Verification and Refinement with Fine-Grained Action-Based Concurrent Objects

Emil Sekerinski
McMaster University, Hamilton, Ontario
emil@mcmaster.ca

Abstract

Action-based concurrent object-oriented programs express autonomous behavior of objects through actions that, like methods, are attached to objects but, in contrast to methods, may execute autonomously whenever their guard is true. The promise is a streamlining of the program structure by eliminating the distinction between processes and objects and a streamlining of correctness arguments. In this paper we illustrate the use of action-based object-oriented programs and study their verification and their refinement from specifications, including the issue of non-atomic operations.

Key words: object-based concurrency, actions, verification, refinement, weakest preconditions

1 Introduction

It has been argued that objects can be naturally thought of as evolving independently and thus concurrently; objects are a natural "unit" of concurrency. Yet, current mainstream object-oriented languages treat concurrency independently of objects: concurrency is expressed in terms of processes (threads) that have to be managed separately from objects.

Action-based object-oriented concurrency offers the promise of truly integrating objects and concurrency by eliminating the need for having the class structure and the process structure as two interdependent design views. The only syntactic additions needed are extending classes by actions, which execute autonomously, and allowing methods to be guarded. In this way, concurrency can be introduced in subclasses of a class hierarchy by adding (new) actions.

For example, this permits concurrency to be treated as an implementation issues that can be delegated to subclasses.

The approach to action-based object-oriented concurrency taken here is that (1) atomicity of operations (methods and actions) is guaranteed only up to method calls (2) several operations can be initiated in one object, but only one can progress at any time, and (3) actions, like methods, can be initiated multiple times. In combination, this leads to a fine-grained model of concurrency allowing a higher degree of concurrency than the exclusive access to an object for the entire duration of an operation, as is sometimes associated with monitors and concurrent objects.

An earlier paper [17] gives the formal model of the language in terms of higher order predicate transformers and also sketches the current implementation. The compiler translates to the Java Virtual Machine and is described in more detail in [15].

The purpose of this paper is to further streamline the formal verification and refinement process: all reasoning is reduced to Dijkstra's (syntactic) weakest precondition predicate transformer through (syntactic) transformations. Most of these transformations are meant to be simple enough that they can be done on the fly. In essence, an attribute of a class is understood as function mapping objects of that class to attribute values, methods are understood as procedures taking an additional this parameter, and actions are quantified over all objects of the class. Difficulties arise with non-atomic operations: each atomic region has to be transformed into a separate action and local variables that are present in the context need to be stored in bag-valued attributes. While not all aspects of the language can be dealt with in this way, this paper demonstrates through a series of examples what can be achieved. Inheritance, subtyping, type tests, type casts, and dynamic binding can be dealt with as in [17]; here we focus on concurrency.

Briot et. al. [9] give a classification of concurrency in object-oriented programming, based on the level of concurrency, autonomy of objects, and the acceptance of messages. The level of concurrency can be classified here as quasi-concurrent, like in ABCL/1 [19], as several method activations may coexist, but at most one is not suspended; it is a disciplined form of intra-object concurrency. This is in contrast to serial objects like in POOL [2, 3] that support only one method activation and fully concurrent objects like with Actors [1]. Our objects would be classified as autonomous rather than reactive as they may be active without receiving a method call; in Java all objects are reactive and autonomous activity is expressed through threads. The acceptance of messages is implicit rather than explicit as in Ada and POOL; in those languages each object has a body that controls entry into the object through a rendezvous. Here, condition synchronization is achieved through guards in-
stead. The communication between objects is through synchronous method calls, as in Ada, POOL, and Java, rather than through message queues as in Actors.

The closest work is the Seuss approach of Misra [16] and OO-action systems of Bonsangue, Kok and Sere [7, 8]. We share with these approaches the use of synchronous method calls, the use of guards for condition synchronization, and the use of actions to express autonomous activity. While in Seuss only a fixed number of objects can be declared, we allow dynamic object creation, as in OO-action systems. A notable difference is how atomicity of actions and methods is guaranteed if they contain multiple method calls. Suppose we have an (unguarded) action $x . m$; $y . n$ and method n of object y is not enabled. In OO-action systems, following the theory of action systems [6, 18], the whole action is therefore not enabled; thus, if we would have executed $x . m$, we would have to roll back. In Seuss this is solved by allowing one call to a guarded method and that has to be the first statement in an action or a method. Besides being a syntactic restriction, this forbids that an unguarded method is refined by a guarded, as done in OO-action systems. We do not have this restriction, but allow that an action or method gets suspended at the point where a method is called. That is, actions and methods are atomic only up to method calls.

Much of the inspiration comes from the $\pi \mathrm{o} \beta \lambda$ approach that was initiated by Jones $[13,14]$, even though $\pi \mathrm{o} \beta \lambda$ is defined in terms of the π calculus and our language is defined in terms of action systems. We do not directly support early return and delegate statements as $\pi \mathrm{o} \beta \lambda$ does, though an early return can be expressed through actions and guarded methods. Hoare-style verification rules for a POOL-like language that includes statements for sending and receiving synchronous messages are given in [4].

The next section introduces the language through a series of examples, starting with a definition of the formal syntax. Section 3 presents the verification and Section 4 the refinement of classes with atomic operations. Section 5 extends the treatment to non-atomic actions. We conclude with a discussion of implementation aspects and critical remarks in Section 6.

2 An Action-Based Concurrent Object-Oriented Language

We start by giving the formal syntax of the language in extended BNF. The construct $a \mid b$ stands for either a or $b,[a]$ means that a is optional, and $\{a\}$ means that a can be repeated zero or more times:

```
class ::= class identifier
    \(\{\) attribute \(\mid\) initialization \(\mid\) method \(\mid\) action \(\}\) end
attribute \(\quad::=\) var variableList
initialization \(::=\) initialization \([(\) variableList \()]\) statement
method \(\quad::=\) method identifier \([(\) variableList \()][:\) type \(]\)
    [when expression do] statement
action \(\quad::=\) action identifier [when expression do] statement
statement \(\quad::=\) assert expression \(\mid\)
    designatorList \(:=\) expressionList \(\mid\)
    designatorList \(: \in\) expression \(\mid\)
    [designator :=] designator.identifier [( expressionList \()] \mid\)
    designator := new identifier [(expressionList)]|
    var variableList ; statement
    begin statement \(\{\); statement \(\}\) end |
    if expression then statement [ else statement] |
    while expression do statement
variableList \(::=\) identifierList : type \(\{\), identifierList : type \(\}\)
identifierList ::= identifier \(\{\), identifier \(\}\)
designatorList \(::=\) designator \(\{\), designator \(\}\)
expressionList \(::=\) expression \(\{\), expression \(\}\)
```

A class is declared by giving it a name and then listing all the attributes (instance variables), initializations, methods, and actions. Initializations have only value parameters, methods may have both value parameters and return a result, and actions don't have parameters. While the syntax allows multiple initializations, we only consider classes with at most one declared initialization. Methods of a class may have the same name, as long as the methods differ in the type of their parameters. Actions are named and the names must be unique, though the name does not carry any meaning. Both methods and actions may optionally have a guard, a Boolean expression that must be only over attributes of the object itself. A method or action is enabled if its guard is true or missing, otherwise it is disabled. An object is active if its class defines some actions; otherwise it is passive. The assertion statement assert b does nothing if b hold and aborts if b does not hold. The assignment $x:=e$ assigns simultaneously the values of the list e to the list x of variables. The nondeterministic assignment statement $x: \in s$ generalizes this to selecting values of (the tuple) x such that $x \in s$. This statement is not part of the programming language, but is included here for use in abstract programs. A method call $x:=c . m(e)$ to object c takes the list e as the value parameters and assigns the result to x. The object creation $c:=$ new $C(e)$ creates a new object of class C and calls the corresponding initialization with value parameters e. We do not elaborate the structure of identifier, expression, type, and designator.

We introduce the language through a series of examples, starting with an
example for active objects: an aquarium in which fish move randomly to the left and to the right. The main program creates seven fish objects; once a fish object is created, any of its enabled actions can be selected for execution. In case more than one is enabled, the choice is nondeterministic (in case no action is enabled and no reference to an object exists, the object can be garbage collected). As the bodies of all actions (and methods) access only attributes of the object itself, actions of any two fish objects can be executed in parallel, though only one action or method of a fish can be executed at any time:

```
class Fish
    var \(x, d:\) integer
    var \(r\) : boolean
    initialization \(x, d, r:=0,5\), true
    method \(\operatorname{setPace}(p:\) integer \()\)
        begin assert \(p>0 ; d:=p\) end
    action moveRight
        when \(x+d<W \wedge r\) do \(x:=x+d\)
    action moveLeft
        when \(x-d \geq 0 \wedge \neg r\) do \(x:=x-d\)
    action changeToRight
        when \(x<W-1 \wedge \neg r\) do \(r:=\) true
    action changeToLeft
        when \(x>0 \wedge r\) do \(r:=\) false
end
var \(f\) : Fish, \(n\) : integer ;
begin \(n:=0\); while \(n<7\) do \(f:=\) new Fish end
```

