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Abstract

Statecharts are an executable visual language for speci-
fying the reactive behavior of systems. We propose to stat-
ically verify the design expressed by a statechart by allow-
ing individual states to be annotated with invariants and
checking the consistency of the invariants with the transi-
tions. We present an algorithm that uses the locality of state
invariants for generating “many small” verification condi-
tions that should be more amenable to automatic checking
than an approach based on a single global invariant.

1 Introduction

Graphical notations are commonly used in the analysis
and design of complex systems for communication and for
documentation. Statecharts are such a “visual language”
for specifying the reactive behavior of systems [11]. Stat-
echarts address the state explosion problem of simple state
transition diagrams when modeling complex systems with
parallel threads of control by allowing hierarchy, concur-
rency, and communication. The appeal of statecharts is that
on one hand, the intuitive notation allows requirements to be
“easily expressed” and communicated to “domain experts”
and that on the other hand, statecharts can be directly ex-
ecuted through interpretation or compilation. Hence state-
charts are “executable specifications”.
In this paper, we propose a method for statically veri-

fying the design expressed by a statechart, as a way to in-
crease the confidence in the design that complements vali-
dation through testing, see Fig. 1. The approach is to sup-
plement a statechart with a number of state invariants; we
call the resulting diagrams invariantcharts. State invariants
are conditions attached to individual states and specify what
has to hold in a state configuration, e.g. as in the TV con-
trol in Fig. 2: The activity is partitioned into two modes,
Standby andWorking. When inWorking state, the system is
in both Picture and Sound substates. Within Picture the sys-
tem is in one of the substates WarmingUp and Displaying,
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Figure 1. Development Process.

within Sound the system is in one of the substates Waiting,
On, and Off . The invariant of Working is that whenever
Sound is not inWaiting, i.e. is in On or Off , Picturemust be
in Displaying. The invariant of Sound states that the sound
level levmust be between 1 and 10. The event power causes
the system to flip between Standby and Working, no matter
in which substates of Working the system is. The transition
on eventwarm broadcasts event soundOn. The transition on
events down can only be taken if lev > 1 and when taken,
will decrement lev. The transition on power toWorking sets
Picture and Sound to the default initial states WarmingUp
andWaiting and sets lev to 5.
State invariants are not meant for execution but allow the

consistency to be checked in a way that goes beyond struc-
tural well-formedness: if a state S has invariant I attached to
it, then every incoming transition must ensure that I holds
in S. Dually, every outgoing transition can assume that I
holds initially. Invariants can be attached to basic and com-
posed states. Intuitively, state invariants document the “pur-
pose” of states.
Invariants state safety properties of a control system or

consistency properties of a software system and are an es-
sential means to checking a design. Compared to writing
an equivalent combined invariant as a single global predi-
cate, the approach of state invariants decomposes a poten-
tially large invariant into parts that are in visual proximity to
affected transitions, making complex invariants more com-
prehensible. The approach also leads to shorter invariant
expressions as state tests are implicit to the state to which
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Figure 2. Invariantchart for a TV set.

an invariant is attached. Since the invariant of a composite
state is “inherited” by all its children, this gives a natural
way of factoring out commonalities, that in a purely textual
representation would either lead to a (more difficult to read)
parenthesized predicate or to repetition if “multiplied out”.
We present an approach to generate “local” verification

conditions for checking the consistency of state invariants
with the transitions. Rather than generating a single “large”
verification condition per event, we generate many smaller
ones. Automated theorem provers are more effective at
dealing with many small verification conditions than with
few large ones. Thus the promise is that state invariants
make it easier to specify correctness conditions for state-
charts and make it easier to verify them. We present the al-
gorithms for generating the verification conditions, as they
are implemented in the iState tool.
The approach is inspired by the nested invariant dia-

grams of [2], in which inner states inherit the invariant of
outer states, though the purpose is different. Nested in-
variant diagrams describe sequential code, including loops;
transitions define conditional execution and are taken based
only on their guards. Here, transitions require an (external)
event and their execution cannot lead to looping. In [10]
inheritance of annotations of states in hierarchical state ma-
chines (without concurrent states) is also discussed.
Our goal is have a simple calculus for the correctness of

statecharts rather than to be inclusive of statechart features;
our believe is that this simplicity will contribute to the reli-
ability of designs. The presented theory can be considered
as a Hoare calculus for statecharts.
Formal verification of statecharts by theorem proving

