of variables and let yv = em stand for a vector such that (yv = em)j ≡ yv = emj . We define:

pv
yv = em ≡ pv

yv = em

The typical use of vector tables is for defining relations. Consider the vector table in Fig. 6 for defining the
relation DoorClosing over the variables door , motor , mode; it that models the state transition when the
elevator door becomes closed. This table is in standard form as the upper header and the body mention only
the variables of the initial state; the variables of the final state appear only in the left header. If the upper
header of a vector table is total, then the relation is total. If the upper header is disjoint, then the relation
is deterministic (functional). Hence this allows a relation to be analysed for totality and determinism by
looking at one header only. In our example, we conclude from the upper header that DoorClosing is not total
but deterministic.

For an operation given by a vector table we have a simplified rule for determining its precondition. Let
f [xv\em] stand for a vector of expressions, with each element obtained by substituting xv with one column
of matrix em in f , formally (f [xv\em])j = f [xv\emj ].

Theorem 5.6 (Weakest Precondition of Vector Table). If standard vector relation V and condition
C are given by

V xv xv ′ ≡ bv
xv ′ = em , C xv xv ′ ≡ c

we have:

[V ]C xv xv ′ ≡ ∧ j • bvj ⇒ c[xv\emj ]

Proof. We make use of Theorem 5.1:

L.H .S . ≡ ∀xv ′ • V xv xv ′ ⇒ C xv ′ xv ′

≡ ∀xv ′ • (∨j • bvj ∧ xv ′ = emj ) ⇒ C xv ′ xv ′

≡ ∧j • ∀xv ′ • bvj ∧ xv ′ = emj ⇒ C xv ′ xv ′

≡ R.H .S .

While the theorem allows the precondition to be calculated, the precondition is a conjunction rather than a
table. We can give an alternative theorem that gives a tabular precondition but has side conditions:

Theorem 5.7 (Tabular Weakest Precondition of Vector Table). If standard vector relation V and
condition C are given by

V xv xv ′ ≡ bv
xv ′ = em , C xv xv ′ ≡ c

and if bv is total and disjoint we have:

[V ]C xv xv ′ ≡ bv
c[xv\em]
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Fig. 7. Data refinement: (a) encoding from abstract to concrete with R and (b) decoding from concrete to abstract with R.

Proof. This follows from Theorem 5.6 and Lemma 3.2 (c).

Finally we give a theorem that does not have the side conditions of totality and disjointness. It follows
directly from Theorem 5.5.

Theorem 5.8 (Verification with Vector Table). If conditions B ,C and vector relation V are given by

B xv xv ′ ≡ b , V xv xv ′ ≡ pv
xv ′ = em , C xv xv ′ ≡ c

we have:

B ⊆ [V ]C ≡ ∧ j • b ∧ pvj ⇒ c[xv\emj ]

Example 5.2 (Verifying Invariant with Vector Table). Consider the table in Fig. 6 for defining the
relation DoorClosing over the variables door , motor , mode. We like to show that the direction of motor must
correspond to mode by showing that the condition MotorUpMode is preserved:

MotorUpMode (door ,motor ,mode) (door ′,motor ′,mode ′) ≡ motor = up ⇒ mode = up

We note that we cannot apply Theorem 5.7 as the header is not total and we cannot use Theorem 2.7 for
making the header of a vector table total. Thus we can only apply Theorem 5.6 or 5.8. Applying the former
we get

[DoorClosing ]MotorUpMode (door ,motor ,mode) (door ′,motor ′,mode ′)
≡ (door = closing ∧mode = up ⇒ (up = up ⇒ mode = up)) ∧

(door = closing ∧mode = down ⇒ (down = up ⇒ mode = up))

which is always true, and hence the invariant is trivially preserved.

6. Refinement

For programs P and Q , if P ⊆ Q then we say that P refines Q . Refinement is a process that allows
nondeterminism to be reduced. Refinement is reflexive, P ⊆ P , meaning that each program is refined
by itself. Refinement is also transitive, P ⊆ Q and Q ⊆ R implies P ⊆ R, meaning that programs can be
refined in a stepwise manner. If P ⊆ Q holds, then P is called the (more) concrete and Q the (more) abstract
program. We are interested in generalising this notion of algorithmic refinement to data refinement, where the
concrete and abstract program work on different state spaces. We consider two variants of data refinement,
downward (forward) data refinement and upward (backward) data refinement [HHS86], noting that in the
predicate transformer setting these two variants can be unified to a single notion of data refinement [BW00].
An extensive discussion of data refinement in the relational setting is in [RE98]. We follow the lines of [BW00]
and adopt that approach to the relational setting.

