
E. Sekerinski and K. Sere (Eds)

Program Development by
Refinement
Case Studies Using the B Method

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Preface

The Idea of Program Refinement

Programs are complex. They are typically so complex, that they go beyond the full
comprehension even of the programmer or team who designed them, with all the
consequences this has. How can we cope with such complexity in a satisfactory
way?

An approach, advocated for a long time, is to separate a concise specification
of a program — the “what” — from a possibly involved implementation — the
“how”. Once a specification is obtained from the set of requirements on the program,
there can still be a large gap to an efficient implementation. The development from
specification to implementation can then proceed by a succession of layers, such that
each layer is a refinement of the previous one. Design decisions can be introduced
in refinement steps one at a time. By this, the refinement steps can be kept small and
manageable.

Still, the set of all requirements can be far too large to be taken completely into
account in the initial specification. Even if they could, they might obscure issues
more than clarify them. For example:

An information system for stored goods needs to produce an error message on il-
legal input. Yet, the exact wording — and even the language — of those messages
is irrelevant for an understanding of the essence of the system.
A banking application interacts with customers with a graphical interface. Yet the
specification of the graphical layout is secondary compared to the specification
of the possible transactions.
For a mailing system the possible physical distribution of the users is an essen-
tial requirement. Yet it can be ignored for an initial specification of the logic of
message delivery.

Such requirements do not need to be reflected in the initial specification. Rather,
they can better be taken into account in subsequent refinement steps. Hence, our
picture of program development is that the initial specification is only a partial
one, though, by slight abuse, we still refer to it as the specification. Subsequent re-
finement steps take further requirements into account or represent design decisions
(Fig. 0.1).

vi Preface

R0

 S1

 Sn

 S0

Rn

R1

. . .

Fig. 0.1. Program Development by Refinement: R0, , Rn
are the requirements, S0 is the specification, Sn is the im-
plementation, and the other Si are intermediate refinements;
Solid arrows stand for the refinement relation

The B Method

The B Method is an approach for the industrial development of highly trusted soft-
ware. It is the outcome of two decades of academic research on program specifica-
tion and refinement:

It offers a rich collection of set-theoretic data types for an abstract specification
of the state of systems.
It allows the use of standard first-order predicate logic for the specification of
operations on the state.
It uses a relational semantics for statements and supports consistency and correct-
ness proofs of operations by weakest precondition calculation.
It supports grouping of operations and encapsulation of state variables in mod-
ules, called machines.
It supports algorithmic refinement of operations and data refinement of state vari-
ables in machines.
It allows the construction of new machines out of existing ones.

Currently there are two commercial tools supporting the B Method, B-Toolkit
from B Core, UK and Atelier B from Steria, France. Both tools address issues of
documentation, project management, and prototyping which are necessary for large-
scale use, beside issues of verification and code generation. The tools achieve a
remarkable degree of automation in checking refinements by proof, as well as in
project management. Even though the tools are still being further developed, the
B Method with its current tool support can be considered the most advanced general
purpose environment for producing highly trustworthy software.

Preface vii

Contents of the Book

This book is a collection of case studies in program refinement with the B Method.
Each chapter shows a typical program development from problem analysis to im-
plementation with a non-trivial example, using one of the tools. The developments
include a discussion and justification of the chosen approach as well as experiences
with the tools used. The developments are intended to be representative of a whole
class of related problems.

The book is divided in two parts. Part I considers the development of informa-
tion systems and data structures. These examples demonstrate the typical use of the
B Method, in particular the development by a sequence of refinement steps, the con-
sideration of further requirements in refinement steps, and the use of object-oriented
models with the B Method. For the benefit of readers who are not familiar with the
B Method, the first chapter gives an introduction to it. The other chapters of the first
part can be read in any order.

Chapter 1: Introduction to the B Method. This chapter introduces the basic con-
cepts of the B Method, substitutions, statements, machines, invariants, nonde-
terminism, algorithmic and data refinement, layered development, and refine-
ment and implementation machines. The use of these is illustrated by a series
of examples. Also, the impact of the finiteness of numbers and of the memory
is discussed and the use of the B-Toolkit library is illustrated.

Chapter 2: Container Station. The container station is an information system with a
rather complex structure of the state and an elaborate set of requirements. This
chapter exemplifies the use of various set-theoretic data types and operations
for describing and manipulating a complex state. Moreover, it shows how the
initial specification can be kept abstract and how requirements like fairness of a
scheduling strategy and error reporting can be incorporated in refinement steps.
This chapter also exemplifies the use of library machines provided with the
B-Toolkit for the implementation.

Chapter 3: Minimum Spanning Tree. This chapter is about an algorithm on graphs
with a simple abstract specification but an intricate implementation. It shows
how introducing further B machines during refinement leads to better modular-
isation for reuse and helps to keep the proof obligations simpler. The last point
is known as design for provability. The B machines introduced in the develop-
ment for maintaining equivalence classes with union-find, priority queues, and
heaps, are of interest on their own.

Chapter 4: The B Bank. This chapter develops a simple but complete application
for banking over the Internet. An object-oriented model is used as an aid during
analysis, which is translated to a B machine which specifies the key function-
ality. For the implementation, new base machines for persistent object storage
and for string handling are introduced. These are of general usefulness. In this
chapter, a robust interface with error reporting is built on top of the basic func-
tionality. Thus, this illustrates a combined top-down and bottom-up develop-
ment. Finally, for working over the Internet and for providing a graphical user

viii Preface

interface, general-purpose B machines for interfacing with HTML and CGI are
developed.

Part II illustrates refinement for the development of distributed systems and pro-
cess control systems. These systems are examples of reactive systems. A reactive
system is a system which maintains an on-going interaction with its environment.
Although reactive systems are outside the original scope of the B Method, the con-
nection can be established by the theory of action systems, as presented in the first
chapter of Part II. The remaining chapters illustrate this and can be read in any order.

Chapter 5: Parallel Programming with the B Method. By appealing to the theory
of action systems, this chapter shows how reactive systems and the parallel
composition of reactive systems can be expressed with the B Method. It also
shows how the refinement of reactive systems leads to proof obligations which
can be mapped to those of B machine refinement.

Chapter 6: Production Cell. This chapter illustrates an approach for developing a
control program for a discrete control system by the example of a production
cell consisting of several interacting machines. For such a system, it is shown
how safety conditions can be guaranteed. Refinement is used for decomposing
a system specification into a controller and a plant. This chapter presents action
systems with a large number of actions but simple data structures and basic
action system refinement.

Chapter 7: Distributed Load Balancing. Load balancing in a network of processes
can be conveniently specified by disregarding the distribution, assuming that
each process has direct access to the load of neighbouring processes. In an
implementation however, nodes must either communicate their load explicitly
or keep estimates of each other’s loads. This chapter illustrates the development
of such an implementation by a series of refinement steps using superposition
refinement, a special form of action system refinement.

Chapter 8: Distributed Electronic Mail System. The previous chapters on action
systems have taken the view that only the global state of action systems is ob-
servable. By contrast, this chapter takes the alternative view that only external
events of action systems are observable. The refinement of event-based action
systems is illustrated by the development of a mailing system with communi-
cation over a network of nodes with links between them. By disregarding the
distribution, the specification can be kept concise. In this development, exten-
sions of the B notation are proposed for supporting such developments.

Smaller B machines are presented with separate explanations, larger B machines
are presented with explanations interleaved. For B machines which are longer than
just a few pages this literate style relates directly pieces of formal text with the cor-
responding explanation and thus improves readability. This interleaving is supported
by both tools which were used.

The appendix summarises the Abstract Machine Notation of the B Method con-
cisely for easy reference when reading the case studies.

Preface ix

The readers are referred to the B-Book by J.-R. Abrial [2] for a definitive and
comprehensive reference, with an extensive discussion of the theoretical founda-
tions.

Readership

Firstly, the book is suitable as study material for advanced undergraduate and grad-
uate courses on program refinement. This is supported by fully explained program
developments, by suggestions for further extensions of the examples, and by mak-
ing the examples available on the World Wide Web. The book is also suitable as
additional material for self-study.

Secondly, the book aims to show potential users of the B Method what classes of
programs can be handled, what the typical size of specifications and refinements are,
and what the effort for the examples is. Patterns of solutions are presented, which
can then be applied in similar situations in practice.

World Wide Web Page

The code of some examples and additional supporting material, e.g. the B Bank
application which can be run from any Web browser, can be accessed through the
book’s Web page at:

http://www.springer.co.uk/comp/support/

Acknowledgements

The editors wish to thank to Ib Søerensen of B-Core and Corinne Givois and Denis
Sabatier of Steria for their support and all the persons involved in this project for
their contributions, comments, and patience. We also wish to thank the Series Editor,
Steve Schuman of University of Surrey, UK, as well as Rosie Kemp from Springer-
Verlag for their guidance and help during the different phases of producing this
volume and the reviewers for their constructive comments.

x Preface

Contents

List of Contributors xvii

Foreword xix
David Lorge Parnas

Part I. Information Systems

1. Introduction to the B Method 3
Ken A. Robinson

1.1 Machines . 3
1.1.1 Machine Semantics and Generalised Substitutions 3
1.1.2 Set Theory and Types . 6
1.1.3 Types in B . 6

1.2 Specification . 6
1.2.1 The Square Root Machine . 7
1.2.2 The Unique Identifier Machine . 7

1.3 Refinement . 9
1.3.1 Procedural Refinement . 9
1.3.2 Data Refinement . 10
1.3.3 Refinement and Non-Determinism . 11

1.4 Implementation . 15
1.4.1 Layered Development . 16
1.4.2 Proof Obligations . 17

1.5 An Extended Example . 22
1.5.1 A Simple Data Queue Machine . 22
1.5.2 Refinement of the Data Queue . 24
1.5.3 The Doubly-Linked List Machine . 25
1.5.4 Implementing the DList Machine . 28
1.5.5 The Node Machine . 29

1.6 Exercises . 32
1.7 Logic and Set Theory Notation . 33

xii Contents

2. Container Station 39
Elena Troubitsyna

2.1 Introduction . 39
2.2 Task Description . 40
2.3 Design of Specification . 42
2.4 Introducing Fairness in a Refinement Step . 54
2.5 Implementation: Development of Robust Software 60
2.6 Conclusions . 77
2.7 Exercises . 78

3. Minimum Spanning Tree 79
Ranan Fraer

3.1 Introduction . 79
3.2 The Minimum Spanning Tree Problem . 80

3.2.1 An Abstract View of a Graph . 80
3.2.2 Specification of the Minimum Spanning Tree Problem 82

3.3 Kruskal’s Algorithm . 84
3.3.1 A Greedy Strategy . 84
3.3.2 Correctness Proof . 85
3.3.3 Decomposing the Development . 87

3.4 The UNION-FIND Algorithm . 90
3.4.1 Equivalence Relations . 90
3.4.2 Representatives of Equivalence Classes 92
3.4.3 Tree Representation of Disjoint Sets . 94
3.4.4 Weight Balancing . 96

3.5 Heap Algorithms . 99
3.5.1 Priority Queues . 99
3.5.2 Indirect Heaps . 102
3.5.3 Complete Binary Trees . 109

3.6 Discussion . 112

4. The B Bank 115
Martin Büchi

4.1 Introduction . 115
4.2 Rewriting the Requirements . 118
4.3 Structured Models . 119

4.3.1 Class Diagrams . 119
4.4 System Design . 121
4.5 B Specification . 122

4.5.1 State . 123
4.5.2 Functionality . 124
4.5.3 Discussion . 130

4.6 Robust Abstraction . 131
4.7 Base Machines . 135

Contents xiii

4.7.1 Strings in Atelier B. 136
4.7.2 Machine BasicCGI . 139
4.7.3 Implementing BasicCGI . 142

4.8 User Interface . 145
4.8.1 Main Program . 147
4.8.2 Implementations . 148

4.9 Implementation of the Robust Abstraction . 153
4.10 Implementation of Bank . 156

4.10.1 Machine Object . 158
4.10.2 Machine BasicString . 161
4.10.3 Implementation Bank 1 . 162
4.10.4 Machine BasicFile . 168
4.10.5 Implementation Object 1 . 170

4.11 B-Toolkit Implementation . 173
4.11.1 Differences in the Supported Language 174
4.11.2 Differences in the Provided Base Machines and Libraries . . . 176
4.11.3 Adapting the Development . 176
4.11.4 Automatic Translation of Object Models 177

4.12 Discussion . 178
4.12.1 Related Work . 178
4.12.2 Metrics . 178
4.12.3 What Have We Proved? . 178

4.13 Exercises . 178

Part II. Reactive Systems

5. Parallel Programming with the B Method 183
Michael Butler, Marina Waldén

5.1 Introduction . 183
5.2 Actions and Action Systems . 184

5.2.1 Action Systems in B AMN . 184
5.2.2 Actions in B AMN . 185

5.3 Procedures Within Action Systems . 187
5.3.1 Procedures . 187
5.3.2 Procedures within Abstract Machines 188

5.4 Parallel Composition . 190
5.5 Refining Action Systems . 192

5.5.1 Data Refinement of Actions . 192
5.5.2 Refinement of Action Systems . 193
5.5.3 Refinement and Parallel Composition 194

5.6 Discussion . 195

xiv Contents

6. Production Cell 197
Emil Sekerinski

6.1 Introduction . 197
6.1.1 Specifying Control Systems with Action Systems 197
6.1.2 Structure of the Development . 198

6.2 The Production Cell . 199
6.3 Specification of the Machines . 203

6.3.1 The Feed Belt . 204
6.3.2 The Table . 205
6.3.3 The Robot . 208
6.3.4 The Press . 214
6.3.5 The Deposit Belt . 215

6.4 Derivation of the Machine Controllers . 217
6.4.1 The Feed Belt . 221
6.4.2 The Table . 223
6.4.3 The Robot . 226
6.4.4 The Press . 232
6.4.5 The Deposit Belt . 235

6.5 Specification of the Production Cell . 237
6.6 Derivation of the Production Cell Controller . 243
6.7 Discussion . 250
6.8 Exercises . 252

7. Distributed Load Balancing 255
Marina Waldén

7.1 Introduction . 255
7.2 Informal Problem Description . 255
7.3 Problem Specification . 257
7.4 Superposition Refinement . 260
7.5 Superposition Step Within the B-Method . 263

7.5.1 Enabledness of Global Procedures . 264
7.5.2 Termination of Auxiliary Actions . 266

7.6 Refinement Step 1: Distributing Loads . 267
7.7 Refinement Step 2: Estimation of Neighbouring Loads 270

7.7.1 Refinement of Actions and Procedures 270
7.7.2 Refining the Guards of the Global Procedures 275
7.7.3 Termination of Auxiliary Actions . 280
7.7.4 Introducing New Procedures . 283

7.8 Refinement Step 3: Distributing the Estimates 287
7.9 Decomposition of the Load Balancing Algorithm 294
7.10 Discussion . 299
7.11 Exercises . 299

Contents xv

8. Distributed Electronic Mail System 301
Michael Butler

8.1 Introduction . 301
8.2 Event-Based Actions Systems . 301

8.2.1 Parameter Passing . 302
8.2.2 Refinement . 303
8.2.3 Example Refinement: Unordered Buffer 304

8.3 Internal Actions . 305
8.3.1 Refinement with Internal Actions . 305
8.3.2 Example . 307
8.3.3 Hiding Operator . 307

8.4 Parallel Composition . 307
8.4.1 Basic Parallel Composition of Actions 307
8.4.2 Basic Parallel Composition of Action Systems 308
8.4.3 Parallel Composition with Value-Passing 308
8.4.4 Design Technique . 311

8.5 Email System . 311
8.5.1 Abstract Specification . 312
8.5.2 First Refinement of MailSys . 313
8.5.3 Parallel Decomposition of MailSys . 317
8.5.4 Parallel Decomposition of Agents . 317

8.6 CSP Correspondence . 319
8.7 Concluding . 321
8.8 Exercises . 322

References 323

Appendix 327

xvi Contents

List of Contributors

Michael Butler
Department of Electronics and Com-
puter Science
University of Southampton
Highfield
Southampton SO17 1BJ
United Kingdom
mjb@ecs.soton.ac.uk

Martin Büchi
Turku Centre for Computer Science
Åbo Akademi
Lemminkäisenkatu 14A
20520 Turku
Finland
Martin.Buechi@abo.fi

Ranan Fraer
Future CAD Technologies
Intel Haifa
Israel
rananf@iil.intel.com

Ken Robinson
School of Computer Science and Engi-
neering
The University of New South Wales
Sydney NSW 2052
Australia
K.Robinson@unsw.edu.au

Emil Sekerinski
Department of Computing and Software
McMaster University
1280 Main Street West
Hamilton, Ontario, L8S 4K1
Canada
emil@mcmaster.ca

Elena Troubitsyna
Turku Centre for Computer Science
Åbo Akademi
Lemminkäisenkatu 14A
20520 Turku
Finland
Elena.Troubitsyna@abo.fi

Marina Waldén
Turku Centre for Computer Science
Åbo Akademi
Lemminkäisenkatu 14A
20520 Turku
Finland
Marina.Walden@abo.fi

xviii List of Contributors

Foreword
Some Perspective on Refinement
David Lorge Parnas

1 Three Decades of Software by Refinement

Nobody would claim that the subject of this book, designing programs by refine-
ment, is a new idea. As soon as observers began to realise that software development
was difficult, and what a mess we were making of it, they began to look for a better
way. All of the “better ways”, share two ideas:

Writing code means making design decisions. Don’t make many decisions at
once; instead, write code in a step-by step process that results in making deci-
sions in a carefully chosen sequence.
Verify or validate each decision as it is made. If incorrect decisions are made, and
subsequent decisions are based on them, those subsequent decisions will have
to be reviewed, and may have to be revised. Verification/validation as you go is
likely to save effort in the long run.

Program development by refinement adds a third point:

Begin with a precise statement of what will be done adding details about the
implementation with each step. This distinguishes refinement from some other
proposals. 1

When people began to think about refinement, mathematical proof of software
correctness was in its infancy. Verification/validation had to be done by other meth-
ods. Two early papers that discussed languages in which models could be gradually
refined into working code, while the performance and correctness of each new set
of decisions was verified by simulation, were [66] and [87]. Current work on refine-
ment assumes mathematical verification of the decisions.

Dijkstra’s early work on “structured programming” was certainly one of the
most widely discussed approaches to refinement, e.g. [24], but Wirth’s work was
also very influential [84]. Another version by Mills [54], lives on today as part of the
collection of methods known as “Cleanroom”. There have been many Ph.D. theses
(e.g. [4]) and books (e.g. [52]). The work mentioned just “scratches the surface” of
a vast body of literature. The reader of this book should be asking two questions:

1 Some incremental development methods propose an alternative, a “bottom up” approach
that requires building a subset and adding functions after the subset is working.

xx Foreword

Why isn’t refinement more widely used in industry?
Why do we need yet another book on the subject?

2 Refinement Remains a Buzzword

When the authors of [66] and [87] read the abstracts of the other paper, each thought
that the other had the same idea. However, their ideas could be described by the same
abstract, when they met, they discovered that their approaches were quite different.
This is true of many approaches to design by refinement. The general description of
refinement given above leaves three important questions unanswered:

In what order should the decisions be made?
How should decisions be documented?
How should decisions be verified or validated?

In the sections below, I discuss possible answers to each of these questions.

2.1 Decision Ordering in a Refinement Process

There is room for considerable discussion about the best order for making decisions
in a software design process. Unfortunately, people have always been rather vague
about it. Below we present a number of incompatible ideas about the order in which
decisions should be made.

Top Down Design. The phrase “top down design” has long been popular but its
meaning has never been clear. It is assumed that there is a hierarchical structure
and the higher levels in the hierarchy should be designed first, with the lower levels
being a refinement. Unfortunately, as was discussed many years ago, even the phrase
hierarchical structure is a “buzzword” in the software design field [61]. Usually
when someone uses the term “top down” they mean one of the forms of refinement
mentioned below.

Stepwise Refinement. Although the phrase “stepwise refinement” appears to have
been coined by Wirth [84], his approach was close to what Dijkstra had been pro-
mulgating, first in technical reports and then in [24]. Programs were refined by writ-
ing the major control structures first, using suggestive names for the programs in
those structures, and then refining those programs later.

Outside In. Many early systems were developed at great expense, and at the end of
the development process it would be discovered that the services provided were the
wrong ones or that the user interface was difficult to use. In reaction to many disas-
ters, some authors begin to propose that we should design the outside of a system
(the user interface) first and postpone implementation decisions to later stages.

Foreword xxi

Module Structure First. With the publication of [60], many designers were re-
minded (a) that programs had to be divided into independent work assignments if
development was going to progress at reasonable speed and (b) that there were good
ways and bad ways to divide a program into modules. Thus, some people began to
argue that the design should begin with decisions about the module structure with
later stages refining module specifications into code. One paper that made such pro-
posals explicitly was [65].

Refinement from Program Functions to Code. In a long series of papers (e.g.
[53]) Mills and others showed how mathematical functions could be used to describe
what a program did and recommended that design of a program always begin with
its program function (a mathematical function mapping from its control state to its
final state), which would then be refined, in a sequence of small steps, in which
program functions for components were written, until one had an implementation.
The same philosophy, but other notation, can be found in [68].

Data Refinement. Many authors questioned the stress on control structures found
in the papers mentioned above and suggested that refinement could be applied to
data as well. They proposed that software design begin with the specification of a
series of abstract data types (e.g. [32, 51, 39]).

Most Difficult First. E. W. Dijkstra once suggested that when designing a system
the first decisions to be made should be the most difficult ones, those where you are
not sure you can find a solution. In this way, you won’t waste effort if satisfactory
solutions can not be found [23].

Most Solid First. A very different rule was suggested in [62] where it was argued
that the first decisions should be those that were least likely to be revised as this
would make it easier to build families of programs (product lines) with shared char-
acteristics and design decisions.

2.2 Documentation of Decisions in a Refinement Process

Experienced developers know that design decisions have not been made until they
are written down in a precise and binding way. Among those who have advocated
refinement in the general sense there are many different ideas about how those de-
cisions can be documented.

Documentation by Writing Code One of the earliest, and most intuitively appeal-
ing, approaches to documenting decisions in the refinement process has been to sim-
ply write code. Each decision allows some code to be written and further decisions
lead to expansion of the code.

2.3 Documentation by Writing Mathematical Models

In some approaches, notably many examples using the Z notation, documentation
of design decisions is in the form of a model, an abstract mechanism that behaves as

xxii Foreword

the system being designed is intended to behave [78]. These models are often called
“specifications” but they rarely state requirements; instead they are mechanisms that
exhibit desirable properties that satisfy unstated requirements. With models, it is
often difficult to distinguish the essential from the incidental.

Documentation by Writing Formal Specifications. In the refinement approaches
advocated by Dijkstra [25] and Mills [54] and others (e.g. [67, 63]) mathematics
is used to write true specifications. In [67] it is suggested that these specifications
should be thought of as design documentation and represented in a readable tabular
format [42]. Of course, informal documents can serve in this role but there are well-
known disadvantages of such imprecise notation.

2.4 Verification Methods in a Refinement Process

In most of the recent work on refinement it is assumed that verification means for-
mal mathematical proof. There are many design decisions that cannot be verified or
validated in that way. Performance characteristics are one example. In earlier work
([66, 87]) simulation was proposed as a verification method. Informal inspection has
also proven effective in some cases. When formal proof is considered there are two
possible approaches: proof of correctness and proof of refinement. With a correct-
ness proof approach, the refined program is proven correct. In more sophisticated
approaches a proof at each step proves only that the newly refined program is ac-
tually a refinement of the previous program thus taking advantage of earlier work.
There are obvious advantages to proving each refinement correct rather than prov-
ing the complete program correct. As is demonstrated by the examples in this book,
once we have an abstract statement of what is to be done, proving the correctness of
each refinement is generally easier than proving correctness of the program.

3 Refinement in Practice

Although the general idea of designing by refinement was proposed more than 30
years ago, none of the industrial systems that I have examined was produced by
such a process. In fact, discussions in the “software engineering” community are
headed in very different directions. Fred Brooks adage, “Plan to throw one away,
you will anyway” [14] has been taken to heart as more and more practitioners ad-
vocating building a “quick and dirty” prototype and then starting over. Incremental
approaches such as that advocated by Barry Boehm [12] are considered more real-
istic than the refinement approaches mentioned here.

Refinement does not seem to have worked in practice. Among the reasons are:

Impatience: Designers cannot wait to get down to “real” code. They think the
decisions made in the early stages of a refinement process are obvious and a
waste of time. Unless the “specification language” has “animation” features they
find the work uninteresting.

Foreword xxiii

When people get to the later design stages, they ignore the earlier decisions.
Verification and validation (by any method) seem to take too much time in a
deadline-driven project.
Many program developers believe that their real skill is the mastery of one of
today’s complex programming languages and are convinced that the (much sim-
pler) formal languages advocated by the refinement community are too complex
and not worth learning.
Designers find it very hard to express their real design decisions in a refinement
process.

4 Some Opinions

Having observed and participated in discussions of refinement for more than 30
years, I am not without some personal opinions on the questions raised above.

4.1 Order of Design Decisions

Although the approaches to choosing a design process outlined in Sec. 2.1 seem
contradictory, I find all the arguments valid but oversimplified. Many constraints
prevent designers from following any of the simple procedures outlined and they
will not be able to produce systems by a pure refinement process. However, they can
and should produce a system design and documentation that looks as if a refinement
process had been applied [64].

4.2 Documenting Decisions

Refinement processes that only produce code might help in program development,
but will not help in the longer, and more expensive, “Maintenance” period. Refine-
ment processes like that suggested by Wirth [84] produce a sequence of programs
with increasing length and the structure becomes more and more difficult to see.
When changes are required, they are not restricted to a single section of the code.

On the other hand, relying completely on specifications leads to unnecessary
concerns about the “composability” of specifications. The easiest way to describe
the composition of separately specified components into something larger is to write
code that invokes the components that were specified.

It is a mistake to believe that a single notation, either code or specifications,
should be used throughout the project. This is not the case in other areas of engi-
neering where a philosophy of design through documentation has long been stan-
dard practice [36].

xxiv Foreword

5 The Role of this Book

The attractive feature of this book is its focus on case studies. Those who wish to do
further research on refinement need to give serious consideration to the issues raised
above, particularly the reason that refinement is not used in more practical projects.
If refinement is going to be practical for the majority of software systems produced,
the problems posed in this book should be simple. This book poses a challenge.
Everyone interested in either applying or studying software development through
stepwise refinement should read this book and try to use the case studies either as
tutorial examples or as a basis for further study. The extensive but often very vague
work on programming methods must be combined with the careful mathematical
study of refinement to yield a practical approach.

6 Acknowledgement

Comments by E. Sekerinski on an earlier draft were very helpful.

David Lorge Parnas, P.Eng.
NSERC/Bell Industrial Research Chair in Software Engineering
Director of the Software Engineering Programme
Department of Computing and Software
Faculty of Engineering
McMaster University, Hamilton, Ontario, Canada - L8S 4K1

Part I

Information Systems

1. Introduction to the B Method
Ken A. Robinson

1.1 Machines

In the B Method [2], subsequently referred to as B, the specification, design – here
called refinement – and implementation phases of software development are repre-
sented by sets of Abstract Machines. A machine is an encapsulation of a state and a
set of operations; the state being determined by a set of variables. The notation for
describing Abstract Machines is known as Abstract Machine Notation or AMN.

1.1.1 Machine Semantics and Generalised Substitutions

The constructs that determine and change the state of a machine are called sub-
stitutions; these correspond to what would be called statements in a programming
language. The semantics of substitutions are defined by Generalised Substitutions.
The concept of a substitution arises as follows:

in general, any construct that changes a machine can only do so by changing the
state, since the state is the only part of a machine that persists and is changeable;
the principal construct for changing the state of the machine is the simple substi-
tution x : E, which changes the value of the variable x to the value of the ex-
pression E. This construction is recognizable as the assignment statement found
in all procedural programming languages. Ultimately all substitutions affect the
state through simple substitutions.

To define the meaning of a state changing construct we describe the relationship
between the before and after states. This relation is defined by using predicates to
define sets of states. Suppose we have a substitution S that is intended to cause a
machine to terminate in a state that satisfies the predicate R, then we specify the set
of states from which this can happen by the formalism

S R

The function S is a predicate transformer that maps a predicate on the state after
S to the weakest predicate that describes the set of possible before states. While the
notation is different, this concept is analogous to Dijkstra’s weakest precondition
concept [22].

For the simple substitution x : E we have

4 1. Introduction to the B Method

Description Substitution Semantics

Simple xx : E xx : E R R E xx
Skip skip skip R R
Choice from set xx : S xx : S R @xx

xx S xx : xx R
Choice by predicate xx : P xx : P R @xx

xx : xx P xx : xx R
Multiple xx yy : E F xx yy : E F R R E F xx yy

Sequential G ; H G ; H R G H R
Preconditioned P G P G R P G R
Guarded P G P G R P G R
Alternate G H G H R G R H R
Unbounded choice @zz G @zz G R zz G R

where xx, yy are variables; E, F are expressions; S is a set; P, R are predicates; and G, H are
substitutions.

Table 1.1. Basic Substitutions

x : E R R E x

where R E x denotes the substitution in R of the expression E for all free instances
of x. Hence the terminology substitution.

Table 1.1 shows the basic substitutions. The table is divided into two parts: the
first part shows the basic substitutions for assigning a value to one or more variables;
and the second part shows the basic compositions of substitutions.

For the specification of large substitutions, a parallel composition is available:
S1 S2 is the parallel composition of S1 and S2. The basic form of parallel compo-
sition is the composition of simple substitutions:

xx : E yy : F xx yy : E F

Parallel compositions of more complex substitutions can be expressed as composi-
tions of the generalised substitutions shown in Table 1.1.

Extended Notation. The preceding substitutions are the basic substitutions, but an
extended notation is generally used when defining machines. This extended notation
has a more programmatic appearance, looking similar to the constructs found in
programming languages, but these extended constructs are defined in terms of the
basic substitutions. There is quite a large variety of the extended forms, and some
of them are given in Table 1.2 on the facing page.

The notation displayed in Tables 1.1 and 1.2 on the next page is the publication
form. Generally, when writing the source of machines an ASCII notation is used.
Table 1.3 on the facing page shows the ASCII equivalences for substitutions where
they are substantially different from the publication form.

The presentation of machines here will use the publication form.

1.1 Machines 5

Extended form Definition
BEGIN G END G
IF P THEN G ELSE H END P G P H
IF P THEN G END IF P THEN G ELSE END
CHOICE G OR H END G H
SELECT P THEN G WHEN . . .

WHEN Q THEN H END P G Q H
VAR z IN G END @z G
ANY z WHERE P THEN G END @z P G
LET x BE x E IN G END @x x E G , where x E
WHILE P DO G
VARIANT V INVARIANT I END see 1.1.1

where z denotes a list of variables; x denote single variable; and n denotes a list of integer
expressions.

Table 1.2. Extended Notation

Publication form ASCII form
x : S x :: S

P G P ==> G
G H G [] H

Table 1.3. ASCII Equivalent Notation

The While-Loop Substitution. The while-loop construct shown in Table 1.2 has
four components:

P: a controlling predicate on the machine state;
S: a substitution;
V: an arithmetic variant expression, which is a function of the machine state;
I: an invariant predicate on the machine state.

The while-loop is not given a simple substitution semantics. This is because the
substitution semantics would involve a least fixed point computation. Instead, an
approximation is used. Given the following loop:

WHILE P DO S VARIANT V INVARIANT I END
the following obligations must be proved for some predicate R:

I P S I
I V

I P n : V S V n
P I R

where n is a new variable, that is a variable that is not one of the state variables.
If these obligations are discharged then

I WHILE P DO S VARIANT V INVARIANT I END R

6 1. Introduction to the B Method

1.1.2 Set Theory and Types

The basis for the mathematical models used in B is set theory. The mathematical
toolkit models relations – and subsequently functions and sequences – as sets of
pairs. The following definitions of relations and partial functions, illustrate the set-
theoretic modelling and the notation.

Construct Publication ASCII Definition
Relation S T S <-> T S T = S T
Partial function S T S +-> T S T r r S T r 1;r T

A complete table is given in Sec. 1.7 on page 33 at the end of this chapter.

1.1.3 Types in B

Variables in B are strongly typed. This is despite the superficial appearance of it
being typeless. Explicit types are not given at the point of declaration of variables –
unlike most strongly typed programming languages. Instead, there is a requirement
that invariants, preconditions and quantifiers must contain a constraining predicate
for each variable or operation parameter. A constraining predicate for the variable x
has the form: x S, x S, x S, or x E, where x S, x E.

The meta-predicate z E (“z not free in E”) means that none of the variables in
z occur free in E. This meta-predicate is defined recursively on the structure of E,
but we won’t do that here. The base cases are: z z P , z z P , z z P ,
z !z P E , and z z .

For the quantifiers:
z P Q
z P Q

z P
z P E
z P E

" z P E
#z P E

and the lambda expression:

!z P E

the predicate P must constrain the variables in z. Additionally, the predicate P in the
substitution x : P must constrain x.

1.2 Specification

In B, specifications are presented as (top-level) machines. The machines present a
mathematical model of the required behaviour. There are some constraints imposed
on these machines:

1.2 Specification 7

MACHINE SquareRoot

OPERATIONS
sqrt SquareRoot(xx)

PRE xx
THEN

ANY yy
WHERE yy square (yy) xx xx square (yy 1)
THEN sqrt : yy
END

END
DEFINITIONS

square (x) x x
END

Fig. 1.1. A Square Root Machine

the WHILE substitution may not be used;
sequential composition may not be used; only parallel composition is available.

To illustrate, we will present two machines.

1.2.1 The Square Root Machine

The SquareRoot machine, Fig. 1.1, is a stateless machine (no variables) with a single
operation that computes the natural square root of a natural number. Things to notice
about this machine are:

The name of the machine is SquareRoot.
The machine has a definition section defining a simple macro square.
There is a single operation named SquareRoot. This operation has a single pa-
rameter, xx of type (natural number), and returns a single result, sqrt also of
type .
The result of the operation is defined by the non-deterministic choice of the vari-
able yy to satisfy a predicate, which says that yy is the largest natural number
whose square does not exceed xx.

