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Abstract

An operator for the composition of two processes, where one process has
priority over the other process, is studied. Processes are described by action
systems, and data refinement is used for transforming processes. The opera-
tor is shown to be compositional, i.e. monotonic with respect to refinement.
It is argued that this operator is adequate for modelling priorities as found in
programming languages and operating systems. Rules for introducing prior-
ities and for raising and lowering priorities of processes are given. Dynamic
priorities are modelled with special priority variables which can be freely
mixed with other variables and the prioritising operator in program develop-
ment. A number of applications show the use of prioritising composition for
modelling and specification in general.

1 Introduction

Priorities in concurrent computations is a concept found in various programming
languages and operating systems. We develop a theory of priorities, in which prior-
ities have a “logical” meaning: a process of a certain priority cannot be interrupted
by a process of a lower priority, but will be interrupted if a process of a higher pri-
ority becomes ready. For example, interrupt priorities and priorities of Modula-2
modules (monitors) belong to this class. By contrast, priorities of UNIX processes
affect only the proportional allocation of processor time. Also, in occam assigning
priorities belongs to “configuration” which comes after the logical design [17]. In
these situations priorities are only hints to the scheduler, and the programmer is not
supposed to rely on any logical effect.
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The core of our theory is an operator for prioritising composition of processes
described as action systems, and an operator for prioritising composition of indi-
vidual actions. An action system is a set of guarded commands, or actions, sharing
local variables [3]. Action systems model parallelism by interleaving of atomic
actions.

Basic algebraic properties of both forms of prioritising composition are pre-
sented (Sec. 3). The main theoretical result is that prioritising composition of
action systems is compositional in the sense that it is monotonic with respect to
refinement of its operands under the same circumstances that parallel composition
is (Sec. 4). A specification may already contain priorities, or priorities may be in-
troduced by a refinement step using a rule for prioritising decomposition (Sec. 5).
Furthermore, rules are given for raising and lowering the priority of processes (Sec.
6). The use of prioritising composition is illustrated for resource sharing, overrid-
ing behaviour, modelling control systems, timed action systems, and various forms
of scheduling by dynamic priorities (Sec. 7). These applications show the use-
fulness of prioritising composition for modelling and specification in general, not
only as a programming language construct.

The prioritising composition of action systems is similar to prioritising parallel
compositionPRI PARof occam, and the prioritising composition of actions is sim-
ilar to thePRI ALTconstruct. As in the prioritising composition of action systems
no parallelism is possible between the action systems of different priorities, we
simply call it prioritising composition rather than prioritising parallel composition.

Our treatment of (static) priorities is purely based on the enabledness of ac-
tions: if one of two (or more) enabled actions is to be chosen for execution, the
one with the higher priority is given preference. For this, we assume only that the
behaviour of actions is characterised by the weakest precondition predicate trans-
former, which yields the enabledness of actions. Hence, we expect that the results
are generalisable to related models of parallelism, like Unity [9] or the Temporal
Logic of Actions [15], which also define enabledness of actions, but additionally
consider fairness. Since fairness only influences nondeterministic choice, but not a
choice based on priorities, fairness is independent of priorities, and is not consid-
ered here.

Priorities have been included in various process algebras [7, 10, 20]. The ap-
proaches vary slightly and some authors introduce prioritising operators between
actions while others give priorities to actions themselves. The approaches that
come closest to ours are those of Fidge [12] and Lowe [16] who define prioritising
operators for CSP. The work by Fidge is directed towards giving a formal basis for
the prioritising constructs in Ada and occam, whereas Lowe describes a determin-
istic model for timed CSP extended with prioritising operators on actions. It has
also been noted in the context of process algebras that a prioritising composition
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can be understood as the extreme case of a probabilistic choice [23, 24]. Here we
study prioritising composition in a simple model without introducing probabilities.

Our treatment of priorities has its foundations in a state based rather than event
based formalism: the basic communication mechanism between action systems are
shared variables. This leads to a style of reasoning as for imperative programs. In
particular, it allows for data refinement of action systems, a useful technique for
distributing action systems [2], and the main subject of the study here. The works
on process algebras mentioned above focus on extending the semantic basis for
dealing with the language constructs, and do not treat methodological aspects of
the introduced constructs or refinement. In our case, the underlying action systems
theory is already rich enough to support these new operators.

2 Action Systems

An action systemA is a set of actions operating on local and global variables:

|[ var a | A0
• do A1 [] . . . [] An od ]|

Action systemA describes a computation, in which local variablesa are first cre-
ated and initialised such that predicateA0 holds. Then repeatedly any of the en-
abled actionsA1, . . . , An is nondeterministically selected for execution. The com-
putation terminates if no action is enabled, otherwise it continues infinitely. Ac-
tions operating on disjoint sets of variables can be executed in any order or in
parallel. The global variables ofA are those mentioned inA0, A1, . . . , An but not
declared locally.

