
CHAPTER 1

DESIGN VERIFICATION WITH
STATE INVARIANTS

1.1 INTRODUCTION

This article is on statically verifying the design expressed by a statechart. Statecharts
extend finite state machines with clustering, expressed by XOR states, with concur-
rency, expressed by AND states, and with broadcast communication. Both XOR and
AND states structure the states hierarchically: if a chart is in an XOR state, it must
be in exactly one of its children; if the chart is in an AND state, it must be in all of its
children. Transitions between states can assign to and depend on global variables of
arbitrary types, thus lifting the restriction to a finite number of states; the statechart
states partition the combined state of the chart and the variables into modes. These
extensions of finite state machines are meant to allow the requirements of embedded
systems to be directly expressed [6].
Statecharts are appealing to practitioners as the underlying formalism of finite

state machines is well-understood, as the visual designs are “easy to communicate to
domain experts”, and as statecharts can be directly executed through interpretation
or compilation. With their inclusion in UML, statecharts are used for object-oriented
design.
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Working | inDisplaying⇒ ¬ inWaiting
Picture

WarmingUp warm/soundOn Displaying

Sound | 1≤ lev∧ lev≤ 10
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Figure 1.1 Statechart with invariants for a TV set.

Statecharts on their own do not immediately lead to opportunities for verifying
the safety of the design: if an event is received and no transition on that event can
take place, it is ignored. There is no intrinsic notion that an error occurs or an invalid
state is reached for a given sequence of events. This reflects the requirement that
embedded systems have to be robust and be prepared for arbitrary behaviour of their
environment.
This article explores design verification through state invariants. These are condi-

tions that are attached to individual states and specify what has to hold in that state. If
a state S has invariant I attached to it, then every incoming transition must ensure that
I holds. Dually, every outgoing transition can assume that I holds initially. This gives
a method for checking a chart against an annotation consisting of invariants attached
to states in the state hierarchy. Intuitively, state invariants document the “purpose”
of states. In UML, state invariants can be attached to behavioural state machines and
protocol state machines [18].
Consider the TV control example in Figure 1.1. The activity is partitioned into

two states, the Basic state Standby and the AND state Working. When in Working
state, the chart is in both Picture and Sound XOR states. Within Picture the chart
is in one of the basic states WarmingUp and Displaying, within Sound the system
is in one of the basic states Waiting, On, and Off . The invariant of Working is that
whenever Picture is in Displaying, Sound must not be in Waiting, i.e. must be in On
or Off . The invariant of Sound states that the sound level lev must be between 1 and
10. The event power causes the chart to flip between Standby andWorking, no matter
in which substates of Working the chart is. The transition on event warm broadcasts
event soundOn. The transition on events down can only be taken if lev> 1 and when
taken, will decrement lev. The transition on power toWorking sets Picture and Sound
to the default initial statesWarmingUp andWaiting and sets lev to 5.
State invariants can express safety of an embedded system or consistency of a

software system. Compared to writing an equivalent combined invariant as a single
global predicate, state invariants allow a potentially large invariant to be decomposed
into parts that are in visual proximity to affected transitions, making complex invari-
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ants more comprehensible. State invariants allow for shorter invariant expressions as
state tests are implicit to the state to which an invariant is attached.
The interpretation of XOR and AND states carries over to state invariants: if a

chart is in an XOR state, its invariant and the invariant of exactly one if its children
have to hold; if the chart is in an AND state, its invariant and the invariants of all its
children have to hold. As a consequence, the attached invariant of a state is inherited
by all its children and thus all its descendants. Dually, the children of a state contribute
to a synthesized invariant that is passed on to their parent and thus all their ancestors.
The conjunction of the attached invariant, the inherited invariant, and the synthesized
invariant of a state is called the accumulated invariant. A contribution of this article
is to define accumulation formally and to justify it (Section 1.6).
State invariants can be used for verifying a design by testing or by static verification.

The use for testing is conceptually simple: after each transition the accumulated
invariant of the target states have to be checked; more precisely, for all leaf states in
which the chart ends up, the attached invariant of those states as well as the attached
invariant of all their ancestors have to hold. To check this at run-time, the evaluation
of invariants has to be sufficiently efficient. Here we consider static verification and
don’t impose restrictions on the composition of invariants.
Static verification proceeds by generating a number of verification conditions from

the annotated chart and then showing that these hold. This depends on the definition
of a transition, which in presence of broadcasting can have different interpretations.
The interpretation taken here is that all transitions resulting from broadcasts are to
be taken simultaneously with the initiating transition, which we call simultaneous
broadcasting. Thus, if in the chart of Figure 1.1 event warm is received when the
chart is initially in WarmingUp and Waiting, the transitions on warm and soundOn
are taken simultaneously and the invariant of Working is preserved.
Simultaneous broadcasting can be formalized using parallel composition of state-

ments. The B Method subsumes an extension of guarded commands by parallel
composition [1]. A number of approaches define statecharts by translation to the
B Method [9, 10, 11, 13, 15, 17, 20, 24]. The (bounded) nondeterminism of guarded
commands allow the nondeterminism in the choice of transitions to be reflected. As
the B Method also supports proofs of invariants, such a translation leads to a method
for proving preservation of accumulated invariants, to be precise with one verification
condition per event. The second contribution of this article is a procedure that instead
generates several smaller, “more local” verification conditions per event and justifies
this in terms of the straightforward generation (Section 1.7). Automated theorem
provers are more effective at proving or disproving many small conditions than few
large ones. Thus the prospect is that state invariants not only make it easier to specify
correctness conditions for statecharts but also make it easier to verify them.
The original interpretation of broadcasting leads to a sequence of internal micro-

steps. In the above example this implies that first the transition on warm is taken,
resulting in Picture being in Displaying and Sound remaining in Waiting, hence vi-
olating the invariant inDisplaying⇒ ¬ inWaiting. Thus the transition on soundOn
would be taken in a configuration when the accumulated invariant of its source state
does not hold. As the transition on soundOn follows immediately, this violation is
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not observable from outside. This interpretation necessitates that the invariant be
relaxed to the following one, where genE means that event E has been generated and
is awaiting processing:

Working | inDisplaying⇒ (¬ inWaiting)∨ (inWaiting∧gensoundOn)

The set of generated events needs to be kept in a global variable and determines the
next micro-step in a loop that is executed as long as the set is not empty. A verification
method that attempts to be complete needs to allow this sequence to be referred to
in invariants—like through the function gen above. Simultaneous broadcasting does
not need such a set and allows events to be interpreted as operations (procedures).
While micro-steps allow the same transition to be taken repeatedly within a macro-
step, potentially leading to non-termination, simultaneous broadcasting forbids this.
As intermediate states are not present with simultaneous broadcasting, it is more
abstract than sequencing micro-steps. An implementation of simultaneous broad-
casting would still need to introduce intermediate states following the refinement
rules of parallel composition [1].
Nondeterminism arises in statecharts if more than one transition is enabled. Clas-

sical statecharts [4, 7, 19] and UML statecharts [18] resolve nondeterminism that
can arise due to transitions on different levels differently: classical statecharts give
priority to outer transitions, as this facilitates zooming in and out of complex states;
UML statecharts give priority to inner transition, as an inner state can “override”
the behaviour of an outer state. As a third contribution of this article, we study the
consequences of resolving this nondeterminism either way for invariant verification
and code generation (Section 1.8).
The final contribution of this article is a discussion onwhen and how to use state in-

variants (Section 1.9). After preliminaries (Section 1.2), we first define the (syntactic)
statechart structure (Section 1.3), the meaning of statecharts in term of configurations
and operations (Section 1.4), and the meaning of state invariants (Section 1.5).
Formal verification of statecharts has been studied extensively, e.g. in [3, 5, 8,