Note carefully. For technical reasons machine variable names must contain at least
two characters. Variable names containing only one character, as for example in the
definition of square, are jokers and represent an arbitrary expression.

1.2.2 The Unique Identifier Machine

As an example of a different machine, Fig. 1.2 on the following page shows the
specification of a machine that can be used to allocate a unique identifier from a set.
Things to notice about this machine are:

8 1. Introduction to the B Method

MACHINE UniqueID (maxids)
CONSTRAINTS maxids 1

SETS IDS
PROPERTIES card (IDS) maxids
VARIABLES usedIDS
INVARIANT usedIDS IDS
INITIALISATION usedIDS :

OPERATIONS
newid allocID

PRE usedIDS IDS
THEN

ANY nid
WHERE nid IDS usedIDS
THEN

newid : nid usedIDS : usedIDS nid
END

END ;
nids FreeIDS

BEGIN
nids : card (IDS usedIDS)

END

END

Fig. 1.2. A Unique Identifier Machine

The machine has a parameter, which is a non-zero natural number representing
the maximum number of identifiers that may be allocated. The constraints on this
parameter are specified in the machine’s CONSTRAINTS section.
The machine has an abstract set IDS specified in the SETS section. Somewhere
between specification and implementation this set will have to be instantiated
to some set of natural numbers. The constraints on this set are specified in the
PROPERTIES section.
The machine has a state determined by a single variable usedIDS, defined to be
a subset of IDS in the INVARIANT section. This variable models the identifiers
already allocated, and hence is initialised to the empty set.
The machine has two operations: allocID which returns an unused identifier, pro-
vided that not all identifiers have been allocated; and FreeIDS that returns the
number of identifiers remaining to be allocated. This operation is required for a
caller of allocID to ensure that the precondition is satisfied.
The specification of allocID uses non-deterministic choice from the set of unused
identifiers.

1.3 Refinement 9

1.3 Refinement

Refinement is the term given to the process of taking a specification through a se-
quence of design steps towards implementation. Very simply, P is refined by Q if
Q is a satisfactory replacement for P in any situation in which P is defined. Notice
that this does not mean that Q is equivalent to P; it may be that the behaviour of P
is non-deterministic, and Q discards some of the non-determinism.

In general, a distinction is frequently made between procedural or algorithmic
refinement, in which only the algorithmic component of an operation is refined. This
is like changing the algorithm. The other form of refinement is data refinement, in
which the state of the machine is also changed, that is, we choose a new set of
variables to model the behaviour, and of course we have to change the algorithm as
well.

The formal definition of refinement in B does not distinguish between procedu-
ral and data refinement, but to illustrate these two aspects of refinement we will give
examples that illustrate the distinction.

1.3.1 Procedural Refinement

To illustrate procedural refinement we will refine the operation in the SquareRoot
machine. Any refinement of the SquareRoot operation is clearly procedural refine-
ment as this machine has no state. The specification of the SquareRoot operation
is declarative in that it simply asserts the property that the result should satisfy,
and does not give any hint as to how the result can be computed. The first step of
refinement suggests an algorithm for computing the result. There are many such al-
gorithms of which we will suggest only one here, and we will also give some idea
of where the algorithm comes from.

In the specification machine we choose the value of the variable yy to satisfy the
predicate

square yy xx xx square yy 1

This choice cannot be made simply, as the value chosen has to satisfy two conjuncts.
Thus we need an implementation strategy. We can observe that is relatively easy to
choose a value that satisfies either conjunct, so a possible strategy is to use two
variables. We represent the two arguments to square in the above predicate by two
different variables, as in

square yy xx xx square zz

then we can suggest an algorithm in which we choose arbitrary initial values for yy
and zz that satisfy the above predicate and then modify yy and zz maintaining the
above predicate and moving the values of yy and zz closer together until yy 1 zz.
At that point yy will satisfy the specification.

The refinement is shown in Fig. 1.3 on the next page.

10 1. Introduction to the B Method

REFINEMENT SquareRootR
REFINES SquareRoot

OPERATIONS
sqrt SquareRoot(xx)

ANY yy , zz
WHERE yy zz

sqinv (xx , yy , zz)
zz yy 1

THEN
sqrt : yy

END
DEFINITIONS

square (x) x x ;
sqinv (x , y , z) y z square (y) x x square (z)

END

Fig. 1.3. Square Root Refinement

1.3.2 Data Refinement

In contrast to the refinement of SquareRoot, we will present a refinement of
UniqueID in which we change the representation of the state. The refinement of
the state of a machine is determined by the operations that need to be supported, as
distinct from the operations that might be supported. In many cases the operations
do not need the full capability of the abstract state and a concrete state can be cho-
sen that discards some of the abstractions. In the case of the UniqueID machine we
make the following observations:

The abstract set IDS could be replaced by the set of natural numbers 1 maxids.
We then know that identifiers are actually natural numbers.
We don’t need to allocate identifiers non-deterministically, we could allocate
them sequentially starting from 1.
Since there is no operation by which identifiers can be returned, we can simulate
the set of used identifiers very simply: we simply need a natural number variable
that records the last allocated identifier. Then if that variable is lastID the usedIDS
set is implicitly 1 lastID.

The refinement is shown in Fig. 1.4 on the facing page and the following features
should be noted:

The abstract set IDS is instantiated to the set 1 lastID in the PROPERTIES
clause.
The machine has a single variable lastID whose type is , given in the INVARI-
ANT section.

1.3 Refinement 11

REFINEMENT UniqueIDR
REFINES UniqueID
PROPERTIES IDS 1 maxids
VARIABLES lastID
INVARIANT lastID usedIDS 1 lastID
INITIALISATION lastID : 0

OPERATIONS
newid allocID

BEGIN
newid : lastID 1 lastID : lastID 1

END ;
nids FreeIDS

BEGIN
nids : maxids lastID

END
END

Fig. 1.4. Unique Identifier Refinement

The INVARIANT not only specifies an invariant on the state of the refining ma-
chine, but it also expresses the refinement relation between the state of this ma-
chine and the state of the refined machine. The refinement relation shows how
the refining machine models the refined machine. In this case, the set usedIDS is
simulated by the set 1 lastID.
The INITIALISATION establishes the invariant.
The operations are now expressed as simple deterministic computations.

1.3.3 Refinement and Non-Determinism

While both specification machines use non-determinism in the definition of their
operations, the uses are quite different:

1. The result of the SquareRoot operation is defined using non-deterministic
choice, but in that case there is only one possible value. In this case we are
using non-determinism to achieve an abstract expression of the requirements,
in order to avoid irrelevant details that would be introduced if a constructive
definition were given.

2. The non-deterministic choice used in the specification of the operation allocID
does result in a large number of different behaviours, all of which are accept-
able.

In the case of 1) above, refinement consists of devising an algorithm that will com-
pute the required result. Any algorithm – ignoring possible performance require-

12 1. Introduction to the B Method

ments – will do. In this case the verification of refinement is concerned with showing
that the result is consistent with the specification.

In the case of 2) above, the situation is different. Not only do we need to design
an algorithm, but we need to deal with the non-determinism.

We will deal briefly with the formal definition of refinement and how it deals
with non-determinism. We will take a very simple example in which we have non-
determinism of the second kind, but in which only procedural refinement is in-
volved.

Consider a coin flipping operation. We have a set

COIN HEAD TAIL

and an operation that flips the coin

y flip y : COIN

Notice that the result of the flip operation is specified as non-deterministic choice
from a set.

Now suppose that we refine the flip operation using exactly the same definition.
Is a coin flip refined by any other coin flip?

Let us do a very simple investigation of the formalisation of refinement. We will
deal only with refinement between substitutions and we will restrict the discussion
to substitutions that are total, ie. precondition TRUE.

Suppose we have two substitutions G and H and we want H to be a refinement
of G. Suppose that each of G and H returns a result y. In order to distinguish the two
results we will rename the result of H to y and hence also change H to H in which
all instances of y are replaced by y . We assume that y is a new variable. Our first
guess, from the replacement argument above, might be to say that the condition for
refinement is the condition under which both G and H achieve y y , that is

H G y y

Let’s just try that with G y : 2 x and H y : x x.

y : x x y : 2 x y y
y : x x 2 x y

2 x x x T RUE

Now try it on the non-deterministic choice in our flip operation. Let us first
compute the substitution of flip for any predicate R.

y : COIN R
@y y COIN y : y R
y y COIN y : y R
y y COIN y : y R

y : HEAD R y : TAIL R

So the condition for flip to refine flip is

1.3 Refinement 13

f lip f lip y y
y : COIN y : COIN y y
y : COIN HEAD y TAIL y

HEAD HEAD TAIL HEAD
HEAD TAIL TAIL TAIL
FALSE

The problem we have here is due to the non-determinism. Our condition for re-
finement is insisting that the two machines produce the same results. This is too
strong for our notion of refinement. While we may be able to distinguish between
two different coin flips, we normally would accept one coin flip as an acceptable
replacement for any other coin flip. If we were to compare the results of each we
would only want to insist that the result produced by the refinement could have
been produced by the refined machine. The result for refinement is weakened to the
following

H G y y

Notice that S R specifies the set of states in which S is guaranteed to produce a state
satisfying R. Therefore S R specifies the set of states in which S is guaranteed to
produce a state satisfying R. Hence, S R specifies the set of states in which it
is not possible for S to produce a state satisfying R, ie. the set of states for which
it is possible, but not guaranteed, for S to produce a state satisfying R. That is the
precondition we are interested in for non-deterministic operations.

If you evaluate the new condition for the flip machines you will find that the
condition reduces to TRUE.

In conclusion, the notion of refinement that B supports is that for any state for
which an operation of the refined machine is defined, then the same operation in
the refining machine must do something that is consistent with the refined machine.
In any state for which an operation in the refined machine is not defined, the same
operation in the refining machine can do anything. Behaviour includes results and
also changes of states interpreted according to the invariant in the refining machine.

If an operation of the refined machine could produce more than one result, ie. it
is non-deterministic, then the corresponding operation in the refining machine must
produce a result that the refined machine could possibly produce. In other words,
the result must not be one that the refined machine can never produce.

There are a number of refinement obligations defined within B. We will give
just one case that will allow us to discuss the refinement of UniqueID. Consider
a machine M with operations that are parameterless, but which return a result, as
characterised below:

14 1. Introduction to the B Method

M
V
I

R Op
P
S

and that this is refined by:

MR
M
VR
IR

R Op
PR
SR

then the refinement obligation for the refined operation is

I IR P PR SR S IR R R (1.1)

where SR R : R SR.
Condition (1.1) splits into two requirements:

I IR P PR (1.2)
I IR P SR S IR R R (1.3)

If S is a deterministic substitution, then condition (1.3) can be simplified to

I IR P SR S IR R R (1.4)

Informally:

condition (1.2) requires that the precondition of the operation is not strengthened;
condition (1.3) requires the new substitution SR to maintain the simulation of MR
under the refinement relation embedded in IR. As well, there is a requirement that
this condition holds only where the two result values are the same.

Since both machines contain the variable R, it is necessary to rename one of them,
and we rename the result variable in the refining machine to R . Notice that we are
using a substitution on a substitution, R : R SR to change the name of a variable
– or more generally a number of variables – in a substitution.

A toolkit will, of course, generate all proof obligations automatically. We will
apply the above refinement condition to the allocID operation.

1.4 Implementation 15

IMPLEMENTATION UniqueIDRI
REFINES UniqueIDR
IMPORTS ID Nvar (maxids)
INVARIANT lastID ID Nvar

OPERATIONS
newid allocID

BEGIN
ID INC NVAR ;
newid ID VAL NVAR

END ;
nids FreeIDS

VAR ll
IN

ll ID VAL NVAR ;
nids : maxids ll

END
END

Fig. 1.5. Implementation of the Unique Identifier Machine

1.4 Implementation

Implementation in B is a special refinement step. There can be as many refinement
steps as you wish, and then at any stage you can decide to implement. This step can
be done only once for each development, and the implementation machine has some
very strong constraints:

The implementation machine has no state of its own.
To implement the operations, the implementation machine must import other
(specification) machines.
Any parameters of imported machines must be instantiated in the IMPORTS
statement.
The operations of the machine may not directly modify, or reference any of the
variables of the imported machines. All interrogation or modification of the state
must be achieved by using operations of the imported machines.
Implementation machines cannot use abstract substitutions like non-deterministic
choice and parallel composition.

The purpose of these constraints is
1. to ensure that the implementation is dependent only on the specification of other

machines and not on their implementation.
2. to ensure that the implementation is concrete.

An example of a simple implementation is shown in Fig. 1.5. The following feature
of the implementation should be noted:

16 1. Introduction to the B Method

MCH
Refines Refines Implements

REF REF IMP

MCH

MCH

Imports

Imports

Fig. 1.6. Layered Development

The imported machine ID Nvar is a renamed instance of a natural number vari-
able machine. The prefix “ID ” identifies this instance of the machine. The ma-
chine encapsulates a single natural number variable, ID Nvar and a set of natural
number operations.
The parameter of the Nvar machine sets the upper bound for values of the vari-
able.
ID INC NVAR increments the value of ID Nvar.
ID VAL NVAR reads the value of ID Nvar.
Operations may have local temporary variables.

Note: the machine Rename Nvar is a machine available in the standard
library of the B-Toolkit. If the reader has access to a toolkit, then that or a
similar machine should be available. The standard library of those toolkits
will contain a range of machines that are useful for the implementation of
various mathematical and programming constructs.

1.4.1 Layered Development

Machines that are imported into an implementation may be already implemented, as
is the case of the Nvar machine imported into the UniqueIDRI machine, or they may
be newly invented machines specified for the purpose of enabling this implementa-
tion. In the latter case the new machine will have to be refined and implemented.
This process continues, layer by layer, until all the lowest level implementations de-
pend on machines that have been implemented. This leads to a development pattern
that has become known as layered development. Layered development is illustrated
in Fig. 1.6.

The implementation of the SquareRoot machine illustrates this layering. The im-
plementation shown in Fig. 1.7 on page 18 illustrates an approach to implementing
WHILE substitutions. The constraint from the refinement machine

sqinv xx yy zz zz yy 1

is broken into two conjuncts:

1.4 Implementation 17

1. sqinv xx yy zz is satisfied by the initialisation of the local variables yy and zz.
It is also the main part of the loop INVARIANT.

2. The while-loop is used to satisfy the other conjunct zz yy 1, by modifying
the values of yy and zz under the constraint of the loop INVARIANT.

3. The modification of the variables yy and zz is assigned to an operation of a new
machine shown in Fig. 1.8 on the following page.

This strategy allows us to explore different approaches to “moving yy and zz closer
together”, if we were interested.

Having introduced the SquareRootUtils machine, we first refine it to the ba-
sic algorithm we wish to use, in Fig. 1.9 on page 19. The final implementation in
Fig. 1.10 on page 19 has only one small change: the refinement of the expression
ww ww xx to ww xx ww. The former expression is the one that most directly
expresses our requirement, and we could have refined directly to an implementation
containing that expression, but if we did then the implementation would be flawed.
Since this expression contains a multiplication it is possible for it to overflow, and so
we replace the expression by another that meets our needs and, which will not over-
flow. In using the refined expression we need to be sure that ww 0. This is assured
by the precondition of the ChooseNewApprox operation in the SquareRootUtils ma-
chine. How?

Note: we should take care with all arithmetic operations and there is a pair of
machines, Scalar TYPE and Scalar TYPE Ops, that specifies the common natural
number operations. We should have used these machines in the implementation of
our square root machines, but this would have involved introducing the SCALAR
type early in the development.

1.4.2 Proof Obligations

There are proof obligations associated with each machine in a development. These
address the following concerns:

Context: proof that sets satisfying specified constraints and properties exist.
Maintenance of invariant: proof that the invariant is established by the initialisa-
tion and maintained by the operations.
Satisfaction of refinement relation: proof that refinement and implementation ma-
chines satisfy the refinement constraints.
Preconditions: proof that preconditions for any invoked machine operations are
satisfied.

The discharge of proof obligations is a vital part of the B Method. The proofs
document the case for your development. If proof obligations are not discharged
then, except for the added rigour in specifying machines, there is little significant
difference between developing in AMN and in some other programming language.
If a toolkit is used then the proof obligations will be generated automatically, and
there will be substantial assistance given to the proof of those obligations. That as-
sistance will include automatic proof and various forms of interactive proof, during
which you will be required to specify new proof rules.

18 1. Introduction to the B Method

IMPLEMENTATION SquareRootRI
REFINES SquareRootR
IMPORTS SquareRootUtils

OPERATIONS
sqrt SquareRoot(xx)

VAR yy , zz
IN yy : 0 ;

zz : (xx 1) / 2 1 ;
WHILE yy 1 zz
DO yy , zz ChooseNewApprox (xx , yy , zz)
INVARIANT yy zz sqinv (xx , yy , zz)
VARIANT zz yy
END ;
sqrt : yy

END
DEFINITIONS

square (x) x x ;
sqinv (x , y , z) y z square (y) x x square (z)

END

Fig. 1.7. Implementation of the SquareRoot Machine

MACHINE SquareRootUtils

OPERATIONS
yy , zz ChooseNewApprox(xx , yy0 , zz0)

PRE xx yy0 zz0
sqinv (xx , yy0 , zz0) yy0 1 zz0 THEN
ANY ww
WHERE ww yy0 ww ww zz0 THEN

SELECT
sqinv (xx , ww , zz0) THEN yy , zz : ww , zz0

WHEN
sqinv (xx , yy0 , ww) THEN yy , zz : yy0 , ww

END
END

END
DEFINITIONS

square (x) x x ;
sqinv (x , y , z) y z square (y) x x square (z)

END

Fig. 1.8. Square Root Utility Machine

1.4 Implementation 19

REFINEMENT SquareRootUtilsR
REFINES SquareRootUtils

OPERATIONS
yy , zz ChooseNewApprox(xx , yy0 , zz0)

VAR ww IN
ww : (yy0 zz0) / 2 ;
IF ww ww xx
THEN yy : ww ; zz : zz0
ELSE yy : yy0 ; zz : ww
END

END
END

Fig. 1.9. Square Root Utility Refinement

IMPLEMENTATION SquareRootUtilsRI
REFINES SquareRootUtilsR

OPERATIONS
yy , zz ChooseNewApprox(xx , yy0 , zz0)

VAR ww IN
ww : (yy0 zz0) / 2 ;
IF ww xx / ww
THEN yy : ww ; zz : zz0
ELSE yy : yy0 ; zz : ww
END

END
END

Fig. 1.10. Square Root Utility Implementation

Using the B-Toolkit, the square-root development generated 17 proof obliga-
tions, of which 4 required interactive proof.

Figure 1.11 on the next page presents all the proof obligations for the UniqueIDR
machine shown in Fig. 1.4 on page 11. In each proof obligation the following ab-
breviations are used for parts of the hypotheses:

cst(mch): constraints: the predicates of the CONSTRAINTS clause of machine mch;
ctx(mch): context: predicates of the PROPERTIES clause of machine mch and sub-

ordinate machines;
inv(mch): invariant: predicates INVARIANT clause of machine mch together with

abstract/concrete equalities of any algorithmically-refined variables;
asn(mch): ASSERTIONS of machine mch;

20 1. Introduction to the B Method

Initialisation . 1
cst (UniqueIDR 1) ctx (UniqueIDR 1)

0

Initialisation . 2
cst (UniqueIDR 1) ctx (UniqueIDR 1)

1 0

allocID . 1
cst (UniqueIDR 1) ctx (UniqueIDR 1)
inv (UniqueIDR 1) asn (UniqueIDR 1)
pre (allocID)

lastID 1 1 IDS usedIDS

allocID . 2
cst (UniqueIDR 1) ctx (UniqueIDR 1)
inv (UniqueIDR 1) asn (UniqueIDR 1)
pre (allocID)

lastID 1 1

allocID . 3
cst (UniqueIDR 1) ctx (UniqueIDR 1)
inv (UniqueIDR 1) asn (UniqueIDR 1)
pre (allocID)

usedIDS lastID 1 1 1 lastID 1 1

FreeIDS . 1
cst (UniqueIDR 1) ctx (UniqueIDR 1)
inv (UniqueIDR 1) asn (UniqueIDR 1)
pre (FreeIDS)

maxids lastID 1 card (IDS usedIDS)

Context . 1
cst (UniqueIDR 1)

card (1 maxids) maxids

Context . 2
cst (UniqueIDR 1)

card (1 maxids) 1

Fig. 1.11. Proof Obligations for the UniqueIDR Machine

1.4 Implementation 21

allocID . 1
1 cst (UniqueIDR 1) HYP
2 ctx (UniqueIDR 1) HYP
3 inv (UniqueIDR 1) HYP
4 asn (UniqueIDR 1) HYP
5 maxids 1 1,HypExp.7
6 IDS 1 maxids 2,Props.1
7 usedIDS 1 lastID 1 3,HypExp.6
8 lastID 1 3,HypExp.5
9 inv (UniqueID) 3,HypExp.3
10 maxids 5,Law.1
11 usedIDS IDS 9,HypExp.1
12 pre (allocID) HYP
13 (usedIDS IDS) 12,HypExp.2
14 1 lastID 1 1 Law.2
15 usedIDS IDS 11,13,UsersTheory.1
16 lastID 1 maxids 7,6,15,UsersTheory.2
17 lastID 1 1 maxids 8,10,16,Law.3
18 lastID 1 1 1 maxids 14,17,Law.4
19 lastID 1 1 IDS 18,6
20 1 Law.5
21 0 1 ARI
22 1 1 20,21,Law.6
23 lastID 1 lastID 1 1 22,8,Law.7
24 (lastID 1 1 1 lastID 1) Law.8
25 (lastID 1 1 usedIDS) 24,7
26 lastID 1 1 IDS usedIDS 19,25,Law.9
27 QED DED

Fig. 1.12. Proof of allocID.1 for the UniqueIDR Machine

UsersTheory . 1
S T (S T)

S T
UsersTheory . 2

S 1 m T 1 n S T

m n

Fig. 1.13. User Theories for Proof of allocID.1

22 1. Introduction to the B Method

pre(opn): precondition of operation opn in this machine.

For the machine UniqueIDR, all of the above are empty except the ctx, inv and pre
components.

It should also be noted that a subscripted name, as in lastID1, is a reference to
the value associated with that name before the operation.

As an exercise, the reader should compute condition (1.3 on page 14) for the
operation AllocID and compare with the proof obligations labelled allocID.1, al-
locID.2 and allocID.3. Substitution distributes through conjunction and in most
cases this allows a proof obligation to be separated into a number of simpler obliga-
tions. It should be noted that

allocID.1 is generated from the R R conjunct in condition (1.3 on page 14).
The result of the operation in UniqueID is nid, and nid in that machine is spec-
ified by non-deterministic choice nid : IDS usedIDS. In the UniqueIDR ma-
chine the result is lastID1 1. Thus this condition is a reflection through to the
refinement from the non-deterministic choice in the abstract machine UniqueID.
allocID.2 is generated from the lastID conjunct of the invariant of the ab-
stract machine UniqueIDR.
allocID.3 is generated from the usedIDS 1 lastID conjunct of UniqueIDR.

A proof of allocID.1 is shown in Fig. 1.12. This proof was produced interactively
under the B-Toolkit. The two user theories, shown in Fig. 1.13 on the page before,
were required.

1.5 An Extended Example

A more extensive example will now be given that demonstrates a longer develop-
ment sequence and more of the facilities of B. The example presented below is
adapted from an example in J.P. Hoare [40].

1.5.1 A Simple Data Queue Machine

The DataQueue machine models the problem of retaining the chronological order
of registration of some customer data or information, given that customers’ informa-
tion may be added to or deleted from the existing collection of data. We model this
by having a set of tokens (TOKEN) that represents the set of data objects. The data
attributes of each object are modelled by a partial function from TOKEN to DATA.
The sequencing is modelled by an injective sequence of tokens. The DataQueue
machine is parameterised by three items: DATA: a non-empty set representing the
data in the queue; anydata: an element of that set; maxqueue: a non-zero constant
representing the maximum number of elements in the queue. The parameters remain
uninstantiated until the machine is imported into some other machine.

MACHINE DataQueue (DATA , anydata , maxqueue)

1.5 An Extended Example 23

CONSTRAINTS anydata DATA maxqueue 0
SEES Bool TYPE
SETS TOKEN
PROPERTIES card (TOKEN) maxqueue
VARIABLES TokenSeq , TokenMap

The state consists of two variables: TokenSeq, representing the (consecutive) sequence
of tokens or identifiers, and TokenMap, which represents the relation between members
of the TokenSeq and data items associated with it. The precise meaning of these two
variables is given in the machine’s INVARIANT. The first conjunct constrains TokenSeq
to be an injective sequence to ensure that any token occurs at most once in the sequence.
The second and third conjuncts constrain TokenMap to be a total function from all tokens
in the sequence TokenSeq to DATA. As noted earlier, this allows each token to be uniquely
identified with a data item, but each data item may have more than one token associated
with it.

INVARIANT
TokenSeq iseq (TOKEN)
TokenMap TOKEN DATA
dom (TokenMap) USED

INITIALISATION
TokenSeq , TokenMap : ,

The operations of the machine follow. Some of these operations may succeed or fail, so
any specification and implementation might take this into account. For example, adding
an item may fail because there can be no more tokens allocated. This is a direct result
of the B-Method insisting on specifying finite sets. An attempt to delete an item that is
not currently in the queue is regarded as benign and so we will not regard deletion as an
operation that can fail. Returning the oldest item can fail if there are no items to return.

OPERATIONS
success , token AddItem(item)

PRE item DATA THEN
CHOICE

ANY new token WHERE new token TOKEN USED
THEN

TokenSeq : TokenSeq new token
TokenMap (new token) : item
success , token : TRUE , new token

END
OR

success : FALSE token : TOKEN
END

END ;
DeleteItem(token)

PRE token TOKEN THEN
IF token USED THEN

24 1. Introduction to the B Method

ANY before , after
WHERE before 1 (TOKEN) after 1 (TOKEN)

TokenSeq before token after
THEN

TokenSeq : before after
TokenMap : token TokenMap

END
END

END ;
success , token OldestItem

IF USED THEN
success , token : TRUE , first (TokenSeq)

ELSE
success : FALSE token : TOKEN

END ;
item ItemData(token)

PRE token USED THEN
item : TokenMap (token)

END
DEFINITIONS

USED ran (TokenSeq)
END

1.5.2 Refinement of the Data Queue

We will refine the DataQueue machine to an implementation. As noted above, to do
this we will have to import one or more machines which provide operations that can
be used to simulate the operations of the refined machine. The DataQueue machine
could be refined to an implementation using standard machines in the library of a
toolkit, but we will take the development via a different, and somewhat fanciful,
route. Instead of refining the sequence using a sequence machine we will refine
using a “doubly-linked list” machine (DList) as shown in the following refinement.

IMPLEMENTATION DataQueue Imp
REFINES DataQueue
SEES Bool TYPE
IMPORTS DList (DATA , anydata , maxqueue 1)
PROPERTIES ITEM TOKEN
INVARIANT

dom (TokenMap) dom (Contents) Anchor
ii . (ii dom (TokenSeq)

TokenSeq (ii) Nextii (Anchor))
token . (token ran (TokenSeq)

TokenMap (token) Contents (token))

OPERATIONS

1.5 An Extended Example 25

success , token AddItem(item)
BEGIN

success , token List Append (item)
END ;

DeleteItem(token)
BEGIN

List Delete (token)
END ;

success , token OldestItem
VAR isempty
IN isempty List Isempty ;

success NEG BOOL (isempty) ;
token List Head

END ;
item ItemData(token)

BEGIN
item List Info (token)

END
END

1.5.3 The Doubly-Linked List Machine

The imported DList machine specifies a doubly-linked list of items taken from a
set ITEM. The start of the list is denoted by a variable Anchor, and items in the list
have forward and backward “pointers”, Next and Previous. The content of each item
in the list is established by a function that maps items to values in the parametric
set INFO. The refinement is based on the following relations extracted from the
DataQueue implementation:

There are three important points to note:

In the IMPORT clause, the parameters of the DList machine are instantiated.
In the PROPERTIES clause, the deferred set ITEM of the DList machine is
equated to the deferred set TOKEN of the DataQueue machine.
In the INVARIANT clause the state of the DataQueue machine is related to the
state of the DList machine.

The DList machine provides the abstract operations of appending, and deleting
an item from a doubly-linked list, as well as operations to allow checking to see if
the list is empty and returning the first item in the list. The machine is parameterised
by INFO, a set of items that represents the information content of each list item.
These list entries are associated with three separate “pointer” functions: one for the
information content, one for the forward link to the next item in the list, and one for
the link to the previous item in the list. This may be done in a lower level machine
which is imported in the implementation of DList. Our specification deals only with
the operations allowed on the items in the list (as well as giving invariants and
assertions about the list and associated entries). The modelling of the doubly-linked
list structure is discussed in the following specification.

26 1. Introduction to the B Method

MACHINE DList (INFO , anyinfo , maxitems)
CONSTRAINTS anyinfo INFO maxitems 0
SEES Bool TYPE
SETS ITEM
PROPERTIES card (ITEM) maxitems

The DList machine models a doubly-linked list. The list is formed from a set of ITEMS.
Each item in the set has the following attributes:

Contents: the information associated with the item;
Next: the successor item in the list;
Previous: the predecessor item in the list.

The dummy item Anchor has a Next value that points to the first item in the list, and a
Previous value that points to the last item in the list. The first item in the list has a Previous
link to Anchor and the last item in the list has a Next link to Anchor. If the list is empty
then both the Next and Previous links from Anchor point to itself.

The invariant expresses the following properties:
every item in the list has a Next and a Previous link, and each link points to a unique item,
hence Next and Previous are bijective functions.
if you follow a Next link and then immediately follow a Previous link, you get back
to where you started; similarly for Previous and Next in the other order. Hence, both
Next ;Previous and Previous ;Next are the identity relation on the set of USED items.

starting from the Anchor you can reach every item in the list by following only Next (or
Previous) links.

VARIABLES
Anchor ,
Contents ,
Next ,
Previous

INVARIANT
Anchor USED
Contents ITEM INFO
Next USED USED
Previous USED USED
(Next ; Previous) id (USED)
Next* Anchor USED

We can also express the doubly linked list properties by assertions.

ASSERTIONS
item . (item USED

Previous (Next (item)) item)
item . (item USED

Next (Previous (item)) item)
item . (item USED

1.5 An Extended Example 27

ii . (ii 0 card (USED) Nextii (Anchor) item))
INITIALISATION

ANY item , info WHERE item ITEM info INFO
THEN

Anchor : item
Contents : item info
Next : item item
Previous : item item

END

OPERATIONS
success , newitem List Append(info)

PRE info INFO
THEN

IF FREE
THEN

ANY item WHERE item FREE
THEN

Contents (item) : info
Next : Next Previous (Anchor) item ,

item Anchor
Previous : Previous Anchor item ,

item Previous (Anchor)
newitem : item
success : TRUE

END
ELSE

success : FALSE newitem : ITEM
END

END ;
List Delete(item)

PRE item ITEM item USED Anchor
THEN

Contents : item Contents
Next : item Next Previous (item) Next (item)
Previous : item Previous Next (item) Previous (item)

END ;
isempty List Isempty

BEGIN
isempty : bool (Next (Anchor) Anchor)

END ;
item List Head

PRE Next (Anchor) Anchor THEN
item : Next (Anchor)

END ;
info List Info(item)

PRE item ITEM THEN
info : Contents (item)

END
DEFINITIONS

USED dom (Contents) ;

28 1. Introduction to the B Method

FREE ITEM USED
END

1.5.4 Implementing the DList Machine

When we implemented the DataQueue machine by importing the DList machine
we entered the layered development chain: we are required to implement the DList
machine. As previously, we will choose to take the refinement a further step, which
we will not complete here.

We will specify a Node machine in Sec. 1.5.5 on the facing page, which is a
more general and less constrained machine than the DList machine. The refinement
relation between the DList machine and the Node machine is shown in invariant
below.

IMPLEMENTATION DList Imp
REFINES DList
SEES Bool TYPE
IMPORTS

Node (INFO , maxitems) ,
Anchor Vvar (NODE)

Notice that this machine also imports the rename Vvar machine from the standard library.
The rename Vvar machine provides a single variable of any type. In this case the instanti-
ation Anchor Vvar provides a variable that implements the variable Anchor of the DList
machine.

PROPERTIES ITEM NODE
INVARIANT

Anchor Anchor Vvar
dom (Contents) Allocated

node . (node Allocated NodeContents (node) Contents (node))
node . (node Allocated NextNode (node) Next (node))
node . (node Allocated PreviousNode (node) Previous (node))

INITIALISATION
VAR node
IN

node SingleNode (anyinfo) ;
Anchor STO VAR (node)

END

The refinement of the operations of DList follow.

OPERATIONS
success , newitem List Append(info)

VAR anchor , newnode , lastnode , ok
IN

1.5 An Extended Example 29

anchor Anchor VAL VAR ;
lastnode GetPrevious (anchor) ;
ok , newnode NewNode (info , lastnode , anchor) ;
IF ok TRUE
THEN

SetNext (lastnode , newnode) ;
SetPrevious (anchor , newnode)

END ;
success : ok ;
newitem : newnode

END ;
List Delete(item)

VAR prev , next
IN

prev GetPrevious (item) ;
next GetNext (item) ;
SetNext (prev , next) ;
SetPrevious (next , prev) ;
FreeNode (item)

END ;
isempty List Isempty

VAR anchor , frst
IN

anchor Anchor VAL VAR ;
frst GetPrevious (anchor) ;
isempty EqlNode (frst , anchor)

END ;
item List Head

VAR anchor
IN

anchor Anchor VAL VAR ;
item GetNext (anchor)

END ;
info List Info(item)

BEGIN
info GetInfo (item)

END
END

1.5.5 The Node Machine

The Node machine specifies a low level construct that is more primitive than the
DList structure. The Node machine specifies a set of objects NODE, where each
object has three attributes:

NodeContents: a value of type INFO;
PreviousNode: a reference to another node;
NextNode: a reference to another node.

