
Teaching the Unifying Mathematics of Software Design

Emil Sekerinski
McMaster University

Hamilton, ON, Canada

emil@mcmaster.ca

ABSTRACT

We report on our experience on teaching the mathematics
of reliable software design as a unifying force for various
elements of software design, rather than as an additional
element of software design. This is in line with the use of
mathematics in traditional engineering disciplines, but in
contrast to teaching a “formal method” optionally after an
“informal” exposition to software design or teaching a formal
method only with specific applications in mind.

1. INTRODUCTION
Whereas in the design of a mechanical device breaking

design rules would quickly lead to recognizable failure, one
can very well break rules of software design and still get a
“sufficiently functional” and marketable product. Qualities
of software are not as evident or measurable as qualities of
physical products; design qualities are even harder to judge
than the qualities that can be observed of a product. Stu-
dents follow the rules of software design because they are
told so and not because they would experience the conse-
quences of not doing so. Students grow up with unreliable
software to the extent that they consider such poorly work-
ing software to be normal or unavoidable. Job advertise-
ments suggest that programming skills are sufficient to write
software and students take software design courses with the
expectation of preparing them for the job market. All this
makes is difficult to convince students that software can be
better designed, that it is worth doing so, and that it is
worth learning the mathematics for doing so.

Typical textbooks on software design, or software engi-
neering as they are sometimes called, devote few chapters
on formal specification and verification, with the rest of the
book not depending on those. Curricula in computer sci-
ence and software engineering may include an upper level
elective on specification, verification, or semantics. Students
perceive the mathematics of software design as optional to
their education and largely as a burden.

We report on our experience in teaching a sequence of two

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WCCCE ’09 Burnaby, BC, Canada

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

courses in software design in which mathematics is used as
the unifying force of all core elements of reliable software
design. This is in contrast to teaching a “formal method”
optionally after an “informal” exposition to software design:
our students had only taken an introductory first year course
in programming and a course in discrete mathematics. The
approach is more in line with the use of mathematics in
traditional engineering disciplines. The two courses cover
all core topics in software design rather than a specific topic
for which a dedicated formalism or tool exist:

Uniform Design Notation A uniform textual design no-
tation is used, in order to emphasize the similarities
among the concepts and help students interconnect
these concepts, rather than making students switch
to a new mindset due to the notational differences.
Graphical notations like flowcharts, class diagrams, and
statecharts are presented as appropriate and defined as
alternative representations of specific aspects in terms
of the textual notation

Uniform Mathematical Basis A mathematical basis for
all design constructs is given. A typed logic using the
same type system as a programming language is used.
Equational reasoning is used for all proofs because of
the familiarity from calculus. Weakest preconditions
are used for statements.

Middle-out Sequencing of Topics Courses on software
design are typically structured according to the phases
in which software is developed. However, students who
have only written small programs so far, do not see the
need for, say, elaborate requirements. Instead, we start
with writing and analyzing small programs and grad-
ually move to topics to which students become moti-
vated, approximately in middle-out order of a normal
software development. This also gives enough opportu-
nities for students to catch up with their understanding
of programming techniques.

The material is distributed over Software Design 1, a one
semester second year course, and Software Design 2, a one
semester third year course. Both are required for Computer
Science at McMaster. The courses were taught repeatedly
since 1999/2000 and had a peak enrollment of 190 students.
Many students perceive these two courses as the core courses
for their career in software development. The same material
was presented in a condensed form in a graduate course in
2005/06 and in 2008/09.

Program Annotations

{x ≥ 0}
z, u := 0, x ;
{invariant
(z + u × y = x × y) ∧
(u ≥ 0)}

while u > 0 do
z, u := z + y, u − 1
{z = x × y}

z := 0
u := x

u > 0

+

z := z + y
u := u − 1

−

x ≥ 0

(z + u × y = x × y) ∧
(u ≥ 0)

z = x × y

Figure 1: Excerpt from Elements of Programming

The next section elaborates on the topics covered in both
courses, in the order of presentation. We conclude with an
evaluation of the courses and a discussion.