The next example illustrates the use of guarded methods: in a class for a bounded buffer, the guards protect the buffer from overflow and underflow. Calling a method that is disabled blocks execution at that point until the guard becomes true, as in the actions of class Merger below. As all objects are of type Object, any object can be placed in the buffer:

```
class Buffer
    var \(b\) : array \(M\) of Object
    var in, out, \(n:\) integer
    initialization
        in, out, \(n:=0,0,0\)
    method \(\operatorname{put}(x\) : Object \()\)
        when \(n<M\) do \(i n, b[i n], n:=(i n+1) \bmod \max , x, n+1\)
    method get: Object
        when \(n>0\) do out, result, \(n:=(\) out +1\() \bmod \max , b[\) out \(], n-1\)
end
```

```
class Merger
    var in 1 , in 2 , out : Buffer
    var \(a 1, a 2\) : boolean
    var \(x 1, x 2\) : Object
    initialization ( \(i 1, i 2, o:\) Buffer)
        in 1 , in 2 , out, a1, a2 \(:=i 1, i 2\), o, true, true
    action copy 1
        when \(a 1\) do
            begin \(a 1:=\) false ; in1.get \((x 1)\); out.put \((x 1)\); a1:= true end
    action copy 2
        when \(a 2\) do
            begin \(a 2:=\) false ; in2.get \((x 2)\); out.put \((x 2)\); \(a 2:=\) true end
end
```

After creating a new merger object, actions copy 1 and copy 2 are both enabled. If copy 1 is invoked, the execution may block at the call in1.get $(x 1)$ or at the call out.put($x 1$). In general, method and action bodies are atomic only up method calls: the guard is evaluated and all statements up to the first method call are executed atomically; all subsequent statements up to the next method call are also executed atomically. Arbitrary many activities, i.e. method calls or action invocations can be initiated in one object, including multiple initiations of the same method or action, but only one can progress at any time. Here, both copy 1 and copy 2 can be initiated. As both actions disable themselves after initiation and remain disabled until completion, they cannot be initiated a second time.

The next example shows the use of semaphores for achieving fairness. In general, the choice of guards for evaluation is not bound to a fairness policy.

```
class Semaphore class StrongSemaphore
    var \(n\) : integer
    initialization ( \(c\) : integer)
        \(n:=c\)
    method \(P\)
        when \(n>0\) do \(n:=n-1\)
    method \(V\)
        \(n:=n+1\)
end
```

```
    var \(n\) : integer
```

 var \(n\) : integer
 \(\operatorname{var} q\) : seq of Object
 \(\operatorname{var} q\) : seq of Object
 initialization (\(c:\) integer)
 initialization (\(c:\) integer)
 \(n, q:=c,\langle \rangle\)
 \(n, q:=c,\langle \rangle\)
 method \(P(u:\) Object \()\)
 method \(P(u:\) Object \()\)
 begin \(q:=q \circ\langle u\rangle ; Q(u)\) end
 begin \(q:=q \circ\langle u\rangle ; Q(u)\) end
 method \(Q(u:\) Object \()\)
 method \(Q(u:\) Object \()\)
 when \(n>0 \wedge u=h e a d(q)\) do
 when \(n>0 \wedge u=h e a d(q)\) do
 \(n, q:=n-1, \operatorname{tail}(q)\)
 \(n, q:=n-1, \operatorname{tail}(q)\)
 method \(V\)
 method \(V\)
 \(n:=n+1\)
 \(n:=n+1\)
 end

```
end
```

Considering an object s of class Semaphore, a sequence s.P; ... critical section ...; s. V in object x might never enter the critical section while the same sequence from another object may continuously do so. A strong semaphore
ensures a first-in first-out policy by keeping a sequence of requests. For $s s$ of class StrongSemaphore, a typical use would be ss.P(this) ; ... critical section $\ldots ; s s . V$, where this is the reference to the current object.

The example of the dining philosophers is well-known. We represent philosophers by active objects and forks by passive objects; philosophers have two actions, one for the transition from thinking to eating and one for the transition from eating to thinking; forks become binary semaphores. The main program connects the philosophers and forks in a cyclic fashion. As known, in this way the situation may occur that all philosophers pick up their left fork and no philosopher gets a chance to eat.

```
class Phil
    var state:(thinking, hungry, eating, full)
    var left, right : Fork
    initialization (l,r: Fork)
        state, left, right := thinking, l,r
    action needToEat
        when state = thinking do
            begin state:= hungry ;
                left.pickUp ; right.pickUp;
                state := eating
            end
    action needToThink
        when state = eating do
            begin state := full ;
                left.putDown; right.putDown;
                state := thinking
            end
end
var fork: array 5 of Fork;
var phil : array 5 of Phil ;
var i,j:integer ;
begin i,j:= 0,0;
    while }i<5\mathrm{ do fork[i]:= new Fork;
    while j<5 do phil[j]:= new Phil(fork[j],fork[(j+1) mod 5])
end
```

A priority queue offers a method $a d d(e)$ for storing integer e, a method remove for removing the least integer stored so far, and a method empty for testing whether the priority queue is empty. Our implementation is by a linked list of nodes. Elements are stored in attribute m in ascending order (duplicates are allowed). Attribute l points to the next node or is nil at the last object, which does not hold a queue element. An element is added to the priority queue by
either storing it in the current node if it is the last one (and creating a new last node), or by depositing it in the current node and enabling an action that will move either the new element or the element of the current node one position down. The least element is removed by returning the element of the current node immediately and enabling an action that will move the element of the next node one position up, or set the l pointer to nil if the node becomes the last one. The Boolean attributes i, a, r reflect whether the queue element is idle, an addition is requested, and a removal is requested, respectively:

```
class PriorityQueue
    var \(m, p\) : integer
    var \(l\) : PriorityQueue
    var \(i, a, r\) : boolean
    initialization \(l, i, a, r:=\) nil, true, false, false
    method empty : boolean
        result \(:=l=\) nil
    method \(a d d(e:\) integer \()\)
        when \(i\) do
            if \(l=n i l\) then
                begin \(m:=e ; l:=\) new PriorityQueue end
            else
                \(p, i, a:=e\), false, true end
    method remove : integer
        when \(i\) do
            result, \(i, r:=m\), false, true
    action \(d o A d d\)
        when \(a\) do
            begin \(a:=\) false ;
                if \(m>p\) then \(m, p:=p, m\);
                    l.add(p) ;
                \(i:=\) true
            end
    action doRemove
        when \(r\) do
            begin \(r:=\) false
                if \(l\).empty then \(l:=\) nil
                    else \(m:=\) l.remove ;
                    \(i:=\) true
            end
end
```

The guards of the PriorityQueue methods and actions are such that at most one method or action can execute at any time. Thus a priority queue can have at most as many concurrent actions as there are nodes in the queue. The concurrent behavior of PriorityQueue is such that it is not observable
through calls to the methods empty, add, and remove. It is an example where concurrency is introduced for efficiency. Formally, we claim that PriorityQueue is a refinement of class PriorityBag, which uses a bag (multiset) to abstractly represent it's state. Let [] stand for the empty bag, [e] for the bag containing only e, binary operator + for bag addition, - for bag subtraction, and $\min (b)$ for the least element of bag b :

```
class PriorityBag
    var \(b\) : bag of integer
    initialization \(b:=[]\)
    method empty : boolean
        result \(:=b=[]\)
    method \(\operatorname{add}(e:\) integer \()\)
        \(b:=b+[e]\)
    method remove : integer
        \(b\), result \(:=b-[\min (b)], \min (b)\)
end
```

The final example is the observer design pattern, expressed as an abstract program. The pattern allows that all observers of one subject perform their update methods in parallel:

```
class Observer
    var sub : Subject
    initialization ( \(s\) : Subject)
        begin sub \(:=s ;\) s.attach(this) end
    method update ...
end
class Subject
    var \(a, n\) : set of Observer
    initialization \(a, n:=\{ \},\{ \}\)
    method \(\operatorname{attach}(o\) : Observer)
        \(a:=a \cup\{o\}\)
    method notifyAll
        \(n:=a\)
    action notifyOne
        when \(n \neq\{ \}\) do
            var \(o\) : Observer ;
            begin \(o: \in n ; n:=n-\{o\}\); o.update end
end
```

As soon as execution of the action notifyOneObserver in a subject s reaches the call o.update, control is passed to object o and another activity in s may be initiated or may resume. In particular, the action notifyOneObserver may be initiated again, as long as notify Obs is not empty, i.e. some observers have not
been notified. Thus at most as many notifyOneObserver actions are initiated as there are observers and all notified observers can proceed concurrently. New observers can be added at any time and will be updated after the next call to notifyAll.

We conclude the introduction of the language with a comparison of objects and monitors [5, 11]. Both objects and monitors guarantee exclusive access to private data, though compared to traditional monitors (and to Java), there are no condition variables, no signal and wait operations, and no processes (or threads) as explicit language constructs - their role is taken over by guarded methods and actions. Method calls from one object to other objects - the equivalent of nested monitor calls-are open as the exclusive access to the first object is dropped and only regained when the call returns. By comparison, method calls in Java (with appropriate synchronization) are closed as exclusive access to all objects in the call chain is retained. It is known that closed calls allow less concurrency and are more prone to deadlocks. On the other hand, open calls require the class invariant to be established at each call that leaves an object. This may include disabling those methods and actions that would otherwise not preserve the invariant, as for example in class PriorityQueue.