The attributes PreviousNode and NextNode have been given names that will assist in
understanding how the node machine is used in the implementation of the doubly-

30 1. Introduction to the B Method

linked structure, but the attributes should have less specific names like Left and
Right. A node is a quite general construct and the nodes are not constrained to be
connected in a linear sequence or in any other topology. The invariant of the Node
machine should be compared carefully with the invariant of the DList machine. The
nodes are constrained only so that PreviousNode and NextNode must reference other
allocated items. The data model for NODE objects is specified through the variables
and the invariant of the Node machine.

MACHINE Node (INFO , maxnode)
CONSTRAINTS maxnode 0
SEES Bool TYPE
SETS NODE
PROPERTIES card (NODE) maxnode
VARIABLES

Allocated ,
NodeContents ,
PreviousNode ,
NextNode

INVARIANT
Allocated NODE
NodeContents Allocated INFO
PreviousNode Allocated Allocated
NextNode Allocated Allocated

INITIALISATION
Allocated , NodeContents , PreviousNode , NextNode : , , ,

Implementation in B enforces full hiding of imported machines, meaning that the refine-
ment is not allowed to reference directly any of the variables of the IMPORTED machines.
Hence, in many cases, machines must have operations for inspecting and modifying their
own variables. For the Node machine we have provided a reasonably complete comple-
ment of such operations:

SingleNode: for creating a singleton node
NewNode: for creating an extra node
FreeNode: for freeing a node
GetInfo: for retrieving the value of the Info attribute
GetPrevious: for getting PreviousNode attribute
GetNext: for getting NextNode attribute
SetPrevious: for setting the PreviousNode attribute
SetNext: for setting the NextNode attribute
EqlNode: for checking node equality

OPERATIONS
newnode SingleNode(info)

PRE info INFO FREE
THEN

1.5 An Extended Example 31

ANY node WHERE node FREE
THEN

Allocated : Allocated node
NodeContents (node) : info
PreviousNode (node) : node
NextNode (node) : node
newnode : node

END
END ;

success , newnode NewNode(info , previous , next)
PRE info INFO previous Allocated next Allocated
THEN

IF FREE
THEN

ANY node WHERE node FREE
THEN

Allocated : Allocated node
NodeContents (node) : info
PreviousNode (node) : previous
NextNode (node) : next
success , newnode : TRUE , node

END
ELSE

success : FALSE
newnode : NODE

END
END ;

FreeNode(node)
PRE node Allocated

node ran (node PreviousNode)
node ran (node NextNode)

THEN
Allocated : Allocated node
NodeContents : node NodeContents
PreviousNode : node PreviousNode
NextNode : node NextNode

END ;
info GetInfo(node)

PRE node Allocated
THEN

info : NodeContents (node)
END ;

previous GetPrevious(node)
PRE node Allocated
THEN

previous : PreviousNode (node)
END ;

next GetNext(node)
PRE node Allocated
THEN

next : NextNode (node)
END ;

32 1. Introduction to the B Method

SetPrevious(node , previous)
PRE node Allocated previous Allocated
THEN

PreviousNode (node) : previous
END ;

SetNext(node , next)
PRE node Allocated next Allocated
THEN

NextNode (node) : next
END ;

eql EqlNode(node1 , node2)
PRE node1 NODE node2 NODE
THEN

eql : bool (node1 node2)
END

DEFINITIONS
FREE NODE Allocated

END

1.6 Exercises

Exercise 1.1. Take the SquareRoot development and discharge all proof obliga-
tions.

Exercise 1.2. Investigate alternative refinements for SquareRootUtilsR. That is,
keep the specification SquareRootUtils and refine in different directions to that taken
here.

Exercise 1.3. To complete the layered development of DataQueue, we need to re-
fine the Node machine to an implementation. This is left as an exercise for the reader.

1.7 Logic and Set Theory Notation 33

1.7 Logic and Set Theory Notation

In the following tables P and Q denote predicates; x and y denote single variables; z
denotes a list of variables; S and T denote set expressions; U denotes a set of sets;
E and F denote an expression; m and n denote lists of integer expressions; f and g
denote functions; r denotes a relation; s and t denote sequence expressions; G is a
substitution.

Table 1.4: Predicate Notation

Construct Publication ASCII
Conjunction P Q P & Q
Disjunction P Q P or Q
Implication P Q P => Q
Equivalence P Q P <=> Q

P Q Q P
Negation P not P
Universal quantification z P Q !z . (P => Q)
Existential quantification z P Q #z . (P & Q)
Substitution G P [G] P
Equality E F E = F
Inequality E F E /= F

Table 1.5: Set Notation

Construct Publication ASCII
Singleton set E {E}
Set enumeration E F {E, F}
Empty set { }
Set comprehension z P { z | P }
Union S T S \/ T
Intersection S T S /\ T
Difference S T S-T

x x S x T
Ordered pair E F E |-> F

E F = E F
Cartesian product S T S * T

x y x S y T
Powerset S POW(S)

s s S
Non-empty subsets 1 S POW1(S)

S
Finite subsets S FIN(S)
Finite non-empty subsets 1 S FIN1(S)
Cardinality S card(S)
Generalised union U union(U)

x x S s s U x s

34 1. Introduction to the B Method

Table 1.5: Set Notation (continued)

Construct Publication ASCII
Generalised intersection U inter(U)

x x S s s U x s
Generalised union z P E UNION (z).(P | E)

z P E T
z P E x x T z P x E

Generalised intersection z P E INTER (z).(P | E)
z P E T

z P E x x T z P x E
Set membership E S E : S
Set non-membership E S E /: S
Subset S T S <: T
Not a subset S T S /<: T
Proper subset S T S <<: T
Not a proper subset s t S /<<: T

Table 1.6: Natural Number Notation

Construct Publication ASCII
The set of natural numbers NAT
The set of positive natural numbers 1 NAT1

0
Minimum S min(S)
Maximum S max(S)
Sum m n m + n
Difference m n m - n
Product m n m * n
Quotient m n m / n
Remainder m n m mod n
Interval m n m .. n

i m i n
Set summation " z P E SIGMA(z).(P | E)
Set product #z P E PI(z).(P | E)

Condition: z P
Greater m n m > n
Less m n m < n
Greater or equal m n m >= n
Less or equal m n m <= n

Table 1.7: Relation Notation

Construct Publication ASCII
Relations S T S <-> T

1.7 Logic and Set Theory Notation 35

Table 1.7: Relation Notation (continued)

Construct Publication ASCII
S T

Domain r dom(r)
r r S T

r x y x y r
Range r ran(r)

r r S T
r y x x y r

Forward composition p;q p ; q
p q p S T q T U

p;q x y z x z p z y q
Backward composition p q p circ q

q; p
Identity S id(S)

x y x S y S x y
Domain restriction S r S <| r

x y x y r x S
Domain subtraction S r S <<| r

x y x y r x S
Range restriction r T r |> T

x y x y r y T
Range subtraction r T r |>> T

x y x y r y T
Inverse r 1 r˜

y x x S x y r
Relational image r S r[S]

y x x S x y r
Right overriding r1 r2 r1 <+ r2

r2 r2 r1
Left overriding r1 r2 r1 +> r2

r1 r1 r2
Direct product p q p >< q

x y z x y p x z q
Parallel product p q p || q

x y m n x m p y n q
Iteration rn iterate(r,n)

r S S
r0 S rn 1 r;rn

Closure r closure(r)
n n rn

Projection S T prj1(S,T)
x y z x y S T z x

Projection S T prj2(S,T)
x y z x y S T z y

36 1. Introduction to the B Method

Table 1.8: Function Notation

Construct Publication ASCII
Partial functions S T S +-> T

r r S T r 1;r T
Total functions S T S --> T

f f S T f S
Partial injections S T S >+> T

f f S T f 1 T S
Total injections S T S >-> T

S T S T
Partial surjections S T S +->> T

f f S T f T
Total surjections S T S -->> T

S T S T
Bijections S T S >->> T

S T S T
Lambda abstraction !z P E %z.(P|E)

z y z z P y E
where y P y E

Function application f E f(E)
E f E f

Table 1.9: Sequence Notation

Construct Publication ASCII
Empty sequence <>

Finite sequences S seq S
f f 1 S

n n f 1 n
Finite non-empty sequences 1 S seq1(S)

S
Injective sequences S iseq(S)

S 1 S
Permutations S perm(S)

S 1 S
Sequence concatenation s t sˆt
Prepend element E s E -> s

E s
Append element s E s <- E

s E
Singleton sequence E [E]

1 E
Sequence construction E F [E,F]

E F

1.7 Logic and Set Theory Notation 37

Table 1.9: Sequence Notation (continued)

Construct Publication ASCII
Size s size(s)

s
Reverse s rev(s)

i i s
s i s s 1 i

Take s n s /|\ n
1 n s

Drop s n s \|/ n
!m m m n ; 1 n s

First element s first(s)
Last element s last(s)
Tail s tail(s)

s s s
Front s front(s)

s s s
Generalised concatenation ss conc(ss)

conc s E s E
Strings “ "..."

Sequences of characters.

38 1. Introduction to the B Method

2. Container Station
Elena Troubitsyna

2.1 Introduction
In this chapter we present a development of an information system for container sta-
tion bookkeeping. Such an information system has to assist the operators in perform-
ing routine operations of registration and loading of trucks arriving at the container
station. The introduction of the automated bookkeeping system has to improve the
efficiency of the operator’s work and speed up the reloading procedures.

The information system to be designed is an example of a critical system, in
the sense that incorrect or unpredictable behaviour of the system leads to significant
money and time losses. Because of that the correctness of the developed software
should be thoroughly verified.

We present a process of the software development from an informal task de-
scription to a specification close to program code. An elegant way to specify the
problem is to start from an abstract specification. A high level of abstraction allows
even complicated entities to be expressed succinctly. Performing a number of refine-
ment steps we obtain a final implementation which is translatable to program code.
At each stage we carefully explain our design decisions and motivation behind the
steps.

The developed system is an example of a complicated information system. To
design a logically consistent and well-structured system we use the idea of stepwise
introduction of complexity. Namely, we consider each particular refinement step as a
way to encompass some requirements of task description left unspecified on a more
abstract level. With such an approach each refinement step becomes a goal oriented
activity to incorporate some particular design decisions rather than a routine exercise
in a logical calculus.

The assistance of B-Toolkit allows a software developer to perform the whole
cycle of software development, verification and documentation within a single envi-
ronment. This is a convenient way to organise a uniform basis for running practical
projects. In our case the reader solving exercises can be considered a participant
of the project developing some independent modules which will be assembled to
constitute the software of the entire extended system.

The rest of the chapter contains the stepwise development of the information
system for container station bookkeeping. At first we present the informal task de-
scription. Then we explain our understanding of the task and show the correspond-
ing abstract specification. As the next step, we perform the refinement of the initial

40 2. Container Station

specification. The development of the implementation is the result of the bottom-up
and the top-down design. The experience gained is summarised in the conclusion.
Possible extensions to the considered task are suggested as exercises.

2.2 Task Description

The container station is a railway station for reloading freight transported in con-
tainers. The containers are brought on trains during the night and early morning.
During the morning, empty trucks arrive to fetch the containers. At noon, the empty
wagons are rearranged for further transport. In the afternoon, loaded trucks arrive
and the containers are reloaded on the trains. The scheme of the container station is
presented in Fig.2.1. We consider the morning operations only.

When a truck arrives at the entry, the truck driver registers at the gate. The gate-
keeper notes the identification of the container and assigns the truck to an appropri-
ate position in the loading zone. If no such position is free, the truck is assigned a
place in the waiting zone. When an appropriate position for loading becomes free,
the gatekeeper informs the truck driver to move there. In the loading lane the truck
will be loaded by means of a crane. When this is completed, the driver leaves the
container station without further notice.

The positions in the loading zone and on the railway tracks are measured in mul-
tiples of 10 meters called sectors. It is assumed that a truck occupies one sector in
the loading zone. The trucks are only allowed to drive forwards, for safety reasons.

The gatekeeper bases his decisions on the list of the trains with their loaded
containers and their respective positions. The positions of the wagons depend on the
order of arrival of the trains. The gatekeeper gets this list in the morning before the
gate opens.

Using the positions of the containers and the arriving trucks, the gatekeeper
compiles a list of reloads to be carried out. Each hour the crane operator gets an
updated list of reloads. The crane operator selects reloads from the lists, carries
them out, and marks them as done. In order to minimise movement of the crane, the
crane operator starts with reloads at sector one and moves to the upper end. Then
the crane moves quickly back to the lower end.

In a typical container station, 400 reloads are carried out each morning. The
manual operation mode is sometimes very inefficient, especially at peak times, caus-
ing long waits or poor use of the crane. Our task is to design an automated book-
keeping system which minimises the average waiting time of the trucks and achieves
some degree of fairness among them, so that the truck drivers will not get annoyed.
For that purpose, both the gate and the crane will be equipped with a simple com-
puter terminal.

We concentrate on modelling the algorithmic part of the problem and keep the
user interface as simple as possible. The design should be reusable for similar con-
tainer stations.

2.2 Task Description 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 6 7 9 10 11 12 13 14 15 1651 8

3

4

5
6
7
8

positions
waiting

waiting zone gate

entry

exit

z
o
n
e

l
o
a
d
i
n
g

z
o
n
e

s
t
o
r
i
n
g

railway

railway

containers

loading
lanes

initial crane position

crane sectors (positions)

directions of

stores

trucks movement

tracks

tracks

storing
lanes

1

2

(these are railway tracks and stores)

containers in store

Fig. 2.1. Scheme of Container Station

42 2. Container Station

2.3 Design of Specification

When developing the specification we strive to solve two problems. The first is
to develop a data structure and a set of operations which are not redundant (with
regards to the number of operations, variables and so on) and which are sufficient to
preserve the integrity of the task. The second goal, which is to establish an optimal
discipline of truck service in order to minimise the average waiting time of the
trucks, is incorporated naturally in the first one.

We start the development by defining the necessary operations and the data
structure. While doing the system analysis we bear in mind that there are two opera-
tors working at the container station, namely the gatekeeper and the crane operator.
Each of them is a user of the information system and we need to organise their work
in the most efficient way. Hence, the information system must provide the operators
with a set of operations which is sufficient to obtain all data required to conduct
their duties.

Considering a simple scenario, i.e. the arrival and the service of a single truck,
we identify a set of required operations. Having arrived at the gate the truck becomes
a subject of an analysis for the gatekeeper. From the list of the trains the operator
extracts the number of the container to be loaded on the truck. Also it is necessary
to find a proper position in the loading zone where the loading takes place. The
operator can ask the information system about an available position for the truck
or to check whether the truck is eligible for a certain position in the loading zone.
As soon as this sequence of operations is performed the truck moves to the waiting
zone. When the required loading position becomes vacant the truck leaves the wait-
ing zone and proceeds to that position. In the loading zone the truck waits until the
crane operator chooses to load it.

Meanwhile the crane moves from the first position to the end of the loading
zone. At each sector the crane operator checks the necessity to perform reloads (if
any). Naturally, there can be a different number of trucks parked in a certain sector
in distinct loading lanes. This number varies form sector to sector and lies in the
bounds from zero to the number of loading lanes. The crane operator inputs the
current crane position and obtains the number of reloads to be done there. If there
are any trucks to be loaded the crane operator chooses one of them. For performing
the reloads the operator must learn about the number of the loading lane where the
truck is parked and the number of the storing lane where the container to be loaded
is kept. Sending the corresponding requests to the system the crane operator obtains
this information. As soon as the truck is loaded it leaves the container station. If
no more trucks have to be loaded in the current sector the crane operator drives the
crane to the next sector.

An analysis of the task description shows that we can identify two main parts
of the problem. The first is the management of events that change the state of the
container station. For example, arrival of new trucks, departure of trucks, change
of the crane position etc. The second part consists of manipulations which provide
information to the operators but do not change the current state of the container sta-
tion. This is information regarding the possibilities of setting trucks in the loading

2.3 Design of Specification 43

zone, the necessity to perform the reloads etc. We denote the first group of opera-
tions as modifiers and the second group of operations as selectors. Fig. 2.2 presents
a list of operations which will be developed to specify the information system for
the container station bookkeeping.

Now let us note that our specification should be reusable for similar container
stations. Parameterisation makes the specification universal. By defining new val-
ues for the parameters we can easily adapt our software to container stations with
similar structures. Thus, our specification should have parameters. Let us analyse
the scheme of the container station to determine the entities that can be changed
without breaking the structure of the container station. It is clear that the number of
railway tracks, the width of the storing zone, the number of loading lanes, the num-
ber of sectors, and the capacity of the waiting zone differ from station to station.
Hence, we can define these entities as the parameters of our specification.

To introduce the necessary variables let us indicate the key entities of the task
description. The first basic entity is trucks. They can be situated in the waiting zone
or in the loading zone. Let us denote these two sets as TruckInWaitingZone and
TruckInLoadingZone. Moreover, the trucks in the loading zone allocated in the cur-
rent crane position form a set of the trucks to be loaded next. This is the set reload-
ing trucks. The second entity is the containers stored in the container station. We
denote them as the set ContainersInStores. All containers are separated into two cat-
egories: containers which have been assigned to trucks and containers which have
not yet been assigned. These assignments establish a relationship between the en-
tities trucks and containers. The relation between trucks and containers is denoted
as RequestedContainer. The third key entity in the task description is crane. This
entity is characterised by its position. Thus the next variable is CranePosition. The
last entity of the investigated task is position in the loading zone. This entity has di-
rect and indirect relations with all others. Let us mention the most obvious relations.
Any truck can be situated in the loading zone only in a certain sector (position). The
set of all positions available for a certain truck is contained in the variable possi-
ble positions. On the other hand, not every truck can be put in a certain position.
The variable possible trucks is the set of all trucks which can be allocated to the
considered position. Now we have defined the basic structure of the specification:
the list of parameters, the variables and the operations of the specification. A de-
tailed explanation of the design is given in the text of the specification. However,
before presenting the whole specification we have to make a decision concerning
the optimisation of the service procedure.

A bottleneck of the container station is the loading zone. Indeed an average
service time t of the truck (a period of time from when the truck passes the entrance
gate till it leaves the container station) consists of two parts. The first part, twz, is
the waiting time until the proper position in the loading zone becomes vacant. The
second part, tlz, is the time which the truck has to wait, once it has moved into the
loading zone. (Here we assume that the movement from the waiting zone to the
loading zone and the loading process take a negligible amount of time.) It is clear
that twz of any truck consists of the sum of tlz of its predecessors in a certain position

44 2. Container Station

CS is an abbreviation of "container station"

OPERATIONS

Arrival of new truck at CS*
 moveInWaitingZone**

moveInLoadingZone

Transfer of truck from waiting

Find all appropriate positions for
certain truck

possiblePos

Choose position for certain truck
nextPossiblePos

Find all appropriate trucks for
certain position

possibleTrucks

zone to loading zone

SELECTORSMODIFIERS

* -

truckReloadAndDeparture
assigned and departure from CS

Move crane to the next
appropriate position

craneMovement

Loading of truck by container

reloadingContainerLocation
container
Find location of loading

reloadingTruckLocation

Find location of reloading truck

Choose truck to reload
nextTruckToReload

requiredTruckReloads
in certain sector
Estimate the number of reloads

nextPossibleTruck

Choose truck for certain position

** - The names of the corresponding operations are given in italics

Fig. 2.2. Structure of Specification

2.3 Design of Specification 45

in the loading zone. Because of that we argue that the crucial point of minimisation
of the average service time t is to optimise the loading procedure, i.e. to minimise
tlz.

Our solution is based on the assumption that the movement of the crane from
sector to sector is much more time consuming than doing the reloads while stay-
ing at the same sector. Because of that we introduce a certain parking discipline for
the trucks in the loading zone and a corresponding loading discipline for the crane
reloads. Namely, any truck must be parked in the loading zone in such a way that
it occupies the same sector as the container to be loaded. (Consider the container
station as a xy-plane. Let the positions form x-axis and the lanes y-axis. Then the
discipline described means that the truck parked in the loading zone and the con-
tainer must have the same x-coordinates). The loading discipline forces the crane
operator to reload all the trucks in the current position before moving to the next
sector. The introduced disciplines speed up the loading procedure, because they ex-
clude the slow crane movement between sectors while loading a truck. Moreover,
we come to the conjecture that the utilisation of the crane is significantly improved
in comparison to the manual operation.

Now let us make a short comment on specifying a problem within the B-Method.
All stages of program derivation - specification, refinement and implementation -
can be presented in the B-Method as Abstract Machines. To specify the problem
we develop the Abstract Machine CONTAINERSTATION. The Abstract Machine
contains clauses giving global constraints, constants, abstract sets with their proper-
ties, a list of variables and operations on them. The presence of these clauses does
not put any constraints on the structure of the specification which we have already
developed.

MACHINE CONTAINERSTATION
(nofRailwayTracks , nofStores , nofLoadingLanes , nofPositions , nofWaitingPositions)

nofRailwayTracks: number of railway tracks where wagons with containers are parked.

nofStores: number of line in the area where containers unloaded from wagons are kept.
We refer to the parameters nofRailwayTracks and nofStores indirectly. As it can be seen
from the DEFINITION clause we denote a sum of these two parameters as
nofStoringLanes. Besides, for the shortage we extend the notion of storing zone by speak-
ing about the containers kept on the wagons and the containers kept on the stores without
making difference between them.

nofLoadingLanes: number of loading lanes for trucks reloads

nofWaitingPositions: capacity of the waiting zone. The waiting zone is the area where
trucks are waiting for a permission to move at the loading zone.

There is an assumption that the loading zone, the storing zone and the zone of wagons
parking have the same number of positions. The length of a single position is equal to the
length of one sector as can be seen in the task description. The positions with the same
numbers are opposite each other. The number of those positions is kept in the parameter

46 2. Container Station

nofPositions.

CONSTRAINTS
nofPositions 1
nofWaitingPositions 1
nofRailwayTracks 1
nofStores 1
nofLoadingLanes 1

SEES
Bool TYPE

VARIABLES
TrucksInWaitingZone , TrucksInLoadingZone , ContainersInStores ,
CranePosition , RequestedContainer , possible positions , possible trucks ,
reloading trucks

TrucksInWaitingZone represents trucks which are parked in the waiting zone.

TrucksInLoadingZone defines a correspondence between coordinates and trucks in the
loading zone. Each truck in the loading zone can be uniquely defined by the number of
the position and number of the lane in the loading zone.

ContainersInStores contains the correspondence between coordinates and containers in
the container station. This variable is similar to TrucksInLoadingZone.

CranePositions is the set of all possible positions of the crane. Here is some kind of an
artificial digitising of the crane’s movement. This is because the crane cannot carry out
reloading operations during its movement.

RequestedContainer establishes the correspondence between the trucks and the contain-
ers assigned to them.

possible positions contains information about positions in the loading zone vacant for a
certain truck.

possible trucks represents the trucks which can be parked in a certain position in the load-
ing zone.

reloading trucks defines the set of the trucks in the loading zone parked in the current
crane position.

INVARIANT
TrucksInWaitingZone TRUCKS
card (TrucksInWaitingZone) nofWaitingPositions
TrucksInLoadingZone (1 nofPositions) (1 nofLoadingLanes)

TRUCKS
TrucksInWaitingZone ran (TrucksInLoadingZone)
ContainersInStores (1 nofPositions) (1 nofStoringLanes)

CONTAINERS
CranePosition 1 nofPositions

2.3 Design of Specification 47

RequestedContainer
TrucksInWaitingZone ran (TrucksInLoadingZone)

ran (ContainersInStores)
possible positions (1 nofPositions) (1 nofLoadingLanes)
possible trucks TRUCKS
reloading trucks ran (TrucksInLoadingZone)

The invariant gives the real meaning of the introduced variables in terms of the sets and
reflects certain restrictions on the described task.

TrucksInWaitingZone is defined as a subset of all trucks.

The capacity of the waiting zone is restricted, meaning that the number of the trucks in
the waiting zone should not exceed it. To show this we put a condition restricting the car-
dinality of the set TrucksInWaitingZone in the invariant.

The invariant defines TrucksInLoadingZone as a partial injection. The domain of this in-
jection consists of the coordinates of the trucks in the loading zone. The range contains
trucks in the loading zone. Using an injective function guarantees that any position in the
loading zone can be occupied by only one truck.

We assume that any truck in the container station can be only in the waiting zone or in the
loading zone. In addition, no truck can be in both zones simultaneously. The next predi-
cate in the invariant expresses this assumption. It defines the intersection of the sets of the
trucks in the waiting zone and trucks in the loading zone as an empty set.

Any container in the container station has a certain place, either in the storing zone or on
the railway tracks. The variable ContainersInStores maps the coordinates of each stored
container (i.e. the number of the position and the number of the storing lane) to this
container. As in the previous case using an injection provides a placement of only one
container in one position.

The position of the crane at any time is defined as a natural number in the range from 1 to
nofPositions, which is the number of the last position.

The variable RequestedContainer is defined as a partial injection. The domain of Request-
edContainer consists of the trucks parked in the waiting and loading zones which have
already been assigned to containers. Correspondingly these containers form the range of
RequestedContainer. In this case the injection shows that only one container can be as-
signed to a single truck.

In principle, the operator can choose one of several positions for parking a truck in the
loading zone. All such possible positions for a certain truck are represented in the set
possible positions. This set is a subset of all positions in the loading zone.

Similarly, any position in the loading zone can be occupied by one of several possible
trucks. The variable possible trucks is the set of candidates for a certain position in the
loading zone.

The variable reloading trucks contains information about the trucks parked in the loading
zone which have to be loaded with the assigned containers before the crane can move to
the next position.

48 2. Container Station

INITIALISATION
TrucksInWaitingZone :
TrucksInLoadingZone :
CranePosition : 1
RequestedContainer :
possible positions :
possible trucks :
reloading trucks :
ContainersInStores : (1 nofPositions) (1 nofStoringLanes) 1

The initialisation establishes the state of the container station before the gate is opened
and sets the crane in its initial position.

OPERATIONS
moveInWaitingZone (truck , reqcontainer)

PRE
truck TRUCKS
truck TrucksInWaitingZone
truck ran (TrucksInLoadingZone)
card (TrucksInWaitingZone) nofWaitingPositions
reqcontainer ran (ContainersInStores)
reqcontainer ran (RequestedContainer)
truck dom (RequestedContainer)

THEN
TrucksInWaitingZone : TrucksInWaitingZone truck
RequestedContainer : RequestedContainer truck reqcontainer

END ;
The operation moveInWaitingZone models the arrival of a new truck at the container sta-
tion. In specifying this operation we assume that any arriving truck should be set in the
waiting zone (probably, only notionally), regardless of whether an appropriate position
in the loading zone might be vacant. This assumption allows us to treat all trucks in the
container station as two groups: the first is trucks in the waiting zone and the second is
trucks in the loading zone. We assume that there are no trucks anywhere outside these
two zones. The following scenario is performed. The truck truck arrives at the gate of the
container station. On the basis of the ID of the arriving truck the gatekeeper gives an ID
of container reqcontainer to the truck driver. Afterwards, the truck parks in the waiting
zone. In terms of sets this means adding a new element to the set TrucksInWaitingZone
and a new mapplet to the set RequestedContainer.

The precondition of this operation establishes that this is indeed a new truck. This means
that this truck has not already been situated either in the waiting zone or in the load-
ing zone. Parking of the truck in the waiting zone is possible if the cardinality of the
set TrucksInWaitingZone, with the new element added, does not exceed the number of
positions in the waiting zone. The last three conjuncts of the invariant establish that the
container reqcontainer assigned to truck is in the storing zone and has not yet been as-
signed to any truck and that the truck is not assigned to any container as well.

moveInLoadingZone (truck , pos , ln)
PRE

2.3 Design of Specification 49

truck TrucksInWaitingZone
pos 1 nofPositions
ln 1 nofLoadingLanes
pos ln dom (TrucksInLoadingZone)

THEN
TrucksInLoadingZone :

TrucksInLoadingZone pos ln truck
TrucksInWaitingZone : TrucksInWaitingZone truck

END ;
The operation moveInLoadingZone corresponds to the transfer of a truck from the wait-
ing zone to the loading zone. The operation has three parameters. The first is the truck
which is going to be assigned to the loading zone. The second and the third ones define
the loading sector and lane which will be occupied by this truck.

The precondition checks that the truck truck can be allocated in the loading zone and the
coordinates of the targeting position do not extend beyond the ranges of the loading zone.
Next we check the vacancy of the position chosen.

The gatekeeper obtains the coordinates of the position to be occupied after an execution
of the operation nextPossiblePos. The result parameter position returned by the operation
nextPossiblePos is a pair of the form (sector, lane). To simplify the specification of the
operation moveInLoadingZone and its further refinement we treat that pair as two distinct
input parameters.

The selection of the available loading positions is done on the basis of the parking dis-
cipline introduced before. Hence, the input of the coordinates suggested by the system
guarantees that the truck truck will be parked in a proper position (i.e. the number of the
position occupied by a truck in the loading zone will be the same as the number of the
position occupied by a container in the storing zone).

truckReloadAndDeparture (truck)
PRE

truck TRUCKS
truck ran (TrucksInLoadingZone)
truck reloading trucks

pos . (pos 1 nofPositions
pos dom (TrucksInLoadingZone (truck))
pos CranePosition)

THEN
TrucksInLoadingZone : TrucksInLoadingZone truck
ContainersInStores :

ContainersInStores RequestedContainer (truck)
RequestedContainer : truck RequestedContainer

END ;
The execution of the operation truckReloadAndDeparture corresponds to the reloading
of the truck truck and its the departure from the container station. To model the reload
we remove the container loaded from the set of containers on store. The departure of
the truck which is loaded with the given container corresponds to the extracting of the
relevant elements from the sets TrucksInLoadingZone and ContainersInStores. Deleting
elements from the sets TrucksInLoadingZone and ContainersInStores is done by means
of relational anti-range restriction. Removing an element from RequestedContainer is

50 2. Container Station

performed as relational anti-domain restriction.

The precondition for the operation truckReloadAndDeparture ensures that the truck has
already been situated in the loading zone. According to the loading discipline introduced
the truck can be reloaded only when it occupies the same sector as the crane does. Iden-
tifying the truck parking section (denoted as pos) we compare it with the current crane
position. Only if they coincide will the crane reload the truck and the truck leave the con-
tainer station.

number candidates possiblePos (truck)
PRE

truck TRUCKS
truck TrucksInWaitingZone

THEN
LET pp BE

pp
dom (ContainersInStores (RequestedContainer (truck)))
(1 nofPositions) (1 nofLoadingLanes)

dom (TrucksInLoadingZone)
IN

possible positions : pp
number candidates : card (pp)

END
END ;

The operation possiblePos has the input parameter truck and the result parameter num-
ber candidates. The goal of this procedure is to give information about the number of
the vacant positions which can be occupied by a certain truck. As can be seen from the
specification the result parameter is the cardinality of the set possible positions. In this
operation we use the same idea of locating a truck in any loading lane in line with an
assigned container. Let us consider a way of doing this.

The expression RequestedContainer(truck) results in a container being assigned to truck.
Using the relational inverse ContainersInStores with the assigned container as the param-
eter and taking the domain of this expression we get a sector which is occupied by the
considered container. Then we map the resulting sector to the set of all possible positions
in the loading zone. We use the operator relational domain restriction. This results in the
set resulted sector (1 nofLoadingLanes). We receive the targeting set after removing
all occupied positions.

position nextPossiblePos
PRE

possible positions
THEN

ANY pos WHERE
pos possible positions

THEN
position : pos
possible positions : possible positions pos

END
END ;

2.3 Design of Specification 51

The operation nextPossiblePos is a logical continuation of the operation possiblePos.
When the number of positions available for a certain truck has a non-zero value, the
operator can choose one of these positions to park a truck there. The operation nextPossi-
blePos has position as the result parameter. A position from the set possible positions is
chosen non-deteministically by the operation nextPossiblePos. Afterwards, this position
becomes occupied so we remove it from the set of all possible positions.

number candidates possibleTrucks (lane , pos)
PRE

lane 1 nofLoadingLanes
pos 1 nofPositions
pos lane dom (TrucksInLoadingZone)

THEN
LET pt BE

pt truck truck TRUCKS
truck TrucksInWaitingZone

ln . (ln 1 nofStoringLanes
ContainersInStores (pos , ln) RequestedContainer (truck))

IN
possible trucks : pt
number candidates : card (pt)

END
END ;

In the previous two operations the operator tried to park a certain truck in the loading zone.
Now the operator’s task is to find an appropriate truck to occupy a certain position in the
loading zone. We use the same technique to solve this problem as was used in the previous
two operations. First, the operation possibleTrucks informs the operator about trucks suit-
able for the considered position. The parameters of the operation possibleTrucks define
the place in the loading zone which is going to be occupied. The precondition ensures
us that this place is in the range of the loading zone and is vacant. The result parameter
of this procedure is a number of trucks which have been assigned to containers stored
in the different storing lanes but in the same sectors pos. This number is obtained as the
cardinality of the set of all trucks satisfying the mentioned condition.

truck nextPossibleTruck
PRE

card (possible trucks) 0
THEN

ANY tr WHERE
tr possible trucks

THEN
truck : tr
possible trucks : possible trucks tr

END
END ;

If the obtained number of the trucks which fit a certain position is not equal to zero, then
the operator can choose any of these trucks arbitrarily. The operation nextPossibleTruck
chooses non-deterministically a truck from the set of all possible trucks. The chosen truck
is removed from the set possible trucks.