2. MIDDLE-OUT SEQUENCING OF TOP-

ICS

Lecture 1: Elements of Programming

The first course starts with an introduction to basic con-
trol structures. The notion of (total) correctness is defined
through the triple {P}S {Q}. For the purpose of proving,
correctness is restated in terms of weakest preconditions as
P ⇒ wp(S, Q). Using the rules of wp, intermediate anno-
tations can be derived automatically and annotations can
be restricted to preconditions, postconditions, and loop in-
variants. Equational logic is introduced by appealing to the
analogy with calculus. A formal definition of the syntax of
programs and annotations and of typing is included; trying
to skip this did lead to syntactically incorrect mixtures of
programs and annotations. Flowcharts, like in Fig. 1, are
used for explaining annotations. Trying to use them in ex-
ercises did lead to spaghetti charts; they are still retained as
they are intuitive and as they are later used for explaining
exceptions. Limitations of machine arithmetic and partial
expressions are discussed and formalized as in Fig. 2. Fur-
ther control structures (case, repeat, and for statements) and
recursion complete the picture. Basic sorting and search-
ing techniques, as they are taught in introductory and high
school courses, illustrate the use of annotations. Quick-
sort and Boyer-Moore search are used to demonstrate the
need for correctness arguments of more complex algorithms.
Stepwise refinement is illustrated with the example of print-
ing images [1]. Proper programming style (indentation, com-
ments, naming) is discussed and from that point on enforced.
The assignments are with paper-and-pencil only and force
students to argue about programs without running and test-
ing them. While this comes as a surprise to students, it
puts students with and without programming experience on
the same level. Verification is continued to be practiced
throughout both software design courses: our observation is
that one semester is not sufficient for students to feel com-
fortable with writing annotations.

Statements with Partial Expressions

Assignment. Assume a: array N of T.

wp(x := E, P) = ∆E ∧ P [x\E]
wp(a(E) := F, P) = ∆E ∧∆F ∧ (0 ≤ E < N) ∧ P [a\(a; E : F)]

Conditional.

wp(if B then S, P) = ∆B ∧ ((B ∧ wp(S, P)) ∨ (¬B ∧ P))
wp(if B then S else T, P) =

∆B ∧ ((B ∧ wp(S, P)) ∨ (¬B ∧ wp(T, P)))

Repetition. If

B ∧ P ⇒ wp(S, P) (P is invariant of S)
B ∧ P ∧ (T = v) ⇒ wp(S, T < v) (S decreases T)
B ∧ P ⇒ T > 0 (T < 0 causes termination)
P ⇒ ∆B (B is always defined)

then

P ⇒ wp(while B do S, P ∧ ¬B)

Figure 2: Excerpt from Elements of Programming

Lecture 2: Program Modularization

The goals and principles of modularization are discussed and
a notation for modules is introduced, see Fig. 3. The prin-
ciples are supported by a discussion of the consequences of
local module invariants (cohesion) and global module invari-
ants (coupling). The KWIC example is used for illustrating
the difference in qualities that arise from different modular-
izations [5]. The key point is that students learn that there
is not the ideal modularization, but only one for—explicitly
stated—anticipated changes. The need for robustness of
modules is discussed and defined formally. Exercises con-
tinue to practice formally reasoning about programs, but
also show how to map modules to the constructs found in
programming languages, in particular how encapsulation is
enforced in common languages.