12, 14, 16], see [2] for a survey on model-checking approaches. These approaches
specify invariants globally, rather than attaching them to states. However, they allow
more general temporal properties than invariance that we consider here.
This line of work emerged from an attempt to generate comprehensible code from

statecharts, as a way of cross-checking the statechart design [22, 23]. Compared
to the approach there, a pre-processing step that leads to normalized statecharts is
eliminated, as this step became awkward in an interactive tool. Also, the translation
scheme is described more abstractly and the well-formedness criteria are revised and
justified. This article revises and extends the verification condition generation of [21].

1.2 PRELIMINARIES

We use generalized program statements to define the meaning of an event. Gener-
alized statements subsume those that may appear in a body of a transition. We are
interested in models that are sufficiently abstract such that transition bodies do not
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contain loops and recursion but may contain conditionals. To simplify matters, we
assume that the evaluation of expressions is always defined.
A (generalized) statement P is defined by a pair, a predicate or Boolean expres-

sion [P] relating the initial and final states, and a list !P of variables that are assigned
to by P. The initial and final states are referred to by unprimed and primed variables.
Let g be a Boolean expression, xv a list of unique variables, ev a list of expressions
of the same length as xv, and Q,R statements:

P [P] !P side-condition

skip true /0
stop false /0
xv := ev xv� = ev xv
g→ Q g∧ [Q] !Q
Q [] R [Q]∧xv� = xv∨ !Q∪!R xv= !R−!Q

[R]∧yv� = yv yv= !Q−!R
Q � R [Q]∧ [R] !Q∪!R !Q∩!R= /0
Q ; R ∃xv�� . [Q][xv�\xv��]∧ !Q∪!R xv= !Q∩!R

[R][xv\xv��]

The statement skip can always be executed and does not change any variables. The
statement stop can never be executed, i.e. is always disabled. Themultiple assignment
xv := ev assigns simultaneously the values of ev to the variables xv. The guarded
statement g→ Q blocks if g does not hold, otherwise is as Q. The nondeterministic
choiceQ [] R selects either operand that is enabled; if both are enabled, their choice is
arbitrary, if neither is enabled,Q []R blocks. The parallel or independent composition
Q �R iswell-defined only if the variables assigned to inQ andR are disjoint. However,
Q and R may read the variables assigned by the other; in that case, their initial
value is read. The parallel composition is executed in one atomic step, without any
interleaving. Parallel composition is a generalization of multiple assignment, in the
sense that (x,y := e, f ) = (x := e � y := f ). The sequential compositionQ ; R joins the
final variables of Q with the initial variables of R, formally expressed by renaming:
e[xv\ev] stands for expression e with each occurrence of a variable of xv replaced by
the corresponding expression in ev. Sequential composition is always well-defined.
The conditional statement is defined in terms of the above:

if g thenQ �= (g→ Q) [] (¬g→ skip)
if g thenQelseR �= (g→ Q) [] (¬g→ R)

The enabledness domain en P is the domain of the relation of statement P:

en P= ∃xv� . [P] where xv= !P

For example, en skip = true and en stop = false. The prioritizing composition P//Q
is like P, if P is enabled, otherwise it is like Q:

P//Q �= P [] ¬ en P→ Q
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Asnondeterministic choice andparallel composition are associative and commutative,
they can be generalized to choice over a finite number of alternatives, [] i∈ s . P and to
a parallel composition of a finite number of statements, � i ∈ s . P, where s is a finite
set. The correctness assertion {p}Q{r} states that under precondition p statement Q
terminates with postcondition r:

{p}Q{r} �= ∀xv� . p∧ [Q]⇒ r[xv\xv�] where xv= !Q

The common verification rules for statements hold, for example:

{p} xv := ev{r} ≡ p⇒ r[xv\ev]
{p}g→ Q{r} ≡ {p∧g}Q{r}
{p}Q [] R{r} ≡ {p}Q{r} ∧ {p}R{r}
{p}Q//R{r} ≡ {p}Q{r} ∧ {p∧¬ en Q}R{r}
{p}Q ; R{r} ≡ ∃q . {p}Q{q} ∧ {q}R{r}

1.3 STATECHART STRUCTURE

A statechart S is a structure (Basic, AND, XOR, Root, parent, Event, Transition,
default), with a number of constraints on the components that shall be visited in
turn. The finite sets Basic, AND, XOR are mutually disjoint sets of states. We
let Composite = AND∪ XOR be the set of composite states and State = Basic∪
Composite be the set of all states. Among the XOR states is a distinguished root
state, Root ∈ XOR.
The partial function (or functional relation) parent : State �→ State maps every

element of State except Root to a composite state, domparent = State− {Root}
and ranparent = Composite. All states form a tree that is rooted in Root, formally
Root ∈ parent∗[{s}] for any s ∈ State, where r∗ is the transitive and reflexive closure
of relation r and r[S] is the image of the set S under r. We let the relation children be
the inverse of parent, i.e. children= parent−1. The children of an AND state are said
to be concurrent, the children of an XOR state are said to be exclusive. The children
of an AND state must be XOR states.
The finite set Event is that of event names. The elements of the finite set Transition

are tuples t, represented as ss t:E[g]/B−−−−→ ts, where ss = source(t) ⊆ State is the set of
source states, ts= target(t)⊆ State is the set of target states, E = event(t) ∈ Event is
the transition event, guard(t) = g is a Boolean chart expression, the transition guard,
and body(t) = B is a chart statement, the transition body. The state Root must not be
the source or target of any transition, Root �∈ source(t) and Root �∈ target(t) for any
t ∈ Transition. All transitions must have at least one source state and one target state,
source(t) �= {} and target(t) �= {} for any t ∈ Transition.
The partial function default : XOR �→ Transition maps XOR states to default tran-

sitions. The source of a default transition of an XOR state s, if defined, is s itself,
source(default(s)) = {s}. A fat dot inside the source state is used to visualize the
source of a default transition. Certain XOR states are “required to have a default
transition”: a default transition must be defined for the root state and any XOR state
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that is the target of some transition (default or regular) or that is being implicitly
entered as it has an AND ancestor that is being entered; this will be made precise
shortly. The default transition of a state s, if defined, must go to a descendant of s,
i.e. target(default(s))⊆ children+[{s}], where r+ is the transitive closure of relation r.
Chart expressions are composed of program variables, the state tests inS1, . . . ,Sm,

where Si is any state except Root, and functions fn applied to zero or more arguments
(functionswith zero arguments being constants). Weassume that the functions include
common Boolean, arithmetic, and relational operators.