52 2. Container Station

number reloads requiredTruckReloads (position)
PRE

position 1 nofPositions
position CranePosition

THEN
LET tr BE

tr truck truck ran (TrucksInLoadingZone)
truck dom (RequestedContainer)

ln . (ln 1 nofLoadingLanes
TrucksInLoadingZone (position , ln) truck)

IN
reloading trucks : tr
number reloads : card (tr)

END
END ;

The operation requiredTruckReloads provides the crane driver with information about the
necessity of performing any reloads in the current position position. The precondition
ensures that the position analysed is indeed the current crane position. The body of the
operation forms the set reloading trucks of the trucks parked in the current crane position.
The result of requiredTruckReloads is the number of trucks which has to be loaded while
the crane is in the sector position.

next truck nextTruckToReload
PRE

reloading trucks
THEN

ANY tr WHERE
tr reloading trucks

THEN
next truck : tr
reloading trucks : reloading trucks tr

END
END ;

The operation nextTruckToReload is similar to the operation nextPossibleTruck. If there
are any trucks in the current crane position one of them is chosen to be loaded next.

trucklane reloadingTruckLocation (truck)
PRE

truck TRUCKS
truck ran (TrucksInLoadingZone)

THEN
LET ln BE

ln lane lane 1 nofLoadingLanes
pos . (pos 1 nofPositions

TrucksInLoadingZone (pos , lane) truck)
IN

2.3 Design of Specification 53

trucklane : ln
END

END ;
To load a truck the crane driver has to learn
- the lane of the reloading truck
- the lane where a container assigned to that truck is kept.
The operations reloadingTruckLocation and reloadingContainerLocation provide the
crane driver with that information. Introducing the parameter truck in the first operation
he obtains the lane in the loading zone where the truck to be loaded is parked. The ex-
ecution of the second operation, reloadingContainerLocation, gives the crane driver the
location (the storing lane) of the container which is assigned to be loaded on truck. In
both operations only the lanes of the truck and the container are of interest. This is due to
the reloading discipline we introduced (i.e. the sector of the reloading truck, the sector of
the loading container and the sector of the crane are all the same).

containerlane reloadingContainerLocation (truck)
PRE

truck TRUCKS
truck ran (TrucksInLoadingZone)

THEN
LET conln BE

conln dom (ContainersInStores (
RequestedContainer (truck)))

IN
containerlane : conln

END
END ;

craneMovement
PRE

reloading trucks
THEN

IF CranePosition nofPositions
THEN

CranePosition : CranePosition 1
ELSE

CranePosition : 1
END

END

As soon as all trucks parked in the current crane position are reloaded the crane proceeds
its movement to the next sector. If the end of the loading zone is not reached (i.e. the num-
ber of the sector is less then nofPositions) the crane moves to the next sector. Otherwise
the crane moves at the beginning of the loading zone in the fast mode.

DEFINITIONS
nofStoringLanes nofRailwayTracks nofStores ;
TRUCKS 1 ;
CONTAINERS 1

54 2. Container Station

nofStoringLanes is the sum of two numbers: the number of railway tracks and the num-
ber of storing lanes. As previously mentioned, this simplification allows containers to be
treated uniformly on the trains and in the stores.

TRUCKS: a set of positive natural numbers. It represents an abstract set of all trucks which
can appear in the container station at any time.

CONTAINERS: this set of positive natural numbers is the set of containers which can be
put in the store in the container station.

END

2.4 Introducing Fairness in a Refinement Step

Solving our task we follow the stepwise manner of program derivation. In the pre-
vious section we showed the first step of this process, i.e. the design of an abstract
specification of the considered task. Each step in this derivation should bring us
closer to the final implementation. Instead of doing a big jump from the abstract
specification to the implementation we make an intermediate step. In this step our
goal is to fulfil the requirements of the task description which could not be met in
the abstract specification.

Let us note the following straightforward fact which points to the direction of
the refinement. It is well known that a set as used to model the pool of trucks is an
unordered structure. Such a structure is appropriate at the abstract level. The prob-
lem arises when we recall that the designed system should achieve some degree
of fairness among the trucks, so that the truck drivers will not get annoyed. The
requirement of fairness means that if two trucks request the same position in the
loading zone, then the truck which arrived in the waiting zone earlier must also be
parked in this position earlier. Thus the requirement of fairness implies the pres-
ence of some order between the trucks. This point gives us a real direction of the
refinement for our case: the introduction of ordered structures. The next task is to
select the most suitable ordered structure. Everyday experience leads us to the idea
of a queue arrangement for the arriving trucks. We choose a sequence as the most
natural representation of a queue.

To meet the requirement of fairness we perform a data refinement. Hence, we are
going to refine the Abstract Machine specification by changing the data structure.
Obviously, manipulations with the data structure demand the corresponding changes
in the operations basically, to adapt the operations to the new data structure.

Now we have to consider the question to what extent we should be fair? To make
this point clearer, let us imagine the following situation. Suppose we have absolute
fairness, i.e. we implement the discipline first in first out without any exceptions.
Moreover, we assume that several trucks arrive at the container station at almost the
same time. By chance they might all be parked in the same position in the load-
ing zone. Then in spite of the fact that other positions are empty at this moment,
the trucks arriving later should wait in the common queue. This simple example

2.4 Introducing Fairness in a Refinement Step 55

demonstrates that we lose flexibility for the sake of absolute fairness. Thus we do
not satisfy the requirement of minimising the average waiting time. It is clear that
we should find a compromise solution. We think that giving highest priority to the
operator is the most reasonable solution in this conflicting problem. In this case, the
situation described above does not lead to a fast growing queue. The operator gives
permission to move into the loading zone to trucks behind the trucks assigned to
the same position. Here we can speak about queues for certain positions rather than
about a common queue of trucks.

We implement these ideas by replacing the set of arriving trucks TrucksInWait-
ingZone by the sequence TrucksInWaitingZone seq. Furthermore, so that the opera-
tor’s decision when choosing which truck to assign to a certain position is a fair one,
we refine the set possible truck to the sequence possible trucks seq. We refine the
specification by means of introducing the new data structure and the requirement of
fairness.

REFINEMENT CONTAINERSTATIONR
REFINES CONTAINERSTATION
SEES

Bool TYPE
VARIABLES

TrucksInWaitingZone seq , TrucksInLoadingZone , ContainersInStores ,
CranePosition , RequestedContainer , possible positions , possible trucks seq ,
reloading trucks

In the refinement the changed variables receive ending seq to distinguish them from their
counterparts in the specification.

INVARIANT
TrucksInWaitingZone seq iseq (TRUCKS)
possible trucks seq iseq (TRUCKS)
TrucksInWaitingZone ran (TrucksInWaitingZone seq)
possible trucks ran (possible trucks seq)

The invariant indicates the changes in the data structure. The variables which remain
unchanged in the refinement are not redefined in the invariant. We introduce the injective
sequence TrucksInWaitingZone seq instead of the set TrucksInWaitingZone. Indicating
that the set TrucksInWaitingZone is a range of the sequence TrucksInWaitingZone seq
we clarify the correspondence between the variable in the specification and one in the
refinement. Introduction of the sequence possible trucks seq is done in the same way.

INITIALISATION
TrucksInLoadingZone :
RequestedContainer :
possible positions :
reloading trucks :
CranePosition : 1
TrucksInWaitingZone seq :

56 2. Container Station

possible trucks seq :
ContainersInStores : (1 nofPositions) (1 nofStoringLanes) 1

The initialisation here establishes the same state of the container station as in the spec-
ification. The only difference is that we initialise the corresponding variables as empty
sequences.

OPERATIONS
moveInWaitingZone (truck , reqcontainer)

PRE
truck TRUCKS
truck ran (TrucksInWaitingZone seq)
truck ran (TrucksInLoadingZone)
card (ran (TrucksInWaitingZone seq)) nofWaitingPositions
reqcontainer ran (ContainersInStores)
reqcontainer ran (RequestedContainer)
truck dom (RequestedContainer)

THEN
TrucksInWaitingZone seq : TrucksInWaitingZone seq truck
RequestedContainer : RequestedContainer truck reqcontainer

END ;
In the operation moveInWaitingZone we take into account the new data structure. A new
arriving truck is prepended to the queue of trucks in the waiting zone. Even if we do not
work with the common queue of trucks in the waiting zone directly, we use the order of
the arriving truck when considering the truck’s line to a certain position.

moveInLoadingZone (truck , pos , ln)
PRE

truck ran (TrucksInWaitingZone seq)
pos 1 nofPositions
ln 1 nofLoadingLanes
pos ln dom (TrucksInLoadingZone)

THEN
ANY oc WHERE

oc 1
oc TrucksInWaitingZone seq (truck)

THEN
ANY wtrseq WHERE

wtrseq iseq (TRUCKS)
ii . (ii 1 oc 1

wtrseq (ii) TrucksInWaitingZone seq (ii))
ii . (ii oc 1 size (TrucksInWaitingZone seq)

wtrseq (ii 1) TrucksInWaitingZone seq (ii))
size (wtrseq) size (TrucksInWaitingZone seq) 1

THEN
TrucksInLoadingZone :

TrucksInLoadingZone pos ln truck
TrucksInWaitingZone seq : wtrseq

END
END

END ;

2.4 Introducing Fairness in a Refinement Step 57

To park truck in the loading zone it is necessary to remove this truck from the line of
trucks in the waiting zone. The constructions ANY WHERE in the operation moveIn-
LoadingZone are used to introduce the local variables wtrseq and oc. The variable oc
contains the number of the truck in the queue of waiting trucks. The variable wtrseq rep-
resents the queue of trucks in the waiting zone with truck deleted. The expression with
quantifier must show that the order of the other trucks remains unchanged after deletion
of a certain truck from the queue.

truckReloadAndDeparture (truck)
PRE

truck TRUCKS
truck ran (TrucksInLoadingZone)
truck reloading trucks

pos . (pos 1 nofPositions
pos dom (TrucksInLoadingZone (truck))
pos CranePosition)

THEN
TrucksInLoadingZone : TrucksInLoadingZone truck
ContainersInStores :

ContainersInStores RequestedContainer (truck)
RequestedContainer : truck RequestedContainer

END ;
number candidates possiblePos (truck)

PRE
truck TRUCKS
truck ran (TrucksInWaitingZone seq)

THEN
LET pp BE

pp
dom (ContainersInStores (RequestedContainer (truck)))
(1 nofPositions) (1 nofLoadingLanes)

dom (TrucksInLoadingZone)
IN

possible positions : pp
number candidates : card (pp)

END
END ;

position nextPossiblePos
PRE

possible positions
THEN

ANY pos WHERE
pos possible positions

THEN
position : pos
possible positions : possible positions pos

END
END ;

number candidates possibleTrucks (lane , pos)
PRE

lane 1 nofLoadingLanes
pos 1 nofPositions

58 2. Container Station

pos lane dom (TrucksInLoadingZone)
THEN

LET pt BE
pt truck truck TRUCKS

truck ran (TrucksInWaitingZone seq)
ln . (ln 1 nofStoringLanes

ContainersInStores (pos , ln) RequestedContainer (truck))
IN

ANY wtrseq WHERE
wtrseq iseq (pt)
ran (wtrseq) pt
size (wtrseq) card (pt)

ii . (ii 1 size (wtrseq) 1
TrucksInWaitingZone seq (wtrseq (ii))

TrucksInWaitingZone seq (wtrseq (ii 1)))
THEN

possible trucks seq : wtrseq
number candidates : size (wtrseq)

END
END

END ;
The number of trucks waiting for permission to move to the considered position is the out-
put result of the operation possibleTrucks. Based on the queue of waiting trucks TrucksIn-
WaitingZone seq this operation forms the queue of trucks for the considered position.
Such a queue is formed in the local variable wtrseq and then stored in the variable pos-
sible trucks seq. The expression with the existential quantifier shows that we form the
sequence of the trucks which have been assigned to containers parked in the sector pos.
The next predicate indicates that the sequence wtrseq is formed such that a truck which
arrived earlier at the container station is located in the queue before trucks that arrived
later.

truck nextPossibleTruck
PRE

card (ran (possible trucks seq)) 0
THEN

truck : first (possible trucks seq)
possible trucks seq : tail (possible trucks seq)

END ;
The operation nextPossibleTruck performs the fair choice of the next truck to be parked
in the loading zone. The design of the operation nextPossibleTruck forces the operator to
choose the first truck in the queue for a certain position in the loading zone. This operation
implements the idea of fairness in the specification of the task.

number reloads requiredTruckReloads (position)
PRE

position 1 nofPositions
position CranePosition

THEN
LET tr BE

tr truck truck ran (TrucksInLoadingZone)

2.4 Introducing Fairness in a Refinement Step 59

truck dom (RequestedContainer)
ln . (ln 1 nofLoadingLanes

TrucksInLoadingZone (position , ln) truck)
IN

reloading trucks : tr
number reloads : card (tr)

END
END ;

next truck nextTruckToReload
PRE

reloading trucks
THEN

ANY tr WHERE
tr reloading trucks

THEN
next truck : tr
reloading trucks : reloading trucks tr

END
END ;

trucklane reloadingTruckLocation (truck)
PRE

truck TRUCKS
truck ran (TrucksInLoadingZone)

THEN
LET ln BE

ln lane lane 1 nofLoadingLanes
pos . (pos 1 nofPositions

TrucksInLoadingZone (pos , lane) truck)
IN

trucklane : ln
END

END ;
containerlane reloadingContainerLocation (truck)

PRE
truck TRUCKS
truck ran (TrucksInLoadingZone)

THEN
LET conln BE

conln dom (ContainersInStores (
RequestedContainer (truck)))

IN
containerlane : conln

END
END ;

craneMovement
PRE

reloading trucks
THEN

IF CranePosition nofPositions
THEN

CranePosition : CranePosition 1
ELSE

60 2. Container Station

CranePosition : 1
END

END
DEFINITIONS

nofStoringLanes nofRailwayTracks nofStores ;
TRUCKS 1 ;
CONTAINERS 1

END

2.5 Implementation: Development of Robust Software

In this section, we present a final refinement step resulting in an implementation.
Before giving the actual implementation with more specific comments we analyse
the constraints put on implementing an Abstract Machine (mentioned in Chapter 1).

First, let us recall that Abstract Machine Implementation has no state of its own.
It imports other machines and refers to the variables of the imported machines via
the operations of these machines. In our case a main part of the imported machines
is renamed instances of standard machines in the library of B-Toolkit. The parame-
ters of the imported machines are instantiated in the IMPORTS statement. In most
cases the representation of the data structure entities and the instantiation of the
parameters of the imported machines is straightforward. There are two exceptions
which we discuss deeper, namely the injections TrucksInLoadingZone and Contain-
ersInStores.

A Function machine for the Natural Number Function (Nfnc) encapsulates a
partial function over numbers. The machine has two parameters: maxint and maxfld.
They restrict the range and the domain of the encapsulated partial injection. The type
of the encapsulated variable is the most appropriate one to represent the injection
TrucksInLoadingZone. Because of this we select that machine to be imported and
instantiated in the implementation as the machine TInLoadingZone Nfnc. Since the
number of trucks ranges over natural numbers we instantiate the first parameter by
maxint.

However, the domain of TrucksInLoadingZone is the Cartesian product of two
sets rather than a set of fields as is the domain of the encapsulated variable TInLoad-
ingZone Nfnc. The domain of TrucksInLoadingZone defined as (1 nofPositions)

(1 nofLoadingLanes) uniquely determines the maximal number of items in the
domain. Hence, we instantiate the parameter maxfld of the imported machine by the
value (nofPositions nofLoadingLanes).

To establish the correspondence between elements of the domains TInLoading-
Zone Nfnc and TrucksInLoadingZone we notice the following regularity: each ele-
ment of dom(TrucksInLoadingZone) with subscript ((ii 1 , jj 1)) corresponds
to the element of dom(TInLoadingZone Nfnc) with subscript (ii nofPositions
jj 1). With that relation we achieve the desired result so we include it as a part of
the refinement relation.

2.5 Implementation: Development of Robust Software 61

The injection ContainersInStores is represented by the encapsulated variable
of the imported machine ContInStores Nfnc. The same calculations as above are
performed for that instance as well.

In principle, the operations of machines in the library of the B-Toolkit are suffi-
cient to implement the designed system. However, applying a slightly more sophis-
ticated approach, namely layered development as suggested in the previous chapter,
we obtain a more elegant solution. The necessity of layered design is justified by the
following observation. In several operations we need to verify whether a precondi-
tion is satisfied or not. This is done by looking for the presence of a certain element
in the range of the function. There is no such operation in the Function machine for
the Natural Number function. A possible solution to this problem is the direct intro-
duction of the corresponding loops (WHILE substitution) in the final implementa-
tion. It means that we would have several loops performing the same function and
changing slightly according to the context. To avoid repetitions of standard loops,
we extend the standard Function machine for the Natural Number function by the
operation IIR (which stands for Item In Range) which will check whether a certain
item is in the range of the function. Here we present our solution instantiated as
TInLoadZone1 Nfnc.

MACHINE TInLoadZone1 Nfnc (maxint , maxfld)
CONSTRAINTS

maxint 2147483646
maxfld 2147483646

SEES
Bool TYPE

EXTENDS TInLoadingZone Nfnc (maxint , maxfld)

OPERATIONS
res , ii TInLoadingZone1 IIR NFNC (item)

PRE
item 1 maxint

THEN
LET tv BE

tv bool (item ran (TInLoadingZone Nfnc))
IN

IF tv TRUE
THEN

res : TRUE
ii : TInLoadingZone Nfnc (item)

ELSE
res : FALSE
ii : 1 maxfld

END
END

END
END

62 2. Container Station

The operation TInLoadingZone1 IIR NFNC returns a Boolean value indicating the
occurrence of an item in the range of a function and the corresponding position of
the item in a domain.

As the next step we implement the designed machine. The implementation is
presented as the machine TInLoadZone1I Nfnc where the operation IIR is refined
by a WHILE substitution. According to the layered design method we import the
extended machines (the same extension is done for the machine ContInStores Nfnc)
in the final implementation.

IMPLEMENTATION TInLoadZone1I Nfnc
REFINES

TInLoadZone1 Nfnc
SEES

Bool TYPE
EXTENDS TInLoadingZone Nfnc (maxint , maxfld)

OPERATIONS
res , ii TInLoadingZone1 IIR NFNC (item)

VAR ind , domch
IN

ind : 1 ;
res : FALSE ;
ii : 0 ;
WHILE ind maxfld res FALSE
DO

domch TInLoadingZone DEF NFNC (ind) ;
IF domch TRUE
THEN

res TInLoadingZone EQL NFNC (ind , item)
END ;
ii : ind ;
ind : ind 1

INVARIANT
(res FALSE item TInLoadingZone Nfnc 1 ind 1)
(res TRUE item ran (TInLoadingZone Nfnc))
ind 1 maxfld 1

VARIANT
maxfld ind 1

END
END

END

The last general comment on the implementation concerns error handling. When de-
veloping an implementation we assume that any error should invoke a corresponding
error message rather than initiate unpredictable system behaviour. Such an approach
guarantees the design of robust and user-friendly software. Hence, in any situation
the operator should have a meaningful message depicting the current state of the
system.

2.5 Implementation: Development of Robust Software 63

When presenting the abstract specification we tried to describe every particular
design decision. However, some explanations were omitted with the hope that the
corresponding error messages would provide the reader with information sufficient
to reconstruct all the details.

IMPLEMENTATION CONTAINERSTATIONRI
REFINES CONTAINERSTATIONR
SEES

Bool TYPE , basic io , String TYPE , Scalar TYPE
IMPORTS

TInWaitingZone Nseq (maxint , nofWaitingPositions) ,
TInLoadZone1 Nfnc (maxint , nofPositions nofLoadingLanes) ,
ContInStores1 Nfnc (maxint , nofPositions nofStoringLanes) ,
CranePosition set (1 nofPositions , 1) ,
RequeCont1 Nfnc (maxint , nofPositions nofStoringLanes) ,
PosPositions set (1 , nofPositions nofLoadingLanes) ,
PosTrucks Nseq (maxint , nofWaitingPositions) ,
ReloadTrucks set (1 , nofPositions nofLoadingLanes) ,
WaitingQueue Nseq (nofWaitingPositions , nofWaitingPositions)

In the implementation we introduce the auxiliary variable WaitingQueue Nseq.

INVARIANT
TInWaitingZone Nseq TrucksInWaitingZone seq

(ii , jj) . (ii 0 nofPositions 1 jj 0 nofLoadingLanes 1
TrucksInLoadingZone (ii 1 , jj 1)

TInLoadingZone Nfnc (ii nofPositions jj 1))
(aa , bb) . (aa 0 nofPositions 1 bb 0 nofStoringLanes 1

ContainersInStores (aa 1 , bb 1)
ContInStores Nfnc (aa nofPositions bb 1))

CranePosition sset CranePosition
RequeContainer Nfnc RequestedContainer

(cc , dd) . (cc 0 nofPositions 1 dd 0 nofLoadingLanes 1
cc 1 dd 1 possible positions

cc nofPositions dd 1 PosPositions sset)
PosTrucks Nseq possible trucks seq
ReloadTrucks sset reloading trucks

OPERATIONS
moveInWaitingZone (truck , reqcontainer)

VAR
len , pos , parked , poss , contcheck , reqcontcheck , tras , parklz

IN
len TInWaitingZone LEN NSEQ ;
parked , pos
TInWaitingZone SCH LO EQL NSEQ (1 , len , truck) ;
parklz , poss TInLoadingZone1 IIR NFNC (truck) ;
contcheck , poss
ContInStores1 IIR NFNC (reqcontainer) ;
reqcontcheck , poss

64 2. Container Station

RequeContainer1 IIR NFNC (reqcontainer) ;
tras RequeContainer DEF NFNC (truck) ;

At first, we check whether the precondition of the operation is satisfied. Since there are
many conditions to be checked we use IF ELSIF END substitution for that. We could
have used the nested IF THEN ELSE END constructs but decided not to do it since it
deteriorates the presentation.
The nested IF THEN ELSE statements are used to establish whether a precondition holds
but in the operations where the preconditions are more compact.

IF truck 1 truck maxint
THEN

PUT STR (“ The truck ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

ELSIF len nofWaitingPositions
THEN

PUT STR (“ The waiting zone is full ”) ;
NWL (1)

ELSIF len 0 parked TRUE
THEN

If the capacity of the waiting zone is not exceeded and the waiting zone is not empty, then
we check for the presence of a truck truck in the queue of waiting trucks. The value of
the variable parked equals FALSE if there is no truck in the waiting zone. It means that
after establishing that the capacity of the waiting zone is not exceeded, we will verify the
following condition: truck TrucksInWaitingZone.

PUT STR (“ The truck ”) ;
PUT NAT (truck) ;
PUT STR (“ is in the waiting zone ”) ;
NWL (1)

ELSIF parklz TRUE
THEN

If the program fails to find truck in the waiting zone, it proceeds by searching for this truck
in the loading zone. The following statement must be verified: truck ran (TrucksIn-
LoadingZone).

PUT STR (“ The truck ”) ;
PUT NAT (truck) ;
PUT STR (“ is in the loading zone ”) ;
NWL (1)

If the considered truck is not parked either in the waiting zone or in the loading zone,
we continue verification of the precondition. Next, we check whether the input parameter
reqcontainer has a proper value.

2.5 Implementation: Development of Robust Software 65

ELSIF reqcontainer 1 reqcontainer maxint
THEN

PUT STR (“ The requested container ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

ELSIF contcheck FALSE
THEN

The local variable contcheck indicates whether reqcontainer is stored at the container
station or not.

PUT STR (“ Container ”) ;
PUT NAT (reqcontainer) ;
PUT STR (“ is not ”) ;
PUT STR (“ in the storing zone ”) ;
NWL (1)

ELSIF reqcontcheck TRUE
THEN

The next statement to be verified is reqcontainer ran (RequestedContainer), i.e. we
have to check whether the desired container has already been assigned to any truck or
not.

PUT STR (“ Container ”) ;
PUT NAT (reqcontainer) ;
PUT STR (“ is already ”) ;
PUT STR (“ assigned to truck ”) ;
NWL (1)

ELSIF tras TRUE
THEN

Finally, we have to establish that the predicate truck dom (RequestedContainer) holds.

PUT STR (“ Truck ”) ;
PUT NAT (truck) ;
PUT STR (“ is already assigned to container ”) ;
NWL (1)

ELSE

At this point we have checked that all conditions of the precondition are satisfied. Thus
we now assign the container to the arrived truck and park this truck in the waiting zone.

RequeContainer STO NFNC (truck , reqcontainer) ;
TInWaitingZone PSH NSEQ (truck)

END
END ;

moveInLoadingZone (truck , pos , ln)
VAR

len , parkedInWZ , pwz , plz , vacant , tras
IN

66 2. Container Station

len TInWaitingZone LEN NSEQ ;
parkedInWZ , pwz
TInWaitingZone SCH LO EQL NSEQ (1 , len , truck) ;

The position (pos,ln) in the domain of TrucksInLoadingZone corresponds to the position
plz in the domain of TInLoadingZone Nfnc.

plz : pos nofPositions (ln 1) ;
vacant
TInLoadingZone DEF NFNC (plz) ;
tras RequeContainer DEF NFNC (truck) ;
IF truck 1 truck maxint
THEN

PUT STR (“ The truck is badly defined ”) ;
NWL (1)

If the input parameter truck has a correct value, we check whether this truck is parked
in the waiting zone or not. According to the developed specification a truck can move to
the loading zone only after being parked in the waiting zone. If the truck in question is
parked in the waiting zone, the variable parkedInWZ has the value TRUE and we continue
checking the precondition.

ELSIF len 0 parkedInWZ FALSE
THEN

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not in the waiting zone ”) ;
NWL (1)

ELSIF pos 1 pos nofPositions
THEN

PUT STR (“ The requested position ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

ELSIF ln 1 ln nofLoadingLanes
THEN

PUT STR (“ The requested lane ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

Having established that the input parameters pos and ln are well defined we check whether
this position is vacant.

ELSIF vacant TRUE
THEN

PUT STR (“ Requested place: ”) ;
PUT STR (“ position ”) ;
PUT NAT (pos) ;
PUT STR (“ lane ”) ; PUT NAT (ln) ;
PUT STR (“ is already occupied ”) ;
NWL (1)

2.5 Implementation: Development of Robust Software 67

ELSIF tras FALSE
THEN

PUT STR (“ No container ”) ;
PUT STR (“ is assigned to truck ”) ;
PUT NAT (truck) ;
NWL (1)

ELSE

If the desired position is not occupied by any truck the truck truck leaves the queue in the
waiting zone and parks in the loading zone.

TInLoadingZone STO NFNC (plz , truck) ;
TInWaitingZone LFT NSEQ (pwz 1 , len , 1)

END
END ;

truckReloadAndDeparture (truck)
VAR

parkedInLZ , poss , nchosen , acpos , crpos , cont , contpos , tras
IN

parkedInLZ , poss TInLoadingZone1 IIR NFNC (truck) ;
nchosen ReloadTrucks MBR SET (truck) ;

When calculating the value of acpos we use the predicate of the invariant establishing the
relation between the elements of the domain of TrucksInLoadingZone and TInLoading-
Zone Nfnc. The relation is bijective. Hence, we can uniquely calculate the values of both
the sector and the lane for any particular value of the field of TInLoadingZone Nfnc.

acpos : (poss 1) mod nofPositions 1 ;
crpos CranePosition VAL SET (1) ;
tras RequeContainer DEF NFNC (truck) ;
IF truck 1 truck maxint
THEN

PUT STR (“ The truck is badly defined ”) ;
NWL (1)

ELSIF parkedInLZ FALSE
THEN

If the input parameter truck has a proper value we check whether the truck truck is allo-
cated in the loading zone and is chosen to be loaded next.

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not in the loading zone ”) ;
NWL (1)

ELSIF nchosen TRUE
THEN

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not chosen ”) ;
PUT STR (“ for reload ”) ;
NWL (1)

68 2. Container Station

Next we have to establish that the truck truck occupies the same sector as the crane does.
For that we compare the number of the truck sector, acpos and the current position of the
crane, crpos.

ELSIF acpos crpos
THEN

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not under the crane ”) ;
NWL (1)

ELSIF tras FALSE
THEN

PUT STR (“ No container ”) ;
PUT STR (“ is assigned to truck ”) ;
PUT NAT (truck) ;
NWL (1)

ELSE

Because the truck truck is properly located it is loaded by the container assigned (the
container cont). So the truck truck leaves the container station, the container cont is taken
from the storing zone and the record about the assignment of the container cont to a truck
truck is erased.

TInLoadingZone RMV NFNC (poss) ;
cont RequeContainer VAL NFNC (truck) ;
contpos ContInStores VAL NFNC (cont) ;
ContInStores RMV NFNC (contpos) ;
RequeContainer RMV NFNC (truck)

END
END ;

number candidates possiblePos (truck)
VAR

len , cont , hh , pos , poss , acpos , nl , trpos , domch , parked , tras
IN

IF truck 1 truck maxint
THEN

len TInWaitingZone LEN NSEQ ;
IF len 0
THEN

parked , pos
TInWaitingZone SCH LO EQL NSEQ (1 , len , truck)

ELSE
parked : FALSE

END ;
IF parked TRUE
THEN

The previous part of the operation verified the establishing of the precondition. Next we
identify the position of the container cont assigned to the truck truck. We obtain the po-
sition of the assigned container in the domain of ContInStores Nfnc and then extract the
number of the sector from it.

2.5 Implementation: Development of Robust Software 69

tras RequeContainer DEF NFNC (truck) ;
IF tras TRUE
THEN

cont RequeContainer VAL NFNC (truck) ;
hh , poss ContInStores1 IIR NFNC (cont) ;

The container cont is kept in the sector acpos. According to the introduced loading disci-
pline the truck truck must be parked in the sector acpos as well.

acpos : (poss 1) mod nofPositions 1 ;

The sequence of the statements below is the initialisation of the loop.

nl : 1 ;
number candidates : 0 ;
PosPositions CLR SET ;

The following loop forms the set of all vacant and appropriate positions for truck in the
loading zone. Only positions in the sector acpos are taken into consideration. On each
iteration of the loop we check whether position acpos in the line nl is vacant or not. If the
considered position is vacant we insert it in the set PosPositions sset and increment the
counter of available positions number candidates. The loop variable is the number of the
currently considered line.

WHILE nl nofLoadingLanes
DO

trpos : acpos nofPositions (nl 1) ;
domch TInLoadingZone DEF NFNC (trpos) ;
IF domch FALSE
THEN

PosPositions ENT SET (trpos) ;
number candidates : number candidates 1

END ;
nl : nl 1

INVARIANT
PosPositions sset

xx xx acpos nofPositions (nl 1)
(xx 1) / nofPositions mod nofPositions 1

1 nl 1
xx dom (TInLoadingZone Nfnc)

number candidates card (PosPositions sset)
nl 1 nofLoadingLanes 1
size (TInWaitingZone Nseq) 0
truck 1 maxint
parked TRUE
pos TInWaitingZone Nseq (truck)
cont RequeContainer Nfnc (truck)
(hh TRUE cont ran (ContInStores Nfnc))
(hh FALSE cont ran (ContInStores Nfnc))
poss ContInStores Nfnc (cont)

70 2. Container Station

acpos (poss 1) mod nofPositions 1
len size (TInWaitingZone Nseq)
tras TRUE

VARIANT
nofLoadingLanes nl 1

END
ELSE

PUT STR (“ No container ”) ;
PUT STR (“ is assigned to truck ”) ;
PUT NAT (truck) ;
NWL (1)

END
ELSE

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not in the waiting zone ”) ;
NWL (1)

END
ELSE

PUT STR (“ The truck ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

END
END ;

position nextPossiblePos
VAR

vacancy , pos
IN

vacancy PosPositions EMP SET ;
IF vacancy FALSE
THEN

If some positions are available in the loading zone, the operator can choose any of them.
The operator expects to get the coordinates of the chosen position in the form (sector,
lane). However, these coordinates are represented by an item of the form sector lane
no f Positions in the set PosPositions sset. To provide the operator with meaningful infor-
mation we convert this item so that the operator gets the final result as a pair consisting of
the number of the position and the number of the line. The chosen position is considered
to be occupied and is therefore removed from the set of vacant positions.

pos PosPositions ANY SET ;
position :
(pos 1) mod nofPositions 1 (pos 1) / nofPositions 1 ;
PosPositions RMV SET (pos)

ELSE
PUT STR (“ There are no vacant ”) ;
PUT STR (“ positions for the truck ”) ;
NWL (1)

END
END ;

number candidates possibleTrucks (lane , pos)
VAR

occupied , ln , trpos , domch , cont , len , parked , assigned ,

2.5 Implementation: Development of Robust Software 71

wpos , truck , ind , ptruck , tpos , lwq , tplz
IN

tplz : pos nofPositions (lane 1) ;
occupied TInLoadingZone DEF NFNC (tplz) ;
IF lane 1 lane nofLoadingLanes
THEN

PUT STR (“ The lane ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

ELSIF pos 1 pos nofPositions
THEN

PUT STR (“ The position ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

ELSIF occupied TRUE
THEN

PUT STR (“ Position ”) ; PUT NAT (pos) ;
PUT STR (“ Lane ”) ; PUT NAT (lane) ;
PUT STR (“ is already occupied ”) ;
NWL (1)

ELSE

If the input parameters are well-defined and they correspond to a vacant position in the
loading zone, we can execute the body of the operation. We form the queue of the trucks
fitting the position pos in the lane lane in the loading zone in two steps.
At first, we form an auxiliary queue of the waiting trucks WaitingQueue Nseq. Every
element of ran(WaitingQueue Nseq) is such an element of the domain of TInWaiting-
Zone Nseq that the corresponding truck fits the desired position, i.e. the ordinal numbers
of truck arival are contained in ran(WaitingQueue Nseq).

ln : 1 ;
WaitingQueue CLR NSEQ ;
len TInWaitingZone LEN NSEQ ;

The following loop with initialisation forms the sequence WaitingQueue Nseq as de-
scribed above.