Lecture 3: Abstract Programs

Four means of abstraction are presented: (1) multiple as-
signments, as a way of abstacting from an arbitrary order-
ing of individual assignments, (2) guarded commands, as a
way of expressing bounded nondeterminism, (3) specifica-
tion statements, as a way of expressing unbounded nonde-
terminism, and (4) abstract data types, for data abstraction.
These are first illustrated with simple, abstract algorithms
and then with examples as typically found in books on al-
gorithms and data structures. Exercises practice the use of
abstract data types for modelling information systems, as a
preparation for object-oriented modelling. The techniques
are then used for the specification of modules: the previous
notation of a syntactic interface of a module is augmented
by a complete abstract specification. Abstraction continues
to be repeated throughout both courses. While we tried
to start the first course with abstract programs instead of
concrete programs, our experience was that students didn’t
have an understanding of what they are abstracting from;
we find that it takes students significant time to appreciate
for example nondeterminism.

Lecture 4: Testing

The role and need for testing are discussed. Testing is pre-
sented as complementing verification. Testing the internal
consistency of modules is illustrated with checking module
invariants. Specification based testing is used for both black
box and white box testing. The wp calculus is used for de-

Why Modularization

Modularzation serves three purposes:

Comprehensibility We cannot understand a sizeable program un-
less we split it into manageable parts.

Maintainability We cannot make changes to a sizeable program un-
less the changes are confined to some parts.

Development We cannot develop a sizeable program in a team un-
less each team member develops their own part.

These goals necessitate the division of a program into modules with
interfaces and implementations:

• Modules can be used based on their interface, without the need
of understanding their implementation.

• Modules can be implemented based on their interface, without
the need of knowing their use.

This way the clients (users) and the implementation of a module can
be designed separately and can evolve (more) independently.

Module Invariants

A module invariant characterizes the possible states of a module. It is
a predicate that holds after the initialization and after any subsequent
call to the module. As the module invariant is an essential design
decision of a module, we document the invariant as an annotation:

module BoxOffice
public const CAPACITY = 250
var seats : integer
{invariant: 0 ≤ seats ≤ CAPACITY}
public procedure bookSeat

require seats < CAPACITY then seats := seats + 1
public procedure cancelSeat

require seats > 0 then seats := seats − 1
begin seats := 0
end

Figure 3: Excerpts from Modularization

riving test cases to achieve various types of coverage, as in
Fig. 5. Test strategies are discussed. The assignments prac-
tice writing both implementations of modules and test suites
according to formal specifications; in one assignment both
implementations and test suites are run against (faulty) ones
from other students. From that point on students are con-
vinced of the need for precise specifications.

Lecture 5: Exception Handling

Failures, the need for exception handling despite verification
and testing, and ways of reacting to exceptions are discussed.
The raise and the try-catch statements, as the dominant
exception mechanism, are introduced textually and graph-
ically, and then defined formally through wp. Verification
of exception handing is practiced with small examples. The
correct design of exception handlers in modular programs is
discussed. Students should understand that, for example,
an exception handler is supposed to re-establish the module
invariant and establish an alternative postcondition. Pro-
gramming exercises from now on have to include proper ex-
ception handling.

Lecture 6: Functional Specifications

A formal model of programs in terms of relations is given
and connected to wp. The use of predicative specifications is
discussed. Tabular specifications are used to discuss the con-
cepts of completeness of consistency of specifications [6], see

Two Nondeterministic Programs

Determining the maximal value in an array:

var i : integer
begin m, i := a(0), 1 ;

do i < n →
if a(i) ≤ m → skip
[] a(i) ≥ m → m := a(i)
fi ;
i := i + 1

od
end

Determining a location of the maximal value in an array:

var i : integer
begin k, i := 0, 1 ;

do i < n →
if a(i) ≤ a(k) → skip
[] a(i) ≥ a(k) → k := i
fi

do ;
i := i + 1

end

Both programs are nondeterministic, but the outcome of the first is
unique.

Algorithmic Abstraction vs. Data Abstraction

• Multiple assignments, guarded commands, and specification
statements provide algorithmic abstraction: they abstract
from possible algorithms implementing them, but are expres-
sion in therms of the data structures of the program.

• Data abstraction abstract from possible data structures of the
implementation by using abstract data types.