and model checking has been studied repeatedly, e.g. in [6,
8, 13, 14, 15, 16], see [5] for a survey on model-checking
approaches. These approaches allow invariants to be ex-
pressed as global properties only, rather than being attached
to states, although they allow more general temporal prop-
erties than invariance.
Our statecharts resemble those originally proposed

in [11], though the difference in the meaning of a “step”

is subtle but substantial when compared to e.g. [7, 12, 17].
If a transition “generates” further events that cause other
transitions, then the original meaning is that these lead to
a sequence of internal micro-steps. Our interpretation is
that all transitions on generated events are taken simulta-
neously as one atomic operation together with the initiating
transition. This requires restrictions on statecharts that rule
out many cases in which statechart interpretations differ [4].
These restrictions allow an event-centric semantics of stat-
echarts with events as operations rather than data as in the
more common state-centric semantics [19, 20]. The restric-
tion to atomic “chains” of transitions avoids the question of
whether state invariants have to hold in intermediate states
through which micro-steps may go but which are not ob-
servable from the outside.
Our statecharts differ from UML statecharts, as formal-

ized e.g. in [3, 9], by not considering queuing of events,
not considering asynchronousmessages, and hence not con-
sidering run-to-completion. In our model, caller and callee
proceed simultaneously and free of interference.
The interpretation of a chain of transitions as an atomic

operation makes use of the parallel composition of state-
ments. Its use for that purpose was first suggested in [18],
inspired by the use of parallel composition in the B
Method [1].
The next section presents a model of program statements

that includes the parallel composition of statements. Sec-
tion 3 gives the formal definition of the structure of stat-
echarts. Section 4 continues with the formal definition of
the meaning of statecharts in terms of program statements.
Section 5 defines state invariants and the correctness of in-
variantcharts, and gives an algorithm for generating verifi-
cation conditions. We conclude with some observations in
Section 6.

2 Preliminaries

We use generalized program statements to define the ef-
fect of an event. Program statements can also appear as the
body of a transition. We assume that the body of a transi-
tion may read variables (program variables or sensors), may
write to variables (program variables or actuators), and may
do so depending on some conditions, but does not contain
loops or recursion. For analyzing a certain class of reactive
systems abstractly, the effect of an event can be taken to be
“fast” and be sensed “instantaneously” by the environment
that generated that event, hence this is a plausible restric-
tion on statements. To simplify matters, we also assume
that the evaluation of expressions is always defined. These
assumptions allow us to give a simple relational semantics
to statements.
For a statement P, we let [P] be its “meaning” as a pred-

icate relating the initial and final states, referred to by un-



primed and primed variables, and let α P be the list of vari-
ables that are assigned to by P. Both are defined over the
structure of statements. Let g be a Boolean expression, xv a
list of variables without duplicates, and ev a list of expres-
sions of the same length as xv:

P [P] α P side-condition
skip true /0
stop false /0
xv := ev xv′ = ev xv
g→ Q g ∧ [Q] αQ
Q [] R [Q] ∧ xv′ = xv ∨ αQ∪αR xv= α R−αQ

[R] ∧ yv′ = yv yv= αQ−αR
Q ‖ R [Q] ∧ [R] αQ∪αR αQ∩α R= /0

The parallel (or rather independent) composition Q ‖ R is
well-defined only if the variables assigned to inQ and R are
disjoint. However,Q and Rmay read the variables assigned
by the other; in that case, their initial value is read. The par-
allel composition is executed in one atomic step, without
any interleaving. We write Q = R if [Q] = [R] and αQ =
α R. Parallel composition is a generalization of multiple as-
signment, in the sense that (x,y := e, f ) = (x := e ‖ y := f ).
The nondeterministic choice Q [] R selects either operand
that is enabled; if both are enabled, their choice is arbitrary,
if neither is enabled, Q [] R blocks. The guarded statement
g→ Q is interpreted as blocking if g does not hold, oth-
erwise Q is executed. It is used to define the conditional
statement:

if g thenQ =̂ (g→Q) [] (¬g→ skip)
if g thenQelseR =̂ (g→Q) [] (¬g→ R)

The enabledness domain en P is the domain of the relation
of statement P, i.e. en P = ∃xv′ .[P] where xv = α P. For
example, en skip = true and en stop = false. That is, both
statements don’t change any variables, but skip terminates
and stop blocks. The prioritizing composition P//Q exe-
cutes P, if P is enabled, otherwise it executes Q:

P//Q =̂ P [] ¬ en P→ Q

The nondeterministic choice and parallel composition are
associative and commutative, hence can be generalized to
a choice over a finite number of alternatives, written as
[] i ∈ s .P and ‖ i ∈ s .P, where s is a finite set. The cor-
rectness assertion {p}Q {r} states that under precondition
p statement Q terminates with postcondition r:

{p}Q{r} =̂ ∀xv′ .p ∧ [Q] ⇒ r[xv\xv′] where xv= αQ

The common verification rules for statements hold, for ex-
ample:

{p} xv := ev{r} ≡ p⇒ r[xv\ev]
{p} g→ Q{r} ≡ {p ∧ g}Q{r}
{p}Q [] R{r} ≡ {p}Q{r} ∧ {p}R{r}
{p} Q//R {r} ≡ {p} Q {r} ∧ {p ∧ ¬ en Q} R {r}

3 Statechart Structure

A statechart S is a structure (Basic, AND, XOR, Root,
parent, Event, Transition, default), with a number of con-
straints on the components that shall be visited in turn. The
finite sets Basic, AND, XOR are mutually disjoint sets of
states. We let Composite= AND∪XOR be the set of com-
posite states and State= Basic∪Composite be the set of all
states. Among the XOR states is a distinguished root state,
Root ∈ XOR.
The partial function (or functional relation) parent :

State �→ State maps every element of State except Root
to a composite state, domparent = State− {Root} and
ranparent=Composite. All states form a tree that is rooted
in Root, formally Root ∈ parent∗[{s}] for any s ∈ State,
where r∗ is the transitive and reflexive closure of relation r
and r[S] is the image of the set S under r. We let the relation
children be the inverse of parent, i.e. children = parent−1.
The children of an AND state are said to be concurrent, the
children of an XOR state are said to be exclusive.
The finite set Event is that of event names. The ele-

ments of the finite set Transition are tuples t, written as

t = ss
E[g]/b−−−→ ts, where ss = source(t) ⊆ State is the set of

source states, ts= target(t)⊆ State is the set of target states,
E= event(t) ∈ Event is the transition event, guard(t) = g is
a Boolean expression, the transition guard, and body(t) = b
is a statement, the transition body. The state Root must
not be the source or target of any transition. All transi-
tions must have at least one source state and one target state,
i.e. source(t) �= {} and target(t) �= {} for any t ∈ Transition.
The partial function default : XOR �→ Transition maps

XOR states to default transitions. The source of a de-
fault transition of an XOR state s, if defined, is s itself,
i.e. source(default(s)) = {s}. A fat dot inside the source
state is used to visualize the source of a default transition in
charts. A default transition must be defined for the root state
and any XOR state that is the target of some transition (de-
fault or regular) or that is being implicitly entered as it has
an AND ancestor that is being entered; this is being made
precise shortly. The default transition of a state s, if de-
fined, must go to a descendant of s, i.e. target(default(s))⊆
children+[{s}], where r+ is the transitive closure of rela-
tion r.
Expressions are composed of program variables, the

state tests inS1, . . . ,Sm, where Si is any state except Root,
and functions fn applied to zero or more arguments (func-
tions with zero arguments being constants). We assume that
the functions include common Boolean, arithmetic, and re-
lational operators.

Ex ::= v | inS1, . . . ,Sm | fn(Ex1, . . . ,Exn)
Statements are the skip statement, the multiple assignment,
the broadcast E, with E ∈ Event, the parallel composition,



and the conditional:

St ::= skip | v1, . . . ,vm := Ex1, . . . ,Exm | E |
St ‖ St | if ExthenSt [elseSt ]

In charts, we allow transition guards and bodies to be left
out. If a transition guard is missing, it is assumed to be
true. If a transition body is missing, it is assumed to be
skip. The event of a default transition does not play any role
and is always left out.
The closest common ancestor cca(ss) of a set ss of states

is the state that is an ancestor of each state in ss and all other
common ancestors are also its ancestor. We write x r y for
the pair (x,y) belonging to relation r.

c= cca(ss) ⇔ (
∧
s ∈ ss . sparent+ c) ∧

(
∧
a ∈ State .(

∧
s ∈ ss . sparent+ a) ⇒

cparent∗a))