WHILE ln nofStoringLanes
DO

trpos : pos nofPositions (ln 1) ;
domch ContInStores DEF NFNC (trpos) ;
IF domch TRUE
THEN

cont ContInStores VAL NFNC (trpos) ;
assigned , truck
RequeContainer1 IIR NFNC (cont) ;
IF assigned TRUE
THEN

parked , wpos
TInWaitingZone SCH LO EQL NSEQ (1 , len , truck) ;
IF parked TRUE

72 2. Container Station

THEN
WaitingQueue PSH NSEQ (wpos)

END
END

END ;
ln : ln 1

INVARIANT
ln 1 nofRailwayTracks nofStores 1
ran (WaitingQueue Nseq)

wp wp dom (TInWaitingZone Nseq)
ii . (ii 1 ln 1

RequeContainer Nfnc (TInWaitingZone Nseq (wp))
ContInStores Nfnc (pos

nofPositions (ii 1)))
lane 1 nofLoadingLanes
pos 1 nofPositions
(occupied FALSE

tplz dom (TInLoadingZone Nfnc))
len size (TInWaitingZone Nseq)
tplz pos nofPositions (lane 1)

VARIANT
nofRailwayTracks nofStores ln 1

END ;
PosTrucks CLR NSEQ ;
number candidates : 0 ;
ind : 1 ;
lwq WaitingQueue LEN NSEQ ;
WaitingQueue SRT DSC NSEQ (1 , lwq) ;

To perform a fair choice of the truck which fits a certain position and has arrived before the
other trucks fitting that position, we sort the sequence WaitingQueue Nseq. Now on top
of the stack WaitingQueue Nseq is the ordinal number of the truck which arrived earliest.
Hence if we pop the top of the stack WaitingQueue Nseq and push it into PosTrucks Nseq,
then we form the sequence of trucks fitting a certain position in the loading zone in such
a way that the first element of this sequence is the truck with the earliest arrival time.

WHILE ind lwq
DO

tpos WaitingQueue LST NSEQ ;
WaitingQueue POP NSEQ ;
ptruck TInWaitingZone VAL NSEQ (tpos) ;
PosTrucks PSH NSEQ (ptruck) ;
number candidates : number candidates 1 ;
ind : ind 1

INVARIANT
ind 1 lwq 1
ran (PosTrucks Nseq)

tr tr ran (TInWaitingZone Nseq)
ii . (ii 1 ind 1

RequeContainer Nfnc (tr)
ContInStores Nfnc (pos nofPositions (ii 1)))

jj . (jj 1 ind 1

2.5 Implementation: Development of Robust Software 73

TInWaitingZone Nseq (PosTrucks Nseq (jj))
TInWaitingZone Nseq (PosTrucks Nseq (jj 1)))

number candidates size (PosTrucks Nseq)
ln 1 nofRailwayTracks nofStores 1
size (WaitingQueue Nseq) size (PosTrucks Nseq)

lwq
lane 1 nofLoadingLanes
pos 1 nofPositions
(occupied FALSE

tplz dom (TInLoadingZone Nfnc))
len size (TInWaitingZone Nseq)
lwq size (WaitingQueue Nseq)
tplz pos nofPositions (lane 1)

VARIANT
lwq ind 1

END
END

END ;
truck nextPossibleTruck

VAR
len

IN
len TInWaitingZone LEN NSEQ ;
IF len 0
THEN

The truck which was waiting longer than the other trucks is chosen to be parked in the
loading zone.

truck TInWaitingZone FST NSEQ ;
TInWaitingZone TAL NSEQ

ELSE
PUT STR (“ There are no trucks ”) ;
PUT STR (“ for this position ”) ;
NWL (1)

END
END ;

number reloads requiredTruckReloads (position)
VAR

crpos , trpos , posch , truck , assigned , nl
IN

IF position 1 position nofPositions
THEN

crpos CranePosition VAL SET (1) ;
IF position crpos
THEN

Currently we have established that the input parameter position has a proper type and
coincides with the current crane position crpos. The following initialisation and the loop
have to form the set of trucks parked in the sector position in the loading zone. The loop
variable nl shows the number of the lane which we consider. If there is any truck truck in

74 2. Container Station

the place (position, nl) then that truck is put in the set of trucks to be reloaded next. Any
occurrence of such truck increments the result parameter number reloads. Initially nl is
set in unit, the formed set is empty and the number of occurrences is zero.

nl : 1 ;
number reloads : 0 ;
ReloadTrucks CLR SET ;
WHILE nl nofLoadingLanes
DO

trpos : position nofPositions (nl 1) ;
posch TInLoadingZone DEF NFNC (trpos) ;
IF posch TRUE
THEN

truck TInLoadingZone VAL NFNC (trpos) ;
assigned
RequeContainer DEF NFNC (truck) ;
IF assigned TRUE
THEN

ReloadTrucks ENT SET (truck) ;
number reloads : number reloads 1

END
END ;
nl : nl 1

INVARIANT
nl 1 nofLoadingLanes 1
position 1 nofPositions
crpos CranePosition
position crpos
ReloadTrucks sset

tr tr ran (TInLoadingZone Nfnc)
tr dom (RequeContainer Nfnc)

xx . (xx position nl
xx mod nofPositions 1 nl 1
TInLoadingZone Nfnc (xx) truck)

number reloads card (ReloadTrucks sset)
VARIANT

nofRailwayTracks nofStores nl 1
END

ELSE
PUT STR (“ The position ”) ;
PUT NAT (position) ;
PUT STR (“ is not the ”) ;
PUT STR (“ current crane position ”) ;
NWL (1)

END
ELSE

PUT STR (“ Position ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

END
END ;

2.5 Implementation: Development of Robust Software 75

next truck nextTruckToReload
VAR

relds
IN

relds ReloadTrucks EMP SET ;
IF relds FALSE
THEN

next truck ReloadTrucks ANY SET ;
ReloadTrucks RMV SET (next truck)

ELSE
PUT STR (“ There is no unloaded trucks ”) ;
PUT STR (“ in the current position ”) ;
NWL (1)

END
END ;

trucklane reloadingTruckLocation (truck)
VAR

posch , pos
IN

posch , pos TInLoadingZone1 IIR NFNC (truck) ;
IF posch TRUE
THEN

The coordinates of the truck (position, lane) are represented by pos in the domain of
TInLoadingZone Nfnc.

trucklane : (pos 1) / nofPositions 1
ELSE

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not in loading zone ”) ;
NWL (1)

END
END ;

containerlane reloadingContainerLocation (truck)
VAR

parkedInLZ , poss , cont , contpos
IN

IF truck 1 truck maxint
THEN

parkedInLZ , poss TInLoadingZone1 IIR NFNC (truck) ;
IF parkedInLZ TRUE
THEN

If the input parameter truck has a proper value and truck is allocated in the loading zone,
we check whether any container is assigned to this truck.

cont RequeContainer VAL NFNC (truck) ;
contpos ContInStores VAL NFNC (cont) ;

The coordinates of a container in the storing zone are represented in the same manner
as the coordinates of a truck parked in the loading zone. To obtain the number of the
lane containerlane where the container cont assigned to the truck truck is kept we use the

76 2. Container Station

integer division (as in the previous operation).

containerlane : (contpos 1) / nofPositions 1
ELSE

PUT STR (“ Truck ”) ; PUT NAT (truck) ;
PUT STR (“ is not in the loading zone ”) ;
NWL (1)

END
ELSE

PUT STR (“ The type of truck ”) ;
PUT STR (“ is badly defined ”) ;
NWL (1)

END
END ;

craneMovement
VAR

relds , crpos , newpos
IN

relds ReloadTrucks EMP SET ;
IF relds TRUE
THEN

crpos CranePosition VAL SET (1) ;
IF crpos nofPositions
THEN

newpos : crpos 1 ;
CranePosition RMV SET (crpos) ;
CranePosition ENT SET (newpos)

ELSE
newpos : 1 ;
CranePosition RMV SET (crpos) ;
CranePosition ENT SET (newpos)

END
ELSE

PUT STR (“ There is some unloaded trucks ”) ;
PUT STR (“ in the current position ”) ;
PUT STR (“ Complete reloading ”) ;
PUT STR (“ in the current position ”) ;
NWL (1)

END
END

DEFINITIONS
TRUCKS 1 ;
CONTAINERS 1 ;
maxint 2147483646 ;
nofStoringLanes nofRailwayTracks nofStores

END

2.6 Conclusions 77

2.6 Conclusions

We have shown that we can perform a whole cycle of software development starting
from the informal task description to specification close to implementation within
the B-Method. The chosen task, the development of an information system for a
container station bookkeeping is not trivial and is solved without known recipes.
We started from an informal task description and showed that identifying the key
entities of that description a designer can easily develop a data structure. When
developing the specification we introduced certain service disciplines and argued
that these are vital restrictions in order to minimise the service time of trucks and
optimise the crane utilisation.

We captured the requirements of the task description in a stepwise manner. We
argued that an attempt to meet all requirements already by the specification step in-
creases the complexity of the task drastically and leads to weaker design decisions.
Indeed, in the abstract specification we defined the general structure of the system
and resolved questions concerning the crane utilisation and the parking discipline.
However, the question of the introduction of fairness was postponed and resolved at
a refinement step. We discussed an optimal solution compromising a relative fair-
ness with an optimal crane utilisation.

The implementation machine has some very strong constraints (an absence of
state of its own, importing of other machines and so on). When developing the
implementation we analysed the influence of these constraints on the development
process in our particular case. First, we explained the most non-trivial instantiations
of the imported machines in full detail. Next, we demonstrated how to apply the
layered design method. We argued that the use of that method allowed us to obtain
a more elegant and succinct implementation.

At each stage of the development we pointed out the scope of phenomena that
had to be considered in making a certain design decision. We appealed to the stan-
dard results in queuing theory when optimising the service discipline. Some insights
from human-computer interaction theory were used to define the structure of com-
munication of operators with the information system. We used a well-known method
of analysing the possible scenarios to define the entire set of operations. Referring
to the layered method we showed that it is indeed an applicable and solid method
for software development. For the readers who are inspired by the case treated in
this chapter we suggest some further extensions of the task.

In the presented case the emphasis was on the design process rather than on the
proof of a logical consistency. However, when developing the system this question
was not omitted completely. For the developed specification we obtained 31 proof
obligations and only a few of them were not proved automatically. The number of
proof obligations for the refinement step increased slightly (34 proof obligations
had to be discarded) but the proportion of the automatically proved ones decreased
significantly (24 proof obligations were proved automatically). The proof of the cor-
rectness of the implementation demanded great efforts. About 400 proof obligations
were generated and only half of them were proved automatically. Inspite of the large
number of undiscarded proof obligations many of them are rather simple and trivial.

78 2. Container Station

2.7 Exercises

Exercise 2.1 (Fairness of Reloads). When specifying requiredTruckReloads we as-
sumed that the reloading procedure takes a negligible amount of time. Hence, the
order of the reloads does not influence fairness of truck service.

Specify the operation in such a way that the crane operator will choose the truck
to be loaded in a fair manner, so that the truck with the earliest arrival time is loaded
before the others. (Hint: it will require an introduction of a variable representing the
order of the truck arrivals.)

Exercise 2.2 (Add a Second Crane). The task is extended in such a way that the
second crane is added. The goal is to achieve better performance (to minimise the
further waiting time of the trucks). Suggest different loading disciplines. Which is
the best? Specify the extended task.

Exercise 2.3 (Afternoon Operations). In this chapter the afternoon operations are
not considered. Try to extend the given specification to incorporate these op-
erations as well. (Note that the variable ContainersOnStore is initialised non-
deterministically and should obtain some value as a result of the execution of the
afternoon operations).

Exercise 2.4 (Different Types of Containers). Specify the following task exten-
sion: there are two different kinds of containers at the container station: large con-
tainers and small ones. Every truck can take away either two small containers or one
large container. Make corresponding changes in the loading discipline.

Exercise 2.5 (Optimisation as Refinement). The presented abstract specification
contains a precise specification of the loading discipline. Develop a more abstract
specification at first and then, at a refinement step, introduce an optimisation of the
loading procedure.

3. Minimum Spanning Tree
Ranan Fraer 1

3.1 Introduction

The case studies usually found in the B literature present many of the characteris-
tics common to safety-critical software systems. The successful use of B on such
systems, as exemplified by several realistic large-size projects [21, 40], has greatly
contributed to increasing the interest of industrial practitioners in formal develop-
ment techniques.

However, safety-critical case studies drawn from industrial practice have little
appeal for computer science researchers and students, as few of them have enough
time to invest in understanding the specific issues of a particular safety-critical area.
For these reasons we feel that a chapter dedicated to a case study on an algorithmic
development would provide additional value for readers with a computer science
background.

While avoiding the trap of choosing one of the “over-verified” toy programs
(like the factorial, greatest common divisor or quicksort), we focus here on a widely-
studied problem arising in graph theory: the finding of a minimum spanning tree in a
connected weighted graph. The best-known algorithms for solving this problem, due
to Kruskal [45], respectively Prim [71], are covered in most algorithms textbooks.

We have chosen to develop Kruskal’s algorithm for its use of non-trivial data
structures such as priority queues, implemented as heaps [83], and tree representa-
tions of disjoint sets [81]. This should be contrasted with the simple data structures
(scalars and arrays) usually employed in safety-critical applications. The complex-
ity there lies rather in the large number of variables and the size of the applications
themselves.

The intrinsic difficulty of the algorithms employed (Kruskal’s algorithm, Tar-
jan’s Union-Find algorithm and the various heap algorithms) are another source
of complexity in our case study. This is rarely an issue in safety-critical applica-
tions where one can hardly find some simple loops. Nevertheless, in spite of their
“algorithm-free” nature, such applications might exhibit non-trivial control struc-
tures in the form of involved state automata.

The structure of this chapter follows the structure of the layered B development:
each section introduces the specification of a new layer that is used to build the
implementation of the layer above. In Sect. 3.2 we define the minimum spanning

1 Work performed at INRIA Sophia-Antipolis, France.

80 3. Minimum Spanning Tree

tree problem, and propose an abstract specification of it in B. Sect. 3.3 presents an
informal description of Kruskal’s algorithm and its correctness proof. As the imple-
mentation of the algorithm becomes too complex to be manageable, we decompose
it into two subsystems: one allows to manipulate disjoint sets and the other provides
the facilities of a priority queue. The two subsystems are then independently refined
to implementable code: Sect. 3.4 traces the stepwise refinement from disjoint sets
operations to Tarjan’s Union-Find algorithm, while Sect. 3.5 describes the imple-
mentation of priority queues as heaps. We conclude in Sect. 3.6 with a discussion
on the lessons to learn from this chapter.

3.2 The Minimum Spanning Tree Problem

Consider an undirected connected graph G Nodes Edges and a weight function
associating a positive integer cost to each edge. Given E Edges, the subgraph T
Nodes E is a spanning tree of G if and only if T is a tree. The total cost associated

with such a tree is obtained by summing the weights of all edges belonging to the
tree. The minimum spanning tree problem requires a spanning tree minimising the
cost function to be found.

1

5

4

3

2

1

2
1

4

5

3

4

6
1

5

4

3

2

1

1

4
3

1

5

4

3

2

1

1
3

4

(a) (b) (c)

Fig. 3.1. A Sample Graph and its Two Minimum Spanning Trees

The solution of the problem need not necessarily be unique. Consider the graph
in Fig. 3.1(a), where

Nodes 1 2 3 4 5
Edges 1 2 1 3 1 4 2 3 2 5 3 4 3 5 4 5

This graph admits two minimum spanning trees of cost 9, as shown in Fig. 3.1(b)
and Fig. 3.1(c).

3.2.1 An Abstract View of a Graph

As the components of the graph will have to be accessed by several modules it
is worth encapsulating them into an abstract machine that should be shared by the

3.2 The Minimum Spanning Tree Problem 81

other modules. We prefer the sharing mechanism provided by the SEES clause since
it is a full-hiding one, supporting independent refinement of the seen and seeing
machines. In our case, this means that the seeing components do not have to depend
on a particular representation of the graph, like an adjacency matrix or adjacency
lists. Instead of committing from this early stage to such a representation, we shall
postpone the choice of the most convenient data structure to the implementation
level.

At the specification level we simply model the graph as a finite non-empty
set Nodes, a relation on this set Edges Nodes Nodes and a weight function
weight Edges NAT . All three components should be declared as abstract con-
stants2 since they belong to the static part of the specification and they are supposed
to be refined in a subsequent implementation. The graph being undirected, we will
require that Edges Edges 1 , such that Edges contains only one copy of each
undirected edge. On the other hand, paths in the graph are better expressed in terms
of the “directed” set of edges All Edges Edges Edges 1 and the transitive clo-
sure of relations. For instance, the connectedness assumption can be simply stated
as All Edges Nodes Nodes.

In order to hide completely from the underlying implementation of the graph,
some abstract inquiry operations have to be provided. The interface of the ma-
chine will thus contain a few primitives to iterate through the edges: the operation
all unread declares all edges as unread, no more edges tests if there are still un-
read edges and read edge returns the next unread edge together with its weight.
All three operations make use of an auxiliary variable Read representing the set of
already read edges.

The resulting abstract machine, Weighted Graph is presented below. Actually, a
complete interface of the graph specification should also include an indexing func-
tion mapping Nodes to the interval 1 n, where n is the number of nodes of the
graph. However, for the sake of simplicity we will identify Nodes with 1 n. This is
not necessarily a restriction, as for a non-trivial set of nodes, users of the specifica-
tion could provide their own indexing function.

MACHINE Weighted Graph
CONSTANTS n , Edges , weight
DEFINITIONS

Nodes 1 n ;
All Edges Edges Edges ;
cost ! E . (E (Edges) $ edge . (edge E weight (edge)))

PROPERTIES
n NAT1 Edges Nodes Nodes weight Edges NAT
Edges Edges All Edges Nodes Nodes
card (Edges) NAT cost (Edges) NAT

2 The ABSTRACT CONSTANTS clause has been recently introduced in the AMN [2].
Although the B-Toolkit does not support this clause yet, it provides an equivalent mecha-
nism of refining constants.

82 3. Minimum Spanning Tree

VARIABLES Read
INVARIANT Read (Edges)
INITIALISATION Read :

OPERATIONS
all unread Read : ;
b no more edges b : bool (Read Edges) ;
u , v , w read edge

PRE Read Edges THEN
ANY i , j WHERE

i Nodes j Nodes (i , j) Edges Read
THEN

u , v , w , Read : i , j , weight (i , j) , Read (i , j)
END

END
END

We will not provide an implementation of this machine here. One could easily
imagine how an implementation based on adjacency lists or on an adjacency matrix
would look, and how it could be instantiated with the data of a particular graph, like
the one presented in Fig. 3.1(a). Alternatively, Weighted Graph might be consid-
ered as a basic abstract machine, whose implementation would not be carried out in
B, but in a suitable programming language.

Note also that the various integer quantities are constrained to belong to NAT
or NAT1, denoting the intervals 0 MAXINT , respectively 1 MAXINT , where
MAXINT stands for the largest integer representable on a given architecture. The
B-Method ensures that the machine arithmetic is taken into account rather than the
infinite set of integers in order to ensure that integer values are effectively im-
plementable. This proves to be extremely useful since subtle overflow errors can be
easily overlooked in large developments.

3.2.2 Specification of the Minimum Spanning Tree Problem

As a pre-requisite to the specification we have to formalise the notion of the span-
ning tree. Between the many equivalent definitions of trees, the most suitable for
our problem is the one that requires the absence of cycles, and the presence of n 1
edges, n being the number of nodes in the graph:

where Forest is the set of subsets of edges that induce no cycles. A cycle C can
be characterised by the property C Nodes . Here C is considered as
a “directed” set of edges, that is a subset of All Edges. Furthermore, in order to
avoid fake cycles as u v v u we will require C to contain at most one copy
of each undirected edge, that is C C 1 . With these definitions, the minimum
spanning tree problem can be formally specified in B by the means of the abstract
machine Min Spanning Tree. Note that we reuse below the definitions of Nodes,

3.2 The Minimum Spanning Tree Problem 83

All Edges and cost introduced in the machine Weighted Graph. A complete devel-
opment would require these definitions to be repeated in the current machine.

MACHINE Min Spanning Tree
SEES Weighted Graph
VARIABLES Min Tree
DEFINITIONS

Cycle C C (All Edges) C id (Nodes)
C C ;

Forest E E (Edges) Cycle (E E) ;
Spanning Tree E E Forest card (E) n 1

INVARIANT Min Tree (Edges)
INITIALISATION Min Tree :

OPERATIONS
min cost min spanning tree

ANY T WHERE
T Spanning Tree cost (T) min (cost Spanning Tree)

THEN
Min Tree : T min cost : cost (T)

END
END

The unique operation min spanning tree is just a simple transliteration of the
informal description of our problem: “find a spanning tree minimising the cost func-
tion”. It is precise enough in describing the “what” of the problem, without giving
any hint on the “how” of a possible implementation.

The style of this specification is a generous one: the connectedness assump-
tion guarantees that the graph admits at least a spanning tree. In turn, this en-
sures the feasibility of min spanning tree. We will see later that the termination
proof of the implementation subtly relies on this property. A defensive specification
would omit the connectedness assumption, and require the test to be done inside the
min spanning tree operation:
connected, min cost min spanning tree

ANY ok, tree WHERE
ok BOOL T (Edges)
(ok TRUE T Spanning Tree cost(T) min (cost Spanning Tree))
(ok FALSE All Edges Nodes Nodes)

THEN
Min Tree : T min cost : cost (T)

END

As argued in the B-Book [2], generous specifications are more within the con-
structive spirit of the B-method than defensive ones. However, this is one case where
a defensive specification might have been advantageous since connectedness is not
that simple to test on the “user’s side”. Additionally it turns out that Kruskal’s algo-

84 3. Minimum Spanning Tree

rithm allows this test to be done “for free” internally, while constructing the span-
ning tree.

When specifying just an algorithm with no meaningful notion of state, a variable-
less abstract machine should be preferred. Unfortunately, it is impossible to have
both min cost and Min Tree as results returned by min spanning tree, because
Min Tree is a set of edges and not a scalar value. This is due to the definition of
refinement requiring refined operations to preserve the signature of their abstract
counterparts. As at the implementation level operations can only accept and return
scalar values, this constraint is propagated up to the abstract machines.

3.3 Kruskal’s Algorithm

3.3.1 A Greedy Strategy

The best-known algorithms for solving the minimum spanning tree problem, due
to Kruskal [45] and Prim [71], are based on a greedy strategy. The tree is being
built edge by edge, the next edge to be included being chosen by some optimisation
criteria. The simplest such criteria would be to choose an edge that results in a
minimum increase in the sum of the costs of the edges included so far.

The two algorithms differ in the interpretation of this criteria. Prim’s algorithm
requires that the set E of edges so far selected forms a tree. Thus, the next edge u v
to be included in E, is a minimum cost edge not in E, such that E u v is also
a tree.

On the contrary, Kruskal’s algorithm requires only that the set of edges E se-
lected so far form a forest, that it is possible to complete into a spanning tree. The
edges are considered in nondecreasing order of weight. Thus, the next edge u v to
be included in E, is a minimum cost edge not in E, such that no cycle is created by
adding u v to E. It is Kruskal’s algorithm that we have chosen, due to its manipu-
lation of non trivial data structures such as heaps and tree representation of disjoint
sets.

At this point, we are in the position to write down some pseudo-code for the loop
described above. This stage in the algorithmic design is closely mirrored in the B de-
velopment by an early implementation of the abstract machine Min Spanning Tree:

min cost min spanning tree
VAR u , v IN

Unprocessed : Edges ; E : ;
WHILE card (E) n 1 DO

u , v : ((u , v) Unprocessed
weight (u , v) min (weight Unprocessed)) ;

Unprocessed : Unprocessed (u ,v) ;
IF E (u , v) Forest THEN

E : E (u ,v)
END

INVARIANT . . .
VARIANT . . .

3.3 Kruskal’s Algorithm 85

END ;
min cost : cost(E)

END

As an example, consider again the graph from Fig. 3.1(a), and suppose that its
edges are processed in nondecreasing weight order. In the case of edges of equal
weight suppose that 1 3 is processed before 2 3 , and 3 5 is processed before
3 4 . Then, the sequence of diagrams in Fig. 3.2 illustrates the building of the tree

one edge at a time. Note that, in spite of weighing less than 4 5 , the edge 1 2
has been rejected at step (c) because of the cycle formed with the already selected
edges 1 3 and 2 3 .

1

3

1
1

3

2

1

1

1

5

4

3

2

1

1
3

1

5

4

3

2

1

1
3

4

(a) (b) (c) (d)

Fig. 3.2. Successive Stages in Kruskal’s Algorithm

3.3.2 Correctness Proof

As we still have to provide an invariant and a variant for the above loop, let us
give some insight into the correctness proof of the algorithm. The essential invariant
property is that the set of edges E selected so far can be completed into a spanning
tree of minimum cost:

I1 T T Spanning Tree E T
cost T cost Spanning Tree

The invariant Ii is verified at the entry of the loop when we have that E as
Spanning Tree (due to the fact that the graph is connected), so we can choose
a spanning tree of minimum cost that will necessarily include E.

Now suppose I1 to be true before an iteration of the loop and let us prove that it is
still true after executing that iteration. The case when the new edge u v introduces
a cycle in E is trivial, as E stays unchanged so it can still be completed into a
spanning tree of minimum cost. The difficult case is when u v is included in E. If
T is a spanning tree of minimum cost containing E, we can again distinguish two
cases.

86 3. Minimum Spanning Tree

First, if u v T then I1 is again trivially satisfied. Let us consider the second
case, when u v T . The inclusion of u v in T creates a unique cycle C T . But
then,

I2 E Forest

is a second invariant stating that E contains no cycles, so there is at least one edge
u v C E. It is easy to see that T T u v u v is still a spanning

tree. It would then be sufficient to prove that weight u v weight u v since this
would imply that cost T cost T , so T itself would be of minimum cost.

As u v is the edge of minimum weight in Unprocessed it would be enough to
prove that u v Unprocessed, or equivalently that u v Processed, where
Processed is defined as Edges Unprocessed. A simple third invariant states that
only processed edges have been selected so far:

I3 E Processed

From above we already know that u v E. Therefore it remains for us to prove
that u v Processed E.

The proof can be completed by considering another invariant property, stating
that E is a maximal forest in Processed :

I4 e e Processed E E e Forest

As E u v T and T is a spanning tree, we infer that E u v is neces-
sarily a forest, so from I4 we obtain that u v Processed E.

Putting all the pieces together we obtain the complete loop invariant:

INVARIANT
E Forest Unprocessed (Edges) E Processed

T . (T Spanning Tree E T cost (T) min (cost Spanning Tree))
e . (e Processed E E e Forest)

What about the termination proof? A good candidate for the variant of the loop
seems to be the number of unprocessed edges Unprocessed . It is easy to show
that this quantity is strictly decreased at each iteration and that it always stays posi-
tive.

A more subtle issue in the termination proof is the partial nature of the min
function. More exactly, we are required to prove that Unprocessed whenever
the invariant and the test of the loop, E n 1, are true. The proof makes
use of the invariants I1 and I4: suppose that Unprocessed , then Processed
Edges and from I4 we infer that E is a maximal forest with respect to inclusion.
But according to I1, E can be completed into a spanning tree, so E itself has to be a
spanning tree, which contradicts the fact that E has less than n 1 edges.

It should be noted that indirectly this proof relies on the assumption that the
graph is connected. Indeed, this assumption was used to establish that I1 is satisfied
at the entry of the loop. If the graph was not connected, it would have been possible
to exhaust Unproceesed before including n 1 edges in E. In this case, a defensive
specification should have been used.

3.3 Kruskal’s Algorithm 87

3.3.3 Decomposing the Development

This algorithmic refinement of our specification would not be accepted as an imple-
mentation in B, because it still uses mathematical notions like sets and relations and
abstract operations on them. Further refining of these elements at this stage towards
executable code would lead to a much too complicated implementation and make
its verification highly expensive.

The layered development paradigm proposed by the B method allows the solu-
tion of this problem, by breaking a possibly very difficult verification step into a
number of smaller and simpler steps. Various structuring mechanisms are provided
to decompose a large system description into several subsystems that can be inde-
pendently refined to implementable code. In our case we can split our development
into modules by encapsulating the set variables Unprocessed and E and the corre-
sponding operations in some abstract machines, and have these machines imported
in the implementation.

Further analysis reveals that the variables E and Unprocessed can be isolated
in two different abstract machines. The first one, Min Weight Edge, will encap-
sulate the variable Unprocessed together with two operations: one for initialising
Unprocessed to the whole set of edges, and a second for retrieving the minimum
weight edge:

MACHINE Min Weight Edge
SEES Weighted Graph
VARIABLES Unprocessed
INVARIANT Unprocessed (Edges)
INITIALISATION Unprocessed : Edges

OPERATIONS
all unprocessed Unprocessed : Edges ;
u , v , w min weight edge

ANY i , j WHERE
i Nodes j Nodes (i , j) Unprocessed
weight (i , j) min (weight Unprocessed)

THEN
Unprocessed , u , v , w : Unprocessed (i , j) , i , j , weight (i , j)

END
END

The second abstract machine, Weighted Forest, will encapsulate the variable
E together with an operation initialising E to the empty set, and a “test-and-set”
operation that adds an edge u v to E if no cycle is introduced by this edge. On the
other hand, as there is no valid reason to encapsulate the remaining scalar variables,
u v and w we can keep them as local variables at the implementation level. The
resulting machine will also have to provide two inquiry operations to retrieve the
cardinal and the cost of the set E:

88 3. Minimum Spanning Tree

MACHINE Weighted Forest
SEES Weighted Graph
VARIABLES E
INVARIANT E Forest
INITIALISATION E :

OPERATIONS
none selected E : ;
add edge if no cycle(u , v , w)

PRE
u Nodes v Nodes w
(u , v) Edges E w weight (u, v)

THEN
IF E (u , v) Forest THEN

E : E (u ,v)
END

END ;
cnt nr edges cnt : card (E) ;
total cost edges total : cost(E)

END

The main reason for using a “test-and-set” operation instead of two simpler op-
erations, a “test” one and a “set” one, is that in their implementation, both “set”
and “test” would have to call the same “lookup” operation of an imported machine.
Merging “set” and “test” into a single operation allows a redundant call of “lookup”
to be avoided, which itself is a time-costly operation. Also, note that the “test-and-
set” operation is specified in a defensive style by using an IF substitution, while a
“test” operation would have been specified in a generous style using a PRE sub-
stitution. This is one of the rare cases where implementation details like efficiency
concerns influence the style of the abstract specification.

Now we are able to write a proper implementation of the Min Spanning Tree
machine based on the services provided for us by the two abstract machines
Min Weight Edge and Weighted Forest.

IMPLEMENTATION Min Spanning Tree I
REFINES Min Spanning Tree
SEES Weighted Graph
IMPORTS Min Weight Edge , Weighted Forest
DEFINITIONS Processed Edges Unprocessed
INVARIANT Min Tree E

OPERATIONS
min cost min spanning tree

VAR u , v , w , c IN
all unprocessed ; none selected ; c : 0 ;
WHILE c n 1 DO

3.3 Kruskal’s Algorithm 89

u , v , w min weight edge ;
add edge if no cycle (u , v , w) ;
c nr edges

INVARIANT
E Processed c card (E)

T . (T Spanning Tree E T
cost (T) min (cost Spanning Tree))

e . (e Processed E E e Forest)
VARIANT card (Unprocessed)
END ;
min cost cost edges

END
END

One might wonder why the operations all unprocessed and none selected,
whose rôle is to initialise the variables Unproceesed and E, are called here and
not in the initialisation of the machine. This is due to the fact that one cannot
rely on the initialisation to be executed just before calling min spanning tree. In-
deed, as an operation of an abstract machine, nothing forbids min spanning tree
from being called several times in a row in states satisfying the machine invari-
ant Min Tree Edges . A rather embarrassing consequence is that subsequent
machines in the design would have to provide operations redundant with the initial-
isations of the respective machines, as it was already the case for all unprocessed
and none selected.

The correctness proof of this implementation has already been presented in the
previous section. Now, that we have split the initial code into several pieces, we
have to make sure that the preconditions of the called operations are satisfied as
well. We can regard this as part of the termination proof, and actually we have
already established the precondition Unprocessed of min weight edge as a
termination argument. A second non trivial precondition u v Edges E protects
the operation add edge i f no cycle and it can be proved from the invariant E
Processed and the fact that u v Unprocessed.

Note that some of the invariants of the initial loop, like E Forest, have now
been moved to the invariants of the imported machines where they are simpler to
prove. This is part of a general strategy in B, called design for provability: establish
complex invariants by putting together simple invariants of several modules of the
development. The successful application of this strategy is conditioned by a careful
design of the architecture of the application, trying to group in the same module
variables tightly linked by an invariant, and to separate unrelated variables to differ-
ent modules, as was the case for E and Unprocessed.

The structure of the development so far is pictured in Fig. 3.3, where tiling
indicates refinement and solid and dashed lines are used to distinguish between
IMPORTS and SEES links. The development will be completed in the next two
sections by independently refining the abstract machines Weighted Forest and
Min Weight Edge to the implementable code.

90 3. Minimum Spanning Tree

Min_Spanning_Tree_I
Min_Spanning_Tree

Weighted_Graph

IMPORTS IMPORTS

Min_Weight_EdgeWeighted_Forest SEES SEES

SEES

SEES

Fig. 3.3. Structure of the Upper Layer of the Development

3.4 The UNION-FIND Algorithm

In this section we propose an implementation of the machine
based on Tarjan’s Union-Find algorithm [81]. The various decisions involved in the
algorithm will be introduced progressively through a series of stepwise refinements,
ensuring in this way a smooth transition from the abstract specification to an exe-
cutable implementation.

3.4.1 Equivalence Relations

In order to implement the operation add edge i f no cycle efficiently, the nodes of
the graph should be grouped together in such a way that one may easily determine
if the vertices i and j are already connected by the set of edges E selected so far. If
they are not, then i j is added to E.

One possible grouping is to place all vertices in the same connected component
of E into a set (that would also be a tree, due to the absence of cycles). Then, two
vertices are connected if and only if they are in the same set. Mathematically, this
can be formalised by defining a partition, or alternatively, an equivalence relation on
the set of nodes. While a partition allows the union of two connected components to
be expressed easily, an equivalence relation R will be preferred due to the simplicity
of the refinement invariant relating it to the set of edges E: R E E 1 .

