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Abstract

Action-based concurrent object-oriented programs express autonomous behavior of
objects through actions that, like methods, are attached to objects but, in contrast
to methods, may execute autonomously whenever their guard is true. The promise
is a streamlining of the program structure by eliminating the distinction between
processes and objects and a streamlining of correctness arguments. In this paper
we illustrate the use of action-based object-oriented programs and study their ver-
ification and their refinement from specifications, including the issue of non-atomic
operations.
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1 Introduction

It has been argued that objects can be naturally thought of as evolving inde-
pendently and thus concurrently; objects are a natural “unit” of concurrency.
Yet, current mainstream object-oriented languages treat concurrency indepen-
dently of objects: concurrency is expressed in terms of processes (threads) that
have to be managed separately from objects.

Action-based object-oriented concurrency offers the promise of truly integrat-
ing objects and concurrency by eliminating the need for having the class struc-
ture and the process structure as two interdependent design views. The only
syntactic additions needed are extending classes by actions, which execute au-
tonomously, and allowing methods to be guarded. In this way, concurrency
can be introduced in subclasses of a class hierarchy by adding (new) actions.
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For example, this permits concurrency to be treated as an implementation
issues that can be delegated to subclasses.

The approach to action-based object-oriented concurrency taken here is that
(1) atomicity of operations (methods and actions) is guaranteed only up to
method calls (2) several operations can be initiated in one object, but only
one can progress at any time, and (3) actions, like methods, can be initiated
multiple times. In combination, this leads to a fine-grained model of concur-
rency allowing a higher degree of concurrency than the exclusive access to an
object for the entire duration of an operation, as is sometimes associated with
monitors and concurrent objects.

An earlier paper [17] gives the formal model of the language in terms of higher
order predicate transformers and also sketches the current implementation.
The compiler translates to the Java Virtual Machine and is described in more
detail in [15].

The purpose of this paper is to further streamline the formal verification and
refinement process: all reasoning is reduced to Dijkstra’s (syntactic) weakest
precondition predicate transformer through (syntactic) transformations. Most
of these transformations are meant to be simple enough that they can be
done on the fly. In essence, an attribute of a class is understood as function
mapping objects of that class to attribute values, methods are understood
as procedures taking an additional this parameter, and actions are quantified
over all objects of the class. Difficulties arise with non-atomic operations: each
atomic region has to be transformed into a separate action and local variables
that are present in the context need to be stored in bag-valued attributes.
While not all aspects of the language can be dealt with in this way, this paper
demonstrates through a series of examples what can be achieved. Inheritance,
subtyping, type tests, type casts, and dynamic binding can be dealt with as
in [17]; here we focus on concurrency.

Briot et. al. [9] give a classification of concurrency in object-oriented pro-
gramming, based on the level of concurrency, autonomy of objects, and the
acceptance of messages. The level of concurrency can be classified here as
quasi-concurrent, like in ABCL/1 [19], as several method activations may co-
exist, but at most one is not suspended; it is a disciplined form of intra-object
concurrency. This is in contrast to serial objects like in POOL [2, 3] that
support only one method activation and fully concurrent objects like with Ac-
tors [1]. Our objects would be classified as autonomous rather than reactive as
they may be active without receiving a method call; in Java all objects are re-
active and autonomous activity is expressed through threads. The acceptance
of messages is implicit rather than explicit as in Ada and POOL; in those
languages each object has a body that controls entry into the object through
a rendezvous. Here, condition synchronization is achieved through guards in-
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stead. The communication between objects is through synchronous method
calls, as in Ada, POOL, and Java, rather than through message queues as in
Actors.

The closest work is the Seuss approach of Misra [16] and OO-action systems
of Bonsangue, Kok and Sere [7, 8]. We share with these approaches the use
of synchronous method calls, the use of guards for condition synchronization,
and the use of actions to express autonomous activity. While in Seuss only a
fixed number of objects can be declared, we allow dynamic object creation,
as in OO-action systems. A notable difference is how atomicity of actions
and methods is guaranteed if they contain multiple method calls. Suppose
we have an (unguarded) action x .m ; y .n and method n of object y is not
enabled. In OO-action systems, following the theory of action systems [6, 18],
the whole action is therefore not enabled; thus, if we would have executed
x .m, we would have to roll back. In Seuss this is solved by allowing one call
to a guarded method and that has to be the first statement in an action or a
method. Besides being a syntactic restriction, this forbids that an unguarded
method is refined by a guarded, as done in OO-action systems. We do not
have this restriction, but allow that an action or method gets suspended at
the point where a method is called. That is, actions and methods are atomic
only up to method calls.

Much of the inspiration comes from the πoβλ approach that was initiated by
Jones [13, 14], even though πoβλ is defined in terms of the π calculus and our
language is defined in terms of action systems. We do not directly support early
return and delegate statements as πoβλ does, though an early return can be
expressed through actions and guarded methods. Hoare-style verification rules
for a POOL-like language that includes statements for sending and receiving
synchronous messages are given in [4].

The next section introduces the language through a series of examples, start-
ing with a definition of the formal syntax. Section 3 presents the verification
and Section 4 the refinement of classes with atomic operations. Section 5 ex-
tends the treatment to non-atomic actions. We conclude with a discussion of
implementation aspects and critical remarks in Section 6.

2 An Action-Based Concurrent Object-Oriented Language

We start by giving the formal syntax of the language in extended BNF. The
construct a | b stands for either a or b, [a] means that a is optional, and {a}
means that a can be repeated zero or more times:
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class ::= class identifier
{ attribute | initialization | method | action } end

attribute ::= var variableList
initialization ::= initialization [ ( variableList ) ] statement
method ::= method identifier [ ( variableList ) ] [ : type ]

[when expression do ] statement
action ::= action identifier [when expression do ] statement
statement ::= assert expression |

designatorList := expressionList |
designatorList :∈ expression |
[designator := ] designator .identifier [ ( expressionList ) ] |
designator := new identifier [ ( expressionList ) ] |
var variableList ; statement
begin statement { ; statement } end |
if expression then statement [ else statement ] |
while expression do statement

variableList ::= identifierList : type { , identifierList : type }
identifierList ::= identifier { , identifier }
designatorList ::= designator { , designator }
expressionList ::= expression { , expression }

A class is declared by giving it a name and then listing all the attributes
(instance variables), initializations, methods, and actions. Initializations have
only value parameters, methods may have both value parameters and return
a result, and actions don’t have parameters. While the syntax allows multiple
initializations, we only consider classes with at most one declared initialization.
Methods of a class may have the same name, as long as the methods differ
in the type of their parameters. Actions are named and the names must be
unique, though the name does not carry any meaning. Both methods and
actions may optionally have a guard, a Boolean expression that must be only
over attributes of the object itself. A method or action is enabled if its guard
is true or missing, otherwise it is disabled. An object is active if its class
defines some actions; otherwise it is passive. The assertion statement assert b
does nothing if b hold and aborts if b does not hold. The assignment x := e
assigns simultaneously the values of the list e to the list x of variables. The
nondeterministic assignment statement x :∈ s generalizes this to selecting
values of (the tuple) x such that x ∈ s . This statement is not part of the
programming language, but is included here for use in abstract programs. A
method call x := c.m(e) to object c takes the list e as the value parameters
and assigns the result to x . The object creation c := new C (e) creates a
new object of class C and calls the corresponding initialization with value
parameters e. We do not elaborate the structure of identifier , expression,
type, and designator .