Ex ::= v | inS1, . . . ,Sm | fn(Ex1, . . . ,Exn)

Chart statements are the skip statement, the multiple assignment, the broadcast E,
with E ∈ Event, the parallel composition, and the conditional:

St ::= skip | v1, . . . ,vm := Ex1, . . . ,Exm | E | St � St | ifEx thenSt [elseSt ]

In charts, we allow the specifications of the transition name t:, the transition guard
[g], and the transition body /B to be left out. If a transition guard is missing, it is
assumed to be true. If a transition body is missing, it is assumed to be skip. The event
and guard of a default transition do not play any role and are always left out.
The closest common ancestor cca(ss) of a set ss of states is the state that is a proper

ancestor of each state in ss and all other common ancestors are also its ancestor. We
write x r y for the pair (x,y) belonging to relation r.

c= cca(ss) ≡ c ∈ parent+[ss]∧ (∀a ∈ State . a ∈ parent+[ss]⇒ aparent∗ c)

The closest common ancestor exists and is unique for any non-empty set of states
that does not include the root state. States r, s are orthogonal, written r ⊥ s, if their
closest common ancestor is an AND state and neither is an ancestor of the other. A
set ss of states is called orthogonal, written⊥ ss, if every pair of distinct states of ss is
orthogonal. For any transition, both its source and target states must be orthogonal,
⊥ source(t) and ⊥ target(t) for all t ∈ Transition. This concludes the definition of
the statechart structure.
For example, in Figure 1.2, states X and Z are orthogonal, as their closest common

ancestor, V , is an AND state and neither is an ancestor of the other. States X and
T are not orthogonal, as their closest common ancestor, S is and XOR state. States
W and X are not orthogonal as W is an ancestor of X, though their closest common
ancestor, V , is an XOR state.
We continue with several useful definitions. The scope of a transition is the state

closest to the root through which the transition passes.

scope(t) �= cca(source(t)∪ target(t))

The path from state s to a set ss of descendants of s is the set of those states that are
descendants of s and ancestors of states in ss, excluding s but including the states
of ss.

path(s,ss) �= children+[{s}]∩parent∗[ss]
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S

T
U

u: F

V
WX

YZ

t: E

Figure 1.2 Self-transition and inter-level transition.

The states entered by a transition are all the states on the path from the scope of the
transition to its targets. The states exited by a transition are all the states on the path
from the scope of the transition to its sources.

entered(t) �= path(scope(t), target(t))
exited(t) �= path(scope(t),source(t))

Figure 1.2 defines source(t)= {U} and target(t)= {X,Z}. The scopeof t is the closest
common ancestor of {U,X,Z}, which is S, thus entered(t) = {V,W,X,Y,Z} and
exited(t) = {U,T}. We also have that source(u) = {U}= target(u). The scope of u is
the closest common ancestor of {U}, which is T , thus entered(u) = {U}= exited(u).
Given a state set ss, the implicit children are those children of AND states of ss

that are not in ss. If a chart is in ss, it is also in all its implicit children.

imp(ss) �= children[ss∩AND]− ss

The completion of a transition t is the set of all transitions that are taken when t is
taken: it adds all default transitions of XOR targets of t and all default transitions of
implicit targets of t.

comp(t) �= {t}∪ (
S
s ∈ (target(t)∩XOR)∪ imp(entered(t)) . comp(default(s)))

In Figure 1.3 (a) we have that target(t) = {U}, an XOR state, default(U) = u, and
therefore comp(t) = {t,u}. In (b) we have that entered(t) = {T,U,V,W,X} and
imp(entered(t)) = {Y}. As default(Y) = u, we get comp(t) = {t,u}. In (c) we have
that entered(t) = {T} and imp(entered(t)) = {U,V}. Thuswe get comp(t) = {t,u,v}.
We are now in a position to define formally when an XOR state is “required to

have a default transition”: a default transition has to be defined for the root state,
Root ∈ domdefault, and for all XOR targets s of t and all implicit targets imp(t), for
all transitions t, formally:

∀ t ∈ Transition . (target(t)∩XOR)∪ imp(entered(t))⊆ domdefault

With this restriction on statecharts, comp(t) is well-defined for any transition t, as in
the definition s in default(s) ranges over XOR states are required to have a default
transition. Furthermore, the recursion terminates as the level, i.e. the distance to the
root, of the scope of the parameter t increases with each call and the depth of every
statechart is bounded.
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S t: E/B

T
U
V
u:/C

S

T
UV

WX

YZu:/C

t: E/B S
T

UVu:/C

WXv:/D

t: E/B

(a) (b) (c)

Figure 1.3 Examples for transition completion.

1.4 CONFIGURATIONS AND OPERATIONS

The “state” of a statechart S is given by its configuration of states and by the state
of its global variables. A configuration can be defined as a maximal set of statechart
states such that (1) it contains the root state, (2) for any XOR state it contains exactly
one of its children, and (3) for any AND state it contains all of its children [7, 19]. We
use here a different model that makes it easier to explain independent (concurrent)
updates of a configuration [20]. For every XOR state s, including Root, a variable
lc(s), ranging over uc(c) for every child c of s, is declared. We interpret lc(s) and uc(s)
to be the state s starting with a lowercase or an uppercase letter. For the statechart of
Figure 1.4 we get:

root : {R,S} t : {U} v : {W,X} x : {Y,Z}

Note the use of X as a value of variable v and the use of x as a variable. Formally,
it is sufficient to assume that lc and uc are injective functions with disjoint ranges.
The function var is defined to map the variable names to the set of possible values,
e.g. var(root) = {R,S}. Thus var defines the set of possible configurations. We
assume that these variables and their values are distinct from the global program
variables. This model allows to define the state test and state assignment for any
state s that is a child of an XOR state by inspecting and assigning the variable for that
state:

test(s) �= lc(parent(s)) = uc(s)
assign(s) �= lc(parent(s)) := uc(s)

In Figure 1.4, test(s) and assign(s) are defined for all states s except T and V:

test(R) ≡ root = R assign(R) = root := R
test(S) ≡ root = S assign(S) = root := R
test(U) ≡ t = U assign(U) = t := U
test(W) ≡ v=W assign(W) = v :=W
test(X) ≡ v= X assign(X) = v := X
test(Y) ≡ x= Y assign(Y) = x := Y
test(Z) ≡ x= Z assign(Z) = x := Z

All other operations on configurations are expressed in terms of test and assign. The
predicate in(ss) tests if the current state is in the set ss; similarly goto(ss) sets the
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R

S
T

U

b: E[inZ]/i := i+1

V

W

X

Y Z
f :

c:
d: E

e: E[i> 2]

a: E/i := 0

Figure 1.4 State hierarchy with transitions.

current state to ss.

in(ss) �=
V
s ∈ ss∩ children[XOR] . test(s)

goto(ss) �= � s ∈ ss∩ children[XOR] . assign(s)

The statement goto(ss) is well-defined if the states of ss are not exclusive. For exam-
ple, in Figure 1.4, goto({U,X}) and goto({X,Y}) are well-defined, but goto({Y,Z})
is not.
The trigger of a transition t is a predicate that checks if the transition guard holds

and if the system is in all source states; only all exited states are tested. The effect of
a statement t is to execute the body of t, to go to the states entered by t, and to repeat
this for all transitions of the completion of t.

trigger(t) �= in(exited(t))∧guard(t)
effect(t) �= � u ∈ comp(t) . body(u) � goto(entered(u))