The closest common ancestor exists and is unique for any
non-empty set of states that does not include the root state.
States r, s are orthogonal, written r⊥ s, if their closest com-
mon ancestor is an AND state and neither is an ancestor
of the other. For example, Displaying and On are orthog-
onal, but Displaying and Standby are not and Displaying
and Working are not. A set ss of states is called orthog-
onal, written ⊥ ss, if every pair of distinct states of ss is
orthogonal. For any transition, both its source and target
states must be orthogonal, ⊥ source(t) and ⊥ target(t) for
all t ∈ Transition. The scope of a transition is the state clos-
est to the root through which the transition passes.

scope(t) =̂ cca(source(t)∪ target(t))

We define what it means that E leads to t, in symbols E � t
and that E broadcasts F, also written as E � F: (1) E � t
for all t with E = event(t), (2) E � F if E � t and body(t)
broadcasts F, (3) E � t if E � F and F � t, for some F,
and (4) E � F if E � G and G� F, for some G.
The final set of constraints on statecharts is on broad-

casting. Any event can be broadcast only once. More pre-
cisely, for any event E, for distinct t,u such that E � t and
E � u, body(t) and body(u)must not contain broadcasts of
the same event. Broadcasting can only trigger transitions
that can be taken “simultaneously”, meaning that for any
eventE, for distinct t,u such that E� t andE� u, the states
scope(t) and scope(u) must be orthogonal. Broadcasting
must lead to assignments to disjoint variables. That is, for
any event E, for distinct t,u such that E � t and E � u,
body(t) and body(u) assign to disjoint variables. The broad-
cast relation � must be a tree, i.e. an undirected acyclic
graph. Figure 3 illustrates the restrictions on broadcasting:
in (a) and (b) a transition on E broadcasts F but both tran-
sitions on E and F have same scope, Root; in (c) transitions
on E and F have different scopes, U and Root, but these
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Figure 3. Examples violating restrictions on
broadcasting.

are not orthogonal; in (d) the broadcast relation is cyclic as
E � F and F � E; in (e) event G is broadcast twice in one
transition.
The path from state s to a set ss of descendants of s is the

set of those states that are descendants of s and ancestors of
states in ss, excluding s but including the states of ss.

path(s,ss) =̂ children+[{s}]∩parent∗[ss]
The states entered by a transition are all the states on the
path from the scope of the transition to its targets. The states
exited by a transition are all the states on the path from the
scope of the transition to its sources.

entered(t) =̂ path(scope(t), target(t))
exited(t) =̂ path(scope(t),source(t))

The implicit targets imp(t) of a transition t are those chil-
dren of the entered AND states of t that are not being ex-
plicitly entered.

imp(t) =̂ children[entered(t)∩AND]− entered(t)

The completion comp(t) of a transition t is the set of all
transitions that are taken when t is taken: it adds all default
transitions of XOR targets of t and all default transitions of
implicit targets of t. In Fig. 4 (a), the transition toU is added
to the transition to T, in (b) the transition to X is added to
the transition to T,U, and in (c) the transitions to U and W
are added to the transition to S.

comp(t) =̂ {t}∪ (
⋃
s ∈ (target(t)∩XOR)∪ imp(t) .

comp(default(s)))

Completion requires default(s) to be defined for all XOR
targets of t and all implicit targets imp(t), for all transi-
tions t. Completion also requires that the children of an
AND state are XOR states, and hence can have a default
transition. The recursion is well-defined as the level, i.e. the
distance to the root, of the scope of the parameter t increases
with each call and the depth of every chart is bounded.
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Figure 4. Examples for transition completion.

4 Configurations and Operations

The state of a statechart S is given by its configuration
of states and by the global variables. In [12, 17] a config-
uration is defined as a maximal set of statechart states such
that (1) it contains the root state, (2) for any XOR state it
contains exactly one of its children, and (3) for any AND
state it contains all of its children. We use here a different
model that makes it easier to explain independent (concur-
rent) updates of a configuration [18]. For everyXOR state s,
including Root, a variable lc(s), ranging over uc(c) for ev-
ery child c of s, is created. We interpret lc(s) and uc(s) to be
the state s starting with a lowercase or an uppercase letter,
for example:

root : {Standby,Working}
picture : {Displaying,WarmingUp}
sound : {Off ,On,Waiting}

