
REFINE 2008

An Algebraic Approach to Refinement with
Fair Choice

Emil Sekerinski1

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

Abstract

In the analysis and design of concurrent systems, it can be useful to assume fairness among processes. Action
systems model a process by a set of atomic actions. Typically, actions are combined by nondeterministic
choice, which models minimal progress among processes rather than fairness. Here we define an operator
for the fair choice among a set of actions. A refinement rule for action systems with fair choice is derived
and applied to the development of the alternating bit protocol. The novelty is the algebraic style in which
the fair choice operator is defined and in which formal reasoning is carried out; it avoids an appeal to the
operational understanding of fairness.

Keywords: Refinement, fairness, action systems, alternating bit protocol

1 Introduction

In the action system model, a concurrent system is described through a set of
atomic actions. Concurrency is modeled through interleaving: two actions that can
be executed in any order, can be executed concurrently, and thus can belong to
different processes. A concurrent system is understood through the repeated se-
lection and execution of atomic actions. Fairness is a property that restricts this
selection: weak fairness requires that a continuously enabled action is infinitely of-
ten taken. This is a useful assumption. If two continuously enabled actions belong
to different processes, fairness implies that the scheduler must give each process a
chance, without specifying the scheduling policy; by contrast, the minimal progress
assumption would only ensure that either one makes progress. If two continuously
enabled actions are to be executed on different processors, fairness expresses that
each processor is working, without quantifying the relative speed. If two continu-
ously enabled actions model possible behavior of the environment, like successful
and failed transmission over a medium, then fairness implies that each behavior
is possible, without quantifying the probability. Fairness has become a common

1 Email:emil@mcmaster.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:emil@mcmaster.ca

Sekerinski

assumption in the analysis and development of concurrent systems. Programming
theories involving fairness are well worked out, e.g. [8,10,11].

This work is on the stepwise refinement of action systems with fair choice. We
define an operator for the fair choice among actions and define an action system
as a loop with a body composed by fair choice, following the approach of defining
an action system as a loop with a body composed by nondeterministic choice. In
particular, we make use of strong and weak iteration constructs of [1,3,7] for defining
loops and fair choice, resulting in an algebraic treatment of fairness. No appeal to
operational reasoning in terms of traces of executions is needed. A theorem for
the data refinement of action systems with fair choice is derived and applied to the
development of the alternating bit protocol.

This paper extends the binary fair choice of [14] to an n-ary fair choice and
provides refinement rules to complement the verification rules studied there. The
rule for data refinement of fair action system is similar to that is suggested in [4];
this paper presents a justification of this rule by reduction to the standard data
refinement rule for action systems.

In [15] refinement rules that preserve temporal (leads-to) and fixpoint (termi-
nation) properties are studied for fair transitions systems (action systems). Here
we restrict ourselves to terminating action systems but consider local variables,
allowing a more general notion of refinement.

The approach of [17] is to augment action systems with an explicit specification
of unfair non-terminating computations, rather than assuming a fair choice among
actions, and to study refinement of such augmented action systems; this allows a
wider range of fairness constraints to be expressed compared to the (weak) fairness
considered here, though in a different style.

In [13] Dijkstra’s calculus (action systems) is extended by a fair choice operator.
The approach relies on temporal predicate transformers like “always” and “eventu-
ally” and on syntactic substitutions of fair choice by angelic choice, neither of which
is needed here.

In [6] Dijkstra’s calculus is also extended by a fair choice operator in terms of the
dovetail operator 5 that models fair parallel execution. The definition of dovetail
requires the distinction between possible and definite nontermination, which is done
by additionally considering weakest liberal preconditions. The expressiveness of the
dovetail operator leads to problems with non-monotonicity and to the need for two
ordering relations, both of which is avoided here.

Predicate transformers are used as the model of statements because of their
generality. The next section reviews the predicate transformer model of statements
and iteration statements defined by fixed points. Data refinement of statements
follows common treatment [2,12].

2 Statements

We use typed, higher-order logic for defining statements, following [2]. Function
application is written as f x and binds tighter than any other operator. Equivalence
(≡) has the same meaning on boolean expressions as equality (=), except that =,
like ≤ bind tighter than ∧,∨, which in turn bind tighter than ≡.

2

Sekerinski

2.1 State Predicates

State predicates of type PΣ are functions from elements of type Σ to Bool , i.e.
PΣ = Σ → Bool . On state predicates, conjunction ∧, disjunction ∨, implication
⇒, and negation ¬ are defined by the pointwise extension of the corresponding
operations on Bool . Likewise, universal and existential quantification of pi : PΣ
are defined by (∀ i ∈ I • pi) σ ≡ (∀ i ∈ I • pi σ) and (∃ i ∈ I • pi) σ ≡ (∃ i ∈ I • pi σ).
The entailment ordering ≤ is defined by universal implication. The state predicates
true and false represent the universally true and false predicates, respectively.

2.2 Predicate Transformers

Predicate transformers of type ∆ 7→ Ω are functions from predicates over Ω, the
postconditions, to predicates over ∆, the preconditions, ∆ 7→ Ω = PΩ → P∆. A
predicate transformers S is called monotonic if p ≤ q implies S p ≤ S q for any
(state) predicates p and q . We use monotonic predicate transformers to model
statements.

The sequential composition of predicate transformers S and T is defined by their
functional composition:

(S ; T) q =̂ S (T q)

The guard [p] skips if p holds and establishes “miraculously” any postcondition if
p does not hold (by blocking execution). The assertion {p} skips if p holds and
establishes no postcondition if p does not hold (the system crashes):

[p] q =̂ p ⇒ q
{p} q =̂ p ∧ q

We define skip = [true] = {true} as the identity predicate transformer, magic =
[false] as the predicate transformer which always establishes any postcondition, and
abort = {false} as the predicate transformer which always aborts.

The demonic (nondeterministic) choice u establishes a postcondition only if both
alternatives do. The angelic choice t establishes a certain postcondition if at least
one alternative does.