We can then encapsulate R into another abstract machine, Equivalence, together
with two operations: one setting R to the identity relation, and another “test-and-
set” operation that connects two elements if they are not already connected by the
relation R. It is still too early to decompose this operation into a “test” operation and
a “set” one, for the same efficiency reasons exposed in the previous section.

MACHINE Equivalence (n)
CONSTRAINTS n NAT1
SEES Bool TYPE
DEFINITIONS A 1 n
VARIABLES R
INVARIANT

R A A
id (A) R

3.4 The UNION-FIND Algorithm 91

R R
(R R) R

INITIALISATION R : id (A)

OPERATIONS
make singletons R : id (A) ;
b join if not equivalent(i , j)

PRE i A j A THEN
IF (i , j) R THEN

b : TRUE R : (R (i , j) , (j , i))
ELSE

b : FALSE
END

END
END

The invariant of the machine states the three defining properties of an equiva-
lence relation: reflexivity, symmetry and transitivity. The consistency proof of this
specification requires it to be shown that after each operation R stays an equivalence
relation. This comes down to manipulating some algebraic identities on relations.
For instance, the proof that R i j j i is still a symmetric relation goes as
follows:

R i j j i 1 R i j j i 1 R i j j i

Now we can base the implementation of Weighted Forest on the Equivalence
machine that we have just introduced. To implement the operations nr edges and
cost edges we introduce two implementation variables3 count and sum related to
the set of edges E by the refinement invariant count E sum cost E :

IMPLEMENTATION Weighted Forest I
REFINES Weighted Forest
SEES Weighted Graph
IMPORTS Equivalence (n)
CONCRETE VARIABLES count , sum
INVARIANT

R (E E)
count 0 card (Edges) count card (E)
sum 0 cost (Edges) sum cost (E)

INITIALISATION
BEGIN make singletons ; count : 0 ; sum : 0 END

OPERATIONS

3 The CONCRETE VARIABLES clause introduced recently in the B-method [2] avoids
the tedium of encapsulating implementation variables into basic abstract machines.

92 3. Minimum Spanning Tree

none selected
BEGIN make singletons ; count : 0 ; sum : 0 END ;

add edge if no cycle(u , v , w)
VAR b IN

b join if not equivalent (u , v) ;
IF b TRUE THEN

count : count 1 ; sum : sum w
END

END ;
cnt nr edges cnt : count ;
total value sum total : sum

END

The refinement proof associated to this implementation will show that, assum-
ing the refinement invariant R E E 1 , the tests of the two conditionals
E u v Forest and u v R are equivalent, and also that the new values
of E and R are still related by the refinement invariant:

R u v v u E u v E u v 1

When we want to prove that sum and count are correctly updated inside the
join i f not equivalent we rely on the precondition of the abstract operation which
ensures that u v Edges E.

3.4.2 Representatives of Equivalence Classes

Now we can proceed further with the refinement of Equivalence. The next step
in the direction of Tarjan’s Union-Find algorithm is to consider a representative of
each connected set, by introducing a total function repr A A. The refinement
invariant will state that two elements are equivalent if and only if they have the same
representative:

R x y x A y A repr x repr y

Let also class r repr 1 denote the class of equivalence of r. When im-
plementing the operation join i f not equivalent one would have to make a non-
deterministic choice between mapping all the elements of the class of ri to r j or the
other way around. At this stage we do not want to be more specific on this issue
but, as we will see later, a choice based on efficiency concerns will be made at the
implementation level.

A new abstract machine Representatives is introduced in order to encapsulate
the repr function and its abstract operations, as shown below. Besides the initialisa-
tion of all sets as singletons, we need one operation for retrieving the representative
of an element and another one for computing the union of two classes when knowing
their representatives:

MACHINE Representatives (n)
CONSTRAINTS n NAT1
VARIABLES repr

3.4 The UNION-FIND Algorithm 93

DEFINITIONS
A 1 n ;
Representatives ran (repr) ;
class(r) repr r

INVARIANT
repr A A Representatives repr id (Representatives) ;

INITIALISATION repr : id (A)

OPERATIONS
make singletons repr : id (A) ;
ri find repr(i)

PRE i A THEN ri : repr (i) END ;
union sets(ri , rj)

PRE ri Representatives rj Representatives ri rj THEN
repr : repr class (ri) rj [] repr : repr class (rj) ri

END
END

The invariant Representatives repr Representatives ensures that each
representative is mapped to itself by the repr function. When proving that union sets
preserves this invariant, we distinguish two cases corresponding to the two branches
in the non-deterministic choice. As the two proofs are similar we will present only
the case where the new value of repr is repr repr class r j ri . In this case,
ran repr ran repr r j so r j is not a representative anymore. The proof is
completed by remarking that all the other representatives are still mapped to them-
selves.

The precondition of the operation union sets, stating that its arguments should
be two different representatives, eliminates the need for an internal IF test. So it is
only at this stage that we are able to split the “test-and-set” operation into a “test”
one and a “set” one. An implementation of Equivalence, importing the previously
introduced Representatives machine, follows below:

IMPLEMENTATION Equivalence I
REFINES Equivalence
SEES Bool TYPE
IMPORTS Representatives (n)
PROMOTES make singletons
INVARIANT R x , y x A y A repr (x) repr (y)

OPERATIONS
b join if not equivalent(ii , jj)

VAR ri , rj IN
ri find repr (ii) ; rj find repr (jj) ;
IF ri rj THEN

union sets (ri , rj) ; b : TRUE
ELSE

94 3. Minimum Spanning Tree

b : FALSE
END

END
END

When proving the refinement we need to show that the two tests i j R and
repr i repr j are equivalent, which is just a reformulation of the refinement
invariant. Another proof obligation is

R i j j i x y repr x repr y

where repr denotes repr class r j ri . The proof of this property relies on the
fact that only two cases are possible. First, if x and y were in the same class induced
by R, then they are still mapped to the same representative by repr . In the second
case, x may be in the class of i and y in the class of j or vice versa, so both will share
ri as a common representative.

3.4.3 Tree Representation of Disjoint Sets

The essential idea behind Tarjan’s Union-Find algorithm is that mapping all the
members of the class of ri to r j might be too costly, so instead one could map
only ri to r j and let all the elements from the class of ri implicitly inherit r j as
representative.

This leads us naturally to a tree representation of each connected set, such that
the representative of an element is given by the root of the tree to which it belongs.
More precisely, we introduce a parent function mapping every non-root element to
its parent in the tree. To avoid mapping the roots to some error element, we can
declare parent as a partial function.

The refinement invariant relating repr and parent needs to state that repr is
obtained by iterating parent until reaching a root element. If

roots A parent
ancestors i parent i

where roots denotes the set of elements where parent is undefined and ancestors i
denotes the set of nodes that can be reached from i following parent links, then repr
maps each node i to an ri such that ri roots ancestors i .

Two more optimisations, path compression and weight balancing have been pro-
posed by Tarjan in order to obtain an almost linear time complexity. At this devel-
opment layer we shall consider only path compression as it requires only algorith-
mic refinement. Weight balancing deals with data refinement, as it requires another
change of variable, and will be introduced in the final implementation.

The idea behind the first optimisation is to compress systematically the paths
to the root of the elements examined at each f ind repr operation. More exactly,
after performing f ind repr i , for every node j on the path from i to its root ri, ri
should be set as the direct parent of j. Formally, this can be expressed as parent :
parent ancestors i ri ri .

3.4 The UNION-FIND Algorithm 95

When encapsulating parent into a new abstract machine, Union Find one might
choose to include the optimisation above as part of the f ind root operation, or to
make it available in the interface as an operation on its own. The second solution
proves to be more flexible, since it lets the user decide whether it is worthwhile to
perform path compression, depending on the ratio between the number of union sets
and f ind repr operations. The resulting abstract machine is:

MACHINE Union Find (n)
CONSTRAINTS n 1 MaxScalar
VARIABLES parent
DEFINITIONS

A 1 n ;
roots A dom (parent) ;
ancestors (i) parent i ;
descendants (i) (parent) i

INVARIANT
parent A A parent id (A)

INITIALISATION parent :

OPERATIONS
make singletons parent : ;
ri find root(i)

PRE i A THEN ri : ancestors (i) roots END ;
compress path(i , ri)

PRE i A ri ancestors (i) roots THEN
parent : parent (ancestors (i) ri) ri

END ;
union sets(ri , rj)

PRE ri roots rj roots ri rj THEN
parent (ri) : rj [] parent (rj) : ri

END
END

The invariant parent A states that parent is really a tree represen-
tation as it induces no cycle. As we shall see later, this property ensures in turn the
feasibility of the f ind root operation, since from every node one can follow upwards
only a finite number of parent links.

The invariant is trivially preserved by the operation f ind root as it does not
modify the parent function. In the case of compress path, let

parent1 parent ancestors i ri ri

denote the new parent function. From ancestors i ri ri parent , we
can infer that parent1 parent , which implies that parent1 A . To
prove that union sets preserves the invariant of the machine, note that making r j the
parent of ri cannot induce a cycle. Otherwise this cycle would necessarily include
the link ri r j, but could not go further because r j itself has no parent.

96 3. Minimum Spanning Tree

Now we can base the implementation of the abstract machine Representatives
on the machine Union Find, by promoting the operations make singletons and
union sets and refining f ind repr as a call to f ind root followed by a call to
compress path:

IMPLEMENTATION Representatives I
REFINES Representatives
IMPORTS Union Find (n)
PROMOTES make singletons , union sets
INVARIANT

repr i , ri i A ri A ri ancestors (i) roots

OPERATIONS
ri find repr(i)

BEGIN
ri find root (ri) ; compress path (i , ri)

END
END

The refinement invariant makes it obvious that f ind root returns the correct ri.
On the other hand the modification of parent performed by compress path keeps
the repr function unchanged as all the nodes on the path from i to ri remain in the
same tree of root ri.

The refinement proof for the union sets operation consists of two parts. First,
the refinement weakens the precondition of the abstract operation, since we have
that Representatives roots (in fact the two sets are equal, as follows from the
refinement invariant). Second, class ri is equal to descendants ri , the set of nodes
in the tree of root ri, so making r j the parent of ri is equivalent to moving the
elements in class ri to class r j , and this is exactly the meaning of repr : repr

class ri r j .

3.4.4 Weight Balancing

The algorithm described above has bad worst-case performance because the trees
formed could be degenerate. In order to avoid this, a second optimisation tries to
balance the trees created by union sets operations. When a tree rooted at ri is to be
merged with a tree rooted at r j it makes sense to choose as a new root the node with
more descendants.

To illustrate the way this optimisation is applied, we present in Fig. 3.4 the
successive stages in the Union-Find algorithm, when applying union sets for each
of the edges introduced in Fig. 3.2. Weight balancing is applied here at steps c) and
e), while at steps b) and d) the merged trees have the same number of descendants.
Note as well that due to the reduced size of the example, path compression plays no
role here, as it is only after the last step that we have a tree of depth 2.

3.4 The UNION-FIND Algorithm 97

1 2 3 4 5

4 5

2 3

1

2 4 51

3

2 3

1

4

5

4

52 3

1

(a) (b)

(c) (d) (e)

Fig. 3.4. Intermediate Stages in the Union-Find Algorithm

Weight balancing is easily implemented by maintaining the size of each tree
(number of descendants of the root) as the parent of a root. This value should be
encoded as a negative number so that the root node can be detected when travelling
up the tree.

Calling f ather the new function, let us define its positive part as

pos f ather 1 n

the function obtained by restricting f ather’s range to positive values. In the same
way, define the negative part of father as

neg f ather n 1

Let also

descendants i parent 1 i

denote the set of elements in the subtree of root i, as defined in the Union Find
machine. Then the refinement invariant will state that pos parent and moreover,
that neg !i i roots descendants i .

IMPLEMENTATION Union Find I
REFINES Union Find
CONCRETE VARIABLES father
DEFINITIONS

pos father 1 n ;
neg father -n 1 ;
singleton trees

VAR i IN
i : 0 ;

98 3. Minimum Spanning Tree

WHILE i n DO
i : i 1 ; father (i) : 1

INVARIANT
i 0 n 1 i father (1 i) 1

VARIANT n i
END

END
INVARIANT

father 1 n n n
pos parent
neg ! i . (i roots card (descendants (i)))

INITIALISATION singleton trees

OPERATIONS
make singletons singleton trees ;
ri find root(i)

BEGIN
ri : i ;
WHILE father (ri) 0 DO

ri : father (ri)
INVARIANT

ri ancestors (i) pos parent
neg ! i . (i roots card (descendants (i)))

VARIANT card (ancestors (ri))
END

END ;
compress path(i , ri)

VAR j , dad IN
j : i ; dad : father (j) ;
WHILE dad 0 DO

father (j) : ri ; j : dad ; dad : father (j)
INVARIANT

j ancestors (i) dad father (j)
pos parent (ancestors (i) ancestors (j)) ri
neg ! i . (i roots card (descendants (i)))

VARIANT card (ancestors (j))
END

END ;
union sets(ri , rj)

VAR sum IN
sum : father (ri) father (rj) ;
IF father (ri) father (rj) THEN

father (rj) : ri ; father (ri) : sum
ELSE

father (ri) : rj ; father (rj) : sum
END

END
END

3.5 Heap Algorithms 99

The initialisation consists of a bounded loop which sets each array element of
f ather to 1. This corresponds to having each element forming a tree on its own.
The invariant and variant of the loop are trivial ones.

The implementation of the f ind root operation computes ri by going up from i
following the f ather links. As this pass does not modify f ather the corresponding
loop invariant includes the still valid refinement invariant together with the fact that
the current node is an ancestor of i. From this property and the fact that at the
exit of the loop ri roots (since f ather ri 0) we infer that the final value of
ri is in ancestors i roots. We conclude that the computation of ri is correctly
implemented by this loop.

The operation compress path performs a second pass on the path from i to ri,
setting ri as a direct father of all the nodes encountered on the way. The invariant
of the loop states that the negative part of f ather is unchanged and that the nodes
from i to j examined so far have been already adopted as direct sons of ri. When
entering the loop, ancestors j ancestors i , so the invariant is trivially true. At
the exit of the loop j ri so ancestors j ri , which proves that this is a valid
implementation of the abstract operation.

The termination proof of both loops uses as variant the number of ancestors of
the current node. This quantity is strictly decreased when following f ather links
because f ather induces no cycle: f ather 1 n . This property follows
easily from the refinement invariant as parent itself induces no cycle.

Finally, weight balancing is implemented in the operation union sets by com-
paring f ather ri with f ather r j (considering that both are negative numbers) and
setting f ather ri f ather r j as the count field of the “winning” root. One can
easily verify that both pos and neg are correctly updated, according to the refine-
ment invariant.

A global overview of this section is given in Fig. 3.5, picturing all the steps in
the refinement from Weighted Forest to Union Find I.

3.5 Heap Algorithms

At this point, we still have to complete a last branch in the refinement tree (see
Fig. 3.3): the implementation of the machine Min Weight Edge. We are looking
here for a data structure allowing the insertion of elements into a set and also the
finding and deletion of the smallest element of the set. A data structure providing
for these two operations is called a priority queue. In this section we show how
to implement Min Weight Edge as a priority queue and also use heaps [83] as an
efficient implementation of priority queues.

3.5.1 Priority Queues

Actually, the min weight edge operation is required to return not only the minimum
weight but also the edge for which this minimum is reached. For this reason, the

100 3. Minimum Spanning Tree

Weighted_Forest_I
Weighted_Forest

Weighted_Graph

Representatives_I
Representatives

Union_Find_I
Union_Find

IMPORTS

Equivalence_I
Equivalence

IMPORTS

IMPORTS

SEES

Fig. 3.5. The Refinement Path Leading to the Union-Find Algorithm

specification of priority queues will consider a function valq : Queue NAT instead
of a set. This constraint will also be reflected at the implementation level, as one
would have to move around the indexes in the set Queue rather than the values
themselves.

The indexes in the set Queue will be drawn from the interval 1 m where m
is a parameter of the specification representing the maximal size of the priority
queue. Actually, this makes valq a partial function on 1 m. The insertion and dele-
tion of elements in the queue will extend, respectively restrict, valq and its domain
Queue, thus preserving the invariant valq : Queue NAT . These operations can
be elegantly expressed with primitives like domain overriding () and codomain
restriction ():

MACHINE Priority Queue (m)
CONSTRAINTS m NAT1
VARIABLES Queue , valq
INVARIANT Queue (1 m) valq Queue NAT
INITIALISATION Queue : valq :

OPERATIONS
empty queue Queue : valq : ;
insert queue(k , w)

PRE k (1 m) Queue w NAT THEN
Queue : Queue k valq (k) : w

END ;
k , w remove queue

PRE Queue THEN

3.5 Heap Algorithms 101

ANY i WHERE i Queue valq (i) min (ran (valq)) THEN
k : i w : valq (i)
Queue : Queue k valq : i valq

END
END

END

We have preferred to introduce Queue as a variable instead of a definition
Queue valq . This makes the specification more readable as Queue has an
interesting meaning on its own. Although it might seem inconvenient to state ex-
plicitly how Queue is updated by each operation, one should note that in the case
of a definition both the “specifier” and the “prover” would have to redo this work
anyway.

In order to reduce the problem of finding a minimum weight edge to the more
general one of implementing a priority queue, we have to abstract from the partic-
ular nature of the set of edges. This can be achieved by decomposing the function
weight Edges NAT into the three functions: node1 node2 1 m Nodes
and valq 1 m NAT , where m Edges , such that the direct product
nodes node1 node2 is a bijection, nodes 1 m Edges, and valq “mirrors”
weight on 1 m: valq weight nodes.

An implementation of Min Weight Edge based on this representation is given
below. The iteration primitives provided in the interface of the abstract machine
Weighted Graph are used in all unprocessed to read the edges one by one. Adding
a new edge requires the insertion of a new value in each of the three functions. The
operation min weight edge returns the edge node1 k node2 k and its weight w,
where k and w are the results returned by the call of remove queue.

IMPLEMENTATION Min Weight Edge I
REFINES Min Weight Edge
IMPORTS Weighted Graph , Priority Queue (m)
CONCRETE VARIABLES node1, node2
DEFINITIONS

m card (Edges) ;
nodes node1 node2 ;
read edges
VAR k , b , u , v , w IN

all unread ; empty queue ; k : 0 ; b no more edges ;
WHILE b FALSE DO

k : k 1 ; u , v , w read edge ; b no more edges ;
insert queue (k , w) ; node1 (k) : u ; node2 (k) : v

INVARIANT
k 0 m Queue 1 k
Queue nodes Queue Read
valq Queue (weight nodes)
(b TRUE Read Edges)

VARIANT m k
END

102 3. Minimum Spanning Tree

END
INVARIANT

node1 1 m Nodes node2 1 m Nodes
nodes 1 m Edges
valq Queue (weight nodes)
Unprocessed nodes Queue

INITIALISATION read edges

OPERATIONS
all unprocessed read edges ;
u , v , w min weight edge

VAR k IN
k , w remove queue ; u : node1 (k) ; v : node2 (k)

END
END

Note that Weighted Graph is imported here and not seen, as we need more
than read-only access to its components. However, this is the only place where this
machine is imported, such that we satisfy the constraint required for a machine that
is seen to be imported at most once somewhere in the development.

3.5.2 Indirect Heaps

Several approaches could be taken to implement a priority queue. We might first
consider using an unordered list since inserting new elements would take constant
time. But finding the smallest element would necessitate a scan of the entire list. A
second suggestion would be to use a sorted list which is stored sequentially. This
would allow the retrieval the smallest element in constant time, but an insertion
could require moving all the elements in the list.

What we want is a data structure allowing both operations to be performed effi-
ciently. A heap [83] is a tree with the property that the value at each node is guar-
anteed to be smaller than the values of the nodes below it. In this representation it
is possible to perform insertions and deletions in logarithmic time (in the size of the
heap).

The definition of the heap implies that the smallest value is at the root of the
tree. After removing this value, the others have to be moved around in order to re-
establish the heap property. In the same way, inserting a new value into an already
existing heap, can be performed by moving this value until it reaches a position
satisfying the heap property.

As we have anticipated in the previous section, we will not move around the
values of valq but the indexes of Queue, which means that we will actually use
an indirect heap. The idea of arranging the nodes in Queue to form a tree can be
formalised by requiring an one-to-one correspondence between Queue and a finite
set Heap of positions in the tree.

We will then refine Queue and valq by two new variables Index and valh with
the trivial refinement invariant Queue Index valq valh. We will also introduce

3.5 Heap Algorithms 103

two other refinement variables Heap and indh such that Heap 1 m and indh
is a bijective function: indh Heap Index.

As taking into account the tree structure will even further complicate the spec-
ification, we encapsulate the four variables above into a machine on its own,
Heap Data, and later include this machine in the complete heap specification. We
have here again another example of design for provability as the invariants relat-
ing the four variables will be proved locally in Heap Data and reused at the global
level.

MACHINE Heap Data (m)
CONSTRAINTS m NAT1
DEFINITIONS A 1 m
VARIABLES Heap , Index , valh , indh
INVARIANT

Heap (A) Index (A)
indh Heap Index valh Index NAT

INITIALISATION Heap , Index , valh , indh : , , ,

OPERATIONS
emptyh Heap , Index , valh , indh : , , , ;
swap(i , j)

PRE i Heap j Heap THEN
indh : indh i indh (j) , j indh (i)

END ;
inserth(k , w , node)

PRE k A Index w NAT node A Heap THEN
Heap : Heap node indh (node) : k
Index : Index k valh (k) : w

END ;
copy and remove(root , leaf)

PRE root Heap leaf Heap THEN
Heap : Heap leaf
indh : leaf (indh root indh (leaf))
Index : Index indh (root) valh : indh (root) valh

END
END

As suggested by its name, Heap Data contains the data manipulated by the
heap, together with the various operations on this data. Unlike the other operations,
copy and remove might look out of place in this interface. However, a simple copy
operation would have violated the invariant indh Heap Index. Also, a simple
remove operation with an arbitrary argument would have been too difficult to im-
plement. As it will turn out later, removal is simple only for a particular leaf. The
consistency proof of the Heap Data machine being similar in many respects to that
of Priority Queue, we will not further insist on it.

Note that the value of valh that occurs at a tree position i is valh indh i . This
composition of functions will be used so often that it is useful to declare an ab-

104 3. Minimum Spanning Tree

breviation key valh indh. Since swap exchanges indh i and indh j without
modifying valh, it has the indirect effect of exchanging key i and key j . We can
think of swap as an exchange operation for the abstract array key as in the case of
an usual heap and not an indirect one.

Now we can move to the complete heap specification by introducing the un-
derlying tree structure in the form of a distinguished node root A and a function
f ather A root A mapping each other node to its parent in the tree. Both
f ather and root will be declared as constants since they are not supposed to be
modified by the heap operations. A convenient formulation of the tree property is
descendants root A, where descendants i f ather 1 i since it implies
that there is one path from each node to the root. Together with the heap property
which states that the values of key decrease on each ascending path, this guarantees
that the minimum value will be reached in the root of the tree.

The heap property on a set S of positions in the heap can be expressed as:

heap S i j i S j S i j f ather key i key j

This formalisation relates arbitrarily distant positions in S. An alternative is to fo-
cus on the relationship between a node and its immediate neighbours. Suppose we
define:

upgood i i root key f ather i key i
downgood i sons i key i key sons i

where sons i stands for f ather 1 i . Then, the following properties hold:

heap A i i A upgood i downgood i
heap A hole upgood hole downgood hole heap A

The second property, where A stands for 1 m, gives a sufficient condition for fixing
a “hole” violating the heap property. Such a hole can appear when inserting or delet-
ing a node from the tree, and can be removed by swapping it with a neighbouring
position, as explained below.

A hole in the heap, would necessarily satisfy upgood or downgood:

heap A hole upgood hole downgood hole

Suppose that it satisfies downgood. If upgood is also satisfied, then the hole van-
ishes. Otherwise we can move the hole upwards by swapping it with its father. Then
one can prove that the new hole obtained by hole : f ather hole still satisfies
heap A hole downgood hole . Thus we can repeatedly move the hole along
an upward path until it vanishes.

Now, suppose we have a hole that satisfies upgood. If downgood is also sat-
isfied, then the hole vanishes. Otherwise we can move the hole downwards by
swapping it with one of its children son sons hole such that the condition
key son key sons hole holds. The new hole obtained by hole : son still
satisfies the condition heap A hole upgood hole . Thus we can repeatedly
move the hole along an downward path until it vanishes.

This reasoning leads to the following heap specification:

3.5 Heap Algorithms 105

MACHINE Indirect Heap (m)
CONSTRAINTS m NAT1
SEES Bool TYPE
INCLUDES Heap Data (m)
ABSTRACT CONSTANTS root , father
PROPERTIES

root A father A root A
descendants (father) A

VARIABLES hole
DEFINITIONS

sons (i) father i ;
descendants (i) (father) i ;
ancestors (i) father i ;
key valh indh) ;
upgood (i) i root key (father (i)) key (i) ;
downgood (i) sons (i) key (i) min (key sons (i)) ;
heap (S) (i , j) . (i S j S (i , j) father key (i) key (j))

INVARIANT
hole A (Heap hole Heap)
heap(Heap hole)

INITIALISATION hole : root

OPERATIONS
empty heap BEGIN emptyh hole : root END ;
insert heap(k , w)

PRE k A Index w NAT heap(Heap) THEN
ANY new WHERE

new A Heap
(Heap father (new) Heap)
(Heap new root)

THEN
inserth (k , w , new) hole : new

END
END ;

bb higher bb : bool (upgood (hole)) ;
up heap

PRE upgood (hole) THEN
swap (hole , father (hole)) hole : father (hole)

END ;
k , w remove heap

PRE Heap heap(Heap) THEN
k : indh (root) w : key (root) hole : root
ANY leaf WHERE leaf Heap ran (father) THEN

copy and remove (root , leaf)
END

END ;

106 3. Minimum Spanning Tree

b , son lower
ANY min son WHERE

min son NAT
(sons(hole)

min son sons(hole) key (min son) min (key sons(hole)))
THEN

b : bool (downgood (hole)) son : min son
END ;

down heap(son)
PRE downgood (hole) son sons(hole)

key (son) min (key sons(hole)) THEN
swap (son , hole) hole : son

END
END

The interface of Indirect Heap provides operations for moving up and down
the tree (up heap and down heap) and for testing the opportunity to move (higher
and lower). Additionally we have two other operations allowing the insertion
(insert heap) or removal (remove heap) of elements from the heap.

Inserting a new element in the heap comes down to hooking it as a son of an
already existing node, or placing it in the root if the heap is empty. In either case,
the new element is a potential hole that satisfies downgood since it has no sons.
However, to make sure that it is the only hole we require as a precondition that the
heap property holds everywhere, , before performing insert heap.

Removing the minimum element, situated in the root of the tree, leaves us with
two subtrees that are both heaps. To preserve the tree shape we proceed in a more
roundabout manner by choosing a leaf, copying its value in the root and removing
the leaf. Now the root is a potential hole that satisfies upgood, since it has no parent.
Again, to make sure that there were no previous holes, we require heap Heap as a
precondition of remove heap.

The invariant of the machine states that only hole might possibly violate the
heap property. Proving that the invariant is preserved by up heap and down heap
relies subtly on the fact that the heap property, although violated by hole, still holds
in the “grandfather” relationship between sons hole and f ather hole .

Other potential invariants like downgood heap or upgood heap are not valid
here, since at this level we ignore the current moving direction and whether the hole
has already vanished or not. They would appear as loop invariants in the traversal
operations where a given moving direction is fixed.

Inserting an element into an already existing heap can proceed by adding the
element as a leaf, thus creating a potential hole, and then swapping it with its father,
grandfather, and so on, until it is greater or equal to one of these values.

Fig. 3.6 illustrates4 the building of a heap from the weights of the edges
of the graph in Fig. 3.1(a). We suppose that the edges are read in the order
1 2 , 1 3 , 1 4 , 2 3 , 2 5 , 3 4 , 3 5 , 4 5 which gives the following order for

4 The use of complete binary trees in this example anticipates the last refinement decision,
to be introduced in the next section.

3.5 Heap Algorithms 107

their weights: 2 1 6 1 5 4 4 3. For the sake of simplicity, each node i is labeled
only with its value key i valh indh i . At each stage, the node emphasised by
a bold circle contains the value inserted at that stage, value that has been moved
upwards until satisfying the heap property.

2

1

6

1

2

2

1

1

2 5

1

1

2 5

4

6 4

4

6

3

4

(g) (h)

5

1

1

2 6

4

(f)

1

6

2

1

2 1

6 1

(a) (b) (c) (d)

5
(e)

Fig. 3.6. Building a Heap by Successive Insertions

To delete the minimum element of a heap we start by calling remove heap,
thus creating a hole in the root of the tree, as explained above. Then we move the
hole downwards by successive calls of down heap as long as one of the sons has a
smaller value than the hole.

As an example, the heap constructed above can be emptied by repeated deletions
of the minimum element, as shown in Fig. 3.7. At each stage, the node emphasised
by a bold circle contains the value of the leaf that has been copied into the root and
moved down all the way until satisfying the heap property.

The actual loops performing the traversals of the tree on insertions and deletions
of heap elements occur in the implementation of Priority Queue:

IMPLEMENTATION Priority Queue I
REFINES Priority Queue

108 3. Minimum Spanning Tree

5

4

6 4

2

3

11

1

2 5

4

6 4

54

5

6

4

4

5 6

6

6

(e) (f) (g) (h)

3

4 4

56
(d)

5

4

6

2

3

4

(c)

3

(a) (b)

Fig. 3.7. Removing the Elements of the Heap

IMPORTS Indirect Heap (m)
INVARIANT

Queue Index valq valh heap (Heap)

OPERATIONS
empty queue empty heap ;
insert queue(kk , ww)

VAR bb IN
insert heap (kk , ww) ; bb higher ;
WHILE bb TRUE DO

up heap ; bb higher
INVARIANT

downgood (hole) (bb TRUE upgood (hole))
Index Index kk valh valq kk ww

VARIANT card (ancestors (hole))
END

END ;
kk , ww remove queue

VAR bb , son IN
kk , ww remove heap ; bb , son lower ;

3.5 Heap Algorithms 109

WHILE bb TRUE DO
down heap (son) ; bb , son lower

INVARIANT
upgood (hole) (bb TRUE downgood (hole))
(bb TRUE

son sons(hole) val (son) min (val sons(hole)))
kk indh (root) ww valq (kk)
Index Index kk valh indh (root) valh

VARIANT card (descendants (hole))
END

END
END

The refinement invariant relates Queue and valq to Index and valh. It also
states that the heap property holds everywhere between two priority queue opera-
tions, which in turn guarantees that the value kk returned by remove queue satisfies
valq kk min valq Queue .

We already know from the invariant of Indirect Heap that the heap property
might be violated only in one node, heap Heap hole . This is another instance
of the “design for provability” paradigm, as we have proven locally as much as we
could. The only thing left to prove now is that the heap property holds on hole as
well at the exit of each loop. For this it is sufficient to prove that hole satisfies both
upgood and downgood at the exit of the loop.

When performing an insertion, downgood is initially established by insert heap
since a leaf has no sons, and then it is preserved as a loop invariant by each call
of up heap. Similarly, when deleting an element, upgood is established initially by
remove heap since the root has no parent, and then it is preserved as a loop invariant
by each call of down heap. In both cases the invariant of the loop and the negation
of the loop test, that is upgood hole and downgood hole , hold at the exit of the
loop.

3.5.3 Complete Binary Trees

In the specification of heaps we did not impose any particular constraint on the shape
of the tree. One is free to choose whatever shape seems most desirable as long as
the heap property is satisfied. A key decision in the implementation of heaps is to
consider complete binary trees, as explained below.

The binary tree of depth d which has exactly 2d 1 nodes is called a f ull binary
tree of depth d. A very elegant sequential representation for full binary trees results
from sequentially numbering the nodes, starting with the root on level one, then
going to the nodes on level two and so on. Nodes on any level are numbered from
left to right. A binary tree with r nodes and depth d is complete if and only if its
nodes correspond to the nodes which are numbered 1 to r in the full binary tree
of depth d. In a complete tree leaf nodes occur on at most two adjacent levels.
As a consequence, the worst case performance of insertions and deletions will be
logarithmic in the size of the heap.

110 3. Minimum Spanning Tree

The nodes of a complete tree may be compactly stored in a one dimensional ar-
ray. Navigating in the tree is easy due to the regular numbering of nodes: the father
of the node numbered i is given by i 2 (where stands for the integer division),
while its left and the right children of i are given by 2 i, respectively 2 i 1. Ac-
tually, root and f ather i , that have been previously declared as abstract constants,
will be tacitly replaced by 1 and i 2 and thus refined away. The rigid structure of
complete binary trees represented as arrays does limit their utility as data structures,
but there is just enough flexibility to allow the implementation of efficient priority
queue algorithms.

In this representation, the set Heap can be identified with the interval 1 sizeh
where sizeh is an implementation variable denoting the size of the heap. This way,
inserting or removing heap elements comes down to incrementing or decrementing
sizeh.