Actions are taken to beatomic, meaning that only their input-output behaviour
is of interest. They can be arbitrary sequential statements. Their behaviour can
therefore be described by the weakest precondition predicate transformer of Dijk-
stra [11]: wp(A, p) is the weakest precondition such that actionA terminates in a
state satisfying predicatep. In addition to the statements considered by Dijkstra,
we allow assumptions[q], whereq is a predicate, and nondeterministic choiceA [] B
between actionsA, B. The assumption[q] can be thought of as stopping execution
if q does not hold.

wp(abort, p) = false wp([q], p) = q⇒ p

wp(skip, p) = p wp((A [] B), p) = wp(A, p) ∧ wp(B, p)
wp(v := e, p) = p[v := e] wp((A ; B), p) = wp(A, wp(B, p))

Other operators can also be defined. The restriction we impose is that all actions
are (finitely) conjunctive, hence excluding angelic nondeterminism:

wp(A, p∧ q) = wp(A, p) ∧ wp(A, q) (1)
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All of the above operators are conjunctive or preserve conjunctivity. Conjunctivity
implies monotonicity:

(p⇒ q) ⇒ (wp(A, p) ⇒ wp(A, q)) (2)

Action A preserves predicatep if, under the assumption thatp holds initially andA
does terminate (does not abort),A establishesp. The predicatewp(A, true) is true
in those states in whichA does not abort:

A preservesp iff p∧ wp(A, true) ⇒ wp(A, p)

A variable is said to be assigned by actionA if it occurs on the left hand side of
an assignment inA. Another property we require all actions to satisfy is following
noninterference condition.

A preservesr if free variables ofr are not assigned inA (3)

All of the above operators satisfy this noninterference property or preserve it.
As we are only interested in the input-output behaviour of actions, we consider

two actions to be equivalent if they always establish the same postcondition:

A = B iff for all p : wp(A, p) = wp(B, p)

An action that establishes any postcondition is said to be miraculous. We take
the view that an action is only enabled in those initial states in which it behaves
nonmiraculously. The guard of an action characterises those states for which the
action is enabled:

gd A = ¬wp(A, false)

For example, we have thatabort, skip, andv := e are always enabled. The nonde-
terministic choiceA [] B is enabled when eitherA or B is enabled:

gd(A [] B) = gd A∨ gd B (4)

The guarded actiong→ A is defined using assumption as follows:

g→ A = [g] ; A

The guarded actiong→ A is only enabled wheng holds andA is enabled:

gd(g→ A) = g∧ gd A (5)

As the nondeterministic choiceA [] B is included as an operator on actions, we
can confine ourselves to action systems with only a single action. Furthermore,
declared variables are either private or can be made public by marking them with a
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star (∗). Public variables are initialised and possibly modified in the action system
they are declared in, but can also be read by other action systems. Hence an action
systemA is in general of the form:

|[ var a, x∗ | A0
• do A od ]|

An action system is formally a pair with the first component describing the initial
values of the local and public variables and the actionA as the second component.

An action system can also be associated with a set of behaviours. Letu be the
list of global variables ofA , which also includes the public variables. A behaviour
is a sequence of states with components for both private and global variables, i.e.
of the form 〈(a0, u0), (a1, u1), . . .〉. The first element of each behaviour has to
satisfy the initialisation predicateA0 and all consecutive pairs of elements have to
be according toA in the sense that:

((a, u) = (a0, u0)) ⇒ A0

((a, u) = (ai , ui)) ⇒ ¬wp(A,¬((a, u) = (ai+1, ui+1)))

Note thatwp(A, p) characterises those states in whichA is guaranteed to estab-
lish p, whereas¬wp(A,¬p) characterises those states in whichA may establish
p. Behaviours are either finite or infinite. Finite ones are eitherterminatingor
aborting. They are terminating if they end with an element(an, un) satisfying
((a, u) = (an, un)) ⇒ ¬gd A. Finite ones are aborting if they end with an element
satisfying((a, u) = (an, un)) ⇒ ¬wp(A, true).

Both views of action systems are described by Back and von Wright [6]. Our
use of the behavioural view is to justify data refinement of action systems (Sec. 4).

3 Prioritising and Parallel Composition

We start by defining the prioritising composition of actions, and then considering
the parallel and prioritising composition of action systems.

Let A, B, C be actions. The prioritising compositionA // B selects the first
operand if it is enabled, otherwise the second, the choice being deterministic.

A // B = A [] (¬gd A→ B)

SinceA = gd A→ A, the above definition can be equivalently stated as:

A // B = (gd A→ A) [] (¬gd A→ B) (6)

The prioritising composition of two actions is enabled if either operand is.

gd(A // B) = gd A∨ gd B (7)

5



Prioritising composition of actions is associative, allowing parentheses to be omit-
ted in repeated applications.

(A // B) // C = A // (B // C) (8)

Proof. We transform the left hand side into the right hand side:

(A // B) // C

= {definition of // }
(A // B) [] ¬gd(A // B) → C

= {definition of // , (7)}
A [] ¬gd A→ B [] ¬gd A∧ ¬gd B→ C

= {→ distributes over[] to the right}
A [] ¬gd A→ (B [] ¬gd B→ C)

= {definition of // , twice}
A // (B // C) 2

Prioritising composition of actions distributes over choice to the right.

A // (B [] C) = (A // B) [] (A // C) (9)

Proof.

A // (B [] C)

= {definition of // ,→ distributes over[] to the right}
A [] ¬gd A→ B [] ¬gd A→ C

= { [] idempotent, definition of// }
(A // B) [] (A // C) 2

Prioritising composition does not distribute over choice to the left in general. To see
this, consider the enabledness of the actionC in (A [] B) // C and(A// C) [] (B// C).
In the first case,C can be selected only if bothA andB are disabled. In the second
case,C can be selected if eitherA or B is disabled.