3 Verification

For analyzing the correctness of programs we consider a simpler kernel language of atomic statements. All we need to assume is that all atomic statements are characterized by Dijkstra's weakest precondition predicate transformer: $w p(S, c)$ is the weakest precondition such that S terminates and establishes postcondition c. Moreover, we assume that all statements are monotonic, i.e. for any statement S and any Boolean expressions b, c :

$$
\begin{equation*}
(b \Rightarrow c) \Rightarrow(w p(S, b) \Rightarrow w p(S, c)) \tag{1}
\end{equation*}
$$

We define some basic statements: the assertion statement $\{b\}$, the assumption or guard statement [b], the multiple assignment $x:=e$, the nondeterministic assignment $x: \in s$, the nondeterministic choice $S \sqcap T$ between statements S and T, and the unbounded choice $\sqcap x \in s \cdot S$. Further statements, like iteration, can be added. All variables are assumed to have a unique type, even though it is commonly omitted. With x a list of variables and e a list of expressions, we write $f[x \backslash e]$ for expression f with all free occurrences of x substituted by e. For Boolean expressions, \equiv has the same meaning as $=$, though \equiv binds weaker than all other Boolean operators. For the time being, we assume that the evaluation of all expressions succeeds:

$$
\begin{array}{ll}
w p(\{b\}, c) & \equiv b \wedge c \\
w p([b], c) & \equiv b \Rightarrow c \tag{3}
\end{array}
$$

$$
\begin{array}{lll}
w p(x:=e, c) & \equiv c[x \backslash e] & \\
w p(S ; T, c) & \equiv w p(S, w p(T, c)) & \\
w p(S \sqcap T, c) & \equiv w p(S, c) \wedge w p(T, c) & \\
w p(\sqcap x \in s \cdot S, c) & \equiv(\forall x \in s \bullet w p(S, c)) \quad x \text { not free in } c \tag{7}
\end{array}
$$

The nondeterministically initialized local variable declaration var $x \in s ; S$ stands for $\sqcap x \in s \cdot S$. The local variable declaration var $x: T ; S$ stands for $\sqcap x \cdot S$, where x ranges over all elements of type T. The nondeterministic assignment $x: \in s$ stands for $\sqcap h \in s \cdot x:=h$. We define skip $=\{$ true $\}=[$ true $]$ to be the statement that does nothing, abort $=\{$ false $\}$ to be the statement that always aborts, and wait $=[$ false $]$ to be the statement that always blocks. The assertion statement assert b is synonymous to $\{b\}$. The guarded statement when b do S and the conditional statements are defined as:

$$
\begin{array}{ll}
\text { when } b \text { do } S & \hat{=}[b] ; S \\
\text { if } b \text { then } S & \hat{=}([b] ; S) \sqcap[\neg b] \\
\text { if } b \text { then } S \text { else } T & \hat{=}([b] ; S) \sqcap([\neg b] ; T) \tag{10}
\end{array}
$$

As derived rules we get:

$$
\begin{array}{ll}
w p(x: \in s, c) & \equiv(\forall x \in s \cdot c) \\
w p(\text { when } b \text { do } S, c) & \equiv b \Rightarrow w p(S, c) \tag{12}
\end{array}
$$

In programs, evaluation of expressions may fail. While in the logic any expression always has a value of its type, undefinedess of expressions in statements needs to be taken into account. For a program expression e, let Δe stand for the definedness of e. For example, we have that $\Delta(x \operatorname{div} y) \equiv y \neq 0$. That is, Δ can be defined over the syntactic structure of program expressions. For a statement to terminate evaluation of all expressions must succeed; we define the weakest preconditions for statements with possibly undefined expressions accordingly:

$$
\begin{array}{ll}
w p(\{b\}, c) & \equiv \Delta b \wedge b \wedge c \\
w p([b], c) & \equiv \Delta b \wedge(b \Rightarrow c) \\
w p(x:=e, c) & \equiv \Delta e \wedge c[x \backslash e] \tag{15}
\end{array}
$$

The declaration of a class C amounts to the declaration of a global variable C for the set of all objects of class C and for each attribute f of type F, a global variable $C . f$ mapping objects of C to values of F :

$$
\begin{align*}
& \operatorname{var} C: \text { set of } O b j e c t \tag{16}\\
& \operatorname{var} C . f: \text { Object } \rightarrow F \tag{17}
\end{align*}
$$

That is, we use the class name also for the set of objects of that class and as a prefix of the attribute names. We assume that the type Object contains infinitely many elements, including the distinguished element nil. The notation set of T stands for finite sets of type T. We commonly drop the prefix and
write f for $C . f$, if there is no ambiguity. Accessing an attribute f of object o, written o.f amounts to applying the function f to o. An attribute assignment amounts to a function update:

$$
\begin{align*}
& \text { o.f }=f(o) \tag{18}\\
& o . f:=e=f:=f[o \leftarrow e]) \tag{19}
\end{align*}
$$

We write $f[a \leftarrow r]$ for modifying function f to return r for argument a, formally:

$$
\begin{align*}
& a . f[a \leftarrow r]=r \tag{20}\\
& b . f[a \leftarrow r]=b . f, \quad b \neq a \tag{21}
\end{align*}
$$

The nondeterministic assignment $x:=$? assigns to x an arbitrary value of its type. Defined as $\Pi h \cdot x:=h$, we have:

$$
\begin{align*}
& w p(x:=?, c) \equiv(\forall x \cdot c) \tag{22}\\
& w p(o . f:=?, c) \equiv(\forall h \cdot c[f \backslash f[o \leftarrow h]]) \tag{23}
\end{align*}
$$

The enabledness domain or guard of S is defined by grd $S=\neg w p(S$, false $)$ and the termination domain by $\operatorname{trm} S=w p(S$, true $)$. For example, we have:

$$
\begin{array}{ll}
\operatorname{grd}(\{b\} ; S) & \equiv \operatorname{grd} S \\
\operatorname{grd}([b] ; S) & \equiv b \wedge \operatorname{grd} S \\
\operatorname{grd}(\sqcap x \in s \cdot S) & \equiv(\exists x \in s \cdot \operatorname{grd} S) \\
\operatorname{trm}(\{b\} ; S) & \equiv b \wedge \operatorname{trm} S \\
\operatorname{trm}([b] ; S) & \equiv \operatorname{grd} S \tag{28}
\end{array}
$$

Assume I is the body of the initialization of class C, or skip if no initialization is declared, M is the body of method meth of C, and A is the body of action act. We let C.init stand for this.a $:=$? ; I, where a are the attributes that are not assigned to in I (a programming language may impose the syntactic restriction that all attributes have to be initialized, making this convention unnecessary). The declaration of class C induces following definitions, for each method meth and action act:

$$
\begin{align*}
& \text { C.new }=\text { this }: \notin C \cup\{\text { nil }\} ; C:=C \cup\{\text { this }\} ; \text { C.init } \tag{29}\\
& \text { C.meth }=\{\text { this } \in C\} ; M \tag{30}\\
& \text { C.act }=(\sqcap \text { this } \in C \cdot A) \tag{31}
\end{align*}
$$

That is, we use the class name also as a prefix for the method and actions names. We let $x: \notin s$ stand for $x: \in \bar{s}$, where \bar{s} is the complement of set s. The definition of C.act in terms of a nondeterministic choice models concurrency through interleaving: if two actions operating on a disjoint state space are enabled, they can be executed in any order or in parallel.

For example, the declaration of class Fish gives rise to a global variable Fish with the identities of all Fish objects and variables Fish.x, Fish.d, Fish.r-
further on referred to by x, d, r —mapping each Fish object to the corresponding attribute values:

```
var Fish: set of Object
var Fish.x, Fish.d:Object }->\mathrm{ integer
var Fish.r: Object }->\mathrm{ boolean
```

We commonly abbreviate the reference this.f to an attribute of the current object by f. Making references to this explicit, we have for class Fish:

$$
\begin{aligned}
\text { Fish.new }= & \text { this }: \notin \text { Fish } \cup\{\text { nil }\} ; \text { Fish }:=\text { Fish } \cup\{\text { this }\} ; \\
& \text { this. } x, \text { this.d, this.r }:=0,5, \text { true } \\
\text { Fish.setPace }= & \{\text { this } \in \text { Fish }\} ;\{p>0\} ; \text { this. } d:=p \\
\text { Fish.moveRight }= & (\sqcap \text { this } \in \text { Fish } \bullet[\text { this. } x+\text { this. } d<W \wedge \text { this.r }] ; \\
& \text { this. } x:=\text { this. } x+\text { this. } d)
\end{aligned}
$$

Creating a new element of class C amounts to finding an unused element of C, adding that to C, and executing the body of the initialization. Assuming that v are the formal parameters of the initialization, we define:

$$
\begin{equation*}
o:=\text { new } C(e)=\operatorname{var} \text { this, } v ; v:=e ; \text { C.new } ; o:=\text { this } \tag{32}
\end{equation*}
$$

In order to illustrate parameter passing with methods calls we define an atomic method call as follows. Suppose method m of class C is declared with value parameters v and to return a result. Then an atomic call $x:=c . m(e)$ for $c \in C$ makes c and e to be the actual value parameters and x the actual result parameter:

$$
\begin{align*}
x:=c \cdot m e t h(e)=\operatorname{var} \text { this, } v, \text { result } & ; \tag{33}\\
& \text { this }, v:=c, e ; \text { C.meth } ; x:=\text { result }
\end{align*}
$$

Later on we consider non-atomic method calls, which require a prior transformation. Subtyping, inheritance, type test, and dynamic binding can be added as in [17]: if class D defines a subtype of C, then this amounts to stating that $D \subseteq C$ at any time. We do not go further into details as these constructs are not used later on.