We introduce the language through a series of examples, starting with an
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example for active objects: an aquarium in which fish move randomly to the
left and to the right. The main program creates seven fish objects; once a
fish object is created, any of its enabled actions can be selected for execution.
In case more than one is enabled, the choice is nondeterministic (in case no
action is enabled and no reference to an object exists, the object can be garbage
collected). As the bodies of all actions (and methods) access only attributes
of the object itself, actions of any two fish objects can be executed in parallel,
though only one action or method of a fish can be executed at any time:

class Fish
var x , d : integer
var r : boolean
initialization x , d , r := 0, 5, true
method setPace(p : integer)

begin assert p > 0 ; d := p end
action moveRight

when x + d < W ∧ r do x := x + d
action moveLeft

when x − d ≥ 0 ∧ ¬r do x := x − d
action changeToRight

when x < W − 1 ∧ ¬r do r := true
action changeToLeft

when x > 0 ∧ r do r := false
end

var f : Fish, n : integer ;
begin n := 0 ; while n < 7 do f := new Fish end

The next example illustrates the use of guarded methods: in a class for a
bounded buffer, the guards protect the buffer from overflow and underflow.
Calling a method that is disabled blocks execution at that point until the guard
becomes true, as in the actions of class Merger below. As all objects are of
type Object , any object can be placed in the buffer:

class Buffer
var b : array M of Object
var in, out , n : integer
initialization

in, out , n := 0, 0, 0
method put(x : Object)

when n < M do in, b[in], n := (in + 1) mod max , x , n + 1
method get : Object

when n > 0 do out , result , n := (out + 1) mod max , b[out ], n − 1
end
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class Merger
var in1, in2, out : Buffer
var a1, a2 : boolean
var x1, x2 : Object
initialization (i1, i2, o : Buffer)

in1, in2, out , a1, a2 := i1, i2, o, true, true
action copy1

when a1 do
begin a1 := false ; in1.get(x1) ; out .put(x1) ; a1 := true end

action copy2
when a2 do

begin a2 := false ; in2.get(x2) ; out .put(x2) ; a2 := true end
end

After creating a new merger object, actions copy1 and copy2 are both enabled.
If copy1 is invoked, the execution may block at the call in1.get(x1) or at the
call out .put(x1). In general, method and action bodies are atomic only up
method calls: the guard is evaluated and all statements up to the first method
call are executed atomically; all subsequent statements up to the next method
call are also executed atomically. Arbitrary many activities, i.e. method calls or
action invocations can be initiated in one object, including multiple initiations
of the same method or action, but only one can progress at any time. Here,
both copy1 and copy2 can be initiated. As both actions disable themselves
after initiation and remain disabled until completion, they cannot be initiated
a second time.

The next example shows the use of semaphores for achieving fairness. In gen-
eral, the choice of guards for evaluation is not bound to a fairness policy.

class Semaphore
var n : integer
initialization (c : integer)

n := c
method P

when n > 0 do n := n − 1
method V

n := n + 1
end

class StrongSemaphore
var n : integer
var q : seq of Object
initialization (c : integer)

n, q := c, 〈〉
method P(u : Object)

begin q := q ◦ 〈u〉 ; Q(u) end
method Q(u : Object)

when n > 0 ∧ u = head(q) do
n, q := n − 1, tail(q)

method V
n := n + 1

end

Considering an object s of class Semaphore, a sequence s .P ; . . . critical sec-
tion . . . ; s .V in object x might never enter the critical section while the same
sequence from another object may continuously do so. A strong semaphore
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ensures a first-in first-out policy by keeping a sequence of requests. For ss of
class StrongSemaphore, a typical use would be ss .P(this) ; . . . critical section
. . . ; ss .V , where this is the reference to the current object.

The example of the dining philosophers is well-known. We represent philoso-
phers by active objects and forks by passive objects; philosophers have two
actions, one for the transition from thinking to eating and one for the tran-
sition from eating to thinking ; forks become binary semaphores. The main
program connects the philosophers and forks in a cyclic fashion. As known, in
this way the situation may occur that all philosophers pick up their left fork
and no philosopher gets a chance to eat.

class Phil
var state : (thinking , hungry , eating , full)
var left , right : Fork
initialization (l , r : Fork)

state, left , right := thinking , l , r
action needToEat

when state = thinking do
begin state := hungry ;

left .pickUp ; right .pickUp ;
state := eating

end
action needToThink

when state = eating do
begin state := full ;

left .putDown ; right .putDown ;
state := thinking

end
end

class Fork
var available : boolean
initialization

available := true
method pickUp

when available do
available := false

method putDown
available := true

end

var fork : array 5 of Fork ;
var phil : array 5 of Phil ;
var i , j : integer ;
begin i , j := 0, 0 ;

while i < 5 do fork [i ] := new Fork ;
while j < 5 do phil [j ] := new Phil(fork [j ], fork [(j + 1) mod 5])

end

A priority queue offers a method add(e) for storing integer e, a method remove
for removing the least integer stored so far, and a method empty for testing
whether the priority queue is empty. Our implementation is by a linked list of
nodes. Elements are stored in attribute m in ascending order (duplicates are
allowed). Attribute l points to the next node or is nil at the last object, which
does not hold a queue element. An element is added to the priority queue by
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either storing it in the current node if it is the last one (and creating a new last
node), or by depositing it in the current node and enabling an action that will
move either the new element or the element of the current node one position
down. The least element is removed by returning the element of the current
node immediately and enabling an action that will move the element of the
next node one position up, or set the l pointer to nil if the node becomes the
last one. The Boolean attributes i , a, r reflect whether the queue element is
idle, an addition is requested, and a removal is requested, respectively:

class PriorityQueue
var m, p : integer
var l : PriorityQueue
var i , a, r : boolean
initialization l , i , a, r := nil , true, false, false
method empty : boolean

result := l = nil
method add(e : integer)

when i do
if l = nil then

begin m := e ; l := new PriorityQueue end
else

p, i , a := e, false, true end
method remove : integer

when i do
result , i , r := m, false, true

action doAdd
when a do

begin a := false ;
if m > p then m, p := p,m ;
l .add(p) ;
i := true

end
action doRemove

when r do
begin r := false

if l .empty then l := nil
else m := l .remove ;
i := true

end
end

The guards of the PriorityQueue methods and actions are such that at most
one method or action can execute at any time. Thus a priority queue can
have at most as many concurrent actions as there are nodes in the queue.
The concurrent behavior of PriorityQueue is such that it is not observable
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through calls to the methods empty , add , and remove. It is an example where
concurrency is introduced for efficiency. Formally, we claim that PriorityQueue
is a refinement of class PriorityBag , which uses a bag (multiset) to abstractly
represent it’s state. Let [] stand for the empty bag, [e] for the bag containing
only e, binary operator + for bag addition, − for bag subtraction, and min(b)
for the least element of bag b:

class PriorityBag
var b : bag of integer
initialization b := []
method empty : boolean

result := b = []
method add(e : integer)

b := b + [e]
method remove : integer

b, result := b − [min(b)],min(b)
end

The final example is the observer design pattern, expressed as an abstract
program. The pattern allows that all observers of one subject perform their
update methods in parallel:

class Observer
var sub : Subject
initialization (s : Subject)

begin sub := s ; s .attach(this) end
method update . . .

end

class Subject
var a, n : set of Observer
initialization a, n := {}, {}
method attach(o : Observer)

a := a ∪ {o}
method notifyAll

n := a
action notifyOne

when n 6= {} do
var o : Observer ;
begin o :∈ n ; n := n − {o} ; o.update end

end

As soon as execution of the action notifyOneObserver in a subject s reaches
the call o.update, control is passed to object o and another activity in s may be
initiated or may resume. In particular, the action notifyOneObserver may be
initiated again, as long as notifyObs is not empty, i.e. some observers have not
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been notified. Thus at most as many notifyOneObserver actions are initiated
as there are observers and all notified observers can proceed concurrently. New
observers can be added at any time and will be updated after the next call to
notifyAll .