LetA andB be action systems given by:

A = |[ var a, x∗ | A0
• do A od ]|

B = |[ var b, y∗ | B0
• do B od ]|

We assume that the variable listsa andb are disjoint, which can always be achieved
by renaming. The parallel compositionA ‖ B joins the local variables and their
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initialisation and merges the actions by nondeterministic choice, without any as-
sumption of fairness in case both are enabled [2].

A ‖ B = |[ var a, b, x∗, y∗ | A0 ∧ B0
• do A [] B od ]|

The prioritising compositionA // B combinesA andB in a way that preference is
given to the action ofA . The choice between the action ofA andB is deterministic
in the sense that when both are enabled, the action ofA is taken.

A // B = |[ var a, b, x∗, y∗ | A0 ∧ B0
• do A // B od ]|

Next we investigate the algebraic properties of prioritising composition. LetC
be an action system, given by:

C = |[ var c, z∗ | C0
• do C od ]|

Prioritising composition of action systems is associative (like parallel composi-
tion), allowing us to omit parentheses in repeated applications.

(A // B) // C = A // (B // C) (10)

Proof. The theorem follows from the definition of// and (8). 2

We use indexed action systems to denote sets of action systems. In the action
system

A = B1 // B2 // B3 // . . .

B1 has priority overB2, which in turn has priority overB3, and so on. Hence this
models a hierarchy of priorities. In a system with several processes, there may be
classes of processes running with the same priority. This corresponds to action
systemsBi being of the form:

Bi = Ci,1 ‖ Ci,2 ‖ Ci,3 ‖ . . .

HereCi,j correspond to the individual processes andBi correspond to the priority
classes. In a typical programming environment the priority of a process would
be given by a number, rather than by constructing a large expression of the above
form. This number determines the classBi to which the process belongs. This
translation shows that the numbers themselves are irrelevant, only the order they
induce is relevant. Indeed, our theory of priorities is based solely on expressions
of the above form, but is applicable to programming environments where priorities
are determined by numbers.
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Let G be an action system without local variables, i.e. of the form:

G = |[ do G od ]|

Prioritising composition with an action system without local variables distributes
over parallel composition to the right:

G // (A ‖ B) = (G // A) ‖ (G // B) (11)

Proof. The theorem follows from the definitions of// and ‖ and (9). 2

This theorem would not hold ifG had local variables, since they would get du-
plicated on the right hand side. Prioritising composition does not distribute over
parallel composition to the left in general, for the same reason that prioritising
composition of actions does not distribute over choice to the left.

4 Refinement

In this section we study different notions of refinement for action systems. We
adapt the work of Back and von Wright [6] to handle the prioritising composition
operators on actions and action systems.

Action A is refined by actionC, written A ≤ C, if, wheneverA establishes a
certain postcondition, so doesC:

A≤ C iff for all p : wp(A, p) ⇒ wp(C, p)

Together with the monotonicity ofwp this implies that for a certain precondition,
C might establish a stronger postcondition thanA (reduce nondeterminism ofA)
or even establish postconditionfalse(behave miraculously). Choice ([] ) and se-
quential composition (; ) are both monotonic with respect to refinement in both
operands. Prioritising composition is monotonic in its left operand only if its guard
is not strengthened by the refinement:

A≤ C ⇒ A // B≤ C // B if gd A⇒ gd C (12)

Proof. We transform the right hand side of the implication:

A // B≤ C // B

⇔ {definition of // and→}
A [] [¬gd A] ; B≤ C [] [¬gd C] ; B

⇐ {monotonicity of [] and ; , assumptionA≤ C, reflexivity of≤}
[¬gd A] ≤ [¬gd C]

⇔ {for p, q : [p] ≤ [q] iff q⇒ p, assumptiongd A⇒ gd C}
true
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2

However, prioritising composition is always monotonic in its right operand:

A≤ C ⇒ B // A≤ B // C (13)

Proof. The theorem follows from the definitions of// and→ and the monotonicity
of [] and ; . 2

A variation of refinement is ifA is (data-) refined byC via a relationR, written
A ≤R C. For this, assumeA operates on variablesa, u andC operates on variables
c, u. Let Rbe a predicate overa, c, u:

A≤R C iff for all p : R∧ wp(A, p) ⇒ wp(C, (∃a • R∧ p))

When using the notationA ≤R C, the variablesa andc are assumed to be under-
stood from the context. Data refinement of choice and sequential composition can
be carried out piecewise: ifA ≤R C and B ≤R D, thenA [] B ≤R C [] D and
A ; B ≤R C ; D. Data refinement of prioritising composition additionally requires
that the guard of the left operand is not strengthened under the refinement relation:

(A≤R C) ∧ (B≤R D) ⇒ A // B≤R C // D if R∧ gd A⇒ gd C (14)

Proof. We transform the right hand side of the implication:

A // B≤R C // D

⇔ {definition of // and→}
A [] [¬gd A] ; B≤R C [] [¬gd C] ; D

⇐ {piecewise refinement of[] and ; }
(A≤R C) ∧ ([¬gd A] ≤R [¬gd C]) ∧ (B≤R D)

⇔ {assumptionsA≤R C andB≤R D, for p, q : [p] ≤R [q] iff R∧ q⇒ p}
R∧ ¬gd C⇒ ¬gd A

⇔ {assumptionR∧ gd A⇒ gd C}
true 2

Data refinement laws for assignments and other operators, especially calculational
aspects of data refinement, have been studied by Back [1], Morgan [18] and Morris
[19]. The following law gives the condition under which an actionB is refined via
R by itself. It is applicable whenB does not assign any variables that are refined
usingR.