While $w p$ ensures total correctness, for invariance properties partial correctness is sufficient, motivating the introduction of weakest liberal preconditions. For a statement S, the predicate $w p(S$, true $)$ is the weakest precondition for S to terminate, in whatever state. The weakest liberal precondition $w l p(S, c)$ is the weakest precondition for S to establish c provided S terminates, defined as $w \operatorname{lp}(S, c) \equiv \operatorname{trm} S \Rightarrow w p(S, c)$. In case all program expressions are defined we have:

$$
\begin{array}{ll}
w \operatorname{lp}(\{b\}, c) & \equiv b \Rightarrow c \\
w \operatorname{lp}([b], c) & \equiv b \Rightarrow c \\
w \operatorname{lp}(x:=e, c) & \equiv c[x \backslash e] \tag{36}
\end{array}
$$

$$
\begin{equation*}
w \operatorname{lp}(S ; T, c) \Leftarrow w \operatorname{lp}(S, w \operatorname{lp}(T, c)) \tag{37}
\end{equation*}
$$

In case program expressions are possibly undefined we have:

$$
\begin{array}{ll}
w \operatorname{lp}(\{b\}, c) & \equiv \Delta b \wedge b \Rightarrow c \\
w \operatorname{lp}([b], c) & \equiv \Delta b \wedge b \Rightarrow c \\
w \operatorname{lp}(x:=e, c) & \equiv \Delta e \Rightarrow c[x \backslash e] \tag{40}
\end{array}
$$

Definition 1 (Class Invariant) Let C be a class in which the bodies of all initializations, methods, and actions are atomic, i.e. they do not contain (nonatomic) method calls. Boolean expression P is an invariant of C if following conditions hold:
(a) Program Initialization: When no objects exists, the invariant holds:

$$
C=\{ \} \Rightarrow P
$$

(b) Object Creation: The object creation preserves the invariant:

$$
P \Rightarrow w l p(C . n e w, P)
$$

(c) Methods: Every method meth preserves the invariant:

$$
P \Rightarrow w l p(C . m e t h, P)
$$

(d) Actions: Every action act preserves the invariant:

$$
P \Rightarrow w l p(C . a c t, P)
$$

These conditions are justified by appealing to the definition of classes in terms of actions systems with procedures [7, 10, 17]: if P is an invariant of a class, then P is also an invariant of the corresponding action system, and in any observable state, P will hold. As an example, we show that for class Fish, the predicate $0 \leq x<W$ is an invariant. In order to do so, we have to strengthen this expression to include $d>0$ and have to quantify it over all objects of class Fish:

$$
B \equiv(\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W)
$$

Thus the conditions for B to be an invariant of Fish are:
(a) Fish $=\{ \} \Rightarrow B$
(b) $B \Rightarrow$ wlp(Fish.new, B)
(c) $B \Rightarrow$ wlp (Fish.setPace, B)
(d.1) $B \Rightarrow w l p($ Fish.moveRight, B)
(d.2) $B \Rightarrow$ wlp(Fish.moveLeft, B)
(d.3) $B \Rightarrow$ wlp(Fish.changeToRight, B)
(d.4) $B \Rightarrow$ wlp(Fish.changeToLeft, B)

Condition (a) amounts to a quantification over an empty range, which holds vacuously. For (b) we first expand Fish.new and B and then apply (37) and (36):

$$
\begin{aligned}
& \text { wlp }(\text { Fish.new, } B) \\
\Leftarrow & \text { wlp }(\text { this }: \notin \text { Fish } \cup\{\text { nil }\} ; \text { Fish }:=\text { Fish } \cup\{\text { this }\}, \\
& \quad \forall f \in \text { Fish } \bullet f . d[\text { this } \leftarrow 5]>0 \wedge 0 \leq f . x[\text { this } \leftarrow 0]<W)) \\
\Leftarrow & \text { this } \notin \text { Fish } \cup\{\text { nil }\} \Rightarrow \\
& (\forall f \in \text { Fish } \cup\{\text { this }\} \bullet f . d[\text { this } \leftarrow 5]>0 \wedge 0 \leq f . x[\text { this } \leftarrow 0]<W) \\
\Leftarrow & (\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W) \\
\equiv & B
\end{aligned}
$$

The second last step follows from a case analysis with this $=f$ and this $\neq f$ and (20), (21). For (c) we proceed similarly, now applying also (34):

$$
\begin{aligned}
& \text { wlp }(\text { Fish.setPace }, B) \\
\equiv & \text { wlp }(\{\text { this } \in \text { Fish }\} ;\{p>0\} ; \text { this. } d:=p, \\
& (\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W)) \\
\Leftarrow & \text { this } \in \text { Fish } \wedge p>0 \Rightarrow \\
& (\forall f \in \text { Fish } \bullet f .(d[\text { this } \leftarrow p])>0 \wedge 0 \leq f . x<W)) \\
\Leftarrow & (\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W) \\
\Leftarrow & B
\end{aligned}
$$

For (d.1) we proceed similarly, now applying (35):

$$
\begin{aligned}
& \text { wlp }(\text { Fish.moveRight, } B) \\
\equiv & \text { wlp }((\sqcap \text { this } \in \text { Fish } \bullet[\text { this. } x+\text { this. } d<W \wedge \text { this. }] ; \text { this. } x:= \\
& \text { this. } x+\text { this.d }),(\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W)) \\
\Leftarrow & (\forall \text { this } \in \text { Fish } \cdot \text { this. } x+\text { this. } d<W \wedge \text { this.r } \Rightarrow \\
& (\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f .(x[\text { this } \leftarrow \text { this. } x+\text { this. } d])<W))) \\
\Leftarrow & (\forall f \in \text { Fish } \bullet f . d>0 \wedge 0 \leq f . x<W) \\
\equiv & B
\end{aligned}
$$

The proof of (d.2) is similar and left out. Conditions (d.3) and (d.4) follow immediately as the corresponding actions to not change any variable mentioned in the invariant, hence preserve the invariant vacuously. In concluding with this example we note that B is a local invariant as it does not relate the attributes of different objects; it is a quantification of conditions ranging over a single object. The technique equally applies to global invariants. We also note that in invariance proofs we may make use of the (finite) conjunctivity of $w l p$, which follows from the (finite) conjunctivity of $w p$ (as can be checked for each of the defined statements):

$$
\begin{align*}
w p(S, b \wedge c) & \equiv w p(S, b) \wedge w p(C, c) \tag{41}\\
w \operatorname{lp}(S, b \wedge c) & \equiv w \operatorname{lp}(S, b) \wedge w \operatorname{lp}(C, c) \tag{42}
\end{align*}
$$

4 Refinement

Class refinement builds on the notion of data refinement of statements. Ordinary (algorithmic) refinement of statement S by T, written $S \sqsubseteq T$ holds if for all predicates $c, w p(S, c) \Rightarrow w p(T, c)$. This implies that T can be used for whatever S can be, but T may be "more deterministic", may have a weaker termination domain, and may have a stronger guard. Data refinement $S \sqsubseteq_{R} T$ generalizes this by allowing S and T to operate on different variables, related through coupling invariant or refinement invariant R. Among the various ways, data refinement can be introduced through the conjugate weakest precondition predicate transformer $\overline{w p}$, defined as $\overline{w p}(S, c) \equiv \neg w p(S, \neg c)$ (see [12] for a proof of equivalence of various definitions). Intuitively, $\overline{w p}$ is like $w p$ for assignments and sequential composition, but exchanges guards with assertions and exchanges demonic with angelic nondeterminism. In case all program expressions are defined we have:

$$
\begin{array}{lll}
\overline{w p}(\{b\}, c) & \equiv b \Rightarrow c & \\
\overline{w p}([b], c) & \equiv b \wedge c \\
\overline{w p}(x:=e, c) & \equiv c[x \backslash e] & \\
\overline{w p}(S ; T, c) & \equiv \overline{w p}(S, \overline{w p}(T, c)) & \\
\overline{w p}(S \sqcap T, c) & \equiv \overline{w p}(S, c) \vee \overline{w p}(T, c) & \\
\overline{w p}(\sqcap x \in s \cdot S, c) & \equiv(\exists x \in s \cdot \overline{w p}(S, c)) \quad x \text { not free in } c \tag{48}
\end{array}
$$

In case program expressions are possibly undefined we have:

$$
\begin{array}{ll}
\overline{w p}(\{b\}, c) & \equiv \Delta b \wedge b \Rightarrow c \\
\overline{w p}([b], c) & \equiv \Delta b \Rightarrow b \wedge c \\
\overline{w p}(x:=e, c) & \equiv \Delta e \Rightarrow c[x \backslash e] \tag{51}
\end{array}
$$

Let S be a statement over variables s and T a statement over variables t, where s and t are disjoint. Let R be a predicate over s and t. Statement S is refined by T through R, written $S \sqsubseteq_{R} T$, is defined by:

$$
\begin{equation*}
S \sqsubseteq_{R} T \equiv R \wedge \operatorname{trm} S \Rightarrow w p(T, \overline{w p}(S, R)) \tag{52}
\end{equation*}
$$

In case S and T have variables r in common-say global variables or resultsthe definition needs to be extended. Let $S[x \backslash y]$ stand for statement S with variables x substituted by variables y. Assume that \bar{r} are fresh variables:

$$
\begin{equation*}
S \sqsubseteq_{R} T \equiv R \wedge \operatorname{trm} S \Rightarrow w p(T[r \backslash \bar{r}], \overline{w p}(S, R \wedge r=\bar{r})) \tag{53}
\end{equation*}
$$

As a useful special case is the refinement of skip:

$$
\begin{equation*}
\operatorname{skip} \sqsubseteq_{R} T \equiv R \Rightarrow w p(T, R) \tag{54}
\end{equation*}
$$

Components of a sequential composition can be refined individually:

$$
\begin{equation*}
S_{0} \sqsubseteq_{R} T_{0} \wedge S_{1} \sqsubseteq_{R} T_{1} \Rightarrow S_{0} ; S_{1} \sqsubseteq_{R} T_{0} ; T_{1} \tag{55}
\end{equation*}
$$