The functions indh and valh will be refined by two arrays index and value, equal
to indh and valh on the interval 1 sizeh:

indh Heap index
valh Heap value

Another implementation variable current is introduced to refine hole with the
trivial refinement invariant hole current. One can remark that index current and
value index current stay the same whenever current is swapped with one of its
neighbours. In order to save some array accesses it is worth introducing two other
variables, ind current and val current, to denote the two quantities above. This re-
sults in the following implementation of Indirect Heap:

IMPLEMENTATION Indirect Heap I
REFINES Indirect Heap
VARIABLES

sizeh , index , value , current , val current , ind current
INVARIANT

sizeh 0 mm Heap 1 sizeh
index 1 mm 1 m indh Heap index
value 1 mm NAT valh Heap value
current 1 mm hole current
ind current 1 mm val current NAT
(sizeh 0 ind current index (current) val current value (ind current))

INITIALISATION sizeh : 0

OPERATIONS
empty heap sizeh : 0 ;
insert heap(kk , ww)

BEGIN
sizeh : sizeh 1 ; index (sizeh) : kk ; value (kk) : ww ;
current : sizeh ; ind current : kk ; val current : ww

END ;

3.5 Heap Algorithms 111

bb higher
BEGIN

bb : FALSE ;
IF current 1 THEN

IF value (current / 2) val current THEN
bb : TRUE

END
END

END ;
up heap

VAR dad IN
dad : current / 2 ; index (current) : index (dad) ;
index (dad) : ind current ; current : dad

END ;
kk , ww remove heap

BEGIN
kk : index (1) ; ww : value (kk) ;
index (1) : index (sizeh) ; sizeh : sizeh 1 ;
current : 1 ; ind current : index (1) ; val current : value (ind current)

END ;
bb , son lower

VAR min val , right val IN
son : 2 current ; bb : FALSE ;
IF son sizeh THEN

min val : value (index (son)) ;
IF son sizeh THEN

right val : value (index (son 1)) ;
IF right val min val THEN

son : son 1 ; min val : right val
END

END ;
IF min val val current THEN

bb : TRUE
END

END
END ;

down heap(son)
BEGIN

index (current) : index (son) ; index (son) : ind current ; current : son
END

END

Note that the structure of the implementation does not necessarily follow the
structure of the specification. In our case the specification was decomposed into
Heap Data and Indirect Heap, while the implementation Indirect Heap I imports
no other machine.

The initialisation sets sizeh to 0 and leaves all other variables uninitialised5,
since their values are not constrained by the invariant in this case.

5 However, the B-Toolkit raises a warning about uninitialised variables.

112 3. Minimum Spanning Tree

The non-determinism in the choice of a leaf in the operations insert heap and
remove heap is eliminated by choosing systematically the last leaf numbered sizeh.
This decision, together with the incrementing, respectively decrementing, of sizeh
allows to preserve the invariant Heap 1 sizeh.

The operations higher and lower are implemented by rather complex control
structures formed of several nested conditionals. Isolating these control structures
as operations on their own, instead of embedding them directly in Priority Queue I,
proves to be another example of design for provability. Indeed, the control complex-
ity induced by the two calls of both higher and lower in the traversal loops and by
the loops themselves would have led to a combinatorial explosion in the number of
proof obligations to discharge.

Fig. 3.8 gives an overview of the refinement steps performed in this section.

Min_Weight_Edge_I
Min_Weight_Edge

Priority_Queue_I
Priority_QueueWeighted_Graph

Heap_Data

IMPORTS

Indirect_Heap_I
Indirect_Heap

IMPORTS

IMPORTS

INCLUDES

SEES

Fig. 3.8. The Refinement Path Leading to the Implementation of Heaps

3.6 Discussion

In this chapter we have presented a complete formal development of Kruskal’s algo-
rithm for solving the minimum spanning tree problem. The abstract specification of
the problem was first refined by an informal implementation of Kruskal’s algorithm.
We have then proposed a decomposition of this implementation into two simpler
subsystems, each one providing its own functionality. In turn, this allows indepen-
dent designs of the two subsystems to be built: disjoint sets are implemented by the
Union-Find algorithm, and priority queues are implemented as heaps. An overview
of the complete development, regrouping Figs. 3.3,3.5 and 3.8, is given in Fig. 3.9.

In spite of its relative small size (1127 lines of B and 360 proof obligations) this
case study manages to exhibit some of the problems encountered when developing
industrial applications in B. A significant difference between our case study and

3.6 Discussion 113

Min_Spanning_Tree_I

Min_Spanning_Tree

Min_Weight_Edge_I

Min_Weight_Edge

Priority_Queue_I

Priority_Queue

Weighted_Forest_I

Weighted_Forest

Weighted_Graph

Heap_Data

IMPORTS

IMPORTSIMPORTS

Indirect_Heap_I

Indirect_Heap

IMPORTS

Representatives_I

Representatives

Union_Find_I

Union_Find

IMPORTS

Equivalence_I

Equivalence

IMPORTS

IMPORTS

IMPORTS

INCLUDES

SEES

SEES

SEES

SEES

Fig. 3.9. Overview of the Complete Development

safety-critical applications is that the complexity lies rather in the data structures
and the algorithms than in the size and the control structure of the application.

We have exemplified how the well-understood set-theoretical notation of B can
be used to model the various data structures. In particular, note that the transitive
closure operator on relations (and in particular functions) has been extensively used
in formalising paths in graphs (respectively trees). The large basis of facts on set
theory available in the prover makes it easier to reason on the properties of the data
structures employed. One has the choice of taking a more or less rigorous approach
to proof. For instance, to prove the consistency of the Equivalence machine, we can
just assume a lemma stating that the transitive closure of a symmetric relation is still
symmetric, instead of proving this lemma from basic principles by induction on the
number of iterations on the relation.

The algorithmic complexity is dealt with by breaking difficult verification steps
into a number of smaller and more manageable ones. Several instances of the design
for provability paradigm have been exemplified during the development, where by
making careful use of the structuring mechanisms of B, one can limit the number of
proof obligations associated to each verification step.

In this respect, one of the most interesting lessons is that an explosion in the
number of proof obligations might be due to performing both algorithmic and data
refinement in one refinement step. In this case, one should introduce algorithmic
refinement before data refinement and not the other way around. This strategy has
been applied in the implementations Min Spanning Tree I and Priority Queue I
where the algorithmic refinement introduced by the WHILE loops is simpler to
verify in terms of an abstract data representation than a concrete one.

114 3. Minimum Spanning Tree

We conclude by analysing the interest that computer scientists in general might
have in formal methods. The firm mathematical foundations of formal methods and
the toolkits supporting them might justify their use as an effective tool in algorithm
design. One would then benefit not only from a rich specification language to ex-
press various problems, but also a machine-checked notation for the early stages of
the design. These stages usually captured in algorithms textbooks by some kind of
informal pseudo-code can be written formally by exploiting the liberty of mixing
non-executable abstract constructs with executable concrete ones.

Going through the formalisation of the pseudo-code might require considerably
more effort on the part of the algorithm designer, especially when trying to cope
with the various visibility constraints of the encapsulation constructs. However, this
effort might pay off in enforcing a certain discipline of design.

As an option, one might consider carrying out informal proofs of the algorithms
in the way that these proofs are presented in textbooks. One would just have to
formalise the various invariants and try the automatic proof facilities. Examining
the unproved proof obligations might then reveal possible flaws in the design of the
algorithm.

4. The B Bank
Martin Büchi

4.1 Introduction

In this chapter we develop a simple banking application with cashier and automated
teller machine (ATM) functionality. The cashier can register new customers, create
accounts for them, and accept deposits. At the ATM, the customer can withdraw
money, query the balance, and change her secret personal identification number
(PIN).

We illustrate the combination of structured and formal methods by using object-
oriented modelling techniques in the analysis. The communication from B with the
environment is exemplified through the development of base machines for persis-
tent storage of objects, string handling, and for interfacing with the Web through
HTML and the common gateway interface. The latter permits us to build a uniform
graphical interface for both the cashier station and the ATM (Fig. 4.1).

Fig. 4.1. Screenshot of the Final Application

116 4. B Bank

Our aim is to carefully explain design decisions as they come up and to motivate
our choices. We stress differences to classical imperative languages and develop-
ment methods for them.

The sources for both Atelier B and the B-Toolkit can be fetched from the book’s
Web site. The final application being Web-based, it can also be run over the Internet
from the book’s Web page without the need for installation.

We start out by rewriting the informal requirements in structured plain English,
as is commonly done in practice. This first design document helps to eliminate mis-
understandings between the customer and the designer and is often part of a con-
tract. We then proceed to a semi-formal object model using the Unified Modeling
Language (UML) [31]. In this step we make the first design decisions by identify-
ing objects, relations, and attributes. This intermediate step bridges the gap between
requirement specification and B machine.

Our initial B specification Bank encompasses the basic functionality on an ab-
stract level. This is the machine which we animate to find design errors. On top
we build a robust graphical user interface. Underneath, we build a foundation for
objects and persistent storage. This combination of top-down and bottom up devel-
opment, where we start with a machine describing the functionality on an abstract
level, is very common in B.

On top of the central machine Bank we construct a robust interface Robust-
Bank with trivial preconditions and error reporting. Using this robust interface and a
base machine wrapping a common-gateway interface library, we build a Web-based
graphical user interface for our development.

A program consists of an algorithm and communication with the environment.
Only the algorithm can be directly implemented in B. Communication is performed
using base machines which give a B representation of a resource. A base machine is
a machine which is specified in B, but hand coded in C, or another classical language
for which a compiler exists. We illustrate the development of a base machine for
interfacing with the Web in Sect. 4.7.

The implementation of RobustBank shows the principle of structural refinement.
An implementation is based on a number of more basic machines, which are in
turn based on either more basic or base machines. We discuss the difference be-
tween specification and implementation structure. Using a library machine for two-
dimensional arrays and a base machine for file access we develop a framework for
persistent objects. Another base machine provides persistent strings.

Fig. 4.2 gives an overview of the development process, including section num-
bers for quick reference. An overview of the implementation of Bank will be given
in Fig. 4.12.

In the discussion we address the question of proofs in B. What types of proper-
ties about our system can we prove within B?

Steria’s Atelier B in version 3.2 [79] has been used in this case study. Sect. 4.11
explains the differences in the implementation for B-Core’s B-Toolkit 3.4.2 [59]. We
briefly discuss a number of interesting differences in the language implementations
and provided library constructs.

4.1 Introduction 117

00010011101101
01011101111011
01010101101010
10111110011110
00010000000110
10101000000000
11111000011111

#include <stdio.h>
#include
"BasicCGI.h"

void link_BasicCGI(
PROTA(struct
BasicCGI_type *)v)
PROTC(struct
BasicCGI_type *v)

hand-coded
C (4.7.3)

executable
machine code

MACHINE
 BasicCGI
 …
 …
 …
 …
END

IMPLEMENTATION
 BasicCGI_1

REFINES
 BasicCGI
 …
 …
END

empty implemen-
tation (4.7.3)

rewritten
requirements (4.2)

Account
number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer
name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

structured
notation (4.3)

MACHINE
 Bank
 …
 …
 …
 …
END

mental
picture (4.1)

Bank,
Account,
Withraw, but

MACHINE
 RobustBank
 …
 …
 …
 …
END

robust abstraction (4.6)

IMPLEMENTATION
 RobustBank_1

REFINES
 RobustBank
 …
 …
END

B specification
of core function (4.5)

implementation
of core function (4.10)

implementation of
robust abstraction (4.9)

MACHINE
 MainBank
 …
 …
 …
 …
END

IMPLEMENTATION
 MainBank_1

REFINES
 MainBank
 …
 …
END

MACHINE
 OperationsBank
 …
 …
 …
 …
END

B specification
of interface (4.8.1)

IMPLEMENTATION
 OperationsBank_1

REFINES
 OperationsBank
 …
 …
END

Main machine
(4.8.1)

Implementation
of main (4.8.2)

manual
translation,
no exact
rules, no
proof

manual
translation,
partly fol-
lows rules,
no proof

manual
translation,
proved

automatic
translation

imports

Semantics of arrows

sees

includes

#include <stdio.h>
#include
"MainBank.h"

struct
BasicCGI_type
*BC_ptr;
 struct

tool generated C
(not shown for
other implemen-
tations)

Implementation
of interface (4.8.1)

CGI base
machine (4.7.2)

Start 1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

Fig. 4.2. Overview of the Development Process

118 4. B Bank

4.2 Rewriting the Requirements

We start out by making the requirements of the initial application more precise. Such
a complete rewrite by the developer of the customer’s requirements in a common
language provides for a common understanding. It can also eliminate many errors
typically introduced by going directly from a mental picture to a specification, or
even worse an implementation. Requirements state only what must be achieved,
but not how it must be done. Fig. 4.3, an excerpt of Fig. 4.2, shows where in the
development process we are.

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

manual translation, no exact rules,
no proof

mental
picture

Bank,
Account,
Withraw, but

Fig. 4.3. Requirement Analysis

The system should provide for:

1. Customers with their name and date of birth can be stored in the system.
2. No two customers can have both the same name and date of birth.
3. Customers can have any number of accounts.
4. All accounts have a unique number.
5. Each account has a unique owner who is in the database.
6. Accounts have a non-negative balance.
7. Accounts have a secret PIN.

The cashier can perform the following transactions:

8. The cashier can enter new customers into the system by providing their name
and year of birth.

9. The cashier can create new accounts with a zero balance providing a customer
identification and an initial PIN. The latter can be entered by the customer.

10. The cashier can accept deposits knowing only the number of the account. The
secret PIN is not needed for deposits.

The customer can perform the following operation at the ATM, which all require
the account number — entered manually rather than read from a chip or magnetic
card in our simulation — and the matching secret PIN:

11. The customer can make a withdrawal of at most the current balance.
12. The customer can query the current balance.

4.3 Structured Models 119

13. The customer can change the secret PIN by providing both the old, currently
valid, and the new pin. The latter becomes immediately valid and the old PIN
can no longer be used.

The user interface should be Web-based and provide access to all the above
listed functions of the system. For brevity, we refrain from listing the user interface
requirements here. We return to the topic in Sect. 4.8. A more detailed explanation of
requirement analysis can be found in software engineering books, such as [70, 77].

4.3 Structured Models

In the next step, analysis, we produce structured models from the problem state-
ment. The structured notations help to produce specifications which are correct with
respect to the user requirements. This step is performed manually, following some
heuristics. However, it lacks formal rules and, therefore, also a proof. This step could
be skipped, going directly to a B specification. However, this would be a rather big
step and, hence, also a source of errors. The benefits of integrating formal and struc-
tured methods are becoming recognised by many researchers [35, 37]. The IEC 65A
122 standard for safety-critical software also recommends the use of both structured
and formal methods for software of the highest integrity level [41]. Often customers
can be taught to read structured diagrammatic notations, but not formal AMN spec-
ifications. This intermediate step provides a more concise foundation for discussion
than the natural language requirements.

The desire to capture all aspects of a problem using graphical models has led
to a proliferation of different diagram types. We abstain from using all these —
often not very useful — diagrams and do not attempt to capture everything in a
graphical notation. We regard graphical models as complimentary to the textual
specifications. Not opting for an automatic translation from the graphical model,
we can give true abstractions, which quickly convey the main aspects, rather than
cluttering the models with implementation details.

For our case study only static structure diagrams are relevant. The large amount
of information captured in static structure diagrams is widely acknowledged [43].
Dynamic models are not applicable, because all operations are modeless, for exam-
ple, the customer enters the account number, the PIN, and the desired amount all at
once before asking the system to perform the withdrawal. A functional model would
not provide much insight, as all transactions are made against a single database.

We have chosen the Unified Modeling Language (UML) [31]. Fig. 4.4 reminds
us again, where in the development process we are.

4.3.1 Class Diagrams

The class diagram shows the static data structure of the real-world system and or-
ganises it into workable pieces. It describes real-world object classes and their rela-
tionships to each other.

120 4. B Bank

manual translation, no exact rules,
no proof

structured
notation

Account
number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer
name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

Fig. 4.4. Structured Notation

In our case we identify Customer and Account as object classes (Fig. 4.5). Our
simple data dictionary defines them as follows: A Customer is the holder of zero
or more accounts. An Account is an entity in our bank against which transactions
can be made.

Account

number: NAT
pin: NAT
balance: NAT = 0

«class-scope»
accounts: set of Account

«constructor»
NewAccount(cid: Customer, pin: NAT)

«query»
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

«update»
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

«class-scope»
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

«class-scope»
customers: set of Customer

«constructor»
NewCustomer(name: STRING, yob: NAT)

«query»
CustomerData(): STRING×NAT

«class-scope»
CustomerDBFull(): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×NAT

has1 0..*

Fig. 4.5. Object Model

Next, we enumerate the attributes, that is, the properties, and the operations
of the individual classes. Each Customer has a name and a year of birth (yob).
In addition to the instance-scope attributes, of which each instance has its own
copy, class Customer has the class-scope attribute customers, the set of all cus-
tomers in the system. Class-scope members are underlined in the diagram. The class
Customer has a single constructor and a single query function. The product type
STRING NAT indicates that CustomerData returns both the name and the year of

4.4 System Design 121

birth of a customer. It also has class-scope operations to inquire whether the database
is full, to retrieve a customer, and to find all customers with a certain name.

Each Account has a number, a pin, and a balance, which is initially 0. Re-
member that requirement 4 states that number is an identifier. In entity-relationship
models, this would typically be expressed by underlining the attribute — a notation
which is used for class-scope attributes in UML. Entity relationship models repre-
senting sets, each class must have an identifier. However, in object-oriented systems
we can have several objects with the same values for all their attributes. Objects have
a system-generated unique identifier. Hence, unlike in multisets, objects with iden-
tical attribute values can actually be distinguished. In our example, we do not have
multiple objects with identical values for their attributes. A notation for indicating
identifiers in class diagrams would add information.

Class Account also has a class-scope attribute accounts, the set of all accounts
in the system. Account has a single constructor. The query functions permit the user
to query the balance, check whether a pin is valid, and get the owner of an account.
The update operations provide functionality to make a deposit or withdrawal and
to change the PIN. The class-scope operations allow the user to check whether the
database is full and to retrieve an account by its number.

Finally we catalogue the associations, that is, the dependencies between objects.
A customer may have any number of accounts; each account has exactly one owner.
This association is expressed by the line between the two classes in Fig. 4.5. The
multiplicity is expressed using intervals. The ‘1’ next to Customer says that each
account is owned by exactly one customer. The ‘0..*’ next to Account expresses that
a customer may have any number of accounts. The label has names the association.

4.4 System Design

From the analysis of the system we progress to system design. System design is the
high-level strategy for solving the problem and building a solution. During system
design, we partition the system into subsystems, decide on what external hard- and
software components we use, and establish a conceptual policy.

We start with the middle layer capturing the desired functionality (Fig. 4.6). On
top of the basic functionality layer we build a robust abstraction which performs
error checking and returns error codes, rather than relying on non-trivial precondi-
tions. The top layer gives us the desired system in the form of a Web interface as
defined by the problem statement. Its second foundation is the common gateway
interface (CGI) subsystem, which consists of an off-the-shelf CGI library and a B
wrapper. The CGI subsystem interfaces to the Web server. The latter communicates
via TCP/IP with the Web browsers running on the ATM and the cashier’s terminal.

In order to implement the core data, we build a subsystem which supports persis-
tent objects and strings. The former in turn is based on two more basic subsystems,
one giving us objects and a second one providing access to the file system. The
two bottom layers represent the available resources, namely the hardware and the
operating system.

122 4. B Bank

basic functionality (non-trivial preconditions)
objects with persistency

file system access

operating system, including file system and networking

hardware

robust interface (trivial preconditions)
Web interface

W
eb

 se
rv

er

W
eb

 b
ro

w
se

r

OS

HW

CGI
access

CGI
lib.

TCP
IP

objects
strings

Fig. 4.6. System Design

An alternative would have been to rely on a database management system for
persistent storage, giving us such standard features as transaction management, dis-
tribution, and crash recovery. We have chosen not to do so in order to maximize the
ratio of formally verified software and limit the external dependencies of this case
study.

4.5 B Specification

Having outlined the system architecture, we continue by translating the structured
model to a B specification, giving the middle layer of basic functionality. First we
translate our object model according to fixed rules which gives the state space of
the machine and the signature of the operations. Then we add the initialisation and
the specification of the operations with help of the rewritten requirements. Fig. 4.7
points again to our current position in the development process.

structured
notation

MACHINE
 Bank
 …
 …
 …
 …
END

B specification
of core function

manual translation,
partly follows rules,
no proof

manual translation, no exact rules, no proof

Account
number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer
name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

Fig. 4.7. Transformation to B Specification

4.5 B Specification 123

4.5.1 State

For each object class we introduce a set containing all possible instances. This
gives us the sets CUSTOMER and ACCOUNT. For technical reasons, detailed in
Sect. 4.11, we define them as subsets of NAT rather than as SETS. The cardinalities
of the sets, delimiting the maximal number of customers and accounts in the system,
are given by the machine parameters maxCustomers and maxAccounts.

MACHINE
Bank(maxCustomers, maxAccounts)

CONSTRAINTS
maxCustomers 1 100000 maxAccounts 1 200000

SEES
StrTokenType

DEFINITIONS
CUSTOMER == 0 maxCustomers-1; ACCOUNT == 0 maxAccounts-1

Furthermore we introduce the two class-scope variables of Fig. 4.5 customers
(CUSTOMER) and accounts (ACCOUNT), which denote the sets of customers
and accounts in the system.

Mandatory attributes are modelled as total functions from the set of actual cus-
tomers, respectively accounts, to the value of the attribute. This gives us variables
customerName, customerYob, accountNumber, accountPin, and accountBalance.
Identifiers, for example, accountNumber and the product of customerName and cus-
tomerYob, are injections, capturing the fact that no two objects with the same values
for these attributes can exist.

The seen machine StrTokenType defines the set STRTOKEN representing strings
and the empty string constant EmptyStringToken (STRTOKEN). The rationale
behind string tokens will be explained in Sect. 4.7.1.

The relation has can be translated to the total function accountOwner from ac-
counts to customer. It is a function, rather than a general relation, because the max-
imum multiplicity of Customer is 1; furthermore, it is total because the minimum
multiplicity is also 1. The variable foundCustomers is used for the implementation
of the search-by-name operations for customers as described below.

The last state component is the concrete (also called visible) variable fileOpen.
It indicates whether the database has been successfully internalised from disk and,
thus, whether the machine can actually be used. The difference between a normal
(also called abstract or hidden) variable and a concrete variable is that the latter is
implemented unchanged and can, therefore, be directly accessed by implementa-
tions that import Bank.

VARIABLES
customers, customerName, customerYob,
accounts, accountNumber, accountPin, accountBalance, accountOwner,
foundCustomers

124 4. B Bank

CONCRETE VARIABLES
fileOpen

INVARIANT
customers CUSTOMER
customerName customers STRTOKEN customerYob customers NAT
customerName customerYob customers (STRTOKEN NAT)
accounts ACCOUNT
accountNumber accounts NAT accountPin accounts NAT
accountBalance accounts NAT accountOwner accounts customers
fileOpen BOOL foundCustomers customers

4.5.2 Functionality

In the beginning, there are no customers or accounts in the database. Hence, the
initialisation assigns the empty set to the sets customers and accounts and, therefore,
also to the functions representing the attributes and relations. As the database has
not yet been read from disk fileOpen is FALSE. We could have designed the system
so that internalisation from disk is part of initialisation. Because internalisation can
fail, if, for example, the file has been corrupted, a variable indicating its success
would have to be set during initialisation and checked by the higher level abstraction.
Hence, we would not gain anything. We introduce the abbreviation RESET as the
same code occurs again later.

DEFINITIONS
RESET ==

customers := customerName := customerYob :=
accounts := accountNumber := accountPin :=
accountBalance := accountOwner :=
fileOpen := FALSE foundCustomers :=

INITIALISATION
RESET

The first operation NewCustomer creates a new customer object and sets its
name and yob attributes. In order to concentrate on the actual functionality, rather
than error checking and reporting, the precondition not only gives a type to the pa-
rameters, but also states that there must not be any customer with both the same
name and year of birth present in the database, that the database must not be full,
and that internalisation (see below) must have succeeded. If these conditions are
met, an arbitrary new customer object is selected using the ANY-clause. This object
is added to customers and its name and yob attributes are set. Note that customer-
Name(newCustomer) := name is an abbreviation for customerName := customer-
Name newCustomer name .

NewCustomer(name, yob) =
PRE

name STRTOKEN yob NAT

4.5 B Specification 125

(name, yob) ran(customerName customerYob)
customers CUSTOMER fileOpen = TRUE

THEN
ANY newCustomer WHERE

newCustomer CUSTOMER - customers
THEN

customers := customers newCustomer
customerName(newCustomer) := name customerYob(newCustomer):= yob

END
END;

Any client of NewCustomer must be able to verify the precondition. For this
purpose we introduce operations ThisCustomer and CustomerDBFull. Operation
ThisCustomer checks whether a customer denoted by her name and yob is present.
If this is the case, the operation returns result code TRUE and the ID of the customer.
Otherwise, the result code is set to FALSE. The result code alone would suffice to
check the existence; the operation is more general for purposes we shall see later
on.

found, cid ThisCustomer(name, yob) =
PRE name STRTOKEN yob NAT fileOpen = TRUE THEN

IF (name, yob) ran(customerName customerYob) THEN
cid := (customerName customerYob) 1 (name,yob) found := TRUE

ELSE
cid : CUSTOMER found := FALSE

END
END;

In practice, databases are assumed to have infinite capacity and their adminis-
trators are supposed to add secondary storage as the available storage gets filled.
However, the number of incidents of database and buffer overflow problems clearly
shows that we should not trust this assumption in a safety-critical system. Operation
CustomerDBFull allows us to check whether the database is full and, herewith, ver-
ify the precondition customers CUSTOMER of NewCustomer. Note that we could
prove the invariant of machine Bank to be preserved without this precondition. In
the case it would not hold, the ANY-statement would have to choose an element
from the empty set and would therefore be magic. Hence, we could not find any
implementation using a finite set CUSTOMER which would either always find an
unused member or execute magic.

is CustomerDBFull =
PRE fileOpen = TRUE THEN

is := bool(customers = CUSTOMER)
END;

Operation NewCustomer can only be performed if the internalisation of the
database from disk has succeeded. This condition is expressed by the last conjunct

126 4. B Bank

of the precondition: fileOpen = TRUE. A more pragmatic solution would be to as-
sume that any client of Bank will terminate with an error message if internalisation
fails and not make any calls to NewCustomer. However, replacing the formal pre-
condition with this informal assumption would lead to unprovable obligations.

Operation CustomerData is an instance-scope operation which returns the name
and year of birth of a customer. Self, the identity of the object, is modelled as a
normal parameter cid. The identity of a customer object can be retrieved using This-
Customer. Atelier B requires the additional typing cid CUSTOMER.

name, yob CustomerData(cid) =
PRE cid customers cid CUSTOMER fileOpen = TRUE THEN

name := customerName(cid) yob := customerYob(cid)
END;

The find operations give the set of all customers with a certain name. First,
operation InitFindCustomer must be called. It returns the number of matches and
assigns the matching customers to foundCustomers. Operation FindNextCustomer
then returns the matching customers one by one.

nof InitFindCustomer(name) =
PRE name STRTOKEN fileOpen = TRUE THEN

nof, foundCustomers (foundCustomers = customerName 1 [name]
nof = card(foundCustomers))

END;
found, yob FindNextCustomer =

PRE fileOpen = TRUE THEN
IF foundCustomers THEN

ANY cust WHERE cust foundCustomers THEN
found := TRUE yob := customerYob(cust)
foundCustomers := foundCustomers- cust

END
ELSE found := FALSE yob : NAT
END

END;

The triple NewAccount, ThisAccount, and AccountDBFull is similar to the cor-
responding operations on customers. Operation NewAccount expects as parameters
the ID of an existing customer and an initial secret PIN. By making the PIN a pa-
rameter we favour the scenario where the customer enters the desired PIN when
the cashier creates the account. If the ATM card and the PIN are mailed to the
customer, a random PIN must be generated in one of the above layers. Operation
AccountOwner returns the owner of an account.

number NewAccount(cid, pin) =
PRE

cid customers cid CUSTOMER pin NAT
accounts ACCOUNT fileOpen = TRUE

THEN
ANY newAccount, newNumber WHERE

4.5 B Specification 127

newAccount ACCOUNT - accounts
newNumber NAT newNumber ran(accountNumber)

THEN
accounts := accounts newAccount
accountNumber(newAccount) := newNumber
accountPin(newAccount) := pin accountBalance(newAccount) := 0
accountOwner(newAccount) := cid number := newNumber

END
END;

found, aid ThisAccount(number) =
PRE number NAT fileOpen = TRUE THEN

IF number ran(accountNumber) THEN
aid := accountNumber 1 (number) found := TRUE

ELSE aid : ACCOUNT found := FALSE
END

END;
is AccountDBFull =

PRE fileOpen = TRUE THEN
is := bool(accounts = ACCOUNT)

END;
cid AccountOwner(aid) =

PRE aid accounts aid ACCOUNT fileOpen = TRUE THEN
cid := accountOwner (aid)

END;

The operation Balance requires the account’s PIN. The PIN is only used in the
precondition to verify the legitimacy of the client, but not in the body of the opera-
tion. Specifying that the entered PIN must match the stored PIN in the precondition,
forces us to prove that Balance is always called with the correct PIN. Unfortunately,
this implies that the parameter pin is also present in the actual implementation where
it is not used at all. To gain additional security, especially if the upper software lev-
els are not fully proved, the correctness of the PIN could actually be verified in the
implementation — contrarily to the standard practice of not verifying preconditions
in implementations. Logically, it would be sound to allow implementations to have
only a subset of the parameters of the corresponding machine, but in practice this
would mean that the client’s C code would depend not only on the interface defined
by the machine, but also on the actual implementation. The alternative would be
to drop the pin parameter altogether and trust in the clients always calling an au-
thorisation operation, such as Authorized, first. However, such a condition would
not create any proof obligations and would, therefore, not be verifiable within B. A
model checking solution to the latter approach is documented in [26].

bal Balance(aid, pin) =
PRE

aid accounts aid ACCOUNT
pin NAT accountPin(aid) = pin fileOpen = TRUE

THEN
bal := accountBalance(aid)

END;

128 4. B Bank

is Authorized(aid, pin) =
PRE

aid accounts aid ACCOUNT pin NAT fileOpen = TRUE
THEN

is := bool(accountPin(aid) = pin)
END;

We can enforce that withdrawals and balance queries can only be performed
with the correct PIN. On the other hand, secrecy not being a property of behaviors,
we cannot ensure it in B. Nothing can prevent an implementation to output secret
pins onto a device, the state of which is not captured by the B specification.

The operation Deposit credits the amount to the specified account. It cannot
verify that the money is actually given to the bank; this is the duty of the cashier.

We have to make sure that the addition accountBalance(aid) + amount does not
create an overflow. There are a number of approaches to this problem:

One possibility is to blindly assume that no one will ever have this much money
and leave the addition unguarded. This will, however, rightfully leave us with an
undischargable proof obligation. Even if our assumption holds, a typing error by
a cashier could crash the system. The latter could again be caught by a check for a
maximum amount in the interface, leaving only a sequence of similar mis-entries
as problematic.
We could strengthen the precondition of Deposit with accountBalance(aid)
maxint - amount and offer an additional operation MaximalDeposit returning the
biggest possible deposit on a given account. Such an operation could, however, be
abused to query the balance without the secret PIN from another software layer.
Whether such guarding between software layers is needed in a closed system is
debatable. After all, no customer of the bank could abuse this loophole at an ATM.
Only programmers writing clients could. Note that introducing such a loophole
would not create any unprovable proof obligations in B. We cannot express a
property like ‘client machines cannot infer the balance without knowledge of the
secret PIN’ in B.
The third possibility is to let Deposit indicate whether the operation has suc-
ceeded or not. This cannot as easily be abused to query the balance, because if
the operation succeeds a transaction is performed and the money must actually be
transferred. Hence, this solution is chosen.

status Deposit(aid, amount) =
PRE

aid accounts aid ACCOUNT amount NAT amount 0
fileOpen = TRUE

THEN
IF accountBalance(aid) MAXINT - amount THEN

accountBalance(aid) := accountBalance(aid) + amount status := TRUE
ELSE status := FALSE
END

END;

4.5 B Specification 129

Withdraw(aid, pin, amount) =
PRE

aid accounts aid ACCOUNT pin NAT amount NAT
accountPin(aid) = pin amount accountBalance(aid)
fileOpen = TRUE

THEN
accountBalance(aid) := accountBalance(aid) - amount

END;
ChangePin(aid, pin, newPin) =

PRE
aid accounts aid ACCOUNT pin NAT accountPin(aid) = pin
newPin NAT fileOpen = TRUE

THEN
accountPin(aid) := newPin

END;

Operations Withdraw and ChangePin follow the same pattern as Deposit.
The two final operations Open and Close concern persistency. An image of the

set of customers, accounts, and strings (see below) is stored in the files designated
by the parameters customerFileName, accountFileName, and stringFileName be-
tween program runs. Open is meant to read an arbitrary state satisfying the invariant
from secondary storage. If Open succeeds, the result code status and the status flag
fileOpen are set to TRUE. Note that the new state must satisfy the invariant, even if
status is FALSE. In practice, status = FALSE means that the aforementioned files do
not contain the image of a legal state or that the files cannot be properly accessed.
Close writes the current state of the machine to the three files.

status Open(customerFileName, accountFileName, stringFileName) =
PRE

customerFileName STRING accountFileName STRING
stringFileName STRING fileOpen = FALSE

THEN
ANY customersInit, customerNameInit, customerYobInit,

accountsInit, accountNumberInit, accountPinInit,
accountBalanceInit, accountOwnerInit, st

WHERE
customersInit CUSTOMER
customerNameInit customersInit STRTOKEN
customerYobInit customersInit NAT
customerNameInit customerYobInit customersInit (STRTOKEN NAT)

accountsInit ACCOUNT
accountNumberInit accountsInit NAT
accountPinInit accountsInit NAT
accountBalanceInit accountsInit NAT
accountOwnerInit accountsInit customersInit
st BOOL

THEN
customers := customersInit customerName := customerNameInit
customerYob := customerYobInit
accounts := accountsInit accountNumber := accountNumberInit
accountPin := accountPinInit accountBalance := accountBalanceInit

130 4. B Bank

accountOwner := accountOwnerInit
foundCustomers := fileOpen := st status := st

END
END;

status Close =
PRE fileOpen = TRUE THEN

RESET status : BOOL
END

END

In B we can only reason about a single program run. We could express as an
invariant with auxiliary variables the condition that calling Close, then arbitrarily
modifying the state, and thereafter calling Open should be skip on the base state
space, if both result codes indicate success. This could be expressed by Close cre-
ating a snapshot of the current state in a set of auxiliary variables. However, we
cannot infer from this that externalisation and internalisation actually work. A meta-
language statement (Close; Open) = skip is easier to understand than a similar con-
dition encoded as an invariant. Hence, it might be desirable to have a formal meta
language with an associated proof tool for expressing such properties in B, as is
done, for example, by the Refinement Calculator [16] for the refinement calculus.