B preservesR ⇒ B≤R B (15)
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Proof. For anyp, we have for the right hand side:

B≤R B

⇔ {definition of≤R}
R∧ wp(B, p) ⇒ wp(B, (∃a • R∧ p))

⇐ {for anyq: q⇒ (∃a • q), monotonicity}
R∧ wp(B, p) ⇒ wp(B, R∧ p)

⇐ {conjunctivity, logic}
R∧ wp(B, p) ⇒ wp(B, R)

⇐ {monotonicity, logic}
R∧ wp(B, true) ⇒ wp(B, R)

⇔ {B preservesR}
true 2

Data refinement allows the local variables of an action system to be replaced. As-
sume that action systemsA andC are of the form

A = |[ var a, w, x∗ | A0
• do A od ]|

C = |[ var c, w, x∗ | C0
• do C od ]|

where listsa andc are disjoint. LetR be a predicate overa, c, w, x. Action system
A is (data-) refined byC via R, writtenA ≤R C, if

(a) initialisation: C0 ⇒ (∃a • R∧ A0),

(b) main action: A≤R C,

(c) exit condition: R∧ gd A⇒ gd C .

Again, when using the notationA ≤R C, the variablesa and c are assumed to
be understood from the context. The existence of the relationR ensures that the
observable behaviour ofC , in terms of its traces, satisfies that ofA : A tracetr s is
obtained from a behaviours by deleting the local component of each element ofs.
Trace refinementA v C means that every tracetr t of C approximates some trace
tr s of A in the sense that eithertr t = tr s or s is aborting andtr t is a prefix of
tr s. As shown by Back and von Wright [6], data refinementA ≤R C implies trace
refinementA v C.

On action systems, an operatorF(A) is said to be compositional if when refin-
ingA to C, thenF(A) is refined byF(C) as well. Under the above restriction that
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the data refinement relation is only over the variablesa, c, w, x, parallel composi-
tion is compositional in the sense that:

A ≤R C ⇒ A ‖ B ≤R C ‖ B (16)

Proof. The right hand side expands to:

|[ var a, w, x∗, b, y∗ | A0 ∧ B0
• do A [] B od ]| ≤R

|[ var c, w, x∗, b, y∗ | C0 ∧ B0
• do C [] B od ]|

According to the definition of≤R on action systems, three conditions have to be
checked. Forinitialisation we have:

C0 ∧ B0 ⇒ (∃a • R∧ A0 ∧ B0)

⇔ {a not free inB0}
C0 ∧ B0 ⇒ (∃a • R∧ A0) ∧ B0

⇐ {condition (a) ofA ≤R C}
true

For main actionwe have:

A [] B≤R C [] B

⇐ {piecewise refinement of[] }
(A≤R C) ∧ (B≤R B)

⇔ {condition (b) ofA ≤R C}
(B≤R B)

⇐ {(15)}
B preservesR

⇔ {a, w, x not assigned inB, (3)} (*)

true

For exit conditionwe have:

R∧ (gd A∨ gd B) ⇒ (gd C∨ gd B)

⇐ {condition (c) ofA ≤R C}
true 2

If R also ranged over global variables assigned inB, then the step (*) in the proof
would be only valid under the additional noninterference condition thatB preserves
R. This restriction of the refinement relation is similar to the strong simulation of
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Back [2], except that we allowR to depend on (but not change) the public variables
(which are considered there) as well. This implies that if a variable is written by
several processes, it has to be declared global to them and cannot be used in any
local refinement of a process. If a variable is assigned by just one process, it can
be made a public variable of that process and a refinement relation of that process
may depend on it.

Because of its symmetry, parallel composition is monotonic in both arguments.
Prioritising composition is also monotonic in both arguments:

A ≤R C ⇒ A // B ≤R C // B (17)

A ≤R C ⇒ B // A ≤R B // C (18)

Proof. The right hand side of (17) expands to:

|[ var a, w, x∗, b, y∗ | A0 ∧ B0
• do A // B od ]| ≤R

|[ var c, w, x∗, b, y∗ | C0 ∧ B0
• do C // B od ]|

Three conditions have to be checked. Theinitialisation condition and its proof are
identical to the previously given one. Formain actionwe have:

A // B≤R C // B

⇔ {(14)}
(A≤R C) ∧ (B≤R B) ∧ (R∧ gd A⇒ C)

⇔ {conditions (b) and (c) ofA ≤R C}
(B≤R B)

⇐ {(15)}
B preservesR

⇔ {a, w, x are not assigned inB, (3)}
true

By (7), theexit conditionand its proof are identical to the previously given one.
The right hand side of (18) expands to:

|[ var a, w, x∗, b, y∗ | B0 ∧ A0
• do B // A od ]| ≤R

|[ var c, w, x∗, b, y∗ | B0 ∧ C0
• do B // C od ]|

The initialisation condition and its proof are identical to the previously given one.
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For main actionwe have:

B // A≤R B // C

⇔ {(14)}
(B≤R B) ∧ (A≤R C) ∧ (R∧ gd B⇒ gd B)

⇐ {condition (b) ofA ≤R C, logic}
(B≤R B)

⇐ {(15)}
B preservesR

⇔ {a, w, x are not assigned inB, (3)}
true

By (7), theexit conditionand its proof are identical to the previously given one.2

If an action system is refined in several steps, then the refinement relation between
the variables of the original and final action system can be calculated from the
individual refinement relations. Letm be those variables ofB which are refined
underR in A ≤R B and are further refined underS in B ≤S C. Let R; Sstand for
(∃m • R∧ S).