We conclude the introduction of the language with a comparison of objects
and monitors [5, 11]. Both objects and monitors guarantee exclusive access to
private data, though compared to traditional monitors (and to Java), there
are no condition variables, no signal and wait operations, and no processes (or
threads) as explicit language constructs—their role is taken over by guarded
methods and actions. Method calls from one object to other objects—the
equivalent of nested monitor calls—are open as the exclusive access to the
first object is dropped and only regained when the call returns. By comparison,
method calls in Java (with appropriate synchronization) are closed as exclusive
access to all objects in the call chain is retained. It is known that closed calls
allow less concurrency and are more prone to deadlocks. On the other hand,
open calls require the class invariant to be established at each call that leaves
an object. This may include disabling those methods and actions that would
otherwise not preserve the invariant, as for example in class PriorityQueue.

3 Verification

For analyzing the correctness of programs we consider a simpler kernel lan-
guage of atomic statements. All we need to assume is that all atomic state-
ments are characterized by Dijkstra’s weakest precondition predicate trans-
former: wp(S , c) is the weakest precondition such that S terminates and es-
tablishes postcondition c. Moreover, we assume that all statements are mono-
tonic, i.e. for any statement S and any Boolean expressions b, c:

(b ⇒ c) ⇒ (wp(S , b)⇒ wp(S , c)) (1)

We define some basic statements: the assertion statement {b}, the assumption
or guard statement [b], the multiple assignment x := e, the nondeterministic
assignment x :∈ s , the nondeterministic choice S u T between statements
S and T , and the unbounded choice ux ∈ s • S . Further statements, like
iteration, can be added. All variables are assumed to have a unique type,
even though it is commonly omitted. With x a list of variables and e a list
of expressions, we write f [x\e] for expression f with all free occurrences of
x substituted by e. For Boolean expressions, ≡ has the same meaning as =,
though ≡ binds weaker than all other Boolean operators. For the time being,
we assume that the evaluation of all expressions succeeds:

wp({b}, c) ≡ b ∧ c (2)
wp([b], c) ≡ b ⇒ c (3)
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wp(x := e, c) ≡ c[x\e] (4)
wp(S ; T , c) ≡ wp(S ,wp(T , c)) (5)
wp(S u T , c) ≡ wp(S , c) ∧ wp(T , c) (6)
wp(ux ∈ s • S , c) ≡ (∀x ∈ s • wp(S , c)) x not free in c (7)

The nondeterministically initialized local variable declaration var x ∈ s ; S
stands for ux ∈ s • S . The local variable declaration var x : T ; S stands for
ux • S , where x ranges over all elements of type T . The nondeterministic as-
signment x :∈ s stands for uh ∈ s • x := h. We define skip = {true} = [true]
to be the statement that does nothing, abort = {false} to be the statement
that always aborts, and wait = [false] to be the statement that always blocks.
The assertion statement assert b is synonymous to {b}. The guarded state-
ment when b do S and the conditional statements are defined as:

when b do S =̂ [b] ; S (8)
if b then S =̂ ([b] ; S ) u [¬b] (9)
if b then S else T =̂ ([b] ; S ) u ([¬b] ; T ) (10)

As derived rules we get:

wp(x :∈ s , c) ≡ (∀x ∈ s • c) (11)
wp(when b do S , c) ≡ b ⇒ wp(S , c) (12)

In programs, evaluation of expressions may fail. While in the logic any expres-
sion always has a value of its type, undefinedess of expressions in statements
needs to be taken into account. For a program expression e, let ∆ e stand for
the definedness of e. For example, we have that ∆(x div y) ≡ y 6= 0. That is,
∆ can be defined over the syntactic structure of program expressions. For a
statement to terminate evaluation of all expressions must succeed; we define
the weakest preconditions for statements with possibly undefined expressions
accordingly:

wp({b}, c) ≡ ∆ b ∧ b ∧ c (13)
wp([b], c) ≡ ∆ b ∧ (b ⇒ c) (14)
wp(x := e, c) ≡ ∆ e ∧ c[x\e] (15)

The declaration of a class C amounts to the declaration of a global variable
C for the set of all objects of class C and for each attribute f of type F , a
global variable C .f mapping objects of C to values of F :

var C : set of Object (16)
var C .f : Object → F (17)

That is, we use the class name also for the set of objects of that class and
as a prefix of the attribute names. We assume that the type Object contains
infinitely many elements, including the distinguished element nil . The notation
set of T stands for finite sets of type T . We commonly drop the prefix and

11



write f for C .f , if there is no ambiguity. Accessing an attribute f of object o,
written o.f amounts to applying the function f to o. An attribute assignment
amounts to a function update:

o.f = f (o) (18)
o.f := e = f := f [o ← e]) (19)

We write f [a ← r ] for modifying function f to return r for argument a,
formally:

a.f [a ← r ] = r (20)
b.f [a ← r ] = b.f , b 6= a (21)

The nondeterministic assignment x := ? assigns to x an arbitrary value of its
type. Defined as uh • x := h, we have:

wp(x := ?, c) ≡ (∀x • c) (22)
wp(o.f := ?, c) ≡ (∀h • c[f \f [o ← h]]) (23)

The enabledness domain or guard of S is defined by grd S = ¬wp(S , false) and
the termination domain by trm S = wp(S , true). For example, we have:

grd({b} ; S ) ≡ grd S (24)
grd([b] ; S ) ≡ b ∧ grd S (25)
grd(ux ∈ s • S ) ≡ (∃x ∈ s • grd S ) (26)
trm({b} ; S ) ≡ b ∧ trm S (27)
trm([b] ; S ) ≡ grd S (28)

Assume I is the body of the initialization of class C , or skip if no initialization
is declared, M is the body of method meth of C , and A is the body of action
act . We let C .init stand for this .a := ? ; I , where a are the attributes that
are not assigned to in I (a programming language may impose the syntactic
restriction that all attributes have to be initialized, making this convention
unnecessary). The declaration of class C induces following definitions, for each
method meth and action act :

C .new = this :6∈ C ∪ {nil} ; C := C ∪ {this} ; C .init (29)
C .meth = {this ∈ C} ; M (30)
C .act = (uthis ∈ C • A) (31)

That is, we use the class name also as a prefix for the method and actions
names. We let x : 6∈ s stand for x :∈ s , where s is the complement of set s . The
definition of C .act in terms of a nondeterministic choice models concurrency
through interleaving: if two actions operating on a disjoint state space are
enabled, they can be executed in any order or in parallel.