Example. Counting the number of distinct elements of array a :
array N of T:

var i : integer, s : set of T
begin i, s := 0 , {} ;

do i < N → s := s ∪ {a(i)} ; i := i + 1 od ;
num := #s

end

Here we abstract from how elements of the set s are stored: they can
be stored in an array, liked list, or hash table.

Figure 4: Excerpts from Abstract Programs

Fig. 7. Algorithmic refinement and data refinement are for-
malized with relations. Previous examples of module speci-
fications and implementations are revisited and formally an-
alyzed; the emphasis here is on understanding the concept of
a refinement relation, as a preparation for class refinement.

Lecture 7: Object-Oriented Programs

Classes and inheritance are introduced textually and graph-
ically. The object-oriented style is contrasted with the tra-
ditional style. A formal model of classes and inheritance
is given that makes the additional complexity of object-
oriented design explicit by translation into a model with
variables and procedures only, see Fig. 8. Class invariants
and class refinement are studied in this model. Class re-
finement is then used to justify “good” and “bad” used of
inheritance. Small exercises enforce the understanding of
the formalism whereas programming assignments practice
class design without formal proofs.

Lecture 8: Object-Oriented Modeling

Object-oriented models are presented as an alternative, graph-
ical way of specifying data structures. For this, class dia-

Path Coverage

Alternatively, we can derive a set of test cases such that all paths are
covered. This includes coverage of all statements. In the example
below, the paths are A-C, A-D, B-C, B-D:

if a(0) < a(1) then
l := 1 – A

else
l := 0 ; – B

if a(l) < a(2) then
l := 2 – C

else
skip – D

Test cases are determined by calculating the weakest precondition
that excludes all alternative paths. For example, for testing the path
B-C we calculate:

¬(a(0) < a(1)) ∧
wp (if a(0) < a(1) then l := 1 else l := 0, a(l) < a(2))

= ”wp of if, logic”
(a(0) ≥ a(1)) ∧ wp(l := 0, a(l) < a(2))

= ”wp of := ”
(a(0) ≥ a(1)) ∧ (a(0) < a(2))

From there, we pick arbitrary values that satisfy the precondition, for
example a(0) = 5, a(1) = 4, a(2) = 7.

Testing Modules

Since modules may have private variables, we can neither set nor
inspect their values directly.

• In order to set their values to a desired state, we have to call a
sequence of modifiers (modifying public procedures).

• In order to inspect their values, we have to call one or more
observers (observing public procedures).

With testing in mind, we should include sufficiently many modifies
and observers in the interface. This leads to the requirement of de-
signing modules for testability.

Figure 5: Excerpts from Testing

grams are extended with various forms of associations that
are given a textual definition. The use of object-oriented
models for a partial (abstract) view and for guiding the mod-
ularization according to data is practiced (repeating that
lesson from Modularization). The transition from an object-
oriented model to an object-oriented implementation is ex-
plained as a refinement step, in accordance with the earlier
formalization of refinement, and practiced informally.

Lecture 9: Requirements Analysis

The need for formulating requirements in the “user’s world”
and the need for distinguishing user requirements from pro-
gram specifications is discussed. The step of delineating
the context of a software system is discussed with use cases
and use case diagrams. The notion of the interaction of a
software system with its environment is motivated with se-
quence diagrams. Proving the consistency of a specification
with respect to sequence diagrams is discussed using wp, see
Fig. 10. The derivation of test cases from sequence diagrams
is discussed, thus connecting the topic of requirements anal-
ysis with specification, verification, and testing.