(A ≤R B) ∧ (B ≤S C) ⇒ (A ≤R; S C) (19)

The rule is applied when both operands of a prioritising composition are being
refined independently. LetD also be an action system.

(A ≤R C) ∧ (B ≤SD) ⇒ (A // B ≤R∧S C // D) (20)

Proof. We calculate:

(A ≤R C) ∧ (B ≤SD)

⇒ {(18), (17)}
(A // B ≤R C // B) ∧ (C // B ≤S C // D)

⇒ {(19)}
(A // B ≤R; S C // D)

⇔ {disjoint variables are refined underRandS}
(A // B ≤R∧S C // D) 2

An analogous rule holds for parallel composition. Jointly, these rules allow pro-
cesses in a prioritised process system to be refined individually and the refinement
relation between the initial and final process system to be calculated.
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5 Decomposition

One method of developing a parallel program is to first specify it without consid-
eration of parallelism, and then add parallelism in subsequent development steps.
If the specification is given as an action system

A = |[ var a, x∗ | A0
• do A od ]| ,

the definition of parallel composition directly gives a way of doing so [4]:

Theorem (parallel decomposition). If action systemA is of the form

A = |[ var b, c, y∗, z∗ | B0 ∧ C0
• do B [] C od ]|

where variablesc, z do not occur inB0, variablesb, y do not occur inC0, and
furthermore variablesc do not occur inB, variablesb do not occur inC, then

A = B ‖ C

where:

B = |[ var b, y∗ | B0
• do B od ]|

C = |[ var c, z∗ | C0
• do C od ]| 2

This development method for action systems is now extended to prioritised pro-
grams. We introduce a shorthand for the case when action systemA is refined by
action systemA′ with same local and public variables asA via some refinement
relation:

A ≤ A′ iff for someR : A ≤R A′

This special case of refinement may only reduce nondeterminism of the initiali-
sation and the action and refine aborting behaviour of the action to nonaborting
behaviour. Mutual refinementA ≤ A′ andA′ ≤ A does not imply equality ofA
andA′, since the action ofA andA′ may behave arbitrarily in unreachable states.

Theorem (prioritising decomposition). If action systemA is of the form

A = |[ var b, c, y∗, z∗ | B0 ∧ C0
• do B [] g→ C od ]|

where variablesc, z do not occur inB0, variablesb, y do not occur inC0, and
furthermore variablesc do not occur inB, variablesb do not occur inC, and for
some predicateI ,

(a) initialisation: B0 ∧ C0 ⇒ I ,
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(b) preservation: (B preservesI) ∧ (C preservesI),

(c) exit condition: I ∧ ¬gd B∧ gd C⇒ g

then

A ≤ B // C

where:

B = |[ var b, y∗ | B0
• do B od ]|

C = |[ var c, z∗ | C0
• do C od ]| 2

The role of theexit conditionis to ensure that when eliminatingg, actionC does
not become enabled inB // C when it was not inA , because thenB // C would not
terminate whenA would. However, eliminatingg may decrease nondeterminism.

Proof. TakingI for the refinement relation, we have to show:

|[ var b, c, y∗, z∗ | B0 ∧ C0
• do B [] g→ C od ]| ≤I

|[ var b, c, y∗, z∗ | B0 ∧ C0
• do B // C od ]|

Assuming (a), (b), and (c) of the theorem, three conditions have to be checked. For
initialisation we have:

B0 ∧ C0 ⇒ I ∧ B0 ∧ C0

⇔ {logic, (a)}
true

For main actionwe have:

B [] g→ C ≤I B // C

⇔ {definition of // , C = gd C→ C}
B [] g→ C ≤I B [] ¬gd B→ (gd C→ C)

⇔ {definition of→, for anyp, q : [p] ; [q] = [p∧ q]}
B [] [g] ; C ≤I B [] [¬gd B∧ gd C] ; C

⇐ {piecewise refinement of[] and ; }
(B≤I B) ∧ ([g] ≤I [¬gd B∧ gd C]) ∧ (C ≤I C)

⇔ {assumption (b), (15), for anyp, q, R : [p] ≤R [q] iff R∧ q⇒ p}
I ∧ ¬gd B∧ gd C⇒ g

⇔ {assumption (c)}
true
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For exit conditionwe have:

I ∧ gd(B [] g→ C) ⇒ gd(B // C)

⇔ {(4),(7)}
I ∧ (gd B∨ (g∧ gd C)) ⇒ gd B∨ gd C

⇔ {logic}
true 2

The idea of prioritising decomposition is similar to that of transforming a guarded
conditional to a form with else-branches. It gives a more concise description by
eliminating possibly huge guards (as the applications in Sec. 7 suggest), it shows
the intentions explicitly, and it allows an efficient implementation: On a single
processor machine, lists with processes of each priority need to be kept, and only
if no processes of a certain priority are enabled, does the list with the next lower
priority processes need to be consulted.

6 Changing Priorities

In this section we investigate under which conditions the priority of a process can
be lowered and raised. The typical use of this is to improve the responsiveness of
one process in a way that the correctness of the process system is preserved. We
start by priority changing laws for actions.

If we have the choice between two actions, we can always give preference to
one:

A [] B ≤ A // B (21)

The reverse is true only under an additional condition of exclusion. An actionA
excludes an actionB if their guards are disjoint.