For example, the declaration of class Fish gives rise to a global variable Fish
with the identities of all Fish objects and variables Fish.x ,Fish.d ,Fish.r—
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further on referred to by x , d , r—mapping each Fish object to the correspond-
ing attribute values:

var Fish : set of Object
var Fish.x ,Fish.d : Object → integer
var Fish.r : Object → boolean

We commonly abbreviate the reference this .f to an attribute of the current
object by f . Making references to this explicit, we have for class Fish:

Fish.new = this : 6∈ Fish ∪ {nil} ; Fish := Fish ∪ {this} ;
this .x , this .d , this .r := 0, 5, true

Fish.setPace = {this ∈ Fish} ; {p > 0} ; this .d := p
Fish.moveRight = (uthis ∈ Fish • [this .x + this .d < W ∧ this .r ] ;

this .x := this .x + this .d)

Creating a new element of class C amounts to finding an unused element of
C , adding that to C , and executing the body of the initialization. Assuming
that v are the formal parameters of the initialization, we define:

o := new C (e) = var this , v ; v := e ; C .new ; o := this (32)

In order to illustrate parameter passing with methods calls we define an atomic
method call as follows. Suppose method m of class C is declared with value
parameters v and to return a result. Then an atomic call x := c.m(e) for
c ∈ C makes c and e to be the actual value parameters and x the actual
result parameter:

x := c.meth(e) = var this , v , result ; (33)
this , v := c, e ; C .meth ; x := result

Later on we consider non-atomic method calls, which require a prior transfor-
mation. Subtyping, inheritance, type test, and dynamic binding can be added
as in [17]: if class D defines a subtype of C , then this amounts to stating that
D ⊆ C at any time. We do not go further into details as these constructs are
not used later on.

While wp ensures total correctness, for invariance properties partial correctness
is sufficient, motivating the introduction of weakest liberal preconditions. For
a statement S , the predicate wp(S , true) is the weakest precondition for S to
terminate, in whatever state. The weakest liberal precondition wlp(S , c) is the
weakest precondition for S to establish c provided S terminates, defined as
wlp(S , c) ≡ trm S ⇒ wp(S , c). In case all program expressions are defined we
have:

wlp({b}, c) ≡ b ⇒ c (34)
wlp([b], c) ≡ b ⇒ c (35)
wlp(x := e, c) ≡ c[x\e] (36)
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wlp(S ; T , c) ⇐ wlp(S ,wlp(T , c)) (37)

In case program expressions are possibly undefined we have:

wlp({b}, c) ≡ ∆ b ∧ b ⇒ c (38)
wlp([b], c) ≡ ∆ b ∧ b ⇒ c (39)
wlp(x := e, c) ≡ ∆ e ⇒ c[x\e] (40)

Definition 1 (Class Invariant) Let C be a class in which the bodies of all
initializations, methods, and actions are atomic, i.e. they do not contain (non-
atomic) method calls. Boolean expression P is an invariant of C if following
conditions hold:

(a) Program Initialization: When no objects exists, the invariant holds:

C = {} ⇒ P

(b) Object Creation: The object creation preserves the invariant:

P ⇒ wlp(C .new ,P)

(c) Methods: Every method meth preserves the invariant:

P ⇒ wlp(C .meth,P)

(d) Actions: Every action act preserves the invariant:

P ⇒ wlp(C .act ,P)

These conditions are justified by appealing to the definition of classes in terms
of actions systems with procedures [7, 10, 17]: if P is an invariant of a class,
then P is also an invariant of the corresponding action system, and in any
observable state, P will hold. As an example, we show that for class Fish, the
predicate 0 ≤ x < W is an invariant. In order to do so, we have to strengthen
this expression to include d > 0 and have to quantify it over all objects of
class Fish:

B ≡ (∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W )

Thus the conditions for B to be an invariant of Fish are:

(a) Fish = {} ⇒ B
(b) B ⇒ wlp(Fish.new ,B)
(c) B ⇒ wlp(Fish.setPace,B)
(d.1) B ⇒ wlp(Fish.moveRight ,B)
(d.2) B ⇒ wlp(Fish.moveLeft ,B)
(d.3) B ⇒ wlp(Fish.changeToRight ,B)
(d.4) B ⇒ wlp(Fish.changeToLeft ,B)
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Condition (a) amounts to a quantification over an empty range, which holds
vacuously. For (b) we first expand Fish.new and B and then apply (37)
and (36):

wlp(Fish.new ,B)
⇐ wlp(this : 6∈ Fish ∪ {nil} ; Fish := Fish ∪ {this},

(∀f ∈ Fish • f .d [this ← 5] > 0 ∧ 0 ≤ f .x [this ← 0] < W ))
⇐ this 6∈ Fish ∪ {nil} ⇒

(∀f ∈ Fish ∪ {this} • f .d [this ← 5] > 0 ∧ 0 ≤ f .x [this ← 0] < W )
⇐ (∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W )
≡ B

The second last step follows from a case analysis with this = f and this 6= f
and (20), (21). For (c) we proceed similarly, now applying also (34):

wlp(Fish.setPace,B)
≡ wlp({this ∈ Fish} ; {p > 0} ; this .d := p,

(∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W ))
⇐ this ∈ Fish ∧ p > 0⇒

(∀f ∈ Fish • f .(d [this ← p]) > 0 ∧ 0 ≤ f .x < W ))
⇐ (∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W )
⇐ B

For (d.1) we proceed similarly, now applying (35):

wlp(Fish.moveRight ,B)
≡ wlp((uthis ∈ Fish • [this .x + this .d < W ∧ this .r ] ; this .x :=

this .x + this .d), (∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W ))
⇐ (∀this ∈ Fish • this .x + this .d < W ∧ this .r ⇒

(∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .(x [this ← this .x + this .d ]) < W )))
⇐ (∀f ∈ Fish • f .d > 0 ∧ 0 ≤ f .x < W )
≡ B

The proof of (d.2) is similar and left out. Conditions (d.3) and (d.4) follow
immediately as the corresponding actions to not change any variable men-
tioned in the invariant, hence preserve the invariant vacuously. In concluding
with this example we note that B is a local invariant as it does not relate the
attributes of different objects; it is a quantification of conditions ranging over
a single object. The technique equally applies to global invariants. We also
note that in invariance proofs we may make use of the (finite) conjunctivity
of wlp, which follows from the (finite) conjunctivity of wp (as can be checked
for each of the defined statements):

wp(S , b ∧ c) ≡ wp(S , b) ∧ wp(C , c) (41)
wlp(S , b ∧ c) ≡ wlp(S , b) ∧ wlp(C , c) (42)
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4 Refinement