Downward data refinement is defined through following subcommutativity property, see Fig. 7 (a). Sup-
pose P ,Q are homogeneous relations of possibly different types. Program Q downward refines program P
via relation R if R ◦ Q ⊆ P ◦ R holds. Relation R is called the refinement relation or encoding relation,
relating the state space of the (more) abstract program P to that of the (more) concrete program Q . We
use downward refinement when the abstract program and the encoding relation are given and the concrete
program is to be determined in a systematic way. For this we introduce an encoding operator P ↓ R:

P ↓ R = R−1 ◦ P ◦ R provided R is injective
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The restriction to an injective encoding relation is motivated by following theorem:

Theorem 6.1 (Soundness of Encoding).

Q ⊆ P ↓ R ⇒ R ◦Q ⊆ P ◦ R if R is injective

Proof. We apply the definition of encoding and injectivity:

L.H .S . ≡ Q ⊆ R−1 ◦ P ◦ R
⇒ R ◦Q ⊆ R ◦ R−1 ◦ P ◦ R
⇒ R.H .S .

Upward data refinement is defined through a similar subcommutativity property, see Fig. 7 (b). Program
P upward refines program Q via relation R if P ◦ R ⊆ R ◦ Q holds. Relation R is called the abstraction
relation or decoding relation, relating the state space of the (more) concrete program P to that of the (more)
abstract program Q . We use upward refinement when the concrete program and the decoding relation are
given and the abstract program is to be determined in a systematic way. For this we introduce a decoding
operator P ↑ R:

P ↑ R = R−1 ◦ P ◦ R provided R is total

The restriction to a total decoding relation is motivated by following theorem:

Theorem 6.2 (Soundness of Decoding).

P ↑ R ⊆ Q ⇒ P ◦ R ⊆ R ◦Q if R is total

Proof. We apply the definition of decoding and totality:

L.H .S . ≡ R−1 ◦ P ◦ R ⊆ Q
⇒ R ◦ R−1 ◦ P ◦ R ⊆ R ◦Q
⇒ R.H .S .

As encoding and decoding differ only in the restriction of R, we define a general coding operator P l R
without the restriction to R being either injective or total. While this allows us to state properties that
apply to both encoding and decoding only once, the use of coding is only sound (i.e. implies data refinement)
if R is either injective or total:

P l R = R−1 ◦ P ◦ R

We give first theorems about coding in general and then theorems that apply only to encoding or to decoding.
We note that coding is monotonic in its first argument (but not in its second), which follows directly from
its definition:

Theorem 6.3 (Monotonicity of Coding).

P ⊆ Q ⇒ P l R ⊆ Q l R

We state some facts about the first argument of the coding operator.

Theorem 6.4. Suppose I is an index set and C is a condition:

(a) ⊥ l R = ⊥
(b) (∪i ∈ I • Pi) l R = (∪i ∈ I • Pi l R)
(c) (∩i ∈ I • Pi) l R ⊆ (∩i ∈ I • Qi l R)
(d) (C ∩ P) l R ⊆ (R−1 ◦ C ) ∩ (P l R)

Proof. Part (a) follows immediately from the definition. Part (b) follows from Lemma 4.1 (a) and (b). Part (c)
follows from Lemma 4.1 (c) and (d). Finally, (d) follows from Lemma 4.1 (c) and (g).
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We note that for a relation R and condition C , the condition R−1 ◦ C is the image of C under R. As
Theorem 6.4 (c) and (d) state inclusion and not equality, they are only useful for decoding when distributing
the decoding operator into conjunctions. Next we state how coding behaves in its second argument:

Theorem 6.5. Suppose I is an index set:

(a) P l ⊥ = ⊥
(b) P l > = > if P 6= ⊥
(c) P l Id = P
(d) P l (R ◦ S ) = (P l R) l S
(e) (∪i ∈ I • P l Ri) ⊆ P l (∪i ∈ I • Ri)
(f) P l (∩i ∈ I • Ri) ⊆ (∩i ∈ I • P l Ri)

Proof. Parts (a) to (c) all follow from basic properties of relations. For (d) we use that inversion distributes
through relational composition, (R ◦ S )−1 = S−1 ◦ R−1. For (e) we use Lemma 4.1 (a) and (b), and that
inversion distributes through generalised union:

R.H .S . = (∪i ∈ I • Ri)−1 ◦ P ◦ (∪i ∈ I • Ri)

= (∪i ∈ I • R−1
i ) ◦ P ◦ (∪i ∈ I • Ri)

= (∪i ∈ I • R−1
i ◦ P ◦ (∪i ∈ I • Ri))

⊇ (∪i ∈ I • R−1
i ◦ P ◦ Ri)

= L.H .S .