Machine Bank, encapsulating the basic functionality, is animated to test whether
it satisfies the stated requirements and also to check whether the latter are what we
actually want. The proofs for this machine ascertain that the initialisation establishes
the invariant and that the operations preserve it. However, the step from the rewritten
requirements and the structured notation to the formal B specification cannot be
formally proven, as indicated by the arrows in Fig. 4.7.

4.5.3 Discussion

The account number is a unique identifier for accounts. Hence, instead of introduc-
ing the system-generated object identifiers customers (CUSTOMER) we could
have used account numbers as identifiers, simplifying the specification. The other
attributes would then have been functions with domain accountNumber rather than
accounts. In the implementation, we could have still used system-generated iden-
tifiers, in order to make references to accounts independent of the chosen pattern
for account numbers and to use a generic support machine for persistent objects.
The two specifications can be proved to be equivalent by mutual refinement (Exer-
cise 4.3). We decided not to make the simplification in order to better illustrate the
general scheme.

In our example, we have only used very simple UML class models. We sketch
here briefly the translation of some more advanced elements.

Optional attributes can be modelled by partial functions. Attributes of maxi-
mal cardinality greater than one, as allowed in entity-relationship diagrams, can be
expressed as general relations. Binary relations between classes with maximum car-
dinality greater one for both classes are expressed as general relations in B.

4.6 Robust Abstraction 131

Subtypes can be expressed as a subsets. Hence, polymorphism can be expressed
in B as ‘soft types’. However, dynamic binding must be expressed as case state-
ments. Hence, only closed (complete) systems can be given a B translation. Fur-
thermore, all classes with cyclic references must be specified in the same machine.
The transformation is difficult because B prohibits the calling of operations from
the same module and the use of sequencing in machines. B is well-suited for the
translation of a certain class of object-oriented models.

The combination of B and OMT [69] object models, the predecessors of UML
class models, has been pioneered by Lano [47, 46]. Different translations of object
diagrams into B have been proposed [28, 76]; the B-Toolkit even offers a tool for
automatic translation (Sect. 4.11).

A simple translation of statecharts to B is also given by Lano [47]. A more thor-
ough treatment can be found in Sekerinski [74]. Exercise 4.2 uses dynamic mod-
elling to add online banking with a login to our application.

4.6 Robust Abstraction

To keep the specification simple, the initial machine Bank uses non-trivial precon-
ditions rather than elaborate error handling. We could build a graphical user inter-
face directly upon it. However, we opt for an intermediate layer, providing roughly
the same functionality but with verification of parameters. Herewith, we effectively
split up the task at hand. We avoid duplication of parameter checking for transac-
tions which can be performed in different manners, for example by a cashier or at
an ATM, using different interfaces.

We have to decide whether we want to include Bank into the robust interface Ro-
bustBank or not. If we want to reason about the behaviour on the robust level or if we
want to be able to do such reasoning on even higher levels, we have to include Bank.
If, on the other hand, all interesting invariant conditions are provable on the lower
level, the inclusion would not make sense. Without including Bank we cannot spec-
ify under which conditions the operation actually succeeds and which parameters
lead to which status code. However, we are guaranteed termination, which means
that the corresponding implementation can only call the lower level implementation
if the latter’s precondition is satisfied. The advantage of the underspecification is
that the implementation is also allowed to return an error in cases not explicitly cap-
tured by the specification, arising from practical implementation issues. We decide
to include Bank to be able to perform more reasoning; the alternative approach will
be illustrated on the next level up, the user interface layer. Below is the specification
of RobustNewCustomer in the case where Bank would not be included.

result RobustNewCustomer(name, yob) =
PRE name STRING yob NAT THEN

result : success, db full, db error, customer already present
END

132 4. B Bank

Although specification and implementation structuring are largely independent
in B, the above decision has some practical consequences. If we include Bank in Ro-
bustBank, the latter becomes the focus of refinement and implementation. We only
need to implement Bank if we opt for importing it in the implementation of Robust-
Bank. In the alternate approach of non-inclusion, we implicitly assume that Bank
is imported in the implementation of the robust level and that the corresponding
operations are called.

MACHINE
RobustBank(maxCustomers, maxAccounts)

CONSTRAINTS
maxCustomers 1 100000 maxAccounts 1 200000

INCLUDES
BK.Bank(maxCustomers, maxAccounts)

SEES
StrTokenType

DEFINITIONS
CUSTOMER == 0 maxCustomers-1; ACCOUNT == 0 maxAccounts-1

SETS
RESULT = success, dbFull, dbError, customerAlreadyPresent,

unknownCustomer, negativeAmount, amountTooBig, unknownAccount,
AmountGreaterThanBalance, WrongPin

We rename Bank in the includes clause so that references to its identifiers must
be fully qualified, which increases readability. Note that sets, elements of enumer-
ated sets, and constants do not participate in the renaming.

The robust operations are overly specific with respect to the reported result
codes. For example in the case of RobustNewCustomer the specification prescribes
the result code to be dbFull rather than customerAlreadyPresent in the case where
both are applicable, for example the database is full and the customer passed as
parameter is already in the database. This approach is simpler, but constrains the
implementation. Exercise 4.6 investigates the more general specification.

OPERATIONS
result RobustNewCustomer(name, yob) =

PRE name STRTOKEN yob NAT THEN
IF BK.fileOpen = TRUE THEN

IF BK.customers CUSTOMER THEN
IF (name,yob) ran(BK.customerName BK.customerYob) THEN

result := success BK.NewCustomer(name, yob)
ELSE result := customerAlreadyPresent
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;

4.6 Robust Abstraction 133

Since a machine is only allowed to change its local state, it is imperative that
changes to Bank’s state are performed using the latter’s operations. However, query
operations such as RobustBalance could be specified directly and one could argue
that it is pointless to write query operations in machines which are included in oth-
ers. If, however, we have convinced ourselves on the level of Bank that any access of
an account’s balance requires the corresponding PIN, this claim is automatically pre-
served if we only use operations of Bank and do not read its variables directly. This
approach also facilitates change. Assume that we introduce a log in Bank recording
all operations and, thereby, transform RobustBalance into a state modifying op-
eration. The operation approach does not require any changes on the robust level
indicating better modular continuity. However, since in B we specify behaviour and
not call-sequences — as in the realm of component software [15] —, we still might
have to adapt the implementation of the robust level, if the implementation does not
call the same operation.

result, nof RobustInitFindCustomer(name) =
PRE name STRTOKEN THEN

IF BK.fileOpen = TRUE THEN
nof BK.InitFindCustomer(name) result := success

ELSE result := dbError nof : NAT
END

END;
found, yob RobustFindNextCustomer =

IF BK.fileOpen = TRUE THEN found, yob BK.FindNextCustomer
ELSE found := FALSE yob := 0
END;

result, number RobustNewAccount(name, yob, pin) =
PRE name STRTOKEN yob NAT pin NAT THEN

IF BK.fileOpen = TRUE THEN
IF BK.accounts ACCOUNT THEN

IF (name,yob) ran(BK.customerName BK.customerYob) THEN
result := success
number BK.NewAccount((BK.customerName BK.customerYob) 1

(name, yob), pin)
ELSE result := unknownCustomer number : NAT
END

ELSE result := dbFull number : NAT
END

ELSE result := dbError number : NAT
END

END;
result, bal RobustBalance(number, pin) =

PRE number NAT pin NAT THEN
IF BK.fileOpen = TRUE THEN

IF number ran(BK.accountNumber) THEN
IF pin = BK.accountPin(BK.accountNumber 1 (number)) THEN

bal BK.Balance(BK.accountNumber 1 (number), pin)
result := success

ELSE result := WrongPin bal : NAT

134 4. B Bank

END
ELSE result := unknownAccount bal : NAT
END

ELSE result := dbError bal : NAT
END

END;
result, name, yob RobustOwner(number) =

PRE number NAT THEN
IF BK.fileOpen = TRUE THEN

IF number ran(BK.accountNumber) THEN
name := BK.customerName(BK.accountOwner (BK.accountNumber 1

(number)))
yob := BK.customerYob(BK.accountOwner (BK.accountNumber 1

(number)))
result := success

ELSE
result := unknownAccount name : STRTOKEN yob : NAT

END
ELSE

result := dbError name : STRTOKEN yob : NAT
END

END;
result, dd RobustDeposit(number, amount) =

PRE number NAT amount NAT THEN
IF BK.fileOpen = TRUE THEN

IF number ran(BK.accountNumber) THEN
IF amount 0 THEN

IF BK.accountBalance(BK.accountNumber 1 (number))
MAXINT - amount THEN

dd BK.Deposit(BK.accountNumber 1 (number), amount)
result := success

ELSE result := amountTooBig dd : BOOL
END

ELSE result := negativeAmount dd : BOOL
END

ELSE result := unknownAccount dd : BOOL
END

ELSE result := dbError dd : BOOL
END

END;
result RobustWithdraw(number, pin, amount) =

PRE number NAT pin NAT amount NAT THEN
IF BK.fileOpen = TRUE THEN

IF number ran(BK.accountNumber) THEN
IF pin = BK.accountPin(BK.accountNumber 1 (number)) THEN

IF amount 0 THEN
IF amount BK.accountBalance(BK.accountNumber 1 (number))

THEN
BK.Withdraw(BK.accountNumber 1 (number), pin, amount)
result := success

ELSE result := AmountGreaterThanBalance
END

4.7 Base Machines 135

ELSE result := negativeAmount
END

ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;
result RobustChangePin(number, pin, newPin) =

PRE number NAT pin NAT newPin NAT THEN
IF BK.fileOpen = TRUE THEN

IF number ran(BK.accountNumber) THEN
IF pin = BK.accountPin(BK.accountNumber 1 (number)) THEN

BK.ChangePin(BK.accountNumber 1 (number), pin, newPin)
result := success

ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;
status RobustOpen(customerFileName, accountFileName, stringFileName) =

PRE
customerFileName STRING accountFileName STRING
stringFileName STRING

THEN
IF BK.fileOpen = FALSE THEN

status BK.Open(customerFileName, accountFileName, stringFileName)
ELSE status := FALSE
END

END;
status RobustClose =

IF BK.fileOpen = TRUE THEN
status BK.Close

ELSE status := FALSE
END

END

4.7 Base Machines

Before we can build a graphical user interface on top of the robust abstraction, we
need to build support for the desired input and output mechanisms. A program con-
sists of two parts: computation and interaction with the environment. The algorith-
mic aspects of a program can be expressed in B, whereas the input and output must
be coded in a traditional language. B does not contain direct language support for

136 4. B Bank

communication with the environment, because input and output is very much de-
pendent on the target architecture (Web, X Windows, disk, audio, etc.).

The B development can be interfaced in two ways with its environment: using
base machines or using a main program written in a classical programming language
which calls the B development. A base machine is a machine the implementation
of which is written in a classical programming language rather than in B. A spec-
ification of the desired functionality is given as a regular B machine so that it can
be used by other B constructs. The actual implementation, not being expressible
in B, is programmed directly in the desired classical language, for example, C or
Ada. The alternative approach is to use B to create a service subsystem, a subrou-
tine library, and write the main program which interfaces with the environment and
calls the B subsystem in a classical programming language. The two approaches
can also be combined, for example, we could write a base machine for file access
and still write the main program interfacing with the Web in C. In fact, since only
scalars and one-dimensional array are implementable directly in B0 and all other
data structures use library machines, which in turn are built on base machines, few
interesting developments are possible without base machines at all.

We decided to use base machines rather than writing the main program directly
in a classical programming language. Base machines can be reused for other devel-
opments. From this perspective, it would be logical to have a standard library of base
machines. However, the typical domain of B being embedded systems with custom
interfaces, such a library would not be generally usable. Nevertheless, it would be
desirable to have for educational purposes.

In many industrial applications, especially in those that build on existing compo-
nents, B is only used to create the most safety-critical algorithmic part in the middle,
building on well-tested databases for persistent storage and complex graphical user
interfaces. This often suitable compromise requires a great amount of discipline to
be exercised to avoid parts of the algorithm being expressed outside B. We have
chosen the all-B approach to illustrate its feasibility.

4.7.1 Strings in Atelier B

Atelier B has a type STRING for constant character chains. STRING can be used for
passing a message like “Hello world” to a terminal output machine or, in our case,
to pass the names of the dump files. However, there is no support for non-literal
strings as needed for customers’ names. Atelier B does not permit objects of variable
length, such as strings, to be passed between operations. Because there is no support
for constant-length strings either, we are forced to either use tokens as references to
the actual strings, which are stored in a base machine, or pass strings character-by-
character with multiple calls. We opt for tokens. Machine StrTokenType defines a
type of string tokens.

MACHINE
StrTokenType

SETS

4.7 Base Machines 137

STRTOKEN
CONCRETE CONSTANTS

EmptyStringToken
PROPERTIES

EmptyStringToken STRTOKEN
END

Note that the set STRTOKEN is abstract. Therefore, normal B machines cannot
simply ‘create new string tokens’ as would have been the case if we had used a
subset of the NAT instead. The fact that STRTOKEN is valued to a subset of NAT in
the implementation only helps the C-translator, but cannot be exploited in constructs
which see or import StrTokenType.

Since string tokens can be compared with ‘=’, we need to have an injection
from tokens to strings. To ensure this, only one single machine called BasicString is
allowed to generate tokens. Input base machines return tokens, not strings. Fig. 4.8
(left side) illustrates string I/O, with BasicCGI as an example of an I/O machine.
Implementation MainBank 1 requests a string to be input. BasicCGI reads a string
from the Web, enters the string in BasicString and in return receives a token, which
it returns to its client MainBank 1. Note that the operations for entering new strings
and retrieving strings by token are not specified on the B level, but are only present
in the hand-coded C implementation.

The rest of this subsection discusses additional aspects of passing objects of
variable size in B. The material is of general interest, but is not necessary for under-
standing the case study. Hence, it can be skipped on a first reading.

Unfortunately, the token solution has a shortcoming: We cannot ensure in B
that no other base machine generates tokens. For example a random base machine
could have a machine parameter of set type and provide an operation which returns
arbitrary elements of that set. Instanciated with STRTOKEN, this machine could
generate tokens for which BasicString has no corresponding string. We must also
ensure that whenever string tokens are externalised, the corresponding strings are
also saved.

The obvious, but for other reasons undesirable, remedy to the first problem
would be to introduce a set legalTokens STRTOKEN in BasicString. Any input
operation would then have to modify legalTokens. However, only the constructs that
includes/imports BasicString, but no others that only see BasicString, have access
to state modifying operations of BasicString.1 As a consequence, input from any
source would have to be implemented in a single base machine, contradicting mod-
ularity. For example, base machines for input from the Web and from a terminal
could not simply be combined by importing both, but would have to be textually
merged.

1 This single writer and multiple readers restriction is due to the visibility of variables of
included/imported machines in the invariant of the including/importing implementation.
Multiple writers could invalidate each other’s invariants.

138 4. B Bank

Notations

machine implementation

implementsimports

includes/
extends

MainBank_1
(Interface)

Bank

Basic
OtherIO BasicString

Bank_1

no communication
on B level, only on
C code level

BasicCGI

possible other I/O machine
(not present in development)

stores the set of
tokens to be
externalized,
but not the set of
all valid tokens

MainBank_1
(interace)

Input request
(ReadTokenString)

BasicCGI BasicString Web

In
pu

t s
ce

na
rio Get string from form input

Return string
Enter string
Return token

Return token

Output request
(WriteTokenXString)

O
ut

pu
t s

ce
na

rio

Output string

Get string by token

Return string

Chosen solution with scenarios Alternative solution

MainBank_1
(Interface)

Bank

BasicAllIO
String

Bank_1

stores both the set
of tokens to be
externalized and
the set of all valid
tokens

promotes I/O
operations from
BasicAllIOString

promotes I/O
operations from
BasicAllIOString

all intermediate
constructs must
promote I/O
operations from
BasicAllIOString

no other I/O
machines possible

Fig. 4.8. Alternatives for Input/Output and String Storage

4.7 Base Machines 139

The single-writer restriction would complicate the design even if we would limit
ourselves to a single input/output (I/O) machine. If we would not want to externalise
all strings, but only a selected subset (the names of the customers) that we need
again in future program runs, then implementation Bank 1 would also need write
access to BasicString’s state because Bank 1 would have to control the externalisa-
tion process. All components accessing BasicString in write mode would have to be
parents in a straight line, each imported by the next. Hence, the single I/O machine
would have to import BasicString, respectively be merged into a single machine to
also avoid the behind the scene passing of strings. Implementation Bank 1 would
then have to import this machine BasicAllIOString. The real inelegance would be
that the I/O operations which are accessed from the interface layer would have to
be promoted by the specifications Bank and RobustBank. A similar pollution of the
specifications of Bank would occur if externalisation of strings were to be controlled
by the interface layer and Bank would have to provide operations to query the set of
strings to be externalised.

Because of the need to combine all I/O into a single I/O machine and the clutter-
ing of specifications with implementation aspects, we do not choose this solution.
Rather we accept that we cannot maintain in B a set of all valid tokens. Fig. 4.8
illustrates the two alternatives. The specification of BasicString is given on page
161.

4.7.2 Machine BasicCGI

In order to input and output data to the Web, we need a machine to access the
common gateway interface (CGI), which we call BasicCGI. CGI is a standard for
interfacing external applications with information servers, such as Web servers. A
plain hypertext markup language (HTML) document that the Web daemon retrieves
is static, which means it exists in a constant state: a text file that doesn’t change.
A CGI program, on the other hand, is executed in real-time, so that it can output
dynamic information. The user fills out a form in the browser and sends the data to
the server which executes the CGI program. The CGI program processes the input,
modifies the local database, and generates an output which is sent back to the user’s
browser for display.

MACHINE
BasicCGI

SEES
StrTokenType

OPERATIONS
status, num ReadNat(name) =

PRE name STRING THEN
status : BOOL num : NAT

END;

140 4. B Bank

In an HTML form every field has a unique name. Operation ReadNat inputs a
natural number value of a field, designated by its name, from a form. Since the user
can enter an arbitrary number into a given field, we can only assure that num is a
natural number. The browser, the server, and the connection between them being
outside the realm of our specification, we cannot specify that the reported value is
actually the one entered by the user. An implementation which always returns 0,
independently of the users input would, therefore, be formally correct. Neither can
we specify under which circumstances the result code indicates success. Actually,
an implementation which always fails would also be correct. The intended meaning
of the operation is only captured by its name and the natural language description.
The only property guaranteed by the formal specification is termination.

Whether we use result codes or not depends upon how we can react to failure.
Consider, for example, a measuring device with an input sensor and a disk to store
the values as its only output device. If the disk fails, we can also stop execution.
In this case an abstraction specifying the disk as reliable leads to a simpler system.
Alternatively, we might specify the disk as unreliable, but simply ignore the result
codes in the higher layers, leading to unprovable obligations. On the other hand, if
we can react to failure by, for example, storing the current state on a spare disk and
showing an error message on the screen, return codes are desirable. In non safety-
critical systems, operations with a very high success probability are often assumed
to be fully reliable, because little can be done in case of failure and the resulting
system is much simpler.

To be more precise, the return codes in our example indicate whether the Web
server has indicated an error or not. If, for example, the underlying hardware has
malfunctioned in a way not traced by the operating system or Web server, for ex-
ample, a communication error resulting in a correct checksum, the error goes un-
noticed. Building up a system from components, we specify each component sep-
arately and reason about the whole system using composition rules assuming the
implementations to adhere to the specification. If a specification is too weak, the
corresponding component cannot be used intelligently. Although more truthful, a
specification saying that the CGI functions might have failed even if the result indi-
cates success, is useless, because we cannot build on it. Risk estimates using proba-
bilistic reasoning would need to complement a development in B [80, 58, 57].

Operation ReadTokenString reads a string from a form field. As described above,
the string is stored in machine BasicString and only a token is returned. If the string
contained in the field is longer than maxLength, the operations returns failure.

status, str ReadTokenString(name, maxLength) =
PRE name STRING maxLength NAT THEN

status : BOOL str : STRTOKEN
END;

The remaining five operations are concerned with outputting a new document in
response to the user’s request. Each document has a MIME (Multipurpose Internet
Message Extension) type which tells the browser the format of the remaining data

4.7 Base Machines 141

stream. In our case, the type is always “text/html”. Operation WriteLiteralContent-
Type lets us send the MIME type to the browser. Parameter mimeType is of type
STRING as a constant literal string is envisaged to be used as an actual parameter.

WriteLiteralContentType(mimeType) =
PRE mimeType STRING THEN skip END;

In HTML, certain characters such as ‘ ’ are reserved for markup purposes. Ad-
ditionally, 8-bit characters must be encoded using either their mnemonic or their
decimal codes in the Latin-1 character set. For example, the letter ‘ü’ can be en-
coded as either ‘ü’ or as ‘ ü’. Operation WriteLiteralString outputs a
string without any conversions; hence, the string can contain HTML tags, but special
characters must already be encoded. Operation WriteLatin1TokenString converts a
string from the Latin-1 character set to its HTML encoding.

WriteLiteralString(str) =
PRE str STRING THEN skip END;

WriteLatin1TokenString(str) =
PRE str STRTOKEN THEN skip END;

In arguments to CGI programs, certain reserved characters as well as 8-bit char-
acters must be encoded as their hexadecimal codes in the Latin-1 character set. The
letter ‘ü’, for example, is represented as ‘%FC’. Since such argument strings may
not contain any spaces, the latter are converted to ‘+’s. This type of conversion is
performed by operation WriteURLString before outputting its argument.

WriteURLTokenString(str) =
PRE str STRTOKEN THEN skip END;

WriteNat(num) =
PRE num NAT THEN skip END

END

The actual output operations are specified as skip as the output is not part of the
state captured by the B specification. Although the output operations can also fail in
practice, we have chosen the less safe, but more convenient approach of specifying
them as reliable.

A partial modelling of the output would also have practical consequences. The
operations of BasicCGI might be called from different implementation constructs.
As long as the operations are inquiry operations they can be called from implemen-
tations which see BasicCGI. If, on the other hand, the output operations modify the
state, the lowest machine in the hierarchy using BasicCGI must import the latter and
promote the operations.

Machine BasicCGI does not enforce its output to be correct HTML, for example,
there is no check for matching markup tags. Although desirable, such checks would
make the machine much more cumbersome to use as tags could not be embedded in
strings and the machine would have to be updated to use new HTML tags.

142 4. B Bank

4.7.3 Implementing BasicCGI

To implement BasicCGI we first write an ‘empty’ B implementation the C trans-
lation of which gives us a C code skeleton conforming to the coding standards of
Atelier B’s translator. This skeleton is then filled in with the actual code. The imple-
mentation BasicCGI 1 contains only the minimal information to conform to B and
be translatable. We have to value every set and constant, initialize concrete variables
of the specification, and list all the operations. Operations are simply specified as
skip, if they have no return parameters and otherwise as dummy assignments to the
return parameters. We do not prove anything about this empty implementation. Note
that BasicCGI 1 sees BasicString to force the latter being imported somewhere in
the development.

IMPLEMENTATION
BasicCGI 1

REFINES
BasicCGI

SEES
StrTokenType, BasicString

OPERATIONS
status, num ReadNat(name) =

BEGIN
status := TRUE; num := 0

END;
status, str ReadTokenString(name, maxLength) =

BEGIN
status := TRUE; str := EmptyStringToken

END;
WriteLiteralContentType(mimeType) = skip;
WriteLiteralString(str) = skip;
WriteURLTokenString(str) = skip;
WriteLatin1TokenString(str) = skip;
WriteNat(num) = skip

END

Rather than implementing CGI access from scratch we build upon the public
domain ANSI C library cgic version 1.05 from Thomas Boutell [13]. This library
provides for comfortable parsing of form input. The second included header file
trad ctx.h defines some macros such as PROTx to make the source code portable
between ANSI C and K&R compilers.

In a project, a machine can be imported several times with different instance
names. Different instances represent different data. Implementing a base machine,
we have to decide whether multiple instantiation is permitted or not. If, for example,
a base machine represents a physical device such as an LED only one copy of the
corresponding base machine should be included in a development. If a base machine

4.7 Base Machines 143

does not allow for multiple instantiations, we have to verify that the project adheres
to this rule. The restriction cannot be expressed in AMN; depending upon the target
language and the translator it is possible to write C code which fails to compile,
respectively link if the rule is violated. If, as in our case, this is not possible, manual
inspection is necessary. On the other hand, if we allow multiple instantiations, the
state of an instantiation must be included into the struct BasicX type. As discussed
above, we do not need to make our machine BasicCGI instanciable, even if we use
it from more than one implementation construct. Hence, we opt for this simpler
approach which also corresponds more closely to the reality we model. Our third
base machine BasicFile (Sect. 4.10.4) illustrates multiple instantiation. The hand-
coded additions and modifications are set in italics in the C source files.

#include”cgic.h”
#ifndef trad ctx include def

#include ”trad ctx.h”
#endif

/* Links to machines from the SEES clause */
#ifndef StrTokenType include def

#include ”StrTokenType.h”
#endif

/* Structure associated to component (instance record) */
struct BasicCGI type

int BasicCGI init already done;
;

#define BasicCGI include def

/* Reference to machines from the SEES clause */
EXTERN struct StrTokenType type *StrTokenType ptr;

/* Prototypes of translated operations */
EXTERN void link BasicCGI PROTF((struct BasicCGI type *v));

EXTERN void init BasicCGI PROTF((struct BasicCGI type *v));

/* Type of name changed manually from INT32 to char* */
EXTERN void ReadNat BasicCGI PROTF((struct BasicCGI type *v,

INT32 *status, INT32 *num, char *name));

/* The other operations can be found on the book’s Web page. */

In its original implementation, cgic provides itself a main function and expects
the user to write a function called cgiMain which is called after initialisation. By
changing a handful of lines as indicated in the online source code, we turn cgic’s
main function into a function cgiInit which we call from init BasicCGI. The spec-
ifications does not allow the initialisation to fail. In practice, if the initialisation
fails we write a message to stderr and abort execution. Since we cannot perform
any transaction anyhow, abortion at startup is the simplest solution. The operations

144 4. B Bank

are simply calls to the corresponding procedures of cgic, respectively fprintf com-
mands.

#include stdio.h
#include ”BasicCGI.h”
#include ”BasicString.h”

void link BasicCGI(PROTA(struct BasicCGI type *)v)
PROTC(struct BasicCGI type *v)

void init BasicCGI(PROTA(struct BasicCGI type *)v)
PROTC(struct BasicCGI type *v)

if (StrTokenType ptr- StrTokenType init already done &&
(v- BasicCGI init already done==0))

if (cgiInit()!=0)
fprintf(stderr, ”Initialization of BasicCGI failed. n”); exit(-1);

v- BasicCGI init already done=1;

void ReadNat BasicCGI(PROTA(struct BasicCGI type *)v, PROTA(INT32 *)status,
PROTA(INT32 *)num, PROTA(char *)name)

PROTC(struct BasicCGI type *v) PROTC(INT32 *status)
PROTC(INT32 *num) PROTC(char *name)

int s;

s=cgiFormInteger(name, num, 0);
if ((s==0)&&(*num =0))

*status=TRUE;
else
*num=0; *status=FALSE;

/* The other operations can be found on the book’s Web page. */

We prove in B that all calls to operations of BasicCGI satisfy the respective pre-
conditions. Hence, there is no need to write checks for the preconditions in the C
code of BasicCGI. The hand-coded C implementation is a refinement of its B spec-
ification. The validity of the refinement has to be asserted using normal verification
techniques, for example, testing and third party code inspection.

We make a separate project out of BasicCGI, BasicString, and StrTokenType to
facilitate reuse in other projects. This also prevents us from accidentally overwriting
the hand-coded implementation. The files cgic.c and cgic.h must be manually added
to the Makefile, copied from the data base to the code directory. Additionally, the

4.8 User Interface 145

target BasicCGI must be removed from the Makefile, as we only want to create a
library and make would produce an error because of the missing main function.

For didactic reasons, we have presented the implementation of the base machine
directly following its specification. In practice, we often write the implementation
only after we have actually used its specification in other constructs and, thereby,
convinced ourselves of its appropriateness. The disadvantage of this is that the spec-
ification might not be implementable on the target system, causing a rework of all
dependent constructs.

4.8 User Interface

The user interface presents an entry mask to the user, parses the input with the help
of BasicCGI, sends the request to the robust interface RobustBank, and presents
the results using again the CGI machine. We first prototype this interaction using
static HTML code with normal links between the pages rather than calls to our CGI
application. Once we are satisfied with the look and feel, we write the user interface

Notations

static HTML
page

CGI output link
transition

form input
transition

new customer
output

welcome

new customer
form

new account
form (simple)

list of
customers

deposit
form

deposit
output

new account
form (full)

new account
output

2 or more
matching
customers

0 or 1
matching
customer

Fig. 4.9. Cashier Interaction

146 4. B Bank

which generates the same HTML code based upon CGI requests. Static information,
such as the input forms, remains in the form of normal HTML files.

The cashier is presented with a menu on the bottom of her terminal, from which
she can choose a form to enter a new customer, create a new account for an existing
customer, or make a deposit. In the ‘new customer’ form, the cashier enters the
name and year of birth of the customer and clicks on a button to send the data to the
CGI application. In response, the cashier gets a screen saying that the operation has
succeeded or that an error has occurred. These messages are all generated by the
same CGI program, but for prototyping we need to create different HTML pages.
After reading the output message, the cashier clicks on another menu choice.

When creating a new account, the cashier has the option of entering both the
customer’s name and year of birth or only the name. If there is only one cus-
tomer with the given name in the system, an account is created. On the other
hand, if there is more than one customer with this name, the cashier is presented
with a list. She then simply clicks on the desired customer to create the ac-
count. In the latter case, the links contain all the parameters, which would usu-
ally be entered into the form by the cashier. For example for customer ‘Garfield’,
born in ‘1978’, and PIN ‘2001’ the URL of the link would be ‘http:// /cgi-
bin/AB/MainBank?command=1&name=Garfield&yob=1978&pin=2001’.The CGI

HTML
HEAD TITLE B Bank: New Customer /TITLE /HEAD
BODY BGCOLOR=“#228B22”

H1 B Bank: New Customer /H1
FORM ACTION=“http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/MainBank”

METHOD=“POST”
INPUT TYPE=“HIDDEN” NAME=“command” VALUE=“0”
TABLE BORDER=“0”

TR ALIGN=“Center” VALIGN=“Middle”
TD ALIGN=“RIGHT” Customer name: /TD
TD ALIGN=“LEFT” INPUT NAME=“name” SIZE=“18” /TD

/TR
TR ALIGN=“Center” VALIGN=“Middle”

TD ALIGN=“RIGHT” Year of birth: /TD
TD ALIGN=“LEFT” INPUT NAME=“yob” SIZE=“4” /TD

/TR
/TABLE
P

INPUT TYPE=“submit” VALUE=“Add customer” BR
INPUT TYPE=“reset” VALUE=“Reset input form”

/P
/FORM

/BODY
/HTML

Fig. 4.10. HTML Source Code of ‘New Customer’ Form

4.8 User Interface 147

program doesn’t have to store any temporary information. ‘Deposit’ leads to simple
one-step interaction sequences like ‘new customer’, as depicted in Fig. 4.9.

For brevity’s sake, we do not list all the HTML pages. We assume the reader
to be familiar with basic HTML. In Fig. 4.10, the FORM tag introduces the actual
entry form. Its attribute ACTION states the URL of the CGI program, to which the
input data is sent upon pressing the submit button. The input field ‘name’ takes
the customer name. Rather than creating a separate CGI application for each entry
form, we use a hidden input field ‘command’ which selects the desired operation.
The CGI program is our final B applications, which we copy to the CGI directory
of the Webserver and give the suitable execution rights.

The user interaction at the ATM and the corresponding HTML pages are similar.
On a standard ATM, the account number is read from a card. To run our simulation
without any special hardware, the user is also requested to enter the account number.
A typical ATM interface is modal, that is, one first inserts the card, then enters
the PIN, and finally performs the desired transaction. In our simulation, the user is
requested to enter all information in a single modeless dialog. Exercise 4.2 shows
how to model a modal interface using the idea of links generated by the program.

In order to make navigation easier in the simulation, we add a frame set with a
meta menu which lets us easily switch between the cashier terminal and the ATM,
displayed with different background colour in the right-hand side frame.

4.8.1 Main Program

To keep the size of the individual operations small, we create one operation per
transaction type. Since in B operations from the same construct cannot be called, we
divide the user interface into two machines. Machine MainBank contains the main
program. It reads the ‘command’ field and calls the selected operation of machine
OperationsBank, which does the actual work.

We do not duplicate the state on the user interface level in OperationsBank, as
we do not want to perform any reasoning. Hence, the specification of the transaction
operations is simply skip.

MACHINE
OperationsBank

OPERATIONS

NewCustomer = skip;
NewAccount = skip;
Deposit = skip;
Withdraw = skip;
Balance = skip;
ChangePin = skip;
Error(number) =

PRE number NAT THEN skip END;

148 4. B Bank

status Open(customerFileName, accountFileName, stringFileName) =
PRE

customerFileName STRING accountFileName STRING
stringFileName STRING

THEN
status : BOOL

END;
status Close =

BEGIN
status : BOOL

END
END

The machine MainBank is also stateless. The specification of its single opera-
tion main is skip, guaranteeing only termination. Since the persistent state, existing
beyond a single program run, cannot be modelled, skip is in fact the only reasonable
specification for a main program.

MACHINE
MainBank

OPERATIONS
main = skip

END

4.8.2 Implementations

The implementation MainBank 1 first opens the database. Then it reads the value
of the ‘command’ input field, calls the selected operation, and closes the database.

IMPLEMENTATION
MainBank 1

REFINES
MainBank

IMPORTS
BC.BasicCGI, OB.OperationsBank , StrTokenType