Class refinement builds on the notion of data refinement of statements. Ordi-
nary (algorithmic) refinement of statement S by T , written S v T holds if
for all predicates c, wp(S , c) ⇒ wp(T , c). This implies that T can be used
for whatever S can be, but T may be “more deterministic”, may have a
weaker termination domain, and may have a stronger guard. Data refinement
S vR T generalizes this by allowing S and T to operate on different variables,
related through coupling invariant or refinement invariant R. Among the var-
ious ways, data refinement can be introduced through the conjugate weak-
est precondition predicate transformer wp, defined as wp(S , c) ≡ ¬wp(S ,¬c)
(see [12] for a proof of equivalence of various definitions). Intuitively, wp is
like wp for assignments and sequential composition, but exchanges guards
with assertions and exchanges demonic with angelic nondeterminism. In case
all program expressions are defined we have:

wp({b}, c) ≡ b ⇒ c (43)
wp([b], c) ≡ b ∧ c (44)
wp(x := e, c) ≡ c[x\e] (45)
wp(S ; T , c) ≡ wp(S ,wp(T , c)) (46)
wp(S u T , c) ≡ wp(S , c) ∨ wp(T , c) (47)
wp(ux ∈ s • S , c) ≡ (∃x ∈ s • wp(S , c)) x not free in c (48)

In case program expressions are possibly undefined we have:

wp({b}, c) ≡ ∆ b ∧ b ⇒ c (49)
wp([b], c) ≡ ∆ b ⇒ b ∧ c (50)
wp(x := e, c) ≡ ∆ e ⇒ c[x\e] (51)

Let S be a statement over variables s and T a statement over variables t ,
where s and t are disjoint. Let R be a predicate over s and t . Statement S is
refined by T through R, written S vR T , is defined by:

S vR T ≡ R ∧ trm S ⇒ wp(T ,wp(S ,R)) (52)

In case S and T have variables r in common—say global variables or results—
the definition needs to be extended. Let S [x\y ] stand for statement S with
variables x substituted by variables y . Assume that r are fresh variables:

S vR T ≡ R ∧ trm S ⇒ wp(T [r\r ],wp(S ,R ∧ r = r)) (53)

As a useful special case is the refinement of skip:

skip vR T ≡ R ⇒ wp(T ,R) (54)

Components of a sequential composition can be refined individually:

S0 vR T0 ∧ S1 vR T1 ⇒ S0 ; S1 vR T0 ; T1 (55)
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Definition 2 (Class Refinement) Let C be a class with attributes c and
D be a class with attributes d. We assume that both classes have the same
method names and parameter and return types, and that each action defined
in C is also defined in D. However, class D may have additional actions,
called auxiliary actions, and referred to by D .aux . Let R be a predicate over
c and d. Class C is refined by D through R, written C vR D, if following
conditions hold:

(a) Program Initialization: When no objects exists, the refinement invariant
holds:

C = {} ∧ D = {} ⇒ R

(b) Object Creation: The creation of a C object is refined by the creation of
a D object:

C .new vR D .new

(c) Method Refinement: Every method meth of C is refined by the corre-
sponding method in D:

C .meth vR D .meth

Method Enabledness: For every method meth in C , either the correspond-
ing method of D or some action in D is enabled:

R ∧ grd C .meth ∧ trm C .meth ⇒ grd D .meth ∨ (∨act • grd D .act)

(d) Main Action Refinement: Every action act of C is refined by the corre-
sponding action in D:

C .act vR D .act

Main Action Enabledness: For every action act in C , some action in D
is enabled:

R ∧ grd C .act ∧ trm C .act ⇒ (∨act • grd D .act)

(e) Auxiliary Action Refinement: Every new action aux of D refines skip:

skip vR D .aux

Auxiliary Action Termination: The computation of auxiliary actions ter-
minates eventually:

R ⇒ all actions D .aux terminate eventually
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Condition (b) on object creation does not include a check for enabledness, like
condition (c) does, as we assume that initializations are always enabled: the
syntactic structure of initializations does not allow for guards. Condition (b)
can be simplified by noting that the refinement invariant has to satisfy a
healthiness condition, namely that for every C object there must exist at least
one D object with the same identity:

R ⇒ C ⊆ D (56)

Predicate R may imply an exact one-to-one correspondence C = D , as in
the delayed vector summation below, or may allow for more D objects than
C objects, as would be for the refinement of PriorityBag by PriorityQueue.
The necessity for this healthiness condition can be seen by expanding and
simplifying condition (b) to this : 6∈ C ∪ {nil} ; C := C ∪ {this} ; C .init vR

this :6∈ D ∪ {nil} ; D := D ∪ {this} ; D .init . Assuming that initializations do
not assign to this , which typically would be syntactically forbidden, for above
to hold, this : 6∈ C ∪ {nil} vR this :6∈ D ∪ {nil} has already to hold, as the
subsequent statements cannot possibly establish R otherwise. We calculate:

this :6∈ C ∪ {nil} vR this :6∈ D ∪ {nil}
≡ R ⇒ wp(this : 6∈ D ∪ {nil},wp(this :6∈ C ∪ {nil},R ∧ this = this))
≡ R ⇒ (∀this 6∈ D ∪ {nil} • (∃this 6∈ C ∪ {nil} • R ∧ this = this))
≡ R ⇒ (∀this 6∈ D ∪ {nil} • this 6∈ C ∪ {nil})
≡ R ⇒ C ⊆ D

From this observation and (55) we can immediately derive an alternative for-
mulation of condition (b):

(b’) Object Creation: Provided R ⇒ C ⊆ D

C := C ∪ {this} ; C .init vR D := D ∪ {this} ; D .init

Condition (e) implies that the auxiliary actions are stuttering actions: as they
refine skip, their effect is not visible from C and as they eventually terminate,
they do not introduce (observable) non-termination. The second part of (b)
can in general be shown with the use of a variant t , an integer expression.
The conditions are that for all new actions D .aux , if D .aux is enabled, then t
must be strictly greater than 0 and D .aux decreases t . Let v be an auxiliary
variable:

Auxiliary Action Termination: All auxiliary actions decrease t and be-
come disabled if t reaches 0:

R ∧ grd D .aux ⇒ t > 0
R ∧ t = v ⇒ wp(D .aux , t < v)

This definition of class refinement is justified by appealing to the refinement
of action systems with procedures, as done in [7, 8, 10]. The difference to these
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approaches is the treatment of object identities, here we follow [17]. We note
that class refinement can be further generalized if needed [10]: abstract stut-
tering can be allowed to be removed in the refinement, and concrete stuttering
actions can be more general than a refinement of skip.