The proof of (f) is similar, except that we use Lemma 4.1 (c) and (d), and that inversion distributes through
generalised intersection.

We continue with theorems that apply only to encoding. Distributivity through conjunctions in the first
argument can be strengthened to equality with an injective encoding relation. Encoding subdistributes
through relational composition:

Theorem 6.6. Suppose R is an injective relation:

(a) (∩i ∈ I • Pi) ↓ R = (∩i ∈ I • Qi) ↓ R
(b) (C ∩ P) ↓ R = (R−1 ◦ C ) ∩ (P ↓ R)
(c) (P1 ↓ R) ◦ (P2 ↓ R) ⊆ (P1 ◦ P2) ↓ R

Proof. Part (a) follows from Lemma4.1 (e) and (f), and the fact that R−1 is functional. Part (b) follows
from Lemma 4.1 (g) and (e). Part (c) follows from the definition of injectivity.

We conclude with a theorem that applies only to decoding. Decoding also subdistributes through relational
composition, though in the other direction than encoding:

Theorem 6.7. Suppose R is a total relation:

(P1 ◦ P2) ↑ R ⊆ (P1 ↑ R) ◦ (P2 ↑ R)

While our encoding and decoding operators are similar to those of [BW00], the differences are subtle but
substantial. In the predicate transformer setting a relation R can be lifted to either an angelically updating
statement {R} or to a demonically updating statement [R]. Encoding of statement S with relation R is
defined as S ↓ R = {R−1};S ; [R] and decoding as S ↑ R = [R−1];S ; {R}. Both are unconditionally sound
in the sense that S ; [R] v [R];T ≡ S ↓ R v T ≡ S v T ↑ R ≡ {R−1};S v T ; {R−1} for any statements
S ,T and any relation R, where S v S ′ means that S is refined by S ′. The relational setting has only one
kind of nondeterminism, so the definitions of encoding and decoding coincide. However, Theorem 6.1 states
soundness of encoding only if R is injective and only gives an implication. Likewise, Theorem 6.2 states
soundness of decoding only if R is total and only gives an implication. While Theorems 6.3, 6.4, and 6.5
hold in similar form in the predicate transformer setting, Theorems 6.6 and 6.7 can be generalised to hold
for arbitrary relations R with predicate transformers.
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7. Tabular Refinement

We analyse how specifications can be transformed into more concrete or more abstract ones, where either
the concrete or the abstract or both are given in tabular form. First we consider that both specifications are
over the same state space. Assume PV and QV are vectors of relations, RM is a matrix of relations, and S
is a relation:

Theorem 7.1 (Refining to Table).

(a) QV
PV RM ⊆ S ≡ ∧ i , j • PVi ∩QVj ∩ RMi,j ⊆ S

(b) QV
PV RM ⊆ QV

PV SM ⇐ ∧ i , j • PVi ∩QVj ∩ RMi,j ⊆ SMi,j

Refining to a vector table allows for a simplified rule:

Theorem 7.2 (Refining to Vector Table). If vector relation P and relation Q are given by

P xv xv ′ ≡ pv
xv ′ = em , Q xv xv ′ ≡ pv

qv

we have:

P ⊆ Q ⇐ (∧j • pvj ⇒ qv [xv ′\emj ])

Note that while above theorem can be applied even if Q is not a standard relation, P is a standard vector
relation only if Q is a standard relation. We now give a general theorem when the concrete and abstract
state are related through relation R:

Theorem 7.3 (Data Refining a Table). Assume BV ,CV are vectors of conditions:

(a)
(

CV
BV PM

)
↓ R = R−1 ◦ CV

R−1 ◦ BV PM ↓ R if R is injective

(b)
(

CV
BV PM

)
l R ⊆ R−1 ◦ CV

R−1 ◦ BV PM l R

Removing the side condition that the refinement relation is injective in part (a) only gives the inclusion of
part (b). While (b) is applicable to both decoding and encoding, the direction of the inclusion makes it only
useful for decoding. Thus when using (a) for refinement, we get an exact refinement, but when using (b) for
abstraction, we get only an approximation.

Proof. For (a) make use of Theorem 4.2 (a) and (c) as R−1 is functional:

L.H .S . = R−1 ◦ CV
BV PM ◦ R

= R−1 ◦ CV

R−1 ◦ BV R−1 ◦ PM ◦ R

= R.H .S .

For (b) we make use of Theorem 4.2 (a) and (b):

L.H .S . = R−1 ◦ CV
BV PM ◦ R

⊆ R−1 ◦ CV

R−1 ◦ BV R−1 ◦ PM ◦ R

= L.H .S .

To allow a direct application of above theorem, we derive the corresponding theorem when the relation is
given by a tabular predicate. We extend the use of existential quantifications to matrices of predicates, with
the meaning that the quantification is applied to each element, formally (∃x • pm)i,j ≡ (∃x • pmi,j ):
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Theorem 7.4 (Data Refining with Predicates). Given relation P in standard form and relation R by

P xv xv ′ ≡ cv
bv pm , R xv yv ≡ r

and writing r ′ for r with xv , yy substituted by xv ′, yv ′ we have:

(a) (P ↓ R) yv yv ′ =
(

∃xv • r ∧ cv
∃xv • r ∧ bv ∃xv , xv ′ • r ∧ pm ∧ r ′

)
if R is injective

(b) (P l R) yv yv ′ ⊆
(

∃xv • r ∧ cv
∃xv • r ∧ bv ∃xv , xv ′ • r ∧ pm ∧ r ′

)
We consider the case that the refinement relation rather than the specification is in tabular form. More
precisely, we consider the refinement relation being defined by an inverted vector table, that is a table in
which only the variables of the initial state appear in the left header and variables of the final state appear
only in the upper header and body. For simplicity we consider a refinement relation with only two columns.

Theorem 7.5 (Data Refinement with Vector Table). Assume inverted vector relation R is given by:

R xv yv ≡ c d
xv = ev fv

Writing c′, d ′, ev ′, fv ′ for c, d , ev , fv with yv substituted by yv ′ we have:

(P l R) yv yv ′ ≡
c′ d ′

c P ev ev ′ P ev fv ′
d P fv ev ′ P fv fv ′

Proof.

L.H .S . ≡ ∃xv , xv ′ • R−1 yv xv ∧ P xv xv ′ ∧ R xv ′ yv ′

≡ ∃xv , xv ′ • ((c ∧ xv = ev) ∨ (d ∧ xv = fv)) ∧ P xv xv ′ ∧ ((c′ ∧ xv ′ = ev ′) ∨ (d ′ ∧ xv ′ = fv ′))
≡ (c ∧ P ev ev ′ ∧ c′) ∨ (c ∧ P ev fv ′ ∧ d ′) ∨ (d ∧ P fv ev ′ ∧ c′) ∨ (d ∧ P fv fv ′ ∧ d ′)
≡ R.H .S .

We discuss the use of this theorem for encoding. For the encoding relation R to be injective it is sufficient if
the header of R is disjoint, i.e. ¬c ∨¬d holds. The header defines the concrete invariant c ∨ d and the body
with ev and fv defines the abstraction function in a piecewise manner; that is, if c holds on the concrete
state then the abstraction function is given by ev and if d holds it is given by fv . For the refinement P ↓ R
we observe that either c or d must hold initially and either c′ or d ′ must hold finally, giving in total four
combinations of how the refinement may establish c′ or d ′ from c or d . Note that the resulting table is neither
in standard nor in inverted form. However, we may flatten the table after transposing it, thus eliminating
the upper header and bringing it into standard form.

For the use of this theorem for decoding, we observe that the decoding relation R assigns values to the
concrete variables in terms of the abstract variables. As the relation has also to be total, this makes the
application of the theorem to decoding too restrictive.

Example 7.1 (Data Abstraction). We illustrate the use of Theorem 7.4 (b) for a data abstraction that
reduces the state space. Consider applying decoding to the relation ButtonPressed (f ) over variables mode
and reqs as defined in Fig. 1. Our intention is to abstract variable reqs with a boolean variable r that only
reflects if reqs is empty and to abstract variable mode with a boolean variable w that only reflects whether
mode is waiting or not. Thus this abstraction reduces the state space to two boolean variables. A typical use
of such an abstraction is to allow (automated) proofs about the abstraction, for example the property that
if there are no requests then the mode must be waiting . Formally our decoding relation is:

RW (reqs,mode) (r ,w) ≡ (r ≡ reqs 6= {}) ∧ (w ≡ mode = waiting)

The result of applying Theorem 7.4 (b) and further simplifications is the left table in Fig. 8. We now
use Theorem 2.9 (with transposition) to join the first and last row and Theorem 2.8 (a) to simplify the
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w ¬w
f > floor r ′ ∧ ¬w ′ r ′ ∧ w ′ = w
f = floor ¬r ′ ∧ w ′ r ′ = r ∧ w ′ = w
f < floor r ′ ∧ ¬w ′ r ′ ∧ w ′ = w

w ¬w
f 6= floor r ′ ∧ ¬w ′ r ′ ∧ ¬w ′

f = floor ¬r ′ ∧ w ′ r ′ = r ∧ ¬w ′

Fig. 8. Two abstractions of the specification in Fig. 1 using decoding relation RW .

rightmost column. The final result is the right table in Fig. 8. For example, we can now show that if there
are no requests then mode must be waiting proving that ¬r ⇒ w is preserved by this abstraction. Recall
that Theorem 7.4 (b) states only inclusion. The example shows that the approximate abstraction we get
from this theorem is still useful.