(S u T) q =̂ S q ∧ T q
(S t T) q =̂ S q ∨ T q

Relations of type ∆ ↔ Ω are functions from ∆ to predicates over Ω. The relational
updates [R] and {R} both update the state according to relation R. If several
final states are possible, then [R] chooses one demonically and {R} chooses one
angelically. If R is of type ∆ ↔ Ω, then [R] and {R} are of type ∆ 7→ Ω:

[R] q δ =̂ (∀ω • R δ ω ⇒ q ω)
{R} q δ =̂ (∃ω • R δ ω ∧ q ω)

The predicate transformers [p], {p}, [R], {R} are all monotonic and the operators ;,
u, t preserve monotonicity. A predicate transformer S and is called conjunctive if

3

Sekerinski

S (∀ i ∈ I • qi) = (∀ i ∈ I • S qi) for any indexed set pi , i ∈ I of predicates and non-
empty set I . All conjunctive predicate transformers are monotonic. The predicate
transfomers [p], {p}, [R] are all conjunctive (but not {R}) and the operators ;, u
preserve conjunctivity (but not t). For the distributivity of ; over u we have:

(ui ∈ I • Si) ; T = ui ∈ I • Si ; T (1)
T ; (ui ∈ I • Si) v ui ∈ I • T ; Si (2)
T ; (ui ∈ I • Si) = ui ∈ I • T ; Si if T conjunctive (3)

Other statements can be defined in terms of the above ones. For example the
guarded statement p → S is defined by [p] ; S and the conditional by:

if p thenS elseT =̂ (p → S) u (¬p → T)

The enabledness domain of a statement S is defined as en S = ¬S false and its
termination domain as tr S = S true. We have that:

S = [en S] ; S (4)
en(S u T) = en S ∨ en T (5)

en T = true ⇒ en(S ; T) = en S (6)

2.3 Refinement Ordering

The refinement ordering v is defined by universal entailment:

S v T =̂ (∀ q • S q ≤ T q)

With this ordering, the monotonic predicate transformers form a complete boolean
lattice, with top magic, bottom abort , meet u, and join t. Intuitively, refinement
can increase the termination domain, decrease the enabledness domain, decrease
demonic nondeterminism, and increase angelic nondeterminism. According to the
Theorem of Knaster-Tarski, any monotonic function f from predicate transformers
to predicate transformers has a unique least fixed point µ f and a unique greatest
fixed point ν f , also written as µ x • f x and ν s • f s, respectively.

2.4 Iterations

Iteration of a statement S is described through solutions of the equation X =
S ; X u skip. We define two fundamental iteration constructs, the strong iteration
Sω and the weak iteration S ∗ as the smallest and largest such solution (both of
which exist as ; and u are monotonic in both operands). We use the convention
that ; binds tighter than u:

Sω =̂ (µX • S ; X u skip)
S ∗ =̂ (ν X • S ; X u skip)

Both define a demonically chosen number of repetitions of S . However, with S ∗

the number of repetitions is always finite whereas with Sω it can be infinite, which

4

Sekerinski

is equivalent to abortion. For example, if S is a := a + 1, then the equation
X = a := a+1;Xuskip has two solutions, abort and skipua := a+1ua := a+2u. . . .
The least solution is given by their demonic choice. As abort uQ = abort for any Q ,
we have that (a := a + 1)ω = abort . The greatest solution is given by their angelic
choice. As abort t Q = Q for any Q , we have that (a := a + 1)∗ = skip u a :=
a + 1 u a := a + 2 u

From the fixed point definitions we get the following laws for unfolding iterations:

Sω = S ; Sω u skip (7)
S ∗ = S ; S ∗ u skip (8)

Since Sω and S ∗ are defined as the smallest and largest solutions, we have following
induction principles:

S ; X u skip v X ⇒ Sω v X (9)
X v S ; X u skip ⇒ X v S ∗ (10)

Both weak and strong iteration are monotonic in the sense that S v T implies
Sω v Tω and S ∗ v T ∗. Both Sω and S ∗ are refined by S itself:

Sω v S (11)
S ∗ v S (12)

Furthermore, from the two unfolding laws we get immediately (as S = TuU implies
S v T for any S , T) that both are refined by skip:

Sω v skip (13)
S ∗ v skip (14)

For the nested application of weak and strong iteration we have:

(Sω)∗ v Sω (15)
(S ∗)∗ v S ∗ (16)

However, we note that (Sω)ω = abort and (S ∗)ω = abort . Intuitively, the inner
iteration is refined by skip, which then makes skipω = abort . For the sequential
composition with weak iteration we have [3]:

S ∗ ; S ∗ = S ∗ (17)
S ∗ ; S = S ; S ∗ (18)

We introduce a derived iteration construct, the positive weak iteration S+:

S+ =̂ S ; S ∗

Positive weak iteration is also monotonic in the sense that S v T implies S+ v T+,
which follows from the monotonicity of weak iteration and sequential composition

5

Sekerinski

(in both arguments). Furthermore, S+ is refined by S itself:

S+ v S (19)

This follows from the definition of S+ and (14). Weak iteration can also be expressed
in terms of positive weak iteration:

S ∗ = S+ u skip (20)

This follows immediately from the unfolding law (8) and the definition of S+. A
consequence of this is that S ∗ is refined by S+:

S ∗ v S+ (21)

For the nested applications of positive weak iterations with weak iteration and
strong iteration we get:

(S+)∗ = S ∗ (22)
(S+)ω = Sω (23)

We show the first one by mutual refinement: (S+)∗ v S ∗ holds by (19) and mono-
tonicity of weak iteration. For the refinement S ∗ v (S+)∗ we note that the left
side is equal to (S ∗)∗ by (16), hence this is implied by (21). For the sequential
composition with positive weak iteration we have:

S+ ; S = S ; S+ (24)

This follows directly from the definition of S+ and (18). For the enabledness domain
of the iteration constructs we get:

en Sω = true (25)
en S ∗ = true (26)
en S+ = en S (27)

The first two follow immediately from the unfolding laws (7) and (8) as en skip =
true. The last one follows easily from the definition of S+, (26) and (6). For the
weak iteration of guards and asserts we have:

[p]∗ = [p] u skip (28)
{p}∗ = {p} u skip (29)
[p]+ = [p] (30)
{p}+ = {p} (31)

We prove the first two by mutual refinement. The direction [p]∗ v [p]u skip follows
from (12). For [p] u skip v [p]∗ we have:

6

Sekerinski

[p] u skip v [p]∗

⇐ 〈(10)〉
[p] u skip v [p] ; ([p] u skip) u skip

≡ 〈[p] conjunctive〉
[p] u skip v [p] ; [p] u [p] ; skip u skip

≡ 〈for any p: [p] ; [p] = [p]〉
true

The proof of (29) is analogous. Property (27) follows from the definition of S+ and
(27), and (31) follows similarly.