We allow ourselves to confuse the chart expression guard(t) with its meaning as an
expression and chart statement body(u) with its meaning as a statement, whereby a
broadcast of E occurring in a transition body is defined by op(E), to be made precise
further below, and a state test inS1, . . . ,Sn occurring in the guard or body of transition
t, written int S1, . . . ,Sn is defined as testing being in S1, . . . ,Sn relative to being in
source(t):

int S1, . . . ,Sn �= in(parent∗[{S1, . . . ,Sn}]−parent∗[source(t)])

The goto statement of effect(t) is always well-defined as entered states are not exclu-
sive. For Figure 1.4, noting that comp(a) = {a,c, f}, comp(b) = {b}, and body(c) =
skip = body(f ) we get:

trigger(a) ≡ in({R})∧ true
≡ test(R)

effect(a) = body(a) � goto({S,T,U}) � goto({X}) � goto({Z})
= i := 0 � assign(S) � assign(U) � assign(X) � assign(Z)

trigger(b) ≡ in({U})∧ inb Z
≡ test(U)∧ test(X)∧ test(Z)

effect(b) = body(b) � goto({U})
= i := i+1 � assign(U)
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S
T

U V
a: E/k := 3�F

W
X Y

b: F/l := 7

op(E) = test(S)→
( test(U)→ k := 3 � op(F) � assign(V)
[] test(V)→ skip)

op(F) = test(S)→
( test(X)→ l := 7 � assign(Y)
[] test(Y)→ skip)

S
T

U V
a: E/k := 3

W
X Y

b: E/l := 7

op(E) = test(S)→
( ( test(U)→ k := 3 � assign(V)

[] test(V)→ skip)
� ( test(X)→ l := 7 � assign(Y)

[] test(Y)→ skip))

Figure 1.5 Concurrent transitions and broadcasting.

The simplification carried out above is that skip � P= P for any statement P.
The operation of an event E is a statement that captures the joint effect of all

transitions in a chart on E. For brevity, let Trans(E,s) stand for the set of transitions
on event E with scope s:

Trans(E,s) �= {t ∈ Transition | event(t) = E∧ scope(t) = s}

The operation op(E) is defined by recursively visiting all transition on E, starting with
those on the outermost scope, Root. In case there is a choice between transitions with
the same scope, one is selected arbitrarily. In case there is a choice between transitions
on different scopes, transition on outer scopes are given priority. All transitions on the
same event in concurrent states are taken in parallel. Of all transitions in an exclusive
state, at most one can be taken.

op(E) �= scopeop(E,Root)
scopeop(E,s) �= ([] t ∈ Trans(E,s) . trigger(t)→ effect(t))//childop(E,s)
childop(E,s) �= casesof

Basic : skip
XOR : [] c ∈ children[{s}] . test(c)→ scopeop(E,c)
AND :� c ∈ children[{s}] . scopeop(E,c)

end

Figure 1.5 gives two examples. In Figure 1.4 there is one event,E, with four transitions
on it. With simplifications we get:



14 STATE INVARIANTS

op(E) = test(R)→ i := 0 � assign(S) � assign(U) � assign(X) � assign(Z)
//( test(R)→ skip

[] test(S)→
( (test(U)∧ test(X)∧ test(Z)→ i := i+1 � assign(U))

//skip
� ( test(W)→ assign(X) � assign(Y)

[] test(X)∧ i> 2→ assign(W))
//skip))

The simplifications are that choice over the empty range is stop, [] i∈ {} .P= stop, that
parallel composition over the empty range is skip, � i∈ {} .P= skip, that skip �P=P,
that stop [] P = P, that stop//P = P, that g→ P [] h→ P = g∨ h→ P, and that
true→ P= P.
The semantics of statechart S is defined by the pair of functions var and op, with

var defining the possible configurations and op defining for each event a (possibly
nondeterministic) statement operating on the configuration.

Well-Definedness

The definition of op restricts the statecharts to which a meaning can be given. These
restrictions arise due to the use of parallel composition, which requires that operands
assign to distinct variables, and due to possible recursion in the definition of op, which
results from broadcasting. The following two conditions are sufficient and necessary:

1. effect(t) must be well-defined, for all transitions t,

2. effect(t) � effect(u)must bewell-defined, for all t,u such that event(t)= event(u)
and scope(t)⊥ scope(u).

The first condition excludes transition bodies like k := 3 � k := 7 and the charts of
Figure 1.6: In (a), the broadcast ofF results in two parallel assignments to k. In (b), as
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Figure 1.6 Violations of well-definedness condition 1.
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Figure 1.7 Violations of well-definedness condition 2.

the completion of a includes b, the effect of a includes again two parallel assignments
to k. In (c), transition a leads to assign(T) � assign(U), which would result in parallel
assignments to the same state variable, as is the case in (d) and (e). In (f), transition
a leads to transitions c and b being taken, which results in assign(V) � assign(W).
More generally, this condition prohibits any direct or indirect recursion among events,
as these lead to parallel assignments to the same state variable.
The second condition excludes charts of Figure 1.7: In (a), on event E, both

transitions a and b would be taken, resulting in parallel assignments to k. In (b), on
event E, event F would be broadcast twice, resulting in assign(Z) � assign(Z).
Condition 1 ensures that scopeop is well-defined, provided that childop is well-

defined. Condition 2 ensures that childop is well-defined, provided that scopeop is
well-defined. Condition 1 also disallows any direct or indirect recursion among event
operations. Hence these two conditions are sufficient and necessary. We nevertheless
consider a third condition:

3. If the body of transition t contains a broadcast of event E and u is a transition
on E, then t and u must be within concurrent states, i.e. scope(t)⊥ scope(u).

In Figure 1.8 (a), if the chart is in S and T , on event E both transitions a and b
would be taken, as the effect of a is assign(V) � assign(U). Likewise, in (b) on F
both transitions would be taken. In both cases the chart does not end up being in
the targets of transitions taken due to broadcasting of events with transitions at outer
levels. The above condition restricts broadcasting to events with transitions only in
concurrent states.

Code Generation

The semantics of a chart can be directly expressed as a single MACHINE in the B
Method. The VARIABLES of the machine are derived from the function var and the
OPERATIONS define each event E by op(E) as follows. The code for scopeop(E,s)
is a SELECT statement:

( trigger(t1)→ effect(t1)
[] . . .
[] trigger(tn)→ effect(tn))
//childop(E,s)

SELECT trigger(t1) THEN effect(t1)
WHEN . . .
WHEN trigger(tn) THEN effect(tn)
ELSE childop(E, s)
END
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Figure 1.8 Violations of well-definedness condition 3.

The code for childop(E,s), for an XOR state s, is a CASE statement:

( r = S1→ scopeop(E,S1)
[] . . .
[] r = Sn→ scopeop(E,Sn)

CASE r OF
EITHER S1 THEN scopeop(E, S1)
OR . . .
OR Sn THEN scopeop(E, Sn)
END

END

The generated code can be further simplified. If there is only a single transition on a
level for an event, the generated code is of the form SELECT g THEN Q ELSE R END
and can be written as IF g THEN Q ELSE R END instead. CASE statements can be
simplified by leaving out all alternativeswith body skip and addingELSE skip instead.
CASE statements with a single alternative can be rewritten as IF statements. An IF
statement of the form IF b THEN Q ELSE skip END can be simplified to IF g THEN
Q END.
Figure 1.9 gives the code of the TV example as generated by the iState tool [23].