A excludesB iff gd A⇒ ¬gd B

Exclusion of actions is symmetric: ifA excludesB, thenB also excludesA. Under
the assumption of exclusion, choice and prioritising composition are equal:

A [] B = A // B if A excludesB (22)

We give some laws when three actions with only two priorities are involved. When
two actions are of high priority, one of them can be assigned low priority in the
case when it excludes the other action of low priority.

(A [] B) // C ≤ A // (B [] C) if B excludesC (23)
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Proof. This follows from applying (21) and then (22). 2

Likewise, if two actions are of low priority, one of them can be assigned high
priority in the case when it excludes the other action of high priority.

A // (B [] C) ≤ (A [] B) // C if A excludesB (24)

Proof. This follows from applying (21) and then (22). 2

Finally, combining the last two laws gives the conditions under which an action
can be moved between high and low priority.

(A [] B) // C = A // (B [] C) if A excludesB andB excludesC (25)

We continue with priority changing laws for action systems. If we have two
processes running in parallel, we can always give preference to one of them:

A ‖ B ≤ A // B (26)

Proof. Taking the refinement relationR to betrue, we have to show that:

|[ var a, b | A0 ∧ B0
• do A [] B od ]| ≤true

|[ var a, b | A0 ∧ B0
• do A // B od ]|

The three conditions are easily checked. 2

The reverse is only true under an additional condition of exclusion. Action system
A excludes action systemB , if for some predicateI ,

(a) initialisation: A0 ∧ B0 ⇒ I ,

(b) preservation: (A preservesI) ∧ (B preservesI),

(c) exclusion: I ⇒ (A excludesB) .

Exclusion of action systems is symmetric: ifA excludesB , thenB also excludes
A. Under the assumption of exclusion, prioritising composition can be transformed
to parallel composition.

A // B ≤ A ‖ B if A excludesB (27)

Proof. AsA excludesB , we have that the corresponding conditions (a) to (c) hold
for someI . Taking theI for the refinement relation, we have to show:

|[ var a, b | A0 ∧ B0
• do A // B od ]| ≤I

|[ var a, b | A0 ∧ B0
• do A [] B od ]|
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Three conditions have to be checked. Theinitialisation and theexit condition
follow easily. Formain actionwe have:

A // B≤I A [] B

⇔ {asB = gd B→ B, definition of // and→}
A [] [¬gd A] ; B≤I A [] [gd B] ; B

⇐ {piecewise refinement of[] and ; }
(A≤I A) ∧ ([¬gd A] ≤I [gd B]) ∧ (B≤I B)

⇔ {(15), forp, q, R : [p] ≤R [q] if q∧ R⇒ q}
(A preservesI) ∧ (gd B∧ I ⇒ ¬gd A) ∧ (B preservesI)

⇔ {conditions (b) and (c) ofA excludesB }
true 2

We give some laws when three action systems with only two priorities are involved.
When two action systems are of high priority, one of them can be assigned low
priority in case it excludes the other action system of low priority.

(A ‖ B) // C ≤ A // (B ‖ C) if B excludesC (28)

Proof. This follows from applying (26) and then (27). 2

Likewise, if two action systems are of low priority, one of them can be assigned
high priority in case it excludes the other action system of high priority.

A // (B ‖ C) ≤ (A ‖ B) // C if A excludesB (29)

Proof. This follows from applying (26) and then (27). 2

7 Applications

In this section we give a number of application domains for the concepts intro-
duced. This section is not merely a collection of examples of the developed theory,
but more an account of different areas where the operators can be used and sketches
on their use.

7.1 A Shared Resource

Let us apply the concepts of prioritising decomposition, and lowering and raising
priorities. We use a modification of an example by Lowe [16]. Consider the action
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system

Print = |[ var lpi∗ : seq T for i = 1..3 | lpi = 〈 〉 for i = 1..3 •

do gi → lpi := lpi ◦ 〈fi〉 for i = 1..3
[] lpi 6= 〈 〉 → print hd lpi for i = 1..3
od ]|

where the first actiongi → lpi := lpi ◦ 〈fi〉 is supposed to place some filefi into
the printer queuelpi whenever the conditiongi (not specified here) is true. The
second actionlpi 6= 〈 〉 → print hd lpi sends the first file of queuelpi to the printer.
(We ignore removing the file from the queue.) We can decomposePrint into the
following four components:

Useri = |[ var lpi∗ : seq T| lpi = 〈 〉 •

do gi → lpi := lpi ◦ 〈fi〉 od ]|
Lpr = |[ do lpi 6= 〈 〉 → print hd lpi for i = 1..3 od ]|

Now we have that:

Print = Lpr ‖ User1 ‖ User2 ‖ User3

If we want to give priority for the printer server over the users, we combine the
system as:

Print ≤ Lpr // (User1 ‖ User2 ‖ User3)

We can also compose the system by giving a higher priority to one of the users.

Lpr // (User1 ‖ User2 ‖ User3) ≤ Lpr // User1 // (User2 ‖ User3)

Moreover, some user can be given a priority higher than the printer server.

Print ≤ User1 // Lpr // (User2 ‖ User3)

Or all users can run on higher priority than the server.

Print ≤ (User1 ‖ User2 ‖ User3) // Lpr

We can also decompose the system so that every user has his or her own printer
server.