Formally, it is sufficient to assume that lc and uc are injec-
tive functions with disjoint ranges. This allows us to define
the state test and state assignment for any state s that is a
child of an XOR state:

test(s) =̂ lc(parent(s)) = uc(s)
assign(s) =̂ lc(parent(s)) := uc(s)

In the TV example, test(s) and assign(s) are defined for all
states s except Picture and Sound, for example:

test(Displaying) = (picture= Displaying)
test(Working) = (root=Working)
assign(On) = sound := On
assign(Working) = root :=Working

All other operations on configurations are expressed in
terms of test and assign. The predicate in(ss) tests if the
current state is in the set ss; similarly goto(ss) sets the cur-
rent state to ss.

in(ss) =̂
∧
s ∈ ss∩ children[XOR] .test(s)

goto(ss) =̂ ‖ s ∈ ss∩ children[XOR] .assign(s)

The statement effect(t) executes the body of the transition
t, goes to the states entered by t, and continues this for all

transitions of the completion of t.

effect(t) =̂ ‖ u ∈ comp(t) .

body(u) ‖ goto(entered(u))
The meaning of an event E is given by the operation op(E),
a statement; the meaning of a statechart is given by the set of
all variables representing the statechart states and the set of
operations of all events. The operation op(E) gives priority
to transitions on E on the outermost scope, Root, and then
recursively to inner scopes. For brevity, we let Trans(E,s)
stand for the set of transitions on event E with scope s:

Trans(E,s) =̂ {t∈Transition | event(t)=E∧ scope(t)= s}
Transitions with the same event and scope are chosen non-
deterministically. Transitions in children of AND states are
taken in parallel.

op(E) =̂ scopeop(E,Root)
scopeop(E,s) =̂

( [] t ∈ Trans(E,s) .
in(exited(t)) ∧ guard′(t) → effect′(t))

//childop(E,s)
childop(E,s) =̂

casesof
Basic : skip
XOR : [] c ∈ children[{s}] .test(c) → scopeop(E,c)
AND :‖ c ∈ children[{s}] .scopeop(E,c)

end

The expression guard ′(t) is like guards(t), except that tests
inS1, . . . ,Sn are replaced by in(parent∗[{S1, . . . ,Sn}]); that
is, state tests are “completed”. Statement effect′(t) is like
effect(t) except that tests are replaced as in guards and
broadcasts of E are replaced by op(E). This may need to be
repeated until all broadcasts are eliminated. As the broad-
cast relation� is acyclic, this is well-defined. For example,
with some simplifications we get:

op(mute) =
( test(Standby) → skip
[] test(Working) →

( test(On) → assign(Off )
[] test(Off ) → assign(On))
//skip)

op(down) =
( test(Standby) → skip
[] test(Working) →

( test(On) ∧ lev> 1→ lev := lev−1 ‖ assign(On))
//skip)

op(warm) =
( test(Standby) → skip
[] test(Working) →

( test(WarmingUp) →
op(soundOn) ‖ assign(Displaying))

//skip)



The simplifications carried out above are that the nondeter-
ministic choice over the empty range is stop, [] i | false .P=
stop, that parallel composition over the empty range is skip,
‖ i | false .P= skip, that skip ‖ P= P, and that stop//P= P.
This defines a semantics of statecharts in terms of nonde-

terministic programs. The semantics also serves as a trans-
lation scheme: the generated code is of the form (g 1→ P1 []
. . . [] gn → Pn)//Q, where Q is either skip, or a nondeter-
ministic choice over guarded statements of that form, or the
parallel composition of statements of that form. An imple-
mentation would evaluate gi in some order and execute the
correspondingPi, or executeQ if all gi are false. Care has to
be taken in the implementation of parallel composition, as
that requires that copies of selected variables for the chart
states and selected global variables to be made such that
their initial values are available.
The main differences compared to [7, 12, 17] are:

(1) Boolean combinations of events are not allowed; it is
not clear how they can be dealt with in an event-centric se-
mantics. Negations of events are typically used to express
priority among transitions; priority can here be expressed
only through nesting, as transitions with outer scope take
priority over transitions with inner scope. (2) Default states
are generalized to default transitions. This allows a state-
ment to be specified when a default state is entered that can
establish a (local) invariant. (3) As there are no micro-steps,
there is no need to take a fixpoint to determine the sequence
of micro-steps; instead, all transitions on an event must be
conflict-free so they can be taken simultaneously.