The generated code preserves the broadcasting structure by calling the operating of the
broadcast event rather than inlining it. As the B Method does not allow calls of oper-
ations within the same machine, this is expressed in terms of auxiliary DEFINITIONS.
The B Method also requires that all variables are initialized. In case the value of a
state variable is initially irrelevant, a nondeterministic assignment is generated.
For generating an executable implementation, the SELECT statement needs to be

refined by an IF statement in which the guards are evaluated in some arbitrary order.
An implementation of parallel composition by sequential composition requires in
general that copies of the involved state variables and global variables are made such
that their initial values are available to all statements of the parallel composition.
If there is no dependency on the initial values, these copies are not needed. For
example, in Figure 1.9 all parallel compositions can be implemented by sequential
compositions in any order. In principle the elimination of parallel composition can
be automated.

1.5 STATE INVARIANT VERIFICATION

A statechart with invariants I , or invariantchart for short, is a statechart structure
with two additional components, inv andGobal. The function invmaps every state to
a Boolean chart expression, the state invariant. Attaching chart expression I to state
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MACHINE TV

SETS
ROOT = {Standby, Working};
PICTURE = {Displaying, WarmingUp};
SOUND = {Waiting, On, Off}

VARIABLES
root,
picture,
sound,
lev

INVARIANT
root : ROOT ∧
picture : PICTURE ∧
sound : SOUND ∧
lev : INTEGER

INITIALISATION
root := Standby
�
picture :∈ PICTURE
�
sound :∈ SOUND
�
lev :∈ INTEGER

DEFINITIONS
DEF soundOn ==

IF (root = Working) THEN
IF (sound = Waiting) THEN

sound := On
END

END

OPERATIONS
mute =

IF (root = Working) THEN
CASE sound OF

EITHER Off THEN
sound := On

OR On THEN
sound := Off

OR Waiting THEN
skip

END
END

END
;

power =
CASE root OF

EITHERWorking THEN
root := Standby

OR Standby THEN
lev := 5
�
root := Working
�
picture := WarmingUp
�
sound := Waiting

END
END

;
up =

IF (root = Working) THEN
IF (sound = On) THEN

IF (lev < 10) THEN
lev := (lev + 1)
�
sound := On

END
END

END
;
down =

IF (root = Working) THEN
IF (sound = On) THEN

IF (lev > 1) THEN
lev := (lev − 1)
�
sound := On

END
END

END
;
soundOn =

DEF soundOn
;
warm =

IF (root = Working) THEN
IF (picture = WarmingUp) THEN

DEF soundOn
�
picture := Displaying

END
END

END

Figure 1.9 B code of TV example.
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S, visually S | I, defines inv(S) to be I. If no invariant is attached, inv(S) is assumed to
be true. Typically, we allow a richer set of Boolean expressions in invariants than in
guards, though we do not make such a distinction here. The setGlobal is a non-empty
subset of Event, the set of global events; all other events are local. The intention is
that only transitions on global events need to establish the invariants. Transitions on
local events can only occur as part of a transition on a global event, but not on their
own. The global events are the interface through which the environment asks the
system for a response.
Weallowourselves to confuse a chart expression attached to a statewith itsmeaning

as an expression, whereby a state test inS1, . . . ,Sn occurring in I attached toS, indicated
by writing inS S1, . . . ,Sn is defined as testing being in S1, . . . ,Sn relative to being in S:

inS S1, . . . ,Sn �= in(parent∗[{S1, . . . ,Sn}]−parent∗[{S}])

The chart invariant is defined by recursively visiting all attached invariants, starting
with that attached to Root. In case a state is an XOR state, the invariant attached to
some child has to hold as well. In case the state is an AND state, the invariant attached
to each child has to hold as well.

chartinv �= scopeinv(Root)
scopeinv(s) �= inv(s)∧ childinv(s)
childinv(s) �= casesof

Basic : true
XOR :

W
c ∈ children[{s}] . test(c)∧ scopeinv(c)

AND :
V
c ∈ children[{s}] . scopeinv(c)

end

Chart S is correct if the default transition of Root establishes the chart invariant and
all operations of global events preserve the chart invariant:

(a) {true}default(Root){chartinv}
(b) ∀E ∈ Global . {chartinv}op(E){chartinv}

For the TV example, we define Global = {power,warm,down,up,mute}, which
makes soundOn the only local event, and have:

inv(Working) ≡ test(Displaing)⇒ ¬test(Waiting)
inv(Sound) ≡ 1≤ lev∧ lev≤ 10

For all other states, including Root, the attached invariant is true. It follows that
scopeinv(s) for all Basic states s of the chart is true; for the other states we get:

scopeinv(Picture) ≡ test(WarmingUp)∨ test(Displaying)
scopeinv(Sound) ≡ inv(Sound)∧ (test(Waiting)∨ test(On)∨ test(Off ))
scopeinv(Working) ≡ inv(Working)∧ scopeinv(Picture)∧ scopeinv(Sound)
scopeinv(Root) ≡ test(Standby)∨ (test(Working)∧ scopeinv(Working))

The last line defines the chart invariant. The B Method allows this invariant to be
expressed in the INVARIANT section:
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INVARIANT
(root = Standby) ∨
(root = Working ∧
(picture = Displaying⇒ ¬(sound = Waiting)) ∧
(1 ≤ lev ∧ lev ≤ 10))

This leads to six correctness conditions, one for each event power, warm, down, up,
mute and one for the initialization. The B tools generate these five conditions and
allow them to be proven automatically or interactively.
Above invariant has been simplified. The definition of chartinv would generate

predicates like picture = WarmingUp ∨ picture = Displaying that arise from the
XOR case in childinv(Picture). Such tautologies can be eliminated during generation
with following reformulation:

childinv(s) ≡ casesof
Basic : true
XOR :

V
c ∈ children[{s}] . test(c)⇒ scopeinv(c)

AND :
V
c ∈ children[{s}] . scopeinv(c)

end

Now, if scopeinv(c) is true (which it is for every Basic state c without attached
invariant), test(c)⇒ scopeinv(c) is immediately true. If this is the case for all children
c of s, childinv(s) is immediately true.

1.6 ACCUMULATED INVARIANTS

The observation underlying a more targeted verification condition generation is that
sometimes it is sufficient to consider correctness of individual transitions, rather than
that of an event operation, and that parts of the chart invariant may be irrelevant for
the correctness of transitions. To start with, let the base of a state set ss be ss together
with the implicit children of all ancestors of ss. That is, the base of ss adds to ss all
children of AND ancestors that are not ancestors of ss, i.e. the “AND uncles”. The
(upward) closure of state set ss is the set of all ancestors of the base of ss, including
ss. That is, it is the set of states in which a chart must be if it is in ss.

base(ss) �= ss∪ imp(parent+[ss])
closure(ss) �= parent∗[base(ss)]

If a chart moves to state set ss then (1) it has to be in all ancestors of ss, (2) the attached
invariants of all states of the closure of ss have to hold, and (3) the child invariants
for all states of the base of ss, have to hold. The invariant constructed in this way is
called the accumulated invariant of ss.

accinv(ss) �= in(parent∗[ss])∧
(
V
s ∈ closure(ss) . inv(s))∧

(
V
s ∈ base(ss) . childinv(s))
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Figure 1.10 State hierarchy.