Lecture 10: Object-Oriented Design

Object-oriented techniques (like forwarding and delegation),
design patterns, frameworks, subsystems, and components
are discussed. Class invariants and class refinement are used
in explaining class structures, but without formal proofs.
Ten of the common 24 design patterns are selected. Assign-

Finally Clause

A try-catch block may have a finally clause that is executed whether
an exception occurred or not. Suppose S, T , U are statements:

try S catch T finally U

S

T

U

U

Either the catch or the finally clause is optional:

try S catch T = try S catch T finally skip
try S finally T = try S catch raise finally T

Weakest Exceptional Precondition

Recall that wp(S, Q) is the weakest precondition such that statement
S terminates and condition Q holds finally. We define:

wp(S, Q, R) = weakest precondition such that S terminates and
– on normal termination Q holds finally
– on exceptional termination R holds finally

A statement that never raises an exception can be equivalently defined
through weakest precondition or weakest exceptional precondition:

wp(S, Q) = wp(S, Q, false)

The weakest precondition wp(S, Q, R) is monotonic in both Q and R:

if Q⇒ Q′ and R⇒ R′ then wp(S, Q, R)⇒ wp(S, Q′, R′)

Figure 6: Excerpts from Exception Handling

ments use the java.util framework for illustrating the use of
design patterns when extending frameworks.

Lecture 11: Reactive Programs

The characteristics of reactive programs are contrasted with
those of transformational programs. Statecharts are intro-
duced as a dedicated formalism for reactive programs. The
event-based approach to reactive systems is contrasted with
the state-based approach. The elements of statecharts are
first illustrated and then defined in terms of guarded com-
mands, following [9, 10], see Fig. 11. Assignments prac-
tice the use of statecharts with iState, a statechart compiler
that follows that definition and allows statecharts to be an-
imated. In the fall of 2006, we experimented with adding
the invariants to statecharts, with automatic verification in
iState following [4].

Lecture 12: Software Development Process

Different software development processes are mentioned, with-
out going into detail (for time).

Interlude: Software Tools

Additionally, the topic of Configuration Management was in-
cluded at the beginning of Software Design 2 and subversion
was used from that point on for all assignment submissions.
The assignments used Pascal, Java, jUnit (for testing), and
iState (for statecharts); introduction to these was provided
in optional tutorials.

3. EVALUATION
Except for the topics of Configuration Management and

Software Development Process, all other topics used a coher-
ent notation and coherent mathematical basis. We did not

Completeness and Consistency with Tabular Specifications

When specifying complex systems, two fundamental issues arise:

Completeness: Does the specification cover all possible cases, or did
we forget some cases?

Consistency: Are there contradictions in our specification, or is is
consistent?

Both issues are addressed by tabular specifications: besides making
it easier to check specifications for completeness and consistency, they
make large specifications more readable and more appealing by the
two-dimensional notation.

Properties of Tabular Specifications

Let a table with header H = (p1, . . . , pn) be given.

p1 . . . pn

.

.

.
.
.
.

.

.

.
.
.
.

• H is disjoint if ¬(pi ∧ pj) for all i 6= j.

• H covers p if p1 ∧ . . . ∧ pn = p.

• H partitions p if H is disjoing and H covers p.

Figure 7: Excerpts from Functional Specifications

observe that students are in any sense math-phobic: they
are sceptical towards the use of logic in software design as
much as they are sceptical toward design patterns and con-
figuration management systems; they haven’t seen the need
for any of these. In a series of assignments, the use of each
concept of the course is practiced. At the end of the sec-
ond course, students take the use of logic for granted. The
topic that caused the most difficulties was object-oriented
modelling: while the concepts are mathematically easy to
explain, acquiring proficiency in practice would have taken
more time than was available. The topic was dropped in
later editions of Software Design 2.

Requiring students to take a course in logic and discrete
math before Software Design 1 had only a moderate effect
on their ability to use logic and abstract data types for the
description of problems. Our explanation is that logic and
discrete math courses traditionally teach a body of knowl-
edge, and do not practice the use for description and do
not practice proving. Additionally, the difference in no-
tation, as for implication and for quantification, prevents
students from seeing the connection even if there is an ob-
vious one (one can easily find a dozen different notations
for quantification; we doubt that calculus would have the
same influence if that many different notations for addition
or integration would be used). Operators that are useful in
software design, like relational overwrite, are not taught in
discrete math courses; usually (untyped) first-order logic is
taught, rarely equational proofs. A good portion of Soft-
ware Design 1 is spent—or rather wasted—with introducing
notation for typed logic, data types, and equational proofs.
One would wish that the field would have matured by now
to standardize them.