The following property is known as decomposition [3]. Let S ,T be monotonic
predicate transformer assume T is conjunctive:

(S u T)ω = Sω ; (T ; Sω)ω (32)
(S u T)∗ = S ∗ ; (T ; S ∗)∗ (33)

A statement S disables itself if executing it once leads to a state in which S is dis-
abled, formally S (¬ en S) = true. This can be also expressed “more algebraically”
without referring to pre- and postconditions:

S (¬ en S) = true ≡ S ; [en S] = magic (34)

We prove this in an equational style:

S ; [en S] = magic
≡ 〈equality of functions, definition of ;〉

∀q • S ([en S]q) = magicq
≡ 〈definitions of magic, guard〉

∀q • S (en S ⇒ q) = true
≡ 〈as S monotonic〉

S (¬ en S) = true

If S disables itself, then Sω and S ∗ execute S at most once, and S+ executes S
exactly once. Assume S is continuous:

S ; [en S] = magic ⇒ Sω = S u skip (35)
S ; [en S] = magic ⇒ S ∗ = S u skip (36)
S ; [en S] = magic ⇒ S+ = S (37)

For the proof of (35) we assume S ; [en S] = magic and continue:

Sω

= 〈(7) twice〉
S ; (S ; Sω u skip) u skip

= 〈S continuous, ; distributes over u, skip unit of ;〉
S ; S ; Sω u S u skip

= 〈(4)〉

7

Sekerinski

S ; [en S] ; S ; Sω u S u skip
= 〈assumption〉

magic ; S ; Sω u S u skip
= 〈for any S : magic ; S = magic, lattice property〉

S u skip

The proof of (36) is analogous. For the proof of (37) we assume S ; [en S] = magic
and continue:

S+

= 〈definition of S+〉
S ; S ∗

= 〈assumption, (36)〉
S ; (S u skip)

= 〈S continuous, ; distributes over u, skip unit of ;〉
S ; S u S

= 〈(4)〉
S ; [en S] ; S u S

= 〈assumption〉
magic ; S u S

= 〈for any S : magic ; S = magic, lattice property〉
S

A statement S is always enabled if its guard is always true, formally true = en S .
This can be also expressed “more algebraically” without referring to pre- and post-
conditions:

en S = true ≡ S ; abort = abort (38)

Intuitively, as magic is a left zero of ;, abort can be a right zero only if the left
operand is not miraculous. This is shown by:

S ; abort = abort
≡ 〈equality of functions, definition of ;〉

∀q • S (abortq) = abortq
≡ 〈definition of abort〉

S (false) = false
≡ 〈definition of en〉

en S = true

A variation of above observation arises when considering that statement S does not
disable itself, formally S (¬ en S) = false:

S (¬ en S) = false ≡ S ; {¬ en S} = {¬ en S} (39)

The proof is:

8

Sekerinski

S ; {¬ en S} = {¬ en S}
≡ 〈equality of functions, definition of ;〉

∀q • S ({¬ en S}q) = {¬ en S}q
≡ 〈definition of {p}, en〉

∀q • S (S false ∧ q) = S false ∧ q
≡ 〈(*)〉

S (S false) = false
≡ 〈definition of en〉

S (¬ en S) = false

The step (*) is shown by mutual implication: for “⇒” we instantiate q with false,
which gives S false = false, and we instantiate q with true, which gives S (S false) =
S false, which together give S (S false) = false. For “⇐” we show that S false =
false assuming S (S false) = false. Without loss of generality, we let S false = r .
With the assumption, we have S (r) = false. Now, by monotonicity of S , from
false ≤ r we get r ≤ false, and hence r = false and therefore S false = false, from
which ∀q • S (S false ∧ q) = S false ∧ q follows.

The loop doS od executes its body as long as it is enabled, possibly not termi-
nating (i.e. aborting). This is formally expressed as a strong iteration, followed by
a guard which ensures that the guard of the body will not hold at exit:

doS od =̂ Sω ; [¬ en S]

Strong iteration Sω and weak iteration S ∗ are the same if S eventually disables
itself [3]:

Sω = {tr(doS od)} ; S ∗ (40)

Our interest is in terminating loops; all non-terminating loops are equal to abort .
In particular, if the body is always enabled, the loop is aborting:

S ; abort = abort ⇒ doS od = abort (41)

A generalization of above observation arises if the loop body does not disable it-
self. In that case, if the body of the loop is initially disabled, the loop terminates
immediately. If the body is initially enabled, the loop does not terminate:

S ; {¬ en S} = {¬ en S} ⇒ doS od = {¬ en S} (42)

Assuming S ; {¬ en S} = {¬ en S}, we show the consequence by mutual refine-
ment. For {¬ en S} v doS od we make a case analysis: if en S holds initially, then
{¬ en S} = abort and the refinement holds as abort is the bottom of the lattice. If
¬ en S holds initially, then {¬ en S} = skip and by definition of doS od and (7)
the loop also simplifies to skip, hence refinement holds. For the other direction we
assume S ; {¬ en S} = {¬ en S} and continue:

9

Sekerinski

doS od v {¬ en S}
≡ 〈definition of doS od〉

Sω ; [¬ en S] v {¬ en S}
⇐ 〈monotonicity of ;, for any p: {p} ; [p] = {p} 〉

Sω v {¬ en S}
⇐ 〈(9)〉

S ; {¬ en S} u skip v {¬ en S}
≡ 〈assumption〉

{¬ en S} u skip v {¬ en S}
≡ 〈lattice structure〉

true

Refining the body of a loop leads to the loop being refined, provided that the
enabledness domain is not decreased, as this would otherwise lead to nontermination
that was not originally present:

S v T ∧ en S ≤ en T ⇒ doS od v doT od (43)

This follows from the definition of doS od, monotonicity of Sω, and the property
that [p] v [q] ≡ p ≥ q . The while loop while b doS can be defined as do b → S od,
provided S is always enabled. An action system is loop of the form:

doS1 u · · · u Sn od

The statements Si are called the actions and are typically of the form gi → Bi ,
where gi is the guard and Bi is the (always enabled) body. In this form, the choice
among the actions is nondeterministic (demonic); no fairness in the selection of the
actions is guaranteed.