We give an example of a delayed vector summation that illustrates the concept
of delaying a computation by enabling a background action. The example
makes use of arrays. If a is declared as array N of T , we understand a to be
a function and define the array update statement as a function update:

a(e) := f = a := a[e ← f ]

As indexing an array out of bounds is an error, we need to specify the defined-
ness of program expressions with array access accordingly:

∆(a(e)) ≡ ∆ e ∧ 0 ≤ e < N
∆(a[e ← f ]) ≡ ∆ e ∧∆ f ∧ 0 ≤ e < N

Class V 0 allows to store elements of a vector and their sum to be calculated.
Class V 1 performs the summation in the background and blocks the request
for the sum if it is not yet calculated:

class V 0
var a : array M of integer
var s : integer
method set(j , e : integer)

a(j ) := e
method calcSum

s := (
∑

j | 0 ≤ j < M • a(j ))
method getSum : integer

result := s
end

class V 1
var a : array M of integer
var s ,m : integer
initialization m := 0
method set(j , e : integer)

when j ≥ m do a(j ) := e
method calcSum

s ,m := 0,M
method getSum : integer

when m = 0 do result := s
action addElt

when m > 0 do
s ,m := s + a(m − 1),m − 1

end

Thus the conditions for V 0 to be a refined by V 1 through R are:

(a) V 0 = {} ∧ V 1 = {} ⇒ R
(b) V 0.new vR V 1.new
(c.1) V 0.set vR V 1.set

R ∧ grd V 0.set ∧ trm V 0.set ⇒ grd V 1.set ∨ grd V 1.addElt

(c.2) V 0.calcSum vR V 1.calcSum
R ∧ grd V 0.calcSum ∧ trm V 0.calcSum ⇒

grd V 1.calcSum ∨ grd V 1.addElt
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(c.3) V 0.getSum vR V 1.getSum
R ∧ grd V 0.getSum ∧ trm V 0.getSum ⇒

grd V 1.getSum ∨ grd V 1.addElt

(e) skip vR V 1.addElt
R ⇒ action V 1.addElt terminates eventually

Abbreviating V 0.a,V 0.s ,V 1.a,V 1.s ,V 1.m by a0, s0, a1, s1,m, we use as the
refinement invariant:

R ≡ V 0 = V 1 ∧
(∀ v ∈ V 0 • v .a0 = v .a1 ∧ 0 ≤ v .m ≤ M ∧

v .s0 = v .s1 + (
∑

j | 0 ≤ j < v .m • v .a0(j ))

Condition (a) amounts to a quantification over an empty range, which holds
vacuously. For (b) it is sufficient to use the condition (b’) instead. We have that
V 0.init = this .a0, this .s0 := ?, ?, hence trm(V 0 := V 0 ∪ {this} ; V 0.init) ≡
true, and V 1.init = this .m := 0 ; this .a1, this .s1 := ?, ?. In the proof, we first
apply the definition of vR, then the rules of wp and wp, then perform the
substitution, and finally simplify the outcome by a case analysis with v = this
and v 6= this :

V 0 := V 0 ∪ {this} ; V 0.init vR V 1 := V 1 ∪ {this} ; V 1.init
≡ R ⇒ wp(V 1 := V 1 ∪ {this} ; V 1.init ,

wp(V 0 := V 0 ∪ {this} ; V 0.init ,R))
≡ R ⇒ (∀g1, h1

• ∃g0, h0
•

R[a0, s0\a0[this ← h0], s0[this ← g0][V 0\V 0 ∪ {this}]
[a1, s1\a1[this ← h1], s1[this ← g1][m\m[this ← 0][V 1\V 1 ∪ {this}])

≡ R ⇒ (∀g1, h1
• ∃g0, h0

• V 0 ∪ {this} = V 1 ∪ {this} ∧
(∀ v ∈ V 0 • v .a0[this ← h0] = v .a1[this ← h1] ∧

0 ≤ v .m[this ← 0] ≤ M ∧
v .s0[this ← g0] = v .s1[this ← g1] +

(
∑

j | 0 ≤ j < v .m[this ← 0] • a0[this ← h0](j ))))
≡ true

For the first part of (c.1) we have that V 0.set = {this ∈ V 0} ; this .a0(j ) := e
and V 1.set = {this ∈ V 1} ; [j ≥ this .m] ; this .a1(j ) := e. With (27), (28),
(15) we get that trm V 0.set ≡ this ∈ V 0 ∧ 0 ≤ j < M :

V 0.set vR V 1.set
≡ R ∧ trm V 0.set ⇒ wp(V 1.set ,wp(V 2.set ,R))
≡ R ∧ this ∈ V 0 ∧ 0 ≤ j < M ⇒

wp({this ∈ V 1} ; [j ≥ this .m] ; this .a1(j ) := e,
wp({this ∈ V 0} ; this .a0(j ) := e,R)

≡ R ∧ this ∈ V 0 ∧ 0 ≤ j < M ⇒ this ∈ V 1 ∧ (j ≥ this .m ⇒
(this ∈ V 0 ∧ R[a0\a0[this ← this .a0[j ← e]]])

[a1\a1[this ← this .a1[j ← e]]])
≡ true
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For the second part of (c.1) we first observe that V 1.addElt = (uthis ∈
V 1 • [this .m > 0] ; this .s1, this .m := this .s1 + this .a1(this .m − 1), this .m − 1).
With (26) and (25) we get that grd V 0.set ≡ true, grd V 1.set ≡ j ≥ this .m
and that grd V 1.addElt ≡ (∃this ∈ V 1 • this .m > 0):

R ∧ grd V 0.set ∧ trm V 0.set ⇒ grd V 1.set ∨ grd V 1.addElt
≡ R ∧ this ∈V 0 ∧ 0 ≤ j < M ⇒ j ≥ this .m ∨ (∃this ∈V 1 • this .m > 0)
⇐ R ∧ this ∈V 0 ∧ 0 ≤ j < M ⇒ j ≥ this .m ∨ this .m > 0
≡ true

The conditions (c.2) and (c.3) can be discharged similarly. For the first part of
condition (e) we apply (54), then (7), (3), (19), (15), perform the substitutions,
and finally simplify the outcome by a case analysis with v = this and v 6= this :

skip vR V 1.addElt
≡ R ⇒ wp(V 1.addElt ,R)
≡ R ⇒ wp((uthis ∈ V 1 • [this .m > 0] ;

this .s1, this .m := this .s1 + this .a1(this .m − 1), this .m − 1),R)
≡ R ⇒ (∀this ∈ V 1 • this .m > 0⇒ 0 ≤ this .m − 1 < M ∧

R[s1,m\s1[this ← this .s1 + this .a1(this .m − 1)],m[this ← this .m − 1])
≡ R ⇒ (∀this ∈ V 1 • this .m > 0⇒ 0 ≤ this .m − 1 < M ∧

V 0 = V 1 ∧
(∀ v ∈ V 0 • v .a0 = v .a1 ∧ 0 ≤ v .m[this ← this .m − 1] ≤ M ∧

v .s0 = v .s1[this ← this .s1 + this .a1(this .m − 1)] +
(
∑

j | 0 ≤ j < v .m[this ← this .m − 1] • v .a0(j ))))
≡ true

For the second part of condition (e) we use (
∑

v ∈ V 1 • v .m) as the variant
and get following two conditions:

R ∧ grd V 1.addElt ⇒ (
∑

j ∈ V 1 • v .m) > 0
R ∧ (

∑
v ∈ V 1 • v .m) = w ⇒ wp(V 1.addElt , (

∑
v ∈ V 1 • v .m) < w)

Again, these conditions can be discharged with the given rules. We omit the
proofs, but like to stress the inherent structure of the conditions, as exem-
plified with the last one: the refinement invariant and the variant range over
all objects of a class, not just a single object. This allows the refinement to
span several objects if needed, as would be the case with the refinement of
PriorityBag by PriorityQueue.