We did not observe that students with previous experience
in programming did better than those without. To the con-
trary, students with previous experience are being more dis-
missive of topics like modelling, design patterns, configura-
tion management, except if they have already been exposed
to those. In questions on verification, these students gener-

Definition of Inheritance

Methods correspond to procedures that take an additional parameter
for this; the body must not assign to this. Self-calls are resolved to
the methods of the class itself:

class C
var a : A
method s

S
method t

T
end

=

var C : set of Object
var a : map Object to A
invariant

nil ∈ C ∧ dom a = C − {nil}
procedure C.s(this : C)

S[s, t \ C.s, C.t]
procedure C.t(this : C)

T[s, t \ C.s, C.t]

class D inherit C
var b : B
override method t

T ′

method u
U

end

=

var D: set of Object
var b: map Object to B
invariant D ⊆ Y ∧

nil ∈ C ∧ dom a = C − {nil}
procedure C.s(this : C)

S[s, t, u \ D.s, D.t, D.u]
procedure C.t(this : C)

T ′[super.s, super.t \ C.s, C.t]
[s, t, u \ D.s, D.t, D.u]

procedure C.u(this : C)
U[s, t, u \ D.s, D.t, D.u]

Forms of Inheritance

Object-oriented languages own much of their popularity due to the
way in which inheritance can be used (or misused). Good uses of
inheritance are:

• Inheritance for modelling

• Inheritance for specification

• Inheritance for code sharing

Inheritance for modelling is used to let the structure of the program
reflect the structure of the problem: the program becomes easier to
understand and to maintain. It applies when the one class is a gen-
eralization, or conversely a specialization of another class.

Shape

Rectangle OvalLine

The essence is that each subclass must be a refinement of its super-
class.

Figure 8: Excerpts from Object-Oriented Programs

ally performed poorer. One reason is that these students find
it more difficult to think abstractly about programs. The
other reason is purely notational: with = meaning assign-
ment in some programming languages but equality in math-
ematics, they confuse these two notions and write meaning-
less correctness statements like {true}x = x+1 {x = x+1}.
They have initial difficulties distinguishing between a prop-
erty of a state and a statement leading to that property. At
the end of the second course the difference between students
with and without previous experience disappears. Still, one
would wish that programming languages would follow the
tradition of mathematics in the use of =.

Students are required to complete a two-semester design
project in their fourth year. Software Design 2 was consis-
tently ranked as the most useful course in a questionnaire
at the end of the project and Software Design 1 as the third
most useful course. While that may sound encouraging, the
projects rarely show a sufficiently systematic application of
the techniques. That may be partly due to the explorative

Constraints

Constraints allow to express additional restrictions which are not cap-
tured by the diagrams on their own. Constraints can be attached to
classes. Such constraints become an additional part of the invariant
[example omitted]. Constraints can also be written next to associa-
tions. Dashed lines are used to connect the involved associations:

Person Committee

memberOf

chairOf

subset

var Person : set of Object
Committee : set of Object
memberOf : rel Object to Object
chairOf : rel Object to Object

invariant
dom memberOf ⊆ Person ∧
ran memberOf ⊆ Committee ∧
ran chairOf = Committee ∧
injective(chairOf) ∧
chairOf ⊆ memberOf

Refining Class Diagrams

Class diagrams are a way of graphically expressing object-oriented
system models. Some concepts, like classes with attributes and meth-
ods, can be readily implemented in programming languages, while
others, like associations and qualification, cannot. In such cases, we
have to refine our model, perhaps in several steps, until we arrive at
a model that is sufficiently close to our programming language. The
refined models can be expressed graphically as well.

Refining Associations by Pointers. Consider:

Person

name : string

salary : real

boss

worker

Suppose we decide to implement the association by adding an at-
tribute boss to each person. That attribute could be nil or a pointer
to the boss, reflecting the zero-or-one multiplicity.