Definition 2 (Class Refinement) Let C be a class with attributes c and D be a class with attributes d. We assume that both classes have the same method names and parameter and return types, and that each action defined in C is also defined in D. However, class D may have additional actions, called auxiliary actions, and referred to by D.aux. Let R be a predicate over c and d. Class C is refined by D through R, written $C \sqsubseteq_{R} D$, if following conditions hold:
(a) Program Initialization: When no objects exists, the refinement invariant holds:

$$
C=\{ \} \wedge D=\{ \} \Rightarrow R
$$

(b) Object Creation: The creation of a C object is refined by the creation of a D object:

$$
\text { C.new } \sqsubseteq_{R} D . n e w
$$

(c) Method Refinement: Every method meth of C is refined by the corresponding method in D :

$$
\text { C.meth } \sqsubseteq_{R} \text { D.meth }
$$

Method Enabledness: For every method meth in C, either the corresponding method of D or some action in D is enabled:

$$
R \wedge \text { grd C.meth } \wedge \text { trm C.meth } \Rightarrow \text { grd D.meth } \vee(\vee \text { act • grd D.act })
$$

(d) Main Action Refinement: Every action act of C is refined by the corresponding action in D :

$$
\text { C.act } \sqsubseteq_{R} D . a c t
$$

Main Action Enabledness: For every action act in C, some action in D is enabled:

$$
R \wedge \text { grd } C . a c t \wedge \operatorname{trm} C . a c t \Rightarrow(\vee a c t \cdot \operatorname{grd} D . a c t)
$$

(e) Auxiliary Action Refinement: Every new action aux of D refines skip:

$$
\text { skip } \sqsubseteq_{R} \text { D.aux }
$$

Auxiliary Action Termination: The computation of auxiliary actions terminates eventually:

$$
R \Rightarrow \text { all actions D.aux terminate eventually }
$$

Condition (b) on object creation does not include a check for enabledness, like condition (c) does, as we assume that initializations are always enabled: the syntactic structure of initializations does not allow for guards. Condition (b) can be simplified by noting that the refinement invariant has to satisfy a healthiness condition, namely that for every C object there must exist at least one D object with the same identity:

$$
\begin{equation*}
R \Rightarrow C \subseteq D \tag{56}
\end{equation*}
$$

Predicate R may imply an exact one-to-one correspondence $C=D$, as in the delayed vector summation below, or may allow for more D objects than C objects, as would be for the refinement of PriorityBag by PriorityQueue. The necessity for this healthiness condition can be seen by expanding and simplifying condition (b) to this $: \notin C \cup\{n i l\} ; C:=C \cup\{$ this $\} ; C . i n i t \sqsubseteq_{R}$ this $: \notin D \cup\{n i l\} ; D:=D \cup\{$ this $\} ; D$.init. Assuming that initializations do not assign to this, which typically would be syntactically forbidden, for above to hold, this $: \notin C \cup\{n i l\} \sqsubseteq_{R}$ this $: \notin D \cup\{n i l\}$ has already to hold, as the subsequent statements cannot possibly establish R otherwise. We calculate:

$$
\begin{aligned}
& \text { this }: \notin C \cup\{\text { nil }\} \sqsubseteq_{R} \text { this }: \notin D \cup\{\text { nil }\} \\
\equiv & R \Rightarrow \text { wp } \overline{\text { this }}: \notin D \cup\{\text { nil }\}, \overline{w p}(\text { this }: \notin C \cup\{\text { nil }\}, R \wedge \text { this }=\overline{\text { this }})) \\
\equiv & R \Rightarrow(\forall \text { this } \notin D \cup\{\text { nil }\} \bullet(\exists \text { this } \notin C \cup\{\text { nil }\} \bullet R \wedge \text { this }=\overline{\text { this }}) \\
\equiv & R \Rightarrow(\forall \text { this } \notin D \cup\{\text { nil }\} \bullet \overline{\text { this }} \notin C \cup\{\text { nil }\}) \\
\equiv & R \Rightarrow C \subseteq D
\end{aligned}
$$

From this observation and (55) we can immediately derive an alternative formulation of condition (b):
(b') Object Creation: Provided $R \Rightarrow C \subseteq D$

$$
C:=C \cup\{\text { this }\} ; C . \text { init } \sqsubseteq_{R} D:=D \cup\{\text { this }\} ; \text { D.init }
$$

Condition (e) implies that the auxiliary actions are stuttering actions: as they refine skip, their effect is not visible from C and as they eventually terminate, they do not introduce (observable) non-termination. The second part of (b) can in general be shown with the use of a variant t, an integer expression. The conditions are that for all new actions D.aux, if D.aux is enabled, then t must be strictly greater than 0 and D.aux decreases t. Let v be an auxiliary variable:

Auxiliary Action Termination: All auxiliary actions decrease t and become disabled if t reaches 0 :

$$
\begin{array}{ll}
R \wedge g r d D \cdot a u x & \Rightarrow t>0 \\
R \wedge t=v \quad & \Rightarrow w p(D \cdot a u x, t<v)
\end{array}
$$

This definition of class refinement is justified by appealing to the refinement of action systems with procedures, as done in $[7,8,10]$. The difference to these
approaches is the treatment of object identities, here we follow [17]. We note that class refinement can be further generalized if needed [10]: abstract stuttering can be allowed to be removed in the refinement, and concrete stuttering actions can be more general than a refinement of skip.

We give an example of a delayed vector summation that illustrates the concept of delaying a computation by enabling a background action. The example makes use of arrays. If a is declared as array N of T, we understand a to be a function and define the array update statement as a function update:

$$
a(e):=f=a:=a[e \leftarrow f]
$$

As indexing an array out of bounds is an error, we need to specify the definedness of program expressions with array access accordingly:

$$
\begin{aligned}
& \Delta(a(e)) \\
& \equiv \Delta e \wedge 0 \leq e<N \\
& \Delta(a[e \leftarrow f])
\end{aligned} \begin{aligned}
& \equiv \Delta e \wedge \Delta f \wedge 0 \leq e<N
\end{aligned}
$$

Class $V 0$ allows to store elements of a vector and their sum to be calculated. Class $V 1$ performs the summation in the background and blocks the request for the sum if it is not yet calculated:

```
class \(V 0\)
    var \(a\) : array \(M\) of integer
    var \(s\) : integer
    method \(\operatorname{set}(j, e:\) integer \()\)
        \(a(j):=e\)
    method calcSum
        \(s:=\left(\sum j \mid 0 \leq j<M \cdot a(j)\right)\)
    method getSum : integer
        result \(:=s\)
end
```

```
class V1
```

class V1
var a : array M of integer
var a : array M of integer
var s, m : integer
var s, m : integer
initialization $m:=0$
initialization $m:=0$
method $\operatorname{set}(j, e:$ integer $)$
method $\operatorname{set}(j, e:$ integer $)$
when $j \geq m$ do $a(j):=e$
when $j \geq m$ do $a(j):=e$
method calcSum
method calcSum
$s, m:=0, M$
$s, m:=0, M$
method getSum : integer
method getSum : integer
when $m=0$ do result $:=s$
when $m=0$ do result $:=s$
action $a d d E l t$
action $a d d E l t$
when $m>0$ do
when $m>0$ do
$s, m:=s+a(m-1), m-1$
$s, m:=s+a(m-1), m-1$
end

```
end
```

Thus the conditions for $V 0$ to be a refined by $V 1$ through R are:
(a) $V 0=\{ \} \wedge V 1=\{ \} \Rightarrow R$
(b) V0.new $\sqsubseteq_{R} V 1 . n e w$
(c.1) V0.set \sqsubseteq_{R} V1.set
$R \wedge$ grd $V 0 . s e t \wedge$ trm $V 0 . s e t \Rightarrow$ grd $V 1 . s e t \vee$ grd $V 1 . a d d E l t$
(c.2) V0.calcSum \sqsubseteq_{R} V1.calcSum
$R \wedge$ grd V0.calcSum \wedge trm V0.calcSum \Rightarrow grd V1.calcSum \vee grd V1.addElt
(c.3) V0.getSum $\sqsubseteq_{R} V 1 . g e t S u m$
$R \wedge$ grd V0.getSum \wedge trm V0.getSum \Rightarrow grd V1.getSum \vee grd V1.addElt
(e) skip \sqsubseteq_{R} V1.addElt
$R \Rightarrow$ action V 1.addElt terminates eventually
Abbreviating V0.a, V0.s, V1.a, V1.s, V1.m by $a_{0}, s_{0}, a_{1}, s_{1}, m$, we use as the refinement invariant:

$$
\begin{aligned}
R \equiv & V 0=V 1 \wedge \\
& \left(\forall v \in V 0 \cdot v . a_{0}=v \cdot a_{1} \wedge 0 \leq v . m \leq M \wedge\right. \\
& v . s_{0}=v . s_{1}+\left(\sum j \mid 0 \leq j<v . m \bullet v . a_{0}(j)\right)
\end{aligned}
$$