Lpri = |[ do lpi 6= 〈 〉 → print hd lpi od ]|

Then we have that:

Print ≤ (Lpr1 // User1) ‖ (Lpr2 // User2) ‖ (Lpr3 // User3)
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The advantage of this over the decompositionLpr // (User1 ‖ User2 ‖ User3) is
that each user now has to wait only for his or her own printer server, previously all
files had to be printed before another could be enqueued. Hence, starvation can be
a problem when using prioritising composition in this way. In the action system

Print′ = |[ var lpi∗ : seq T for i = 1..3 | lpi = 〈 〉 for i = 1..3 •

do gi → lpi := lpi ◦ 〈fi〉
[] ¬gi ∧ lpi 6= 〈 〉 → print hd lpi for i = 1..3
od ]|

we avoid part of starvation, because the printer takes over only when a user has
nothing to do. Now applying our prioritising decomposition theorem of Sec. 5, the
systemPrint′ can be refined as follows:

Print′ ≤ (User1 // Lpr1) ‖ (User2 // Lpr2) ‖ (User3 // Lpr3)

whereUseri andLpri for i = 1..3 are as above. The refinement is correct, because
¬gi ∧ (¬gi ∧ lpi 6= 〈 〉) ⇒ lpi 6= 〈 〉, which is condition (c) of the theorem with
invariantI as true. The other conditions hold trivially.

7.2 Overriding Behaviour

Consider a process that copies input values to a buffer and outputs them as needed.
Input and output values are stored in global variablesi, o of type T, respectively.
Availability of an input value and a request for an output is indicated by boolean
variablesir , or, respectively. Furthermore the variableresetis set by the environ-
ment if the buffer needs to be emptied immediately.

var i, o : T

var ir , or, reset: Bool

In case there is both a request for input and output, either request can be han-
dled first. However, if there is a request for resetting the buffer, that request has
priority. This is expressed below by an action system with a body of the form
A1 // (A2 [] A3). With the understanding that the operators[] and // have same
binding power and associate to the right, the parenthesis are omitted:

Buffer = |[ var buf : seq T| buf = 〈 〉 •

do reset→ buf, reset:= 〈 〉, false

// ir → buf, ir := buf ◦ 〈i〉, false

[] or ∧ buf 6= 〈 〉 → o, or, buf := hd buf, false, tl buf

od ]|
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This could be equivalently expressed by replacing the operator// by the operator
[] and conjoining¬resetto the guards of the last two actions.

Inheritance The above can be expressed more clearly by a form of inheritance
on action systems. SupposeA andB are given by:

A = |[ var a, x∗ | A0
• do A od ]|

B = |[ inherit A
var b, y∗ | B0

• do B od ]|

Inheritance is defined by the prioritising composition of the actions and joining the
variable declarations, i.e.:

B = |[ var a, b, x∗, y∗ | A0 ∧ B0
• do B // A od ]|

The previous example is now equivalently expressed by:

SimpleBuf = |[ var buf : seq T| buf = 〈 〉 •

do ir → buf, ir := buf ◦ 〈i〉, false

[] or ∧ buf 6= 〈 〉 → o, or, buf := hd buf, false, tl buf

od ]|
Buffer = |[ inherit SimpleBuf

do reset→ buf, reset:= 〈 〉, falseod ]|

More generally, the effect of inheritance is as follows. Consider the action
systems

A = |[ var a, x∗ | A0
• do A [] A′ od ]|

B = |[ inherit A
var b, y∗ | B0

• do B od ]|

whereA andA′ are such that andgd A ⇒ gd B andA′ excludesB. (Any action
systemA can be written in this form.). ThenB overridesA and has the same
priority asA′:

B = |[ inherit A
var a, b, x∗, y∗ | A0 ∧ B0

• do A′ [] B od ]|
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Superposition Inheritance models a form of superposition in the following way.
Let B be an action withgd B⇒ gd A. Then in

B = |[ var a, x∗ | A0
• do (B // A) [] A′ od ]|

the actionB is chosen whenever it andA are enabled at the same time. The action
A is chosen whenevergd A∧ ¬gd B holds. LetA be as above. IfA excludesA′,
thenB can be equivalently expressed as:

B = |[ inherit A
do B od ]|

The underlying understanding is that the actions are identified by their guards
(rather than their name). To model a stronger form of superposition, whereA is
never chosen inB , the conditiongd A⇒ gd B is needed. Superposition of action
systems is more thoroughly discussed by Back and Sere [5].

7.3 Control Systems

A control system consist of a control program, thecontroller which maintains a
continuous interaction with its environment, theplant. Sensorsare used by the
controller for inspecting the state of the plant andactuatorsfor influencing it. We
can describe both controller and plant by action systems. Let the values of the
sensors and actuators be given by the variabless, a, respectively. A part of the state
of the plant might not be visible to the controller, which is modelled by variables
local to the plant. Likewise, the controller may also have local variables:

Plant = |[ var p, s∗ | P0
• do P od ]|

Controller = |[ var c, a∗ | C0
• do C od ]|

We consider the sensors to be exported variables of the plant and the actuators to
be exported variables of the controller. The behaviour of the whole control system
is then given by:

System = Controller // Plant

Prioritising composition is used to express that the evolution of the plant is inter-
rupted by controller actions as soon as they become enabled: the controller actions
harness the plant so that the plant is forced to behave in a correct, well-controlled
way. Once the controller is enabled, the controller action is taken, possibly re-
peatedly, until the controller disables itself. This assumes that the controller is
sufficiently fast such that a possible evolution of the plant during the controller
reaction is negligible.
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Because of the monotonicity of prioritising composition, both controller and
plant can be refined independently. An application of this model to a discrete
event control system is described by Rönkkö, Sekerinski, Sere [21]. The system-
atic derivation of control programs using this model is studied by Sekerinski [22],
and this was also the initial motivation for introducing prioritising composition on
action systems.