5 Non-Atomic Actions

For verifying non-atomic operations, these need first to be transformed into
the kernel language of atomic operations. Suppose that an action A is of the
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form S ; T , where S and T are atomic. We can make the atomic regions
explicit by including them in atomicity brackets and writing A = 〈S 〉 ; 〈T 〉.
Such an action needs to be split into two actions, an action A0 that executes
only S and enables T and an action A1 that executes only T . As an action
may be initiated multiple times, a counter, say c, for recording the invoca-
tions of S is needed. Thus the transformation results in A0 = S ; c := c + 1
and A1 = [c > 0] ; c := c − 1 ; T . The counter c has to be made an at-
tribute of the corresponding class and to be initialized to 0. When local
variables are present, a simple counter is not sufficient. Suppose we have
A = 〈var x ; begin S 〉 ; 〈T end〉. If A is initiated multiple times, multiple
copies of x would exist. They are there stored in bag, say b. The transfor-
mation would then result in A0 = var x ; begin S ; b := b + [x ] end and
A1 = var x ∈ b ; begin b := b − [x ] ; T end . Here x is in general a tuple
(list) of variables, and b is a bag of tuples that is made an attribute of the
corresponding class.

Local variables necessarily arise with method calls. According to (33) an
atomic call x := c.meth(e) gives rise to local variables for copies of c, e,
and the result x . Indeed, in our implementation first x and e are evaluated
before a call to c.meth is attempted and other operations cannot affect these
values. Thus, even a “parameterless” method call requires at least the receiver
of the call to be stored in a bag.

Rather than formalizing this transformation itself, we illustrate it with the
example of dining philosophers. We use the same syntax for non-atomic and
atomic methods and actions, except that we may chose to make the atomic
regions explicit.

As an example, we like to show mutual exclusion of philosophers, in the sense
that no two philosophers sharing a fork can eat at the same time. We do so
for an arbitrary arrangement of philosophers and forks, not just for a circular
one. First, class Phil is rewritten to explicitly indicate the atomic regions by
atomicity brackets; in class Fork all methods are atomic. Some atomic regions
are labeled:

class Phil
var state : (thinking , hungry , eating , full)
var left , right : Fork
initialization (l , r : Fork)
〈state, left , right := thinking , l , r〉

action needToEat
〈when state = thinking do

begin state := hungry ;
var this ; begin this := left ; 〉

at1: Fork .pickUp
at2: 〈end ;
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var this ; begin this := right ; 〉
at3: Fork .pickUp
at4: 〈end ;

state := eating
end〉

action needToThink
〈when state = eating do

begin state := full ;
var this ; begin this := left ; 〉

at5: Fork .putDown
at6: 〈end ;

var this ; begin this := right ; 〉
at7: Fork .putDown
at8: 〈end ;

state := thinking
end〉

end

Transforming every atomic region into an action and adding the counters
results in:

class Phil
var state : (thinking , hungry , eating , full)
var left , right : Fork
var at1, at3, at5, at7 : bag of Object
var at2, at4, at6, at8 : natural
initialization (l , r : Fork)

state, left , right , at1, at2, at3, at4, at5, at6, at7, at8 :=
thinking , l , r , [], 0, [], 0, [], 0, [], 0

action needToEat0
when state = thinking do

begin state := hungry ; at1 := at1 + [left ] end
action needToEat1

var this ∈ at1 ;
begin at1 := at1− [this ] ; Fork .pickUp ; at2 := at2 + 1 end

action needToEat2
when at2 > 0 do begin at2 := at2− 1 ; at3 := at3 + [right ] end

action needToEat3
var this ∈ at3 ;

begin at3 := at3− [this ] ; Fork .pickUp ; at4 := at4 + 1 end
action needToEat4

when at4 > 0 do
begin at4 := at4− 1 ; state := eating end

action needToThink0
when state = eating do
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begin state := full ; at5 := at5 + [left ] end
action needToThink1

var this ∈ at5 ;
begin at5 := at5− [this ] ; Fork .putDown ; at6 := at6 + 1 end

action needToThink2
when at6 > 0 do begin at6 := at6− 1 ; at7 := at7 + [right ] end

action needToThink3
var this ∈ at7 ;

begin at7 := at7− [this ] ; Fork .putDown ; at8 := at8 + 1 end
action needToThink4

when at8 > 0 do
begin at8 := at8− 1 ; state := eating end

end

Predicate ne(Ph, f , state) is defined to mean that all philosophers of the set
Ph who are sharing fork f are not in the state of eating :

ne(Ph, f , state) ≡ (∀ph ∈ Ph • (ph.left = f ∨ ph.right = f )⇒
ph.state 6= eating)

The mutual exclusion property is expressed as:

X ≡ (∀ph ∈ Phil • ph.state = eating ⇒
ne(Phil − {ph}, ph.left , state) ∧ ne(Phil − {ph}, ph.right , state))

Instead of showing that X is an invariant, we have to show a stronger condi-
tion. It is constructed as follows. First, if a fork is available, then no philosopher
sharing that fork can be eating:

FR ≡ (∀f ∈ Fork • f .available ⇒ ne(Phil , f , state))

Second, for all eating philosophers, both their left and right fork are not avail-
able and no other philosopher who is sharing one of these forks can be eating:

PH ≡ (∀ph ∈ Phil • ph.state = eating ⇒
¬ph.left .available ∧ ne(Phil − {ph}, ph.left , state) ∧
¬ph.right .available ∧ ne(Phil − {ph}, ph.right , state))

Third, we specify the enabledness of the atomic actions. Let #b stand for the
number of elements in bag b.

EA ≡
(∀ph ∈ Phil •

0 ≤ #ph.at1 + ph.at2 + #ph.at3 + ph.at4+
#ph.at5 + ph.at6 + #ph.at7 + ph.at8 ≤ 1∧

(#ph.at1 + ph.at2 + #ph.at3 + ph.at4 > 0 ≡ ph.state = hungry) ∧
(#ph.at5 + ph.at6 + #ph.at7 + ph.at8 > 0 ≡ ph.state = full))
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Finally, we specify the “intermediate assertions”:

AT1 ≡ (∀ph ∈ Phil • #ph.at1 > 0⇒ ph.at1 = [ph.left ])
AT2 ≡ (∀ph ∈ Phil • ph.at2 > 0⇒

¬ph.left .available ∧ ne(Phil − {ph}, ph.left , state)
AT3 ≡ (∀ph ∈ Phil • #ph.at3 > 0⇒ ph.at3 = [ph.right ] ∧

¬ph.left .available ∧ ne(Phil − {ph}, ph.left , state)
AT4 ≡ (∀ph ∈ Phil • ph.at4 > 0⇒

¬ph.left .available ∧ ne(Phil − {ph}, ph.left , state)
¬ph.right .available ∧ ne(Phil − {ph}, ph.left , state)

AT5 ≡ (∀ph ∈ Phil • #ph.at5 > 0⇒ ph.at5 = [ph.left ] ∧
¬ph.left .available ∧ ne(Phil − {ph}, ph.left , state) ∧
¬ph.right .available ∧ ne(Phil − {ph}, ph.right , state)

AT6 ≡ (∀ph ∈ Phil • ph.at6 > 0⇒
¬ph.right .available ∧ ne(Phil − {ph}, ph.right , state)