Condition (a) amounts to a quantification over an empty range, which holds vacuously. For (b) it is sufficient to use the condition (b') instead. We have that $V 0$. init $=$ this. a_{0}, this.s $:=$?, ?, hence $\operatorname{trm}(V 0:=V 0 \cup\{$ this $\} ; V 0 . i n i t) \equiv$ true, and $V 1$.init $=$ this. $m:=0$; this.a1, this.s $1:=$?,?. In the proof, we first apply the definition of \sqsubseteq_{R}, then the rules of $w p$ and $\overline{w p}$, then perform the substitution, and finally simplify the outcome by a case analysis with $v=$ this and $v \neq$ this:

$$
\begin{aligned}
& V 0:=V 0 \cup\{\text { this }\} ; V 0 . \text { init } \sqsubseteq_{R} V 1:=V 1 \cup\{\text { this }\} ; V 1 . \text { init } \\
& \equiv R \Rightarrow w p(V 1:=V 1 \cup\{\text { this }\} ; V 1 . i n i t, \\
& \overline{w p}(V 0:=V 0 \cup\{\text { this }\} ; \text { V0.init, } R) \text {) } \\
& \equiv R \Rightarrow\left(\forall g_{1}, h_{1} \bullet \exists g_{0}, h_{0} \bullet\right. \\
& R\left[a_{0}, s_{0} \backslash a_{0}\left[\text { this } \leftarrow h_{0}\right], s_{0}\left[\text { this } \leftarrow g_{0}\right][V 0 \backslash V 0 \cup\{\text { this }\}]\right. \\
& {\left[a_{1}, s_{1} \backslash a_{1}\left[\text { this } \leftarrow h_{1}\right], s_{1}\left[\text { this } \leftarrow g_{1}\right][m \backslash m[\text { this } \leftarrow 0][V 1 \backslash V 1 \cup\{\text { this }\}])\right.} \\
& \equiv R \Rightarrow\left(\forall g_{1}, h_{1} \cdot \exists g_{0}, h_{0} \bullet V 0 \cup\{\text { this }\}=V 1 \cup\{\text { this }\} \wedge\right. \\
& \left(\forall v \in V 0 \cdot v . a_{0}\left[\text { this } \leftarrow h_{0}\right]=v \cdot a_{1}\left[\text { this } \leftarrow h_{1}\right] \wedge\right. \\
& 0 \leq v . m[\text { this } \leftarrow 0] \leq M \wedge \\
& \text { v. } s_{0}\left[\text { this } \leftarrow g_{0}\right]=\text { v.s } s_{1}\left[\text { this } \leftarrow g_{1}\right]+ \\
& \left.\left.\left(\sum j \mid 0 \leq j<v . m[\text { this } \leftarrow 0] \cdot a_{0}\left[\text { this } \leftarrow h_{0}\right](j)\right)\right)\right) \\
& \equiv \text { true }
\end{aligned}
$$

For the first part of (c.1) we have that V0.set $=\{$ this $\in V 0\}$; this. $a_{0}(j):=e$ and V1.set $=\{$ this $\in V 1\} ;[j \geq$ this.m $]$; this. $a_{1}(j):=e$. With (27), (28), (15) we get that trm V0.set \equiv this $\in V 0 \wedge 0 \leq j<M$:

$$
\begin{aligned}
& \quad V 0 . \text { set } \sqsubseteq_{R} V 1 . s e t \\
& \equiv \\
& \equiv R \wedge \text { trm } V 0 . \text { set } \Rightarrow w p(V 1 . s e t, \overline{w p}(\text { V2.set, } R)) \\
& \equiv R \wedge \text { this } \in V 0 \wedge 0 \leq j<M \Rightarrow \\
& \quad w p\left(\{\text { this } \in V 1\} ;[j \geq \text { this.m }] ; \text { this. } a_{1}(j):=e,\right. \\
& \quad \overline{w p}\left(\{\text { this } \in V 0\} ; \text { this. } a_{0}(j):=e, R\right) \\
& \equiv \\
& \quad R \wedge \text { this } \in V 0 \wedge 0 \leq j<M \Rightarrow \text { this } \in V 1 \wedge(j \geq \text { this.m } \Rightarrow \\
& \quad\left(\text { this } \in V 0 \wedge R\left[a_{0} \backslash a_{0}\left[\text { this } \leftarrow \text { this. } a_{0}[j \leftarrow e]\right]\right]\right) \\
& \left.\quad\left[a_{1} \backslash a_{1}\left[\text { this } \leftarrow \text { this. } a_{1}[j \leftarrow e]\right]\right]\right) \\
& \equiv \\
& \text { true }
\end{aligned}
$$

For the second part of (c.1) we first observe that V1.addElt $=(\square$ this \in $V 1 \cdot[$ this. $m>0]$; this.s, this. $m:=$ this. $s_{1}+$ this. $a_{1}($ this. $m-1)$, this. $\left.m-1\right)$. With (26) and (25) we get that grd V0.set \equiv true, grd V1.set $\equiv j \geq$ this.m and that grd V1.addElt $\equiv(\exists$ this $\in V 1 \cdot$ this. $m>0)$:

$$
\begin{aligned}
& R \wedge \text { grd } V 0 . \text { set } \wedge \text { trm } V 0 . \text { set } \Rightarrow \text { grd V1.set } \vee \text { grd V1.addElt } \\
\equiv & R \wedge \text { this } \in V 0 \wedge 0 \leq j<M \Rightarrow j \geq \text { this. } m \vee(\exists \text { this } \in V 1 \cdot \text { this. } m>0) \\
\Leftarrow & R \wedge \text { this } \in V 0 \wedge 0 \leq j<M \Rightarrow j \geq \text { this. } m \vee \text { this. } m>0 \\
\equiv & \text { true }
\end{aligned}
$$

The conditions (c.2) and (c.3) can be discharged similarly. For the first part of condition (e) we apply (54), then (7), (3), (19), (15), perform the substitutions, and finally simplify the outcome by a case analysis with $v=$ this and $v \neq t h i s$:

$$
\begin{aligned}
& \text { skip } \sqsubseteq_{R} \text { V1.addElt } \\
\equiv & R \Rightarrow \text { wp }(\text { V1.addElt, } R) \\
\equiv & R \Rightarrow \text { wp }((\sqcap \text { this } \in V 1 \cdot[\text { this. } m>0] ; \\
& \text { this.s } \left.\left., \text { this. }:=\text { this. } s_{1}+\text { this. } a_{1}(\text { this. } m-1) \text {, this. } m-1\right), R\right) \\
\equiv & R \Rightarrow(\forall \text { this } \in V 1 \cdot \text { this. } m>0 \Rightarrow 0 \leq \text { this. } m-1<M \wedge \\
& R\left[s_{1}, m \backslash s_{1}\left[\text { this } \leftarrow \text { this. } s_{1}+\text { this. } a_{1}(\text { this. } m-1)\right], m[\text { this } \leftarrow \text { this. } m-1]\right) \\
\equiv & R \Rightarrow(\forall \text { this } \in V 1 \bullet \text { this. } m>0 \Rightarrow 0 \leq \text { this. } m-1<M \wedge \\
& V 0=V 1 \wedge \\
& \left(\forall v \in V 0 \cdot v . a_{0}=v . a_{1} \wedge 0 \leq \text { v.m }[\text { this } \leftarrow \text { this. } m-1] \leq M \wedge\right. \\
& v . s_{0}=v . s_{1}\left[\text { this } \leftarrow \text { this. } s_{1}+\text { this. } a_{1}(\text { this. } m-1)\right]+ \\
& \left.\left.\left(\sum j \mid 0 \leq j<v . m[\text { this } \leftarrow \text { this. } m-1] \cdot v . a_{0}(j)\right)\right)\right) \\
\equiv & \text { true } \quad
\end{aligned}
$$

For the second part of condition (e) we use ($\sum v \in V 1 \cdot v . m$) as the variant and get following two conditions:

$$
\begin{aligned}
& R \wedge \text { grd V1.addElt } \quad \Rightarrow\left(\sum j \in V 1 \cdot v . m\right)>0 \\
& R \wedge\left(\sum v \in V 1 \cdot v . m\right)=w \Rightarrow w p\left(V 1 . a d d E l t,\left(\sum v \in V 1 \cdot v . m\right)<w\right)
\end{aligned}
$$

Again, these conditions can be discharged with the given rules. We omit the proofs, but like to stress the inherent structure of the conditions, as exemplified with the last one: the refinement invariant and the variant range over all objects of a class, not just a single object. This allows the refinement to span several objects if needed, as would be the case with the refinement of PriorityBag by PriorityQueue.

5 Non-Atomic Actions

For verifying non-atomic operations, these need first to be transformed into the kernel language of atomic operations. Suppose that an action A is of the
form $S ; T$, where S and T are atomic. We can make the atomic regions explicit by including them in atomicity brackets and writing $A=\langle S\rangle ;\langle T\rangle$. Such an action needs to be split into two actions, an action $A 0$ that executes only S and enables T and an action $A 1$ that executes only T. As an action may be initiated multiple times, a counter, say c, for recording the invocations of S is needed. Thus the transformation results in $A 0=S ; c:=c+1$ and $A 1=[c>0] ; c:=c-1 ; T$. The counter c has to be made an attribute of the corresponding class and to be initialized to 0 . When local variables are present, a simple counter is not sufficient. Suppose we have $A=\langle\operatorname{var} x ; \operatorname{begin} S\rangle ;\langle T$ end \rangle. If A is initiated multiple times, multiple copies of x would exist. They are there stored in bag, say b. The transformation would then result in $A 0=\operatorname{var} x ; \operatorname{begin} S ; b:=b+[x]$ end and $A 1=\operatorname{var} x \in b ;$ begin $b:=b-[x] ; T$ end. Here x is in general a tuple (list) of variables, and b is a bag of tuples that is made an attribute of the corresponding class.

Local variables necessarily arise with method calls. According to (33) an atomic call $x:=c . m e t h(e)$ gives rise to local variables for copies of c, e, and the result x. Indeed, in our implementation first x and e are evaluated before a call to c. meth is attempted and other operations cannot affect these values. Thus, even a "parameterless" method call requires at least the receiver of the call to be stored in a bag.