7.4 Timed Action Systems

Consider an action systemAwhich accesses the global variablenowthat represents
time. This variable is used in a read only manner in the systemA , typically in
guards. Let furtherT be an action system that models the passage of time:

T = |[ var now∗ : int • do true→ now:= now+ 1 od ]|

Then the prioritising compositionA // T models a real time action system where
either time advances or an action ofA is taken. However, the advancement of
time may not disable an action that was enabled inA , ensuring that no action
of A misses its deadline. This way of modelling real time action systems was
originally proposed by Fidge and Wellings [13]. It conforms with the maximal
progress assumption for real-time systems which states that time is only allowed
to advance if there is nothing else to do.

Observe that the prioritising operator hides a possibly large guard: without it,
the guard of the tick actiontrue→ now:= now+1 would be¬gd Awhich, in case
A = A1 [] · · · [] An, can be a very large expression.

7.5 Dynamic Priorities

Dynamic priorities can be handled by storing the priority of a process or an action
in a special variable and including the priority check as part of the enabledness
condition. Below we give two examples of the use of this idea. First, we model a
nonpreemptive scheduler implementing a round-robin order on actions. Thereafter
we consider a preemptive scheduler that wakes up at a regular basis and reschedules
the actions.

Nonpreemptive (cooperative) scheduler Consider the following action system
which models a round-robin scheduler by setting the variableπ circularly.

S = |[ var π∗ : int | π = 0 • do true→ π := (π + 1) mod nod ]|
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LetA be a system in which the actionsAi are initially guarded by different values
πi .

A = |[ var πi : int for i = 0..n− 1 | πi = i for i = 0..n− 1 •

do π = πi → Ai for i = 0..n− 1 od ]|

Now we have thatA // S models a system, where each of the actionsA1, . . . An is
given a chance to be active based on the round-robin scheduler. In case the action
Ai is not enabled whenπ = πi , the action misses its turn and has to wait for the
next round. By storing each action’s turn in the variablesπi , actions may change
their (or even anothers) turn.

Preemptive scheduler LetA be as follows

A = |[ var τi∗ : int for i = 1..n | τi = 0 for i = 1..n •

do πi = max(π1, . . . , πn) → Ai for i = 1..n od ]|

Here we assume that the variablesτi model the execution time used by each action
(or process). Hence, the variableτi is modified in actionAi . Let S be the action
system:

S = |[ var πi∗ : int for i = 1..n | πi = 0 for i = 1..n •

do g(τ1, . . . , τn) → πi := fi(τ1, . . . , τn) for i = 1..n od ]|

Then the systemS // A models a preemptive scheduler where always when the
conditiong(τ1, . . . , τn) holds in the systemA , the schedulerS will assign new
priority classesπi to the processes based on functionsfi(τ1, . . . , τn) of the execution
times.

Here the scheduler changes the priority variables, but the scheduler could be
modified such that the processes can set their own priorities, as with the round-
robin scheduler above.

8 Conclusions

We developed a theory of prioritising composition of processes and gave a wide
range of applications of the theory. The theory is based on describing processes as
action systems, but the idea can be applied more generally as only basic notions
of actions and action refinement were used. Extensions of the theory in several
directions are possible.

Other operators on action systems can be defined, including sequential compo-
sition (; ), choice ([] ), conditional (if ), iteration (do), local variables (var), as done
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by Back and Sere [4]. In that case, action systems model statements of a parallel
programming language. The combination of prioritising composition with these
operators has not been studied. In particular, having variable declarations would
be useful for parallel and prioritising decomposition, as it allows the variables over
which the action systems communicate to be hidden [2, 4].

The refinement relation used requires that there is a one-to-one correspondence
between the abstract and concrete actions. More general notions of refinement are
possible which allow stuttering, i.e. one abstract step may correspond to several
concrete steps or several abstract steps may correspond to one concrete step. Re-
finement of action systems with stuttering is presented and justified with respect to
a trace semantics by Back and von Wright [6].

The public variables of an action systems are restricted to read-only export
and the refinement relation was only allowed to replace the private variables. This
was done to ensure compositionality of both parallel and prioritising composition.
More liberal notions of refinement are possible, but lead to either noncomposition-
ality or additional proof obligations. Xu studies such refinements, based on the
idea of rely-guarantee conditions [25].

The underlying semantics of action systems is not fully abstract in the sense
that two action systems may behave identically in any context, but not be equal. For
example, this is the case whenA ≤ A′ andA′ ≤ A. A fully abstract semantics for
a shared variable parallel programming language has been given by Brookes [8]. It
would be interesting to extend such a semantics to include prioritising composition.

Finally, our interpretation of dynamically changing priorities is to introduce
special priority variables as we did with time also. (Observe that the examples on
timed action systems and the nonpreemptive scheduler are very similar.) The ac-
cess to these variables is restricted, and both static and dynamic priorities can be
mixed in a specification as shown by our final example. Furthermore, our transfor-
mation and refinement rules are directly applicable to dynamic priorities as well.
The idea of using special priority variables is studied by Henzinger et al. when
modelling processes as timed transition systems [14] much in a similar way as we
do here. They do not, however, consider refinement. Moreover, in their formalism
one does not mix dynamic and static priorities as we do.
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