2.5 Program Variables

The state space is made up of a number of program variables. Thus the state space
is of the form Γ = Γ1× . . .×Γn and states are tuples γ = (x1, . . . , xn). The variable
names serve for selecting components of the state. Guards and assertions can be
written with boolean expressions, like [x > 0], instead of state predicates, if the
state space is understood from the context:

[b] =̂ [p] where p γ ≡ b
{b} =̂ {p} where p γ ≡ b

The assignment x := e updates x and leaves all other variables unchanged. The
nondeterministic assignment x :∈ q assigns x an arbitrary element such that q x
holds and leaves all other variables unchanged. For example, if x , y are the only
program variables, then:

x := e =̂ [R] where R (x , y) (x ′, y ′) ≡ x ′ = e ∧ y ′ = y
x :∈ q =̂ [R] where R (x , y) (x ′, y ′) ≡ q x ′ ∧ y ′ = y

10

Sekerinski

The declaration of a local variable y : ∆ with boolean expression b extends the state
space and sets y to any value for which b holds. Suppose the state space consists
only of x : Γ:

var y | b • S =̂ [Enter] ; S ; [Exit] where Enter x (x ′, y ′) ≡ x = x ′ ∧ b[y\y ′]
and Exit (x , y) x ′ ≡ x = x ′

Leaving out the initialization predicate as in var y • S means initializing the variable
arbitrarily, var y | true • S , and var y = y0

• S means setting y initially to y0.
For brevity, we leave out the type of the introduced variable. Since Γ × (∆ × Ω)
is isomorphic to (Γ × ∆) × Ω, we can always find functions which transform an
expression of one to the other type. Hence we simply write Γ×∆×Ω. For example,
if Γ = Γ1 × · · · × Γn then S above would have the type Γ1 × · · · × Γn × ∆ 7→
Γ1 × · · · × Γn ×∆.

We use following properties to move guards and assertions over assignments and
to eliminate local variable declarations; f [x\e] stands for expression f with variable
x substituted by expression e:

x := e ; [b] = [b[x\e]] ; x := e (44)
x := e ; {b} = {b[x\e]} ; x := e (45)

var y | q • x , y := e, f = x := e (46)

2.6 Data Refinement

Data refinement S vR T generalizes (algorithmic) refinement by relating the initial
and final state of S and T with relation R. We allow R to refine only part of the
state, i.e. if the (initial and final) state space of S can be partitioned into ∆ × Γ
and R to relates values of ∆ to values of Ω, then the state space of T is Ω× Γ. We
write Id for the identity relation and × for the parallel composition of relations:

S vR T =̂ S ; [R × Id] v [R × Id] ; T

Sequential composition and nondeterministic choice preserved data refinement in
the following sense:

S1 vR T1 ∧ S2 vR T2 ⇒ S1 ; S2 vR T1 ; T2 (47)
S1 vR T1 ∧ S2 vR T2 ⇒ S1 u S2 vR T1 u T2 (48)

Strong, weak, and positive iteration preserve data refinement. Let S and T be
conjunctive predicate transformers:

S vR T ⇒ Sω vR Tω (49)
S vR T ⇒ S ∗ vR T ∗ (50)
S vR T ⇒ S+ vR T+ (51)

11

Sekerinski

The image of predicate p under relation R is denoted by R[p]. We have for any R,
p, q :

R[p] ≤ q ≡ R x y ∧ p x ⇒ q y (52)
(53)

For the data refinement of guards and asserts we have:

[p] vR [q] ≡ R[¬p] ≤ ¬q (54)
{p} vR {q} ≡ R[p] ≤ q (55)

We give selected theorems about data refining assignments; they naturally generalize
when only a specific component of a larger state space is refined. Assume that
relation R relates X to Y and the state space includes Z . Variables x , y , z refer to
the corresponding state components:

b → x , z := e, g vR c → y , z := f , h ≡ c ∧ R x y ⇒ b ∧ R e f ∧ g = h (56)
skip vR c → y := f ≡ c ∧ R x y ⇒ R x f (57)

3 Binary Fair Choice

For statements S and T , the loop doS 3T od repeatedly executes S or T , whichever
is enabled, and terminates when neither one is enabled. If both S and T are en-
abled, the choice is arbitrary, except that if one is continuously enabled, it will be
repeatedly taken, a criterion known as weak fairness. The loop doS �T od is only
fair only to T : if T is continuously enabled, it will be repeatedly taken, and S may
be neglected forever. Both 3, read “fair choice” and �, read “right fair choice” are
defined in isolation, such that the meaning of a loop containing those is given in a
compositional manner.

For a predicate transformer S , we introduce a further iteration operator S#: if
S is enabled, S# is the same as S+, otherwise skip. That is, like S ∗ the iteration
S# skips or repeats S , but will only skip if S is not enabled:

S# =̂ S+ u [¬ en S]

In the fair choice between S and T we may take S or T arbitrarily but finitely
often, and then have to give the other one a chance. This is expressed in terms of
positive weak iterations:

S 3T =̂ S+ ; T# u T+ ; T#

S �T =̂ S+ ; T# u T+ ; S ∗

The “left fair choice” operator S �T is defined by T �S . For reasons of symmetry,
we continue only with S �T . To support our confidence in these definitions, we
study three examples. The first one is an abstract view of transmission over an
unreliable medium. The specification calls for copying data in to variable out . The
implementation tries to do that repeatedly, and will either succeed or fail, with

12

Sekerinski

success given a fair chance. We assume that we can detect successful reception and
indicate this by setting variable r to true:

A =̂ b := true ;

do b → skip
� b → b := false
od

We prove that A = b := false by first simplifying the body of the loop:

b → skip � b → b := false
= 〈definition of →, skip unit of ;〉

[b]�[b] ; b := false
= 〈definition of �〉

[b]+ ; ([b] ; b := false)# u ([b] ; b := false)+ ; [b]∗

= 〈(27), [b] ; b := false disables itself, (37)〉
[b] ; ([b] ; b := false)# u [b] ; b := false ; [b]∗

= 〈definition of S# and en([b] ; b := false) = b by (6)〉
[b] ; (([b] ; b := false)+ u [¬b]) u [b] ; b := false ; [b]∗

= 〈[b] ; b := false disables itself, (37), (28)〉
[b] ; ([b] ; b := false u [¬b]) u [b] ; b := false ; ([b] u skip)

= 〈; distributes over u, for any p, q : [p] ; [q] = [p ∧ q]〉
[b] ; b := false u [false] u [b] ; b := false ; [b] u [b] ; b := false ; skip

= 〈[false] = magic, skip unit of ;, u idempotent, (44)〉
[b] ; b := false u [b] ; [false] ; b := false

= 〈for any p, q : [p] ; [q] = [p ∧ q], definition of magic, magic left zero of ;〉
[b] ; b := false

We continue:

b := true ; do b → skip � b → b := false od
= 〈above calculation〉

b := true ; do[b] ; b := false od
= 〈definition of doS od and en([b] ; b := false) = b by (6)〉

b := true ; ([b] ; b := false)ω ; [¬b]
= 〈[b] ; b := false disables itself, (35)〉

b := true ; ([b] ; b := false u skip) ; [¬b]
= 〈; distributes over u, 〉

b := true ; [b] ; b := false ; [¬b] u b := true ; skip ; [¬b]
= 〈skip unit of ;, [false] = magic, (44), for any p, q : [p] ; [q] = [p ∧ q]〉

b := true ; b := false
= 〈???〉

b := false

This establishes A = b := false. On the other hand, if we replace the right fair

13

Sekerinski

choice by nondeterministic choice, as in B below, the second alternative may be
continuously selected, leading to nontermination.