Rather than formalizing this transformation itself, we illustrate it with the example of dining philosophers. We use the same syntax for non-atomic and atomic methods and actions, except that we may chose to make the atomic regions explicit.

As an example, we like to show mutual exclusion of philosophers, in the sense that no two philosophers sharing a fork can eat at the same time. We do so for an arbitrary arrangement of philosophers and forks, not just for a circular one. First, class Phil is rewritten to explicitly indicate the atomic regions by atomicity brackets; in class Fork all methods are atomic. Some atomic regions are labeled:

```
class Phil
    var state: (thinking, hungry, eating, full)
    var left, right : Fork
    initialization ( \(l, r\) : Fork)
        \(\langle\) state, left, right \(:=\) thinking, \(l, r\rangle\)
    action needToEat
        \(\langle\) when state \(=\) thinking do
                begin state \(:=\) hungry ;
            var this ; begin this := left ; >
        at1: Fork.pickUp
        at2: \(\langle\) end ;
```

```
            var this; begin this:= right ; >
    at3: Fork.pickUp
    at4: <end ;
        state := eating
        end>
    action needToThink
    <when state = eating do
        begin state := full ;
            var this; begin this := left ; >
    at5: Fork.putDown
    at6: <end ;
        var this ; begin this := right ; >
    at7: Fork.putDown
    at8: <end ;
        state := thinking
        end>
end
```

Transforming every atomic region into an action and adding the counters results in:
class Phil
var state: (thinking, hungry, eating, full)
var left, right : Fork
var at1, at3, at5, at7: bag of Object
var at 2 , at 4, at 6 , at 8 : natural
initialization (l, r : Fork)
state, left, right, at1, at 2, at 3 , at 4 , at5, at 6 , at 7 , at $8:=$ thinking, l, r, [], $0,[], 0,[], 0,[], 0$
action needToEat0
when state $=$ thinking do begin state $:=$ hungry ; at $1:=$ at $1+[$ left $]$ end
action needToEat1
var this $\in a t 1$;
begin at1 $:=$ at $1-[$ this $]$; Fork.pickUp ; at $2:=$ at $2+1$ end
action needToEat 2
when at $2>0$ do begin at $2:=$ at $2-1$; at $3:=$ at $3+[$ right $]$ end
action needToEat3
var this $\in a t 3$;
begin at $3:=$ at $3-[$ this $]$; Fork.pickUp ; at $4:=$ at $4+1$ end
action needToEat4
when at $4>0$ do
begin at $4:=$ at $4-1$; state $:=$ eating end
action needToThink 0
when state $=$ eating do

begin state $:=$ full ; at5 $:=$ at $5+[$ left $]$ end

action needToThink1
var this \in at 5 ;
begin at $5:=$ at $5-[$ this $]$; Fork.putDown ; at $6:=a t 6+1$ end action needTo Think 2
when $a t 6>0$ do begin at $6:=a t 6-1$; at $7:=a t 7+[$ right $]$ end action needToThink 3
var this $\in a t 7$;
begin at $7:=a t 7-[$ this $]$; Fork.putDown ; at $8:=a t 8+1$ end
action needToThink4
when at $8>0$ do
begin at8 $:=$ at $8-1$; state $:=$ eating end
end
Predicate $n e(P h, f$, state $)$ is defined to mean that all philosophers of the set $P h$ who are sharing fork f are not in the state of eating:

$$
\begin{gathered}
n e(P h, f, \text { state }) \equiv(\forall p h \in P h \bullet(\text { ph.left }=f \vee \text { ph.right }=f) \Rightarrow \\
\text { ph.state } \neq \text { eating })
\end{gathered}
$$

The mutual exclusion property is expressed as:

$$
\begin{aligned}
X \equiv & (\forall p h \in \text { Phil } \bullet \text { ph.state }=\text { eating } \Rightarrow \\
& n e(\text { Phil }-\{p h\}, \text { ph.left, state }) \wedge n e(\text { Phil }-\{p h\}, \text { ph.right }, \text { state }))
\end{aligned}
$$

Instead of showing that X is an invariant, we have to show a stronger condition. It is constructed as follows. First, if a fork is available, then no philosopher sharing that fork can be eating:

$$
F R \equiv(\forall f \in \text { Fork } \bullet f . a v a i l a b l e ~ \Rightarrow n e(\text { Phil }, f, \text { state }))
$$

Second, for all eating philosophers, both their left and right fork are not available and no other philosopher who is sharing one of these forks can be eating:

$$
\begin{aligned}
P H \equiv & (\forall p h \in \text { Phil } \bullet \text { ph.state }=\text { eating } \Rightarrow \\
& \neg \text { ph.left.available } \wedge n e(\text { Phil }-\{\text { ph }\}, \text { ph.left, state }) \wedge \\
& \neg \text { ph.right.available } \wedge n e(\text { Phil }-\{p h\}, \text { ph.right }, \text { state }))
\end{aligned}
$$

Third, we specify the enabledness of the atomic actions. Let \#b stand for the number of elements in bag b.

$$
\begin{aligned}
& E A \equiv \\
& \quad \forall p h \in \text { Phil } \bullet \\
& \quad 0 \leq \text { \#ph.at } 1+\text { ph.at } 2+\text { \#ph.at } 3+\text { ph.at } 4+ \\
& \quad \text { \#ph.at } 5+\text { ph.at } 6+\# \text { ph.at } 7+\text { ph.at } 8 \leq 1 \wedge \\
& \quad(\# \text { ph.at } 1+\text { ph.at } 2+\# \text { ph.at } 3+\text { ph.at } 4>0 \equiv \text { ph.state }=\text { hungry }) \wedge \\
& (\# \text { ph.at } 5+\text { ph.at } 6+\# \text { ph.at } 7+\text { ph.at } 8>0 \equiv \text { ph.state }=\text { full }))
\end{aligned}
$$

Finally, we specify the "intermediate assertions":

$$
\begin{aligned}
& A T 1 \equiv(\forall p h \in \text { Phil } \bullet \# p h . a t 1>0 \Rightarrow \text { ph.at } 1=[\text { ph.left }]) \\
& \text { AT2 } \equiv(\forall p h \in \text { Phil •ph.at } 2>0 \Rightarrow \\
& \neg \text { ph.left.available } \wedge n e(P h i l-\{p h\} \text {, ph.left, state }) \\
& A T 3 \equiv(\forall p h \in \text { Phil } \bullet \# p h . a t 3>0 \Rightarrow \text { ph.at } 3=[\text { ph.right }] \wedge \\
& \neg \text { ph.left.available } \wedge n e(\text { Phil }-\{p h\}, \text { ph.left, state }) \\
& \text { AT4 } \equiv(\forall p h \in \text { Phil •ph.at } 4>0 \Rightarrow \\
& \neg \text { ph.left.available } \wedge n e(\text { Phil }-\{p h\} \text {, ph.left, state }) \\
& \neg \text { ph.right.available } \wedge \text { ne (Phil }-\{p h\}, \text { ph.left, state }) \\
& \text { AT5 } \equiv(\forall p h \in \text { Phil • \#ph.at } 5>0 \Rightarrow \text { ph.at } 5=[\text { ph.left }] \wedge \\
& \neg \text { ph.left.available } \wedge n e(\text { Phil }-\{p h\}, \text { ph.left, state }) \wedge \\
& \neg \text { ph.right.available } \wedge \text { ne }(\text { Phil }-\{p h\}, \text { ph.right, state }) \\
& \text { AT6 } \equiv(\forall p h \in \text { Phil •ph.at } 6>0 \Rightarrow \\
& \neg \text { ph.right.available } \wedge n e(\text { Phil }-\{p h\}, \text { ph.right, state }) \\
& A T 7 \equiv(\forall p h \in \text { Phil } \bullet \# p h . a t 7>0 \Rightarrow \text { ph.at } 7=[p h . r i g h t] \\
& \neg \text { ph.right.available } \wedge \text { ne }(\text { Phil }-\{p h\}, \text { ph.right, state })
\end{aligned}
$$

The claimed invariant, E, is constructed as the conjunction of all the above conditions:

$$
E \equiv F R \wedge P H \wedge E A \wedge A T 1 \wedge A T 2 \wedge A T 3 \wedge A T 4 \wedge A T 5 \wedge A T 6 \wedge A T 7
$$

As already $P H$ implies X, the mutual exclusion condition X follows from E being an invariant, which holds if:
(a) Phil $=\{ \} \Rightarrow E$
(b) $E \Rightarrow$ wlp(Phil.new, E)
(d.1) $E \Rightarrow w l p($ Phil.needToEat0, E)
(d.2) $E \Rightarrow w l p($ Phil.needToEat1, E)
(d.3) $E \Rightarrow w l p($ Phil.needToEat2, E)
(d.4) $E \Rightarrow$ wlp(Phil.needToEat3, E)
(d.5) $E \Rightarrow w l p($ Phil.needToEat4, E)
(d.6) $E \Rightarrow$ wlp(Phil.needToThink0, E)
(d.7) $E \Rightarrow$ wlp(Phil.needToThink1, E)
(d.8) $E \Rightarrow$ wlp(Phil.needToThink2, E)
(d.9) $E \Rightarrow$ wlp(Phil.needToThink3, E)
(d.10) $E \Rightarrow$ wlp(Phil.needToThink4, E)