The invariants that originate from the descendants of the base are the synthesized
invariants; those that originate from ancestors of the base are the inherited invariants.
For example, in Figure 1.10 we have:

base({X}) = {T,X}
closure({X}) = {Root,S,T,W,X}
accinv({X}) = test(S)∧ test(X)∧

inv(Root)∧ inv(S)∧ inv(T)∧ inv(W)∧ inv(X)∧
((test(U)∧ inv(U))∨ (test(V)∧ inv(V)))

That is, the invariants of Root, S, T are inherited in S and the invariants of U, V are
synthesized for X. Following property justifies accumulation: if a chart is in state set
ss, then the chart invariant reduces to the accumulated invariant of ss.

Theorem 1 For any non-empty state set ss:

chartinv∧ in(parent∗[ss]) ≡ accinv(ss)

Rather than proving this theorem directly, we prove a more general one, but first state
a lemma about how the accumulated invariant of a state relates to the accumulated
invariant of its parent.

Lemma 1 For any state s except Root:

accinv({parent(s)})∧ test(s) ≡ accinv({s}) if parent(s) ∈ XOR (a)
accinv({parent(s)}) ≡ accinv({s}) if parent(s) ∈ AND (b)

We omit the proof. The following theorem states how the accumulated invariant of a
state relates to the accumulated invariant of a set of descendants.

Theorem 2 For any state s and any non-empty state set ss with ss⊆ children∗[{s}]:

accinv({s})∧ in(path(s,ss)) ≡ accinv(ss)

Proof : The proof proceeds by induction over the maximal distance between s and
ss, under the assumption that ss ⊆ children∗[{s}]. Let rn be relation r composed n
times, formally r0[p] = p and rn+1[p] = r[rn[p]]. Defining

p(s,ss) �= accinv({s})∧ in(path(s,ss))≡ accinv(ss)

we show that p(s,ss) holds for s ∈
S
i ∈ [0..n] . parenti[ss] by induction over n. In

the base case, n = 0 implies ss = {s}, hence p(s,ss) follows immediately. For the
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induction step, suppose p(s,ss) holds for all s ∈
S
i ∈ [0..n] . parenti[ss]. We show

that p(parent(s),ss) holds:

accinv({parent(s)})∧ in(path(parent(s),ss))≡ accinv(ss)
≡ �from the definitions of in and path�

accinv({parent(s)})∧ in(s)∧ in(path(s,ss))≡ accinv(ss)
≡ �case parent(s) ∈ XOR and Lemma 1 (a), case parent(s) ∈ AND and (b)�

accinv({s})∧ in(path(s,ss))≡ accinv(ss)

Hence p(s,ss) holds for s ∈ parent[parentn[ss]] = parentn+1[ss]. With the induc-
tion assumption it follows that p(s,ss) holds for s ∈

S
i ∈ [0..n+ 1] . parenti[ss],

which completes the induction step and allows to conclude that p(s,ss) holds for
s∈

S
i∈ nat . parenti[ss]. The theorem follow by noting that parent∗[ss] =

S
i∈ nat .

parenti[ss] and that s∈ parent∗[ss] follows from the assumption ss⊆ children∗[{s}].

Theorem 1 follows from Theorem 2 by taking s= Root and observing that chartinv≡
accinv(Root).
For the TV chart we note that for example

base(Standby) = {Standby} closure(Standby) = {Root,Standby}
base(Working) = {Working} closure(Working) = {Working,Standby}
base(On) = {Picture,On} closure(On) = {Root,Working,Picture,Sound,On}
base(Off ) = {Picture,Off} closure(Off ) = {Root,Working,Picture,Sound,Off}

and get following accumulated invariants:

accinv({Standby}) ≡ test(Standby)
accinv({Working}) ≡ test(Working)∧ (test(Displaying)⇒ ¬test(Waiting))∧

1≤ lev∧ lev≤ 10
accinv({On}) ≡ test(Working)∧ test(On)∧

(test(Displaying)⇒ ¬test(Waiting))∧1≤ lev∧ lev≤ 10
accinv({Off}) ≡ test(Working)∧ test(Off )∧

(test(Displaying)⇒ ¬test(Waiting))∧1≤ lev∧ lev≤ 10

1.7 VERIFICATION CONDITION GENERATION

The source invariant of a transition is the accumulated invariant of its source states.
The target invariant of transition t is consists of the accumulated invariant of its target
states; if target states are composite states or if states are implicitly entered by t, then
the accumulated invariant of the targets of the completion of t have to be added:

sourceinv(t) �= accinv(source(t))
targetinv(t) �= accinv(

S
u ∈ comp(t) . target(u))

We are now prepared to present an alternative way of checking the correctness of a
chart. The idea is to visit all transitions, starting those that the have the root state as
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Figure 1.11 Transitions with different priorities.

their scope, and then to descend to all children. The correctness condition of transition
t is in the simplest case:

{sourceinv(t)∧guard(t)} effect(t){targetinv(t)}

In two cases this correctness assertion is not adequate. In the case that t is taken
simultaneously with other transitions, other target invariants have to be established
and other source invariants can be assumed. In the case that an ancestor of scope(t)
has other transitions on event(t), these transitions have priority. In the recursive
definition below, the conjunction of the negations of all triggers on E of one scope,
expressed as

V
t ∈ Trans(E,s) . ¬trigger(t), is “assumed” when visiting the children:

correct(E) �= scopecorrect(E,Root)
scopecorrect(E,s) �= (

V
t ∈ Trans(E,s) .
{sourceinv(t)∧guard(t)} effect(t){targetinv(t)})∧

((
V
t ∈ Trans(E,s) . ¬trigger(t))⇒ childcorrect(E,s))

childcorrect(E,s) �= casesof
Basic : true
XOR :

V
c ∈ children[{s}] . scopecorr(E,c)

AND : {accinv({s})} childop(E,s){accinv({s})}
end

Figure 1.11 illustrates the consequence of priorities on preconditions. We note that
¬trigger(t) ≡ ¬in(exited(t))∨¬guard(t). In (a), transition b has priority over a,
hence a is taken only if g does not hold as ¬guard(b) is part of the precondition of
the correctness assertion for a. In general, for any predicates q,p,r and statement Q:

g⇒ {p}Q{r} ≡ {g∧p}Q{r}

In (b), transition a is taken only if T is in V and W is not in Y as ¬in(exited(b)) is
part of the precondition of the correctness assertion for a.

Theorem 3 For any E ∈ Global:

{chartinv}op(E){chartinv} ≡ correct(E)

Rather than proving this theoremdirectly, we prove amore general one: if we consider
only transitions at scope s or below, then {accinv({s})} scopeop(E,s){accinv({s})}
and scopecorrect(E,s) are equivalent:
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Theorem 4 For any state s:

{accinv({s})} scopeop(E,s){accinv({s})} ≡ scopecorrect(E,s)

Proof : The proof proceeds by induction over the structure of charts. Defining

p(s) �= {accinv({s})} scopeop(E,s){accinv({s})}≡ scopecorrect(E,s)

the base case is that p(s) holds for Basic or AND state s and the induction step is that
p(s) holds for XOR state s provided that p(c) holds for all children c of s. To start
with, we assume

V
a ∈ parent+[{s}] .