5 State Invariant Verification

An invariantchart I is a statechart structure with two
additional components, inv and Gobal. The function inv
maps every state to a Boolean expression, the state invari-
ant. When I is attached to S, visually S | I, the state in-
variant inv(S) is I, except with state tests inS1, . . . ,Sn re-
placed by in(parent∗[{S1, . . . ,Sn}]). If an invariant is miss-
ing in a chart, it is assumed to be true. Typically, we al-
low a richer set of Boolean expressions in invariants than in
guards, though we do not make such a distinction here. The
set Global is a non-empty subset of Event, the set of global
events; all other events are local. The intention is that only
transitions on global events need to establish the invariants.
Transitions on local events can only occur as part of a transi-
tion on a global event, but not on their own. For the TV ex-
ample, we define Global= {power,warm,down,up,mute},
which makes soundOn the only local event, and have:

inv(Displaying) = true
inv(Working) = ¬test(Waiting) ⇒ test(Displaying)
inv(Sound) = (1≤ lev) ∧ (lev≤ 10)
inv(Root) = true

If a chart is in state s, then inv(s) has to hold. If s is an XOR
state, then inv(c) for some child c of s has to hold as well, if
s is an AND state, then inv(c) for all children c of s has to
hold, and so on. The child invariant childinv(s) of state s is
constructed recursively:

childinv(s) =̂
casesof
Basic : true
XOR :

∨
c ∈ children[{s}] .test(c)∧ inv(c)∧childinv(c)

AND :
∧
c ∈ children[{s}] .inv(c) ∧ childinv(c)

end

For example, with slight simplifications we have:

childinv(Picture) =
test(WarmingUp) ∨ test(Displaying)

childinv(Working) =
childinv(Picture)∧ inv(Sound)∧ childinv(Sound)

childinv(Root) =
test(Standby) ∨
(test(Working) ∧ inv(Working) ∧ childinv(Working))

The chart invariant of an invariantchartI is the state invari-
ant of Root conjoined with the child invariant of Root:

chartinv =̂ inv(Root) ∧ childinv(Root)
An invariantchart I is consistent if the operations of all
global events preserve the chart invariant, more precisely if
for all E ∈ Global:

{chartinv} op(E){chartinv} (*)

In the TV example, this leads to five correctness conditions,
one for each event power,warm,down,up,mute. We note
that there are two transitions on power andmute and present
now a scheme that allows these to be verified separately,
thus splitting up a larger proof condition into two smaller
ones. The observation underlying this is that if a chart is
in state s then (1) it is in all ancestors of s, (2) the invari-
ants inv(a) of all ancestors a of s, including s, has to hold,
(3) for all children of AND ancestors, except s itself, the
invariant and the the child invariant have to hold, and (4)
childinv(s) has to hold; all other state invariants are irrel-
evant. The invariant constructed in this way is called the
accumulated invariant accinv(ss); it is generalized to a set
ss of states where the closest common ancestor of any pair
or states in ss is an AND state, but one may be the parent of
the other. Note that children[parent+[ss]∩AND] is the set
of all children of the AND ancestors of ss. By subtracting
parent∗[ss] we get the set of all “AND uncles”:

accinv(ss) =̂
in(parent∗[ss]) ∧
(
∧
s ∈ parent∗[ss] . inv(s)) ∧

(
∧
s ∈ children[parent+[ss]∩AND]−parent∗[ss] .
inv(s) ∧ childinv(s)) ∧

(
∧
s ∈ ss−parent+[ss] .childinv(s))



Following property illustrates the purpose of this definition:
if the chart is in a set ss of states, then the chart invariant
reduces to the accumulated invariant of this set:

in(parent∗[ss]) ∧ chartinv≡ accinv(ss)

The source invariant of a transition t is the accumulated
invariant of the source states; the target invariant of t re-
quires that the accumulated invariant of the targets of the
completion of t is taken, as a targeted states may have de-
fault transitions:

sourceinv(t) =̂ accinv(source(t))
targetinv(t) =̂ accinv(

⋃
u ∈ comp(t) . target(u))

The main claim is an alternative way of checking (*) for E∈
Global. The idea is to visit all transitions, starting those that
the have the root state as their scope, and then to descend to
all children, as in the definition of op(E). The correctness
condition of transition t on event E is in the simplest case:

{sourceinv(t) ∧ guard′(t)} effect′(t){targetinv(t)}
In the case that an ancestor of s has other transitions on
E in its scope, these transitions have priority. In the re-
cursive definition below, the conjunction of the negations
of all guards on E of one scope, expressed as (

∧
t ∈

Trans(E,s) .¬guard′(t)), is “assumed” when visiting the
children:

correct(E) =̂ scopecorrect(E,Root)
scopecorrect(E,s) =̂

(
∧
t ∈ Trans(E,s) .
{sourceinv(t) ∧ guard′(t)} effect′(t){targetinv(t)})

∧ ((
∧
t ∈ Trans(E,s) .¬guard′(t)) ⇒
childcorrect(E,s))

childcorrect(E,s) =̂
casesof
Basic : true
XOR :

∧
c ∈ children[{s}] .scopecorr(E,c)

AND : {accinv({s})} childop(E,s){accinv({s})}
end

The recursion stops when a Basic state or an AND state are
encountered. The condition for an AND child (second last
line) is equivalent to:

{accinv({s})}
‖ c ∈ children[{s}] .scopeop(E,c)

{accinv({s})}
In general {p}Q ‖ R {r} cannot be split into one condition
forQ and one for R. However, further splitting of the condi-
tion is possible according to the structure of scopeop(E,c).
If the statement contains a nondeterministic choice with
guards, we can apply:

{p}P ‖ (g→ Q [] h→ R){r} ≡ {p ∧ g}P ‖ Q{r} ∧
{p ∧ h}P ‖ R{r}

This can be repeated until we arrive at a parallel composi-
tion of multiple assignment statements, which can be com-
bined into a single assignment statement. The verification
rule for assignments yields then a plain predicate than needs
to be shown to hold.
For the TV chart, we abbreviate the accumulated invari-

ant ofWorking byWI and get:

WI ≡
test(Working) ∧ (¬test(Waiting) ⇒ test(Displaying)) ∧
1≤ lev ∧ lev≤ 10

correct(power) ≡
{test(Standby)}
assign(Working) ‖ assign(WarmingUp) ‖
assign(Waiting) ‖ lev := 5

{WI}
∧
{WI} test(Working) → assign(Standby){test(Standby)}

correct(warm) ≡
{WI ∧ test(WarmingUp)}
op(soundOn) ‖ assign(Displaying)

{WI}
correct(mute) ≡
{WI}

( test(On) → assign(Off )
[] test(Off ) → assign(On))
//skip

{WI}
We conclude with formalizing our claim.

Theorem. For invariantchartI and E ∈ Global:

{chartinv} op(E){chartinv} ≡ correct(E)

Proof. We show more generally that for any state s, if
we consider only transition with scope a scope of s or a de-
scendant of s, then {chartinv} scopeop(E,s){chartinv} and
scopecorrect(E,s) are equivalent:

in(parent∗[{s}]) ∧
(
∧
a ∈ parent+[{s}] .∧ t ∈ Trans(E,a) .¬guard′(t))

⇒
{chartinv} scopeop(E,s){chartinv} ≡ scopecorrect(E,s)

The theorem follows by taking s = Root. The proof then
proceeds by induction over the distance between s and the
scope of the enclosed transitions. We leave out the details.

6 Discussion

State invariants need to be inductive invariants rather
than temporal invariants (safety properties). For example,
in On⇒ in Displaying is a temporal invariant as it holds af-
ter every step, but is not strong enough to be used as the sole



state invariant ofWorking. By comparison, model-checking
approaches require only temporal invariants to be stated. It
remains to be seen which proves to be more helpful in the
construction of complex systems.
The proof rule is still not as simple as one would wish.

One reason is the need to explicitly accumulate (negations
of) guards to express priority. One can question whether the
occasional brevity in the chart that priorities allow is worth
the constantly more complex verification conditions. The
other reason is that children of AND states cannot be treated
separately. In the TV example, the rule does not lead to
separate verification conditions for transitions on mute. In
this particular example, the result verification condition can
be split into two using {p}Q [] R {r} ≡ {p}Q {r} ∧ {p} T
{r}. In general, first the parallel composition would need
to be distributed over the choice. If there are m concurrent
states, each with n transitions on event E, then this results in
nm verification conditions for E, a reflection of the intricacy
of concurrent states.
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