B =̂ b := true ;

do b → skip
u b → b := false
od

We prove that B = abort . The body of the loop is enabled when b holds. The
body of the loop does not disable itself. Hence by (42) the loop is equal to {¬b}.
From (45) we get that b := true ; {¬b} = abort , therefore B = abort .

The second example illustrates that the fair choice operator ensures only weak
fairness, not strong fairness. Consider a loop with two boolean variables, b and c:

U0 =̂ do b → c := ¬c
3 b ∧ c → b := false
od

If the first alternative is continuously taken, the second alternative is repeatedly
enabled and disabled, but is not continuously enabled. With strong fairness it, will
eventually be taken, with weak fairness not. Hence we expect U0 = {¬b}. We
sketch the proof. Consider the body of the loop:

b → c := ¬c 3 b ∧ c → b := false
= 〈definition of 3〉

(b → c := ¬c)+ ; b ∧ c → b := false u (b ∧ c → b := false)+ ; b → c := ¬c
= 〈b ∧ c → b := false disables itself, (37)〉

(b → c := ¬c)+ ; b ∧ c → b := false u b ∧ c → b := false ; b → c := ¬c
= 〈(b → c := ¬c)+ simplifies to b → c := true u b → c := false〉

b → c := true ; b ∧ c → b := false u
b → c := false ; b ∧ c → b := false u
b ∧ c → b := false ; b → c := ¬c

= 〈definition of S , simplifications〉
b → c := true ; b := false u b → c := false u b ∧ c → b := false ; c := ¬c

Due to b → c := false, the action in the last line does not disable itself, hence
U0 = {¬b} by (42). Intuitively, b → c := false arises from repeated executions of
b → c := ¬c in U0.

Following theorem, taken from [14], states that nondeterministic choice can be
implemented by symmetric and asymmetric fair choice.

Theorem 3.1 Let S and T be monotonic predicate transformers:

doS u T od v doS 3T od (a)
doS u T od v doS �T od (b)

14

Sekerinski

4 Generalized Fair Choice

Consider the fair choice among tree alternatives, expressed using binary fair choice
in two different ways:

L = (S 3T) 3U R = S 3 (T 3U)

Assume that S ,T ,U are always enabled. If L starts with repeating T a finite
number of times, S will be tried and taken. If R starts with repeating T a finite
number of times, U will be tried and taken. Hence the sequence T ;U is impossible
for L but possible for R, and dually for the sequence T ;S . Thus L and R are different
and 3 is not associative. This necessitates a more general fair choice operator over
a set of alternatives. It also implies that we will not consider nested applications of
fair choice.

We intend to allow combinations of unfair and fair actions. As nondeterministic
choice u is associative, several unfair alternatives can be combined to a single one.
It is sufficient to consider an operator with a single unfair and an number of a
fair alternatives, which we write as S � i ∈ I • Si for a finite and non-empty set I .
The idea of the definition is that no matter which combinations of statements Sj is
selected, each statement Si has to be tried; which Si is tried at the end is arbitrary:

S � i ∈ {j} • Si =̂ S �Sj

S � i ∈ I • Si =̂ u i ∈ I •(S � j ∈ I − {i} • Sj)+ ; Si if |S | > 1

If there are only fair alternatives, we write simply 3 i ∈ I • Si , defined by:

3 i ∈ I • Si =̂ magic � i ∈ I • Si

Binary fair choice emerges as a special case of general fair choice, in the sense
that for k 6= j we have 3 i ∈ {j , k} • Si = Sj 3Sk . Given a fixed finite index set
I = {1, ..,n}, we write S �S1 3S2 3 · · ·3Sn . The order in which the alternatives
appear does not matter by definition. We also allow a mixture of notations as in
S � i ∈ I • Si 3 j ∈ J • Tj . To illustrate the definition, for the choice among three
alternatives we have:

S �T 3U = (T 3U)+ u (S �U)+ ; T u (S �T)+ ; U (58)

S 3T 3U = (T 3U)+ ; S u (S 3U)+ ; T u (S 3T)+ ; U (59)

We state some basic properties of fair choice. Fair choice is enabled when any
one of the alternatives is:

Theorem 4.1 Let I be a non-empty index set and S ,Si for i ∈ I be monotonic
predicate transformers:

en(S � i ∈ I • Si) = en S ∨ (∨i ∈ I • en Si)

Proof. The proof proceeds by induction over the size of I . For |I | = 1, the base
case, we have:

15

Sekerinski

en(S �T)
= 〈definition of �〉

en(S+ ; T u T+)
= 〈(5), (27), (6), for any S : en S = true〉

en S ∨ en T

Now assume en(S � i ∈ J • Si) = en S ∨ (∨i ∈ J • en Si) for set J with |J | ≥ 1.
We show that en(S � i ∈ I • Si) = en S ∨ (∨i ∈ I • en Si) holds for set I with
|I | = |J |+ 1:

en(S � i ∈ I • Si)
= 〈definition of generalized �〉

en(ui ∈ I •(S � j ∈ I − {i} • Sj)+ ; Si)
= 〈for any Si : en(ui ∈ I • Si) = ∨i ∈ I • en Si〉

∨i ∈ I • en((S � j ∈ I − {i} • Sj)+ ; Si)

= 〈(27), (6), for any S : en S = true〉
∨i ∈ I • en(S � j ∈ I − {i} • Sj)

= 〈induction assumption〉
∨i ∈ I • en S ∨ (∨j ∈ I − {i} • en Si)

= 〈logic〉
en S ∨ (∨i ∈ I • en Si)

2

Nondeterministic choice u is monotonic in both operands. By comparison, fair
choice is monotonic provided that additionally the enabledness of each fair alterna-
tive is not decreased.