Figure 9: Excerpts from Object-Oriented Modeling

nature of these projects. However, the author believes that
this is mainly due to these concepts not being repeated and
practiced elsewhere. In courses on databases, operating sys-
tems, compilers, user interfaces, networks, real-time and al-
gorithms terms like invariants and robustness are not used,
giving the impression that these notions are not universally
relevant. To give evidence to this claim, we refer to the
analysis of the five most popular algorithm textbooks in
[11]: four books, with 550 to 770 pages, devote zero pages
on correctness and one book with 790 pages devotes eight
on correctness. One would wish that textbooks and instruc-
tors would acknowledge the usefulness of these notions more
widely.

Over the years, in the course evaluations 30%–65% of the
students report that 81%–100% of the course material seems
valuable and 35%–50% report that 61%–80% seems valu-
able. The numbers were on the higher end in later years and
for Software Design 2 (not all students continue with Soft-
ware Design 2). The use of independent critical judgement
was rated high, particularly in later years. The overall de-
livery of the course received mixed evaluations, because the
material was not fully developed in earlier years, the mate-
rial was not motivated well in earlier years, most teaching
assistants were of little help to the students, and because
students felt overloaded. Except in the first year, there were

Sequence Diagrams

Scenarios can be described by sequence diagrams (message sequence
charts) showing vertically an interaction sequence among actors and
the system over time:

• Solid horizontal arrows indicate a message (interaction).

• Dashed horizontal arrows indicate a response to a previous mes-
sage.

For example, for part of the Set Extension use case followed by the
Query Extension use case:

Administrator Telephone Directory

add name of p

set extension of p

query extension of p

extension of p

Checking Specifications Against Scenarios

Consider the scenario:

Setting the extension of a specific person and querying
the extension of that person will return the same exten-
sion again.

To check if our specification allows this scenario, we analyze the se-
quence of calls

S = setExtension(p, e1) ; queryExtension(p, e2, found)

by determining its weakest precondition with respect to postcondition
found ∧ (e1 = e2):

wp(S, found ∧ (e1 = e2))

In general, the goal is to check:

inv ∧ pre ⇒ wp(scenario, post)

Note that if every procedure called by the scenario preserved inv, we
also have:

inv ⇒ wlp(scenario, post)
inv ∧ pre ⇒ wp(scenario, post ∧ inv)

Figure 10: Excerpts from Requirements Analysis

no complaints that the contents is overly mathematical.

4. DISCUSSION
We believe that we have successfully used mathematics as

the unifying force for elements of software design into a two-
semester courses in software design. The material is covered
in 710 pages of lectures notes by the author plus a couple of
original articles and book chapters (a course pack with the
material is printed for students on demand). The mixture
of mathematical and less mathematical topics gives students
confidence that the use of mathematics is justified. We could
not have done this with a single one-semester course.

If teaching the mathematics of software design is to be
useful, it has to be taught as early as possible, before stu-
dents acquire “bad habits,” a point that has been repeatedly
made, e.g. [7]; we wish we could have started even earlier
in the curriculum. We have deliberately not used a specific
formal tool; we find those more appropriate for upper level
courses. Gordon [3] also offers a two-semester course, also

Implementing Statecharts

We now present a translation scheme for all elements of statecharts,
except timing. A statechart is implemented by a module:

• States are represented by variables;

• Events are represented by procedures.

This way “generating an event” means ”calling a procedure”. (We
note that a completely different implementation is possible in which
events are treated as data.)

S1 ... Sn
var s : (S1, ..., Sn) := S1

Si
E(p)[c]/a

Sj

procedure E(p)
if s = Si ∧ c then

begin a ; s := Sj end

For brevity, we leave out parameters, conditions, and actions in sub-
sequent rules. They have to be added according to above scheme.