Condition (a) amounts to quantifications over empty sets, which all hold vacuously. For (b) we have:

```
Phil.new =
    this :\not\in Phil\cup {nil} ; Phil := Phil \cup{this} ; this.state, this.left,
        this.right, this.at1, this.at2, this.at3, this.at4, this.at5, this.at6,
            this.at7, this.at8 := thinking,l,r, [],0, [], 0, [], 0, [],0
```

By (42) we consider the postconditions $F R, P H, E A, A T 1, A T 2, A T 3$ AT4, $A T 5, A T 6$, and $A T 7$ in turn. For $F R$ we consider the cases $p h=$ this and $p h \neq t h i s$ in the quantification of $n e:$ if $p h=t h i s$, then, as this.state is set to thinking, the conclusion of the implication is true and the whole predicate is true. If $p h \neq t h i s$, then this case follows from the precondition $F R$. For $P H$ we make the same case analysis with $p h=t h i s$ and $p h \neq t h i s$, and note that this.state is set to thinking, so the hypothesis of the implication for that case is false and the whole implication becomes true. For $E A$ we make the same case analysis and note that for $p h=$ this, all of this.at $1, \ldots$, this.at 6 are set to 0 and this.state is set to thinking, so the whole predicate becomes true in that case. For $A T 2$ to $A T 7$ we have that the hypotheses are all false in the case of $p h=t h i s$, so these are preserved as well. For condition (d.1) we have:

$$
\begin{aligned}
& \text { Phil.needToEat } 0= \\
& \quad(\sqcap \text { this } \in \text { Phil } \bullet[\text { this.state }=\text { thinking }] ; \text { this.state }:=\text { hungry } ; \\
& \quad \text { this.at } 1:=\text { this.at } 1+[\text { this.left }])
\end{aligned}
$$

For postcondition $F R$ we consider the cases $p h=$ this and $p h \neq t h i s$ in the quantification of $n e$: if $p h=$ this, then, as this.state is set to hungry, the conclusion of the implication is true and the whole predicate becomes true. If $p h \neq t h i s$, then this case follows from the precondition $F R$. For postcondition $P H$ we make the same case analysis with $p h=t h i s$ and $p h \neq t h i s$, and note that this.state is set to hungry, so the hypothesis of the implication for that case is false and the whole implication becomes true. For postcondition $E A$ we make the same case analysis and note that for $p h=t h i s$, from the precondition $E A$ and the guard this.state $=$ thinking, we know that initially all of this.at1, \ldots..this.at8 are [] or 0 , hence finally \#this.at1 is 1 and $E A$ is preserved. Postcondition AT1 is established by the assignment to this.at1, as the guard this.state $=$ thinking and the precondition $E A$ together imply that this.at 1 is empty initially. For postconditions $A T 2$ to $A T 7$ we have that the hypotheses are all false in the case of $p h=t h i s$, so these are preserved as well, concluding the proof of (d.1). For condition (d.2) we have, after renaming:

```
Phil.needToEat1 =
    \((\sqcap\) this \(\in\) Phil \(\bullet \sqcap \overline{\text { this }} \in\) this.at \(1 \cdot\) this.at \(1:=\) this.at \(1-[\overline{\text { this }}] ;\)
        [this.available] ; this.available \(:=\) false \(;\) this.at \(2:=\) this.at \(2+1\) )
```

For postcondition $F R$ we observe that, as f.available is set to false for some f, the implication becomes true and $F R$ is preserved. For postcondition $P H$ we note that as this.left.available is set of false and all other variables of $P H$ are unchanged, $P H$ cannot be invalidated. For postcondition $E A$ we make a case analysis and note that for $p h=$ this, the sum of \#this.at1 and this.at2 remains unchanged, so the $E A$ is preserved as well. Postcondition $A T 1$ cannot be invalidated as this.at 1 becomes empty. For postcondition $A T 2$, in the case of $p h=$ this, we note that this.left.available is set to false and that ne(Phil $\{p h\}, p h . l e f t$, state $)$ follows from the guard this.left.available and precondition
$F K$. For postconditions $A T 3$ to $A T 8$ we have that the hypotheses are all false in the case of $p h=t h i s$, so these are preserved as well.

Conditions (d.3) to (d.8) can be discharged analogously and are omitted here. In concluding this example we note that, as E spans objects of class Fork as well, calls to methods of Fork may invalidate E. That is, in order to show that E is an invariant of the whole program, we would need additionally to show that E is preserved by all other classes as well (which is easy to establish if other classes only create Fork objects and do not call pickUp and putDown).

6 Conclusions

We note that for our implementation, the object structure effectively helps to control the evaluation of guards. All guards must mention only attributes of the object itself. Without such a syntactic constraint, the guarded statement when cond do stat would require repeated evaluation of cond after some delay. To reduce resource contention, a binary exponential back-off protocol could be employed that starts with a random delay and doubles it after each failure. In the present implementation, no delays are employed. A number of threads in a thread pool are maintained and action guards are initially evaluated once when a thread is searching for an action to execute. Method guards are initially evaluated once when a method is called. Both action and method guards are reevaluated only after another thread has left the object and thus possibly affected the guards. We hope this measurements will show our implementation to be highly efficient.

While action system refinement $[6,18]$ appears as an attractive foundation for class refinement $[7,8,10]$, under the assumption of atomicity the refinement rule is sound only if there is a single method call per action and method. For example, if $v \in V 0$, then the sequence $v . c a l c S u m ; r:=v . g e t S u m$ would assign the sum to r, but if $v \in V 1$ the sequence would always block as v.calcSum disables v.getSum, even though $V 0$ is refined by $V 1$. Our approach is to ensure atomicity only up to method calls. As we furthermore allow multiple operations in one object to be initiated, but only one to progress, this leads to a disciplined form of inter-object concurrency. However, this fine-grained concurrency comes at a price:

First, additional attributes - counters and bags for local variables - need to be introduced. These make the class invariants and refinement invariants more complex than one would expect. The dining philosopher example shows how all intermediate assertions between atomic regions are captured by a single class invariant. It is not immediate how a Gries-Owicki style of reasoning with intermediate assertions could be applied in order to reduce the complexity of
invariants. This may impose a limit on the practicability of the approach.
Second, while non-atomic actions can be dealt with, non-atomic methods cause problems: a method m defined as the sequential composition of two atomic statements S and T cannot be translated as a method m defined as S and an action for T, as a call to m would return without waiting for T to complete. A solution to this would be to replace a method call by its body, if needed repeatedly, and only then to apply the translation. However, this disallows recursive method calls. Developing a model that includes recursive calls is left as future work.

Acknowledgement. The author would like to thank the reviewers for their critical comments. They lead to substantial revision.

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1986.
[2] Pierre America. Pool-T: A parallel object-oriented language. In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Programming, Computer Systems Series. MIT Press, Cambridge, MA, 1987.
[3] Pierre America. Issues in the design of a parallel object-oriented language. Formal Aspects of Computing, 1(4):366-411, 1989.
[4] Pierre America and Frank de Boer. Reasoning about dynamically evolving process structures. Formal Aspects of Computing, 6(3):269-316, 1994.
[5] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addision-Wesley, 2000.
[6] Ralph-Johan R. Back and Kaisa Sere. Action systems with synchronous communication. In E.-R. Olderog, editor, IFIP Working Conference on Programming Concepts, Methods, Calculi, pages 107-126, San Miniato, Italy, 1994. North-Holland.
[7] Marcello. M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-orientation in action systems. In J. Jeuring, editor, Mathematics of Program Construction, Lecture Notes in Computer Science 1422, pages 68-95, Marstrand, Sweden, June 1998, 1998. Springer-Verlag.
[8] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. Developing object-based distributed systems. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, 3rd IFIP International Conference on Formal Methods for Open Object-based Distributed Systems (FMOODS'99), pages 1934. Kluwer, 1999.
[9] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency
and distribution in object-oriented programming. ACM Computing Surveys, 30(3):291-329, 1998.
[10] Martin Büchi and Emil Sekerinski. A foundation for refining concurrent objects. Fundamenta Informaticae, 44(1):25-61, 2000.
[11] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor classification. ACM Computing Surveys, 27(1):63-107, 1995.
[12] Wei Chen and Jan Tijmen Udding. Towards a calculus of data refinement. In J. L. A. van de Snepscheut, editor, Mathematics of Program Construction, 375th Anniversary of the Groningen University, Lecture Notes in Computer Science 375, pages 197-218, Groningen, The Netherlands, 1989. Springer-Verlag.
[13] Cliff B. Jones. An object-based design method for concurrent programs. Technical report, University of Manchester, Department of Computer Science, December 1992.
[14] Cliff B. Jones. Accomodating interference in the formal design of concurrent object-based programs. Formal Methods in System Design, 8(2):105122, March 1996.
[15] Kevin Lou. A Compiler for an Action-Based Object-Oriented Programming Language. Master's thesis, McMaster University, 2004.
[16] Jayadev Misra. A simple, object-based view of multiprogramming. Formal Methods in System Design, 20(1):23-45, 2002.
[17] Emil Sekerinski. Concurrent object-oriented programs: From specification to code. In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Components and Objects, First International Symposium, FMCO 02, Lecture Notes in Computer Science 2852, pages 403-423, Leiden, The Netherlands, 2003. Springer-Verlag.
[18] Kaisa Sere and Marina Waldén. Data refinement of remote procedures. Formal Aspects of Computing, 12(4):278-297, 2000.
[19] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Objectoriented concurrent programming in ABCL/1. In ACM Conference on Object Oriented Programming Systems, Languages and Applications, ACM SIGPLAN Notices, Vol 21, No 11, pages 258-268, 1986.