8. Outlook

Among the presented theorems we point out two promising classes: one class are theorems that decompose
a potentially large proof condition into a set of smaller proof conditions following the structure of the table.
Theorems 3.4 (Predicate-Table Implication) and 5.3 (Tabular Verification) belong to this class. Thus for
a table with m rows and n columns these theorems give m × n proof conditions. Example 5.1 (Verifying
Invariant) illustrates that compared to conventional proofs, this leads to more, but simpler proof conditions.
Given that both automated theorem proving and state enumeration (model checking) techniques can cope
disproportionately better with smaller conditions, there is the potential of higher automation of proofs.

The other class of theorems are those that preserve the structure of tables in transformations by dis-
tributing an operation into a table. Theorems 4.2 (Table Composition), 5.2 (Tabular Weakest Precondition)
and 7.3 (Data Refining a Table) belong to this class and Example 7.1 (Data Abstraction) illustrates a use.
While the potential of these structure preserving transformations remains to be further explored, a benefit
is that they ease tracing back errors. Particularly this class of theorems would be awkward if expressed in
textual form.

Beside the potential for automation we stress the readability that tables offer. Our own experience in
teaching predicate tables is that students make fewer errors when writing specifications than with plain
predicates. Likewise, students find it easier to read and implement a specification given in tabular form than
one given as a plain predicate.

Of the ten kinds of tables that Parnas proposes, predicate expression tables correspond to our predicate
tables; normal relation tables and characteristic predicate tables correspond to our relation tables, with the
difference that Parnas’ tables are made up of predicates and come with conventions on how the variables
of the initial and final state are identified. Here we always give them explicitly as the parameters of the
relation. Inverted relation tables correspond to our inverted tables and vector relation tables are similar to
our vector tables, except that our vector tables denote predicates, not relations. We have not covered Parnas’
normal function tables, inverted function tables, vector function tables, mixed vector tables, and generalised
decision tables. We note that in principle functions can always be represented by deterministic relations.
We have not covered tables of higher dimensions, tables with structured headers, and nested tables. Our
experience is that mixed vector tables—tables in which some variables are “assigned” values by equalities
and some by predicates—are handy when describing relations that are deterministic in some variables and
nondeterministic in others. Also, structured headers in which some expressions may span over several rows
or columns allow avoiding repetitions. Incorporating these would be desirable. We doubt that with tables
of higher dimensions than two we would be able to retain the visual structure of our theorems. While in
principle our tables can be nested—after all each table just denotes a predicate or a relation—our experience
is that even plain tables too quickly fill up a sheet so that nesting them does not appear to be useful.

It is interesting to note that the study of algebraic laws of conditional expressions (p1 → e1, . . . , pn → en)
goes back to early work of McCarthy [McC63]. Such conditional expressions are similar to Parnas’ function
tables, except that they are evaluated from left to right and have a special undefined value if all pi are false.
McCarthy uses conditional expressions to construct computable functions, whereas Parnas’ tables are meant
for specification. Hoare gives a number of algebraic laws of conditionals of the form p � q � r , read “p if q
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else r” [Hoa85]. Such conditionals are just one-dimensional tables in canonical form:

p � q � r ≡ q ¬q
p r

Despite the simple structure of tables, more applications of tables and more mathematical properties
remain to be explored. We studied the composition of tables with identical headers. It would be interesting
to see how this can be generalised, for example for showing that the table in Fig. 1 implies the one in Fig. 4.
Another application of tables would be for writing pre- and postconditions in tabular form in addition to
writing operations in tabular. The verification rules like Theorem 5.2 do indeed lead to such tables. More
experience is needed to determine the usefulness of such generalisations.

Finally, we note that moving from tabular predicates to tabular relations relied only on basic properties
of ∧ and ∨. One could move on further to tabular predicate transformers, with conjunction and disjunction
becoming demonic choice and angelic choice [BW98]. One may conjecture that for constructing tables of the
kind discussed here a lattice structure is sufficient.
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