AT7 ≡ (∀ph ∈ Phil • #ph.at7 > 0⇒ ph.at7 = [ph.right ]
¬ph.right .available ∧ ne(Phil − {ph}, ph.right , state)

The claimed invariant, E , is constructed as the conjunction of all the above
conditions:

E ≡ FR ∧ PH ∧ EA ∧ AT1 ∧ AT2 ∧ AT3 ∧ AT4 ∧ AT5 ∧ AT6 ∧ AT7

As already PH implies X , the mutual exclusion condition X follows from E
being an invariant, which holds if:

(a) Phil = {} ⇒ E
(b) E ⇒ wlp(Phil .new ,E )
(d.1) E ⇒ wlp(Phil .needToEat0,E )
(d.2) E ⇒ wlp(Phil .needToEat1,E )
(d.3) E ⇒ wlp(Phil .needToEat2,E )
(d.4) E ⇒ wlp(Phil .needToEat3,E )
(d.5) E ⇒ wlp(Phil .needToEat4,E )
(d.6) E ⇒ wlp(Phil .needToThink0,E )
(d.7) E ⇒ wlp(Phil .needToThink1,E )
(d.8) E ⇒ wlp(Phil .needToThink2,E )
(d.9) E ⇒ wlp(Phil .needToThink3,E )
(d.10) E ⇒ wlp(Phil .needToThink4,E )

Condition (a) amounts to quantifications over empty sets, which all hold vac-
uously. For (b) we have:

Phil .new =
this : 6∈ Phil ∪ {nil} ; Phil := Phil ∪ {this} ; this .state, this .left ,

this .right , this .at1, this .at2, this .at3, this .at4, this .at5, this .at6,
this .at7, this .at8 := thinking , l , r , [], 0, [], 0, [], 0, [], 0
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By (42) we consider the postconditions FR, PH , EA, AT1, AT2, AT3 AT4,
AT5, AT6, and AT7 in turn. For FR we consider the cases ph = this and
ph 6= this in the quantification of ne: if ph = this , then, as this .state is set to
thinking , the conclusion of the implication is true and the whole predicate is
true. If ph 6= this , then this case follows from the precondition FR. For PH
we make the same case analysis with ph = this and ph 6= this , and note that
this .state is set to thinking , so the hypothesis of the implication for that case
is false and the whole implication becomes true. For EA we make the same
case analysis and note that for ph = this , all of this .at1, . . . , this .at6 are set
to 0 and this .state is set to thinking , so the whole predicate becomes true in
that case. For AT2 to AT7 we have that the hypotheses are all false in the
case of ph = this , so these are preserved as well. For condition (d.1) we have:

Phil .needToEat0 =
(uthis ∈ Phil • [this .state = thinking ] ; this .state := hungry ;

this .at1 := this .at1 + [this .left ])

For postcondition FR we consider the cases ph = this and ph 6= this in the
quantification of ne: if ph = this , then, as this .state is set to hungry , the
conclusion of the implication is true and the whole predicate becomes true. If
ph 6= this , then this case follows from the precondition FR. For postcondition
PH we make the same case analysis with ph = this and ph 6= this , and note
that this .state is set to hungry , so the hypothesis of the implication for that
case is false and the whole implication becomes true. For postcondition EA we
make the same case analysis and note that for ph = this , from the precondition
EA and the guard this .state = thinking , we know that initially all of this .at1,
. . . , this .at8 are [] or 0 , hence finally #this .at1 is 1 and EA is preserved.
Postcondition AT1 is established by the assignment to this .at1, as the guard
this .state = thinking and the precondition EA together imply that this .at1 is
empty initially. For postconditions AT2 to AT7 we have that the hypotheses
are all false in the case of ph = this , so these are preserved as well, concluding
the proof of (d.1). For condition (d.2) we have, after renaming:

Phil .needToEat1 =
(uthis ∈ Phil • u this ∈ this .at1 • this .at1 := this .at1− [this ] ;

[this .available] ; this .available := false ; this .at2 := this .at2 + 1)

For postcondition FR we observe that, as f .available is set to false for some f ,
the implication becomes true and FR is preserved. For postcondition PH we
note that as this .left .available is set of false and all other variables of PH
are unchanged, PH cannot be invalidated. For postcondition EA we make a
case analysis and note that for ph = this , the sum of #this .at1 and this .at2
remains unchanged, so the EA is preserved as well. Postcondition AT1 cannot
be invalidated as this .at1 becomes empty. For postcondition AT2, in the case
of ph = this , we note that this .left .available is set to false and that ne(Phil −
{ph}, ph.left , state) follows from the guard this .left .available and precondition
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FK . For postconditions AT3 to AT8 we have that the hypotheses are all false
in the case of ph = this , so these are preserved as well.

Conditions (d.3) to (d.8) can be discharged analogously and are omitted here.
In concluding this example we note that, as E spans objects of class Fork as
well, calls to methods of Fork may invalidate E . That is, in order to show that
E is an invariant of the whole program, we would need additionally to show
that E is preserved by all other classes as well (which is easy to establish if
other classes only create Fork objects and do not call pickUp and putDown).

6 Conclusions

We note that for our implementation, the object structure effectively helps to
control the evaluation of guards. All guards must mention only attributes of
the object itself. Without such a syntactic constraint, the guarded statement
when cond do stat would require repeated evaluation of cond after some de-
lay. To reduce resource contention, a binary exponential back-off protocol could
be employed that starts with a random delay and doubles it after each failure.
In the present implementation, no delays are employed. A number of threads
in a thread pool are maintained and action guards are initially evaluated once
when a thread is searching for an action to execute. Method guards are ini-
tially evaluated once when a method is called. Both action and method guards
are reevaluated only after another thread has left the object and thus possibly
affected the guards. We hope this measurements will show our implementation
to be highly efficient.

While action system refinement [6, 18] appears as an attractive foundation for
class refinement [7, 8, 10], under the assumption of atomicity the refinement
rule is sound only if there is a single method call per action and method. For
example, if v ∈ V 0, then the sequence v .calcSum ; r := v .getSum would as-
sign the sum to r , but if v ∈ V 1 the sequence would always block as v .calcSum
disables v .getSum, even though V 0 is refined by V 1. Our approach is to en-
sure atomicity only up to method calls. As we furthermore allow multiple
operations in one object to be initiated, but only one to progress, this leads
to a disciplined form of inter-object concurrency. However, this fine-grained
concurrency comes at a price:

First, additional attributes—counters and bags for local variables—need to be
introduced. These make the class invariants and refinement invariants more
complex than one would expect. The dining philosopher example shows how
all intermediate assertions between atomic regions are captured by a single
class invariant. It is not immediate how a Gries-Owicki style of reasoning with
intermediate assertions could be applied in order to reduce the complexity of
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invariants. This may impose a limit on the practicability of the approach.

Second, while non-atomic actions can be dealt with, non-atomic methods cause
problems: a method m defined as the sequential composition of two atomic
statements S and T cannot be translated as a method m defined as S and an
action for T , as a call to m would return without waiting for T to complete.
A solution to this would be to replace a method call by its body, if needed
repeatedly, and only then to apply the translation. However, this disallows
recursive method calls. Developing a model that includes recursive calls is left
as future work.
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