Suppose there are several transitions on event E. Here Si, . . . , Sj are
not necessarily distinct states, with an overlap leading to nondeter-
minism:

Si
E S′

i

... ...

Sj
E S′

j

procedure E

if s = Si → s := Ei
′

[] ...

[] s = Sj → s := Sj
′

[] s 6= Si ∧ ... ∧ s 6= Sj → skip
fi

Hierarchy.

Sj

R1 ... Rm

var s : (S1, ..., Sn)
var r : (R1, ..., Rm)

Figure 11: Excerpts from Reactive Program

using higher order logic as a unifying framework, but cov-
ers the logical aspects in more detail, and includes hardware
verification. We have not tried to use any “light” method
that makes formal techniques “invisible”; in our experience
students appreciate being taught the theory in an isolated,
minimal way, before seeing it applied with constraints.

Compared to the inverted curriculum, or outside-in order
by Pedroni and Meyer [8], we do not teach class design be-
fore control structures, but we do teach programming before
requirements analysis. Our way of introducing formal tech-
niques is less gentle than theirs, but our reason is the same
as for their outside-in order: to put all students on the same
level and keep them motivated. We have succeeded with
the first one, even if it comes by shocking the students in
the first classes with mathematics, for which they were not
prepared; we were less successful in keeping them motivated
during Software Design 1.

While we believe that the courses influenced the way how
students think about programs, the main obstacle for having
a profound influence on their practice of programming is
that concepts are not being repeated and practiced in other
courses. We agree with Dijkstra’s observation on computing
science [2]:

... providing symbolic calculation as an alter-
native to human reasoning ... is sometimes met
with opposition from all sorts of directions: ... 6.
the educational business that feels that if it has
to teach formal mathematics to CS students, it
may as well close its schools.

If anything, with low enrollment numbers the pressure to

eliminate mathematics has increased.

5. ACKNOWLEDGEMENTS
The author would like to thank David Parnas, Michael

Soltys, and the two reviewers for their careful reading and
thoughtful suggestions.

6. REFERENCES
[1] E. W. Dijkstra. Notes on structured programming. In

O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
editors, Structured Programming. Academic Press,
1972.

[2] E. W. Dijkstra. On the cruelty of really teaching
computing science. Communications of the ACM,
32(12):1398–1404, 1989.

[3] M. Gordon. Specification and Verification, Parts I and
II. http://www.cl.cam.ac.uk/~mjcg/, 2006.

[4] D. T. M. Le, E. Sekerinski, and S. West. Statechart
verification with iState. In M. Chechik, editor, Formal
Methods 2006—Posters and Research Tools, Hamilton,
Ontario, 2006. http://fm06.mcmaster.ca/istate.pdf.

[5] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, 1972.

[6] D. L. Parnas. Tabular representation of relations.
CRL Report 260, McMaster University, October 1992.

[7] D. L. Parnas. “Formal Methods” technology transfer
will fail. Journal of Systems and Software,
40(3):195–198, 1998.

[8] M. Pedroni and B. Meyer. The inverted curriculum in
practice. In SIGCSE Technical Symposium on
Computer Science Education, Houston, Texas, USA,
2006. ACM Press.

[9] E. Sekerinski and R. Zurob. iState: A statechart
translator. In M. Gogolla and C. Kobryn, editors,
UML 2001 – The Unified Modeling Language, 4th
International Conference, Lecture Notes in Computer
Science 2185, Toronto, Canada, 2001. Springer-Verlag.

[10] E. Sekerinski and R. Zurob. Translating statecharts to
B. In M. Butler, L. Petre, and K. Sere, editors, Third
International Conference on Integrated Formal
Methods, Lecture Notes in Computer Science 2335,
Turku, Finland, 2002. Springer-Verlag.

[11] A. B. Tucker, C. F. Kelemen, and K. B. Bruce. Our
curriculum has become math-phobic! In SIGCSE
Technical Symposium on Computer Science Education,
Charlotte, North Carolina, USA, 2001. ACM Press.