V
t ∈ Trans(E,a) . ¬trigger(t) and simplify:

p(s)
≡ �definition of scopeop, //�

{accinv({s})}
([] t ∈ Trans(E,s) . trigger(t)→ effect(t)) []
((

V
t ∈ Trans(E,s) . ¬trigger(t))→ childop(E,s))

{accinv({s})}
≡
scopecorrect(E,s)

≡ �verification rules for [],→, definition of trigger, scopecorrect�
(
V
t ∈ Trans(E,s) .
{accinv({s})∧ in(exited(t))∧guard(t)} effect(t){accinv({s})})∧

((
V
t ∈ Trans(E,s) . ¬trigger(t))⇒

{accinv({s})} childop(E,s){accinv({s})}
≡
(
V
t ∈ Trans(E,s) .
{sourceinv(t)∧guard(t)} effect(t){targetinv(t)})∧

((
V
t ∈ Trans(E,s) . ¬trigger(t))⇒ childcorrect(E,s))

⇐ �by Theorem 2: accinv({s})∧ in(exited(t))≡ sourceinv(t), (*)�
((

V
t ∈ Trans(E,s) . ¬trigger(t))⇒

{accinv({s})} childop(E,s){accinv({s})}
≡
((

V
t ∈ Trans(E,s) . ¬trigger(t))⇒ childcorrect(E,s))

⇐ �logic�
{accinv({s})} childop(E,s){accinv({s})} ≡ childcorrect(E,s)

In the step (*)weuse that effect(t)does indeed establish
V
u∈ comp(t) . in(entered(u)),

which is given by the definition of effect(t), and does preserve accinv({s}), which is
guaranteed by well-formedness condition 3. Hence

V
u ∈ comp(t) . in(entered(u))

can be conjoined to the postcondition accinv({s}). It is then straightforward to show
that by Theorem 2 and the definition of comp(t):

accinv({s})∧ (
V
u ∈ comp(t) . in(entered(u))) ≡ targetinv(t)

Wecontinue the proofwith a case analysis. If s∈Basic, childop(E,s) simplifies to skip
and childcorrect(E,s) simplifies to true, hence the last line follows immediately. If s∈
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Figure 1.12 Concurrent transitions and invariants

AND, childcorrect(E,s) is equivalent to {accinv({s})} childop(E,s) {accinv({s})},
hence the last line follows immediately. If s ∈ XOR, we continue:

{accinv({s})} [] c ∈ children[{s}] . test(c)→ scopeop(E,c){accinv({s})}
≡
(
V
c ∈ children[{s}] . scopecorr(E,c))

⇐ �verification rules for [],→�
(
V
c ∈ children[{s}] . {accinv({s})∧ test(c)} scopeop(E,c){accinv({s})})

≡
(
V
c ∈ children[{s}] . scopecorr(E,c))

⇐ �logic, by Theorem 2: accinv({s})∧ test(c)≡ accinv({c}), (**)�V
c ∈ children[{s}] .
{accinv({c})} scopeop(E,c){accinv({c})}) ≡ scopecorr(E,c)

In the step (**) we use that scopeop(E,c) preserves accinv({c}), which is guaranteed
by well-formedness condition 3. The last line is exactly the induction assumption.
This concludes the induction step and the case analysis.

Theorem 3 follows by taking s= Root and observing that chartinv≡ accinv(Root).
The recursion of scopecorrect stopswhen aBasic state or anANDstate are encoun-

tered. The condition for an AND child (second last line of childcorrect) is equivalent
to:

{accinv({s})}� c ∈ children[{s}] . scopeop(E,c){accinv({s})} (*)

In general {p}Q � R {r} cannot be split into one condition for Q and one for R, as
can be seen for {k = l} k := 7 � l := 7 {k = l}. Figure 1.12 (a) illustrates that the
correctness of b and d cannot be shown individually.
For the TV chart we have that

op(soundOn) = (test(Working)→
(test(Waiting)→ assign(On)
[] test(On)→ skip
[] test(Off )→ skip)

[] test(Standby)→ skip)
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and get following correctness assertions, with some simplifications:

correct(power) ≡ {accinv({Standby})}
assign(Working) � assign(WarmingUp) �
assign(Waiting) � lev := 5

{accinv({Working})}
∧
{accinv({Working})}
assign(Standby)

{accinv({Standby})}
correct(warm) ≡ {accinv({Working})}

test(WarmingUp)→ op(soundOn) � assign(Displaying)
{accinv({Working})}

correct(down) ≡ {accinv({Working})}
test(On)→ lev := lev−1 � assign(On)

{accinv({Working})}
correct(up) ≡ {accinv({Working})}

test(On)→ lev := lev+1 � assign(On)
{accinv({Working})}

correct(mute) ≡ {accinv({Working})}
( test(On)→ assign(Off )
[] test(Off )→ assign(On))

{accinv({Working})}

The simplifications carried out are that verification conditions of the form {p}Q//skip
{p} are replaced by {p}Q{p}.
In the design of embedded systems, physical components are typically modelled

by concurrent states on outer levels. For such designs, the possibility for generating
targeted verification conditions by scopecorrect is limited, as the recursion stops as
soon as an AND state is encountered. Still, special cases exist:

1. If only one concurrent state contains transitions on event E, then the parallel
composition in (*) disappears, resulting in

{accinv({s})} scopeop(E,s){accinv({s})}

Theorem4 can nowbe used to continue decomposing the verification conditions
according to scopecorrect.

2. Further splitting of the verification condition is possible according to the struc-
ture of scopeop(E,c). If an operand of the parallel composition contains a
nondeterministic choice with guards, we can use that � distributes over []:

{p}P � (g→ Q [] h→ R){r} ≡ {p∧g}P � Q{r} ∧ {p∧h}P � R{r}

Figure 1.12 (b) illustrates such a case: the operation of E in V contains a
choice over all children of V . Applying above rule results in two verification
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conditions, one with a parallel composition of a and b and one with a and c. In
general, if there are m concurrent states and each has n transitions on event E,
then this results in m×n verification conditions. Hence this approach has the
potential of generating a possibly large number of smaller conditions.

3. The distributivity of � over [] can also be applied is for bodies containing
conditional statements, as if g thenQelseR= (g→Q) [] (¬g→ R). Hence, for
each transition the number of proof conditions involving that transition double
with each conditional statement that it contains.