Theorem 4.2 Let I be a non-empty index set and S ,T ,Si ,Ti for i ∈ I be mono-
tonic predicate transformers. If

(a) S v T, ∧i ∈ I • Si v Ti ,

(b) ∧i ∈ I • en Si ≤ en Ti

then:

S � i ∈ I • Si v T � i ∈ I • Ti

Proof. The proof proceeds by induction over the size of I . For |I | = 1, the base
case, we have to show that S v T , U v V , and en U ≤ en V imply S �U v T �V .
Assuming S v T , U v V , and en U ≤ en V we have:

S �U
= 〈definition of 3〉

S+ ; U uU +

v 〈monotonicity of S+, (*) below, monotonicity of ; and u〉
T+ ; V uV +

= 〈definition of 3〉
T �V

16

Sekerinski

The step (*) relies on the property that U v V ∧ (en U ≤ en V) implies U v V .
This follows from the definition of S , monotonicity of u and the fact that [p] v
[q] ≡ p ≥ q . For the induction step, the hypothesis is that S v T , ∧i ∈ J • Si v Ti ,
and ∧i ∈ J • en Si ≤ en Ti imply S � i ∈ J • Si v T � i ∈ I • Ti for set J with
|J | ≥ 1. We show that the theorem holds for set I with |I | = |J | + 1. Assuming
S v T , ∧i ∈ I • Si v Ti , and ∧i ∈ I • en Si ≤ en Ti) we have:

S � i ∈ I • Si

= 〈definition of �, |I | > 1〉
ui ∈ I •(S � j ∈ I − {i} • Sj)+ ; Si

v 〈hypothesis, monotonicity of S+, (*) above, monotonicity of ; and u〉
ui ∈ I •(T � j ∈ I − {i} • Tj)+ ; Ti

= 〈definition of 3〉
T � i ∈ I • Ti

2

To see that enabledness in the fair operand must not be decreased, consider the
statements:

S0 =̂ b → b := false 3 b → skip S1 =̂ magic 3 b → skip

Clearly we have b → b := false v magic, but if S0 were refined by S1, then doS0 od
would be refined by doS1 od according to (43), as en S0 = en S1. However, doS0 od
always terminates, by setting b to false it if is true initially, but doS1 od does not
terminate if b is true initially.

We study further basic properties. Nondeterministic choice has abort as zero,
as does fair choice:

Theorem 4.3 Let I be a non-empty index set and S ,Si for i ∈ I be monotonic
predicate transformers:

abort � i ∈ I • Si = abort (a)
S � i ∈ I • Si 3 abort = abort (b)

Proof. The proofs are straightforward by induction over the size of I . We only
give the base case of (a):

abort �S
= 〈definition of �〉

abort+ u S+ ; abort
= 〈abort+ = abort , abort zero of u〉

abort

2

Nondeterministic choice has magic as unit, S u magic = S and is idempotent,
S u S = S . For fair choice we have instead S �magic = S+, magic �S = S+, and
S 3S = S+ ; S . However, in the context of a loop, fair choice has magic as unit
and is idempotent. For simplicity, we formalize this only for binary choice:

17

Sekerinski

Theorem 4.4 Let S be a monotonic predicate transformer:

doS 3magic od = doS od (a)
doS 3S od = doS od (c)

Proof. For (a) we have:

doS 3magic od
= 〈definition of doS od〉

(S 3magic)ω ; [¬ en(S 3magic)]
= 〈Theorem 4.1, en magic = false〉

(S 3magic)ω ; [¬ en S]
= 〈definition of 3〉

(S+ ; magic umagic+ ; S)ω ; [¬ en S]
= 〈magic = skip,magic+ = magic〉

(S+ ; skip umagic ; S)ω ; [¬ en S]
= 〈for any S : magic ; S = magic, S umagic = S , S ; skip = S 〉

(S+)ω ; [¬ en S]
= 〈(23), definition of doS od〉

doS od

For (b) we have:

doS 3S od = doS od
= 〈definition of doS od, Theorem 4.1〉

(S 3S)ω ; [¬ en S] = Sω ; [¬ en S]
= 〈definition of 3, simplifications〉

(S+ ; S)ω ; [¬ en S] = Sω ; [¬ en S]

This is shown by mutual refinement. For brevity, we give only the proof in one
direction:

(S+ ; S)ω ; [¬ en S] w Sω ; [¬ en S]
⇐ 〈(23), monotonicity of ;, Sω〉

S+ ; S w S+

⇐ 〈definition of S , distributivity〉
S+ ; S u S+ ; [¬ en S] w S+

⇐ 〈property of u〉
S+ ; S w S+ ∧ S+ ; [¬ en S] w S+

From the definition of S+ and (8) we have that S+ = S ; S+ u S . Hence the left
conjunct can be rewritten as S+ ; S w S ; S+ u S , which follows from (24). 2

5 Data Refinement

We state theorems that allow additional alternatives to be introduced when data
refining a loop. First we give a theorem for nondeterministic choice among the

18

Sekerinski

alternatives, then a theorem for both nondeterministic and fair choice.

Theorem 5.1 Let S ,T ,H be conjunctive predicate transformers and R a relation.
If

(a) S vR T, skip vR H

(b) R[en S] ≤ en T ∨ en H

(c) R[true] ≤ tr(doH od)

then:

doS od vR doT uH od

Condition (a) requires that concrete action T data refines abstract action S and
that H is a stuttering action, i.e. it’s effect is not observable abstractly. Condi-
tion (b) requires that T and H must be enabled whenever S is, i.e. the concrete
loop will not terminate if the abstract loop does not. Condition (c) requires that H
eventually disables itself, provided R[true], the concrete invariant, holds. That is,
H cannot introduce nontermination. The proof is given in [3].

Theorem 5.1 is applied to loops with multiple actions by taking S = S1u . . .uSn

and T = T1 u . . . u Tm . For S vR T it is sufficient that each Tj data refines some
Si , formally Si vR Tj . In general, each Tj can refine any subset of S1 u . . . u Sn

and not each Si needs to be refined. Likewise, multiple stuttering actions can be
introduced by taking H = H1 u . . . u Hk . Actions Ti and Hj are called the main
and auxiliary actions.

For extending above theorem to fairness, we allow refinement to introduce both
fair and unfair stuttering actions. All unfair actions can again be “merged” into
one action.

Theorem 5.2 Let S ,H ,G be conjunctive predicate transformers and let R be a
relation. If

(a) S vR T, skip vR H , skip vR G

(b) R[en S] ≤ en T ∨ en H ∨ en G

(c) R[true] ≤ tr(doH �G od)

then:

doS od vR doT uH �G od

Condition (a) requires that the concrete unfair action data refines the abstrac-
tion action and that the introduced actions are stuttering actions. Condition (b)
requires that the body of the concrete loop must be enabled when the body of the
abstract loop is, according to Theorem 4.1. Condition (c) requires that the auxiliary
computation, consisting of all auxiliary actions, eventually disables itself.

Proof. Assuming (a), (b), and (c), we have:

doS od vR doT uH �G od
≡ 〈definition of doS od, Theorem 4.1〉

Sω ; [¬ en S] vR (T uH �G)ω ; [¬ en T ∧ ¬ en H ∧ ¬G]
⇐ 〈(47), (54), (b)〉

19

Sekerinski

Sω vR (T uH �G)ω

≡ 〈definition of �〉
Sω vR ((T uH)+ ; G uG+)ω

≡ 〈(23), definition of S+, distributivity〉
(S+)ω vR (T ; (T uH)∗ ; G uH ; (T uH)∗ ; G uG+)ω

⇐ 〈(47), (a), S+ vR T ; (T uH)∗ ; G〉
(S+)ω vR (H ; (T uH)∗ ; G uG+)ω

≡ 〈(33), definition of S+〉
(S+)ω vR (H + ; (T ; H ∗)∗ ; G uG+)ω

≡ 〈(20), distributivity〉
(S+)ω vR (H + ; G uH + ; (T ; H ∗)+ ; G uG+)ω

⇐ 〈(47), (a), S+ vR H + ; (T ; H ∗)+ ; G〉
(S+)ω vR (H + ; G uG+)ω

⇐ 〈(23), definition of �〉
Sω vR (H �G)ω

⇐ 〈(40)〉
Sω vR {tr(doH �G od)} ; (H �G)∗

⇐ 〈(c), (55), {true} = skip〉
Sω vR (H �G)∗

⇐ 〈Sω v S , (a), skip∗ = skip〉
true

2

A further generalization is to allow the abstract action system to have both unfair
and fair actions and an arbitrary numer of fair stuttering actions to be introduced.

Theorem 5.3 Let I , J be non-empty index sets, let S ,Si ,T ,Ti ,H ,Hj for i ∈ I , j ∈
J be conjunctive predicate transformers, and let R be a relation. If

(a) S vR T, ∧i ∈ I • Si vR Ti , skip vR H , ∧j ∈ J • skip vR Hj

(b) R[en S ∨ (∨i ∈ I • en Si)] ≤ en T ∨ en H ∨ (∨i ∈ I • en Ti) ∨ (∨j ∈ J • en Hj),
∧i ∈ I • R[en Si] ≤ en Ti

(c) R[true] ≤ tr(doH � j ∈ J • Hj od)

then:

doS � i ∈ I • Si od vR doT uH � i ∈ I • Ti 3 j ∈ J • Hj od

Condition (a) requires that the concrete actions data refine the abstraction ac-
tions and that the introduced actions are stuttering actions. However, there has to
be a one-to-one correspondence among the fair actions, Si vR Ti for all i ∈ I and
every Si has to be refined; the unfair actions S , T , and H can be decomposed as
previously. Condition (b) requires that the body of the concrete loop must be en-
abled when the body of the abstract loop is. Additionally, each concrete fair action
Ti must be enabled when the corresponding abstract action Si . Condition (c) re-
quires that the auxiliary computation, consisting of all auxiliary actions, eventually

20

Sekerinski

disables itself. The proof proceeds by induction over the size of both I and J ; it is
left out for brevity.

6 Alternating Bit Protocol

The alternating bit protocol [5], a protocol for reliable communication over unreli-
able channels, has been repeatedly formalized. Our treatment is inspired by that
of [8,16]. Channels are modeled as variables, as in [9], rather than as sequences. Let
a, b be sequences of data items. We write |a| for the length of a sequence, a[i] for
the i -th element, and a[i ..j) for the subsequence starting at index i of length j − i .
We develop the alternating bit protocol as a refinement of A in a sequence of steps.

6.1 Specification

In its most abstract form, a transmission copies sequence a to sequence b:

A =̂ b := a

6.2 Copying Data Items Successively

The first refinement step introduces a loop that copies the data items successively.
Its body is:

S =̂ k < |a| → b, k := b ̂〈a[k]〉, k + 1

The whole program, B , initializes index k to zero. The refinement A v B can be
shown using standard refinement rules:

B =̂ var k • b, k := 〈〉, 0 ; doS od

6.3 Splitting into Sender and Receiver

The second refinement steps decomposes S into an abstract sender, T1, and an
abstract receiver, T2. Sender and receiver communicate via common variable s.
They synchronize by a common boolean variable m in a ping-pong fashion:

T1 =̂ m ∧ x < |a| → m, s, x := false, a[x], x + 1
T2 =̂ ¬m → b,m := b ̂〈s〉, true

The whole program, C , initializes m such that the sender starts:

C =̂ varm, s, x • m, x := true, 0 ; doT1 u T2 od

To establish the correctness of this refinement, we show doS od vP doT1 uT2 od
by Theorem 5.1 using as the refinement relation:

P(k)(m, s, x) =̂ 0 ≤ x ≤ |a| ∧ b[0..k) = a[0..k) ∧
((m ∧ x = k) ∨ (¬m ∧ k = x − 1 ∧ s = a[x − 1]))

21

Sekerinski

That is, this refinement step replaces k by m, s, x and keeps s. As T2 modifies
variable b, as S does, T2 is the main action and T1 the auxiliary action. The
resulting conditions are:

(a) S vP T2, skip vP T1

(b) P [en S] ≤ en T1 ∨ en T2

(c) P [true] ≤ tr(doT1 od)

The first part of condition (a) follows by (56) and the second part by (57). Condi-
tion (b) follows by (52). For condition (c) we observe that T1 always disables itself,
hence doT1 od always terminates.

6.4 Introducing Faulty Channels

In the third refinement step faulty channels are placed between the sender and
receiver. The sender keeps one private bit, c, that is attached to every transmission
and flipped on that occasion, such that messages of the sender have alternating bits.
Variable t is used to start and stop the data transmission. The sender becomes:

U1 =̂ c = g ∧ x < |a| → c, s, t , x := ¬c, a[x], true, x + 1

Once data transmission is started, the data channel may successfully transmit the
bit and the data by copying c, s to f , p and stop; we assume that the correct
transmission of the bit and the data can be detected. The channel may also keep
transmitting c, s, or may loose the message, i.e. do nothing. These three possibilities
are given by:

U2 =̂ t → f , p, t := c, s, false
U3 =̂ t → f , p := c, s
U4 =̂ t → skip

The receiver keeps a bit with the “parity” of the expected message. If the received
message matches, the data is appended to b and the bit is flipped. The transmission
of an acknowledgement message, consisting of a single bit, g , is initiated by setting
u to true.

U5 =̂ d = f → b, d , u := b ̂〈p〉,¬b, true

The acknowledgement channel may either transmit the bit properly and stop, may
keep transmitting the bit, or may loose the message:

U6 =̂ u → g , u := ¬d , false
U7 =̂ u → g := ¬d
U8 =̂ u → skip

The sender detects proper transmission by comparing the received bit, g , with the
expected on c. The initialization of the protocol allows the sender to start. This
protocol copies a to b provided that correct transmission of data, action U2, and

22

Sekerinski

correct transmission of acknowledgements, action U6, have a fair chance:

D =̂ var s, d , f , g , p, s, t , u, x •

c, d , f , g , t , u := true, false, true, true, false, false ;
doU1 uU3 uU4 uU5 uU7 uU8 �U2 3U6 od

The correctness of the refinement of the loops is established by Theorem 5.3 with
refinement relation:

Q(m)(c, d , f , g , p, t , u) =̂ (c = g ⇒ m) ∧ (m ⇒ u ∨ c = g) ∧
(d = f ⇒ ¬m) ∧ (¬m ⇒ t ∨ d = f) ∧
(c = g ⇒ g 6= d) ∧ (d = f ⇒ f = c ∧ p = s)

The first line states that if the concrete sender, U1, is ready to transmit, c =
g , the abstract sender, T1 must be ready as well; on the other hand, if T1 is
ready to transmit, then either U1 must be ready to transmit or the actions of
the acknowledgement channel, U6,U7,U8, are enabled. The second line states an
analogous property about the receiver. The third line is the concrete invariant and
expresses what the sender, U1 and the receiver, U5, can expect: if U1 is ready to
transmit, the receiver must have had acknowledged and if U5 is ready to receive,
the data must have been correctly transmitted. The refinement replaces m and
keeps s and x . The data channel actions and the acknowledgement channel actions
modify only the introduced variables and become auxiliary actions. The resulting
conditions are:

(a) T1uT2 vQ U1uU5, skip vQ U3uU4uU7uU8, skip vQ U2, skipQ v U6

(b) Q [en T1 ∨ en T2] ≤ en U1 ∨ ... ∨ en T8

(c) Q [true] ≤ tr(doU3 uU4 uU7 uU8 �U2 3U6 od)

The first part of condition (a) can be split into T1 vQ U1 and T2 vQ U5, each of
which follows by (56). The remaining parts follow by (57), after splitting the second
one into four parts. Condition (b) follows by (52). For condition (c) we observe that
U3uU4uU7uU8 �U2 3U6 always disables itself, hence the loop always terminates.

7 Discussion

Theorem 5.3 is similar to the forward simulation of fair action systems in [4], but
differs in three ways. First, the condition for the auxiliary computation in [4] is
weaker as the auxiliary computation either has to terminate or has to enable and
execute a main action. The second difference is that a more general mapping be-
tween abstract and concrete main actions is considered, compared to the one-to-one
correspondence that is assumed here for simplicity. The third difference is that only
unfair auxiliary actions can be introduced, whereas Theorem 5.3 gives the conditions
for both unfair and fair auxiliary actions. The development of the alternating bit
protocol relies on fair auxiliary actions being introduced for representing unreliable
channels.

Theorem 5.3 has a stronger condition for fair actions than for unfair actions, as

23

Sekerinski

fair actions have to be refined individually but unfair actions can be refined jointly,
suggesting that unfair actions are to be preferred. On the other hand, introducing
fair auxiliary actions compared to unfair auxiliary actions makes the condition for
the termination of the auxiliary computation weaker. Thus the methodological
consequence is that the introduction of fair actions should be postponed until needed
for ensuring the termination of the auxiliary computation. The development of the
alternating bit protocol follows this scheme.

It would be interesting to see if strong fairness can also be treated using iteration
statements. If binary fair choice were associative, the formalism could be signifi-
cantly simplified. The definition of an associative binary fair choice operator has
remained elusive is left as an open problem.

References

[1] C. Aarts, R. Backhouse, E. Boiten, H. Doorndijk, N. van Gasteren, R. van Geldrop, P. Hoogendijk,
T. Voermans, and J. van der Woude. Fixed-point calculus. Information Processing Letters, 53(3):131–
136, 1995.

[2] R.J.R. Back and J. von Wright. Refinement Calculus–A Systematic Introduction. Springer-Verlag,
1998.

[3] R.J.R. Back and J. von Wright. Reasoning algebraically about loops. Acta Informatica, 36(4):295–334,
1999.

[4] R.J.R. Back and Q. Xu. Refinement of fair action systems. Acta Informatica, 35(2):131–165, 1998.

[5] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex transmission
over half-duplex links. Communications of the ACM, 12(5):260–261, 1969.

[6] M. Broy and G. Nelson. Adding fair choice to Dijkstra’s calculus. ACM Transactions on Programming
Languages and Systems, 16(3):924–938, 1994.

[7] M. J. Butler and C. C. Morgan. Action systems, unbounded nondeterminism and infinite traces. Formal
Aspects of Computing, 7(1):37–53, 1995.

[8] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

[9] W. H. J. Feijen and A. J. M. van Gasteren. On a Method of Multiprogramming. Springer-Verlag, 1999.

[10] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.

[11] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and
Systems, 16(3):872–923, 1994.

[12] Carroll C. Morgan. Programming from Specifications. Prentice Hall, 2nd edition, 1994.

[13] J. M. Morris. Temporal predicate transformers and fair termination. Acta Informatica, 27(4):287–313,
1990.

[14] E. Sekerinski. On guarded commands with fair choice. In R. Backhouse and J. Oliveira, editors, 5th
International Conference on the Mathematics of Program Construction, MPC 2000, Lecture Notes in
Computer Science 1837, pages 127–139, Ponte de Lima, Portugal, 2000. Springer-Verlag.

[15] A. K. Singh. Program refinement in fair transition systems. Acta Informatica, 30:503–535, 1993.

[16] A. Wabenhorst. A stepwise development of the alternating bit protocol. Technical Report PRG-TR-
12-97, Oxford University Computing Laboratory, March 1997.

[17] A. Wabenhorst. Stepwise development of fair distributed systems. Acta Informatica, 39:233271, 2003.

24

	Introduction
	Statements
	State Predicates
	Predicate Transformers
	Refinement Ordering
	Iterations
	Program Variables
	Data Refinement

	Binary Fair Choice
	Generalized Fair Choice
	Data Refinement
	Alternating Bit Protocol
	Specification
	Copying Data Items Successively
	Splitting into Sender and Receiver
	Introducing Faulty Channels

	Discussion
	References