For the TV example we note transitions on warm, down, up, mute occur only in one
concurrent state and apply rule 1 above. As warm broadcasts soundOn, we apply
rule 2 as well.

correct(warm) ≡ {accinv({WarmingUp})}
test(WarmingUp)→ test(Working)→
test(Waiting)→ assign(On) � assign(Displaying)

{accinv({Displaying})}
∧
{accinv({WarmingUp})}
test(WarmingUp)→ test(Working)→ test(On)→
assign(Displaying)

{accinv({Displaying})}
∧
{accinv({WarmingUp})}
test(WarmingUp)→ test(Working)→ test(Off )→
assign(Displaying)

{accinv({Displaying})}
correct(down) ≡ {accinv({On})} lev := lev−1 � assign(On){accinv({On})}
correct(up) ≡ {accinv({On})} lev := lev+1 � assign(On){accinv({On})}
correct(mute) ≡ {accinv({On})}assign(Off ){accinv({Off})}

∧
{accinv({Off})}assign(On)){accinv({On})}

The two verification conditions for power are unchanged. Thus this results in nine
verification conditions, compared to the original five, plus one for the initialization.
The proof conditions are now of the from {p}Q1� . . .�Qn {r}, where each Qi is

a multiple assignment statement, assigning to state variables or to global variables.
Using that (x := e � y := f ) = (x,y := e, f ) these can be merged into a single multiple
assignment. The verification rule for assignments yields then a plain predicate that
can be passed to a theorem prover.

1.8 PRIORITY AMONG TRANSITIONS

UMLstatecharts differ fromabove interpretation in giving transitionswith inner scope
priority over transitions with outer scope [18]. Thus in Figure 1.13 (a) transition a has
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Figure 1.13 Transitions with different priorities.

priority over transition b as ¬guard(a) is part of the precondition of the correctness
assertion for b. In (b), transition b is taken only if T is not in U or V is not in X as
¬in(exited(a)) is part of the precondition of the correctness assertion for b. In this
interpretation, the notion of a chart invariant remains the same, but op and correct
have to be adapted. Let Trans(E,s) be the set of all transition onEwith scope below s:

Trans(E,s) �= {t ∈ Transition | event(t) = E∧ scope(t) ∈ children+[{s}]}

The operation op(E) allows a transition to be taken only if no other transition with
lower scope is enabled. Formally, all transitions on scope s are guarded by

V
t ∈

Trans(E,s) . ¬trigger(t). The choice among transitions with the same scope is arbi-
trary.

op(E) �= scopeop(E,Root)
scopeop(E,s) �= ((

V
t ∈ Trans(E,s) . ¬trigger(t))→

[] t ∈ Trans(E,s) . trigger(t)→ effect(t))
//childop(E,s)

childop(E,s) �= casesof
Basic : skip
XOR : [] c ∈ children[{s}] . test(c)→ scopeop(E,c)
AND :� c ∈ children[{s}] . scopeop(E,c)

end

The verification conditions reflect this by assuming that
V
t∈ Trans(E,s) .¬trigger(t)

holds for transitions with scope s:

correct(E) �= scopecorrect(E,Root)
scopecorrect(E,s) �= ((

V
t ∈ Trans(E,s) . ¬trigger(t))⇒

(
V
t ∈ Trans(E,s) .
{sourceinv(t)∧guard(t)} effect(t){targetinv(t)}))∧

childcorrect(E,s))
childcorrect(E,s) �= casesof

Basic : true
XOR :

V
c ∈ children[{s}] . scopecorr(E,c)

AND : {accinv({s})} childop(E,s){accinv({s})}
end
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Working | 1≤ lev∧ lev≤ 10

/lev := 5 WarmingUp

Displaying
SoundOn

down[lev> 1]/lev := lev−1 up[lev< 10]/lev := lev+1

Displaying
SoundOff

warm mute mute

Standby

power
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Figure 1.14 Alternative state structure for TV set.

Without proof we claim that the preservation of the chart invariant by op(E) can be
verified by correct(E):

Theorem 5 For any E ∈ Global:

{chartinv}op(E){chartinv} ≡ correct(E)

The verification conditions from correct(E) are of similar complexity as those from
correct(E). However, if op(E) were directly used for code generation, the resulting
codewould bemore complex: as in the recursive definition transitions on outer scopes
are visited first, the triggers of all transitions of lower scopes on that event need to be
evaluated before these these are visited, where they are evaluated again.

1.9 CONCLUSIONS

Having an effective mechanism for verifying invariants begs the question of when
and how to use invariants. Sometimes the need for an invariant can be avoided
altogether. Figure 1.14 gives a chart that is equivalent to that of Figure 1.1 but avoids
the invariant originally attached toWorking by restructuring the states ofWorking. If
one were not able to express and check invariants one might prefer the restructured
one, on the grounds that by its mere structure it cannot lead to an invalid configuration.
However, the structure of concurrent states of the original chart reflects the structure
of the components of the application better and one would believe that it is easier to
design, comprehend, and maintain. We could also avoid the invariant 1≤ lev∧ lev≤
10 by having ten distinct On states, one for each level. Such a design would be
awkward at best and impossible if the range of variables is unbounded. In presence
of global variables, invariants cannot be avoided through restructuring. After all, we
get confidence in a design by having descriptions with some redundancy–here by
state transitions and by invariants–and checking their consistency. By removing the
possibility for these checks through a “clever” design, the design will not be more
trustworthy.
We define two chart annotations to be equivalent if the resulting chart invariants

are equivalent, meaning that they lead to the same proof conditions. Figure 1.15
illustrates two sets of equivalent chart annotations. Used as transformation rules,
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Figure 1.15 Equivalent annotations.

these two equivalencies allow all invariants to be moved up to Root. This design
freedom leads to the question where to attach invariants best. Figure 1.16 gives an
annotation that is equivalent to that of Figure 1.1. The original invariant of Sound is
now attached toWorking. However, only transitions within Sound are relevant for this
invariant: the invariant is above the scope of all affected transitions. In Figure 1.16
the original invariant ofWorking has been moved to Displaying. While this shortens
the invariant expression by leaving out the state tests, some relevant transitions are
now in a concurrent state, making the dependency less visual. These two observations
motivate following rule:

• Invariants should be attached exactly to the scope of all relevant transitions.

The chart of Figure 1.1 follows this rule. We summarize the main points of the
approach:

1. Configurations are defined by state variables and each event is defined as one
operation for all transitions on that event. This disallowsBoolean combinations
of events as in classical statecharts but is in line with UML statecharts.

2. An operation of an event is defined by a “recursive descent” of the state hier-
archy. This favours giving priority to transitions on outer level over transitions
on inner levels. This definition also serves as a scheme for code generation.

3. The state variables and event operations are mapped to one module (MACHINE
in the B Method).

4. All transitions on an event are taken simultaneously, rather than in a sequence of
micro-steps. For this, all simultaneously taken transitionsmust be conflict-free.
In our experience that excludes some statecharts that would be of questionable
design.

5. Invariants can be attached to basic and composite states. The chart invariant is
derived from the attached invariants. All event operations have to preserve the
chart invariant.
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Figure 1.16 Alternative annotation for TV set.

6. The default transition of the root state has to establish the chart invariant;
default transitions are also used for establishing a local invariant. For this,
default transitions need to have a body.

7. Local verification conditions are computed from the accumulated invariant of
the source and target states. The justification of the local verification conditions
is in terms of the chart invariant.

An alternative to mapping the state variables and event operations to a single module
is to distribute them by certain design criteria among several modules with an acyclic
or tree dependency structure [10]. With invariants distributed among modules as
well, this also leads to more local verification conditions, but in a different way than
through accumulated invariants. Entry and exit actions, history states, and transitions
with segments remain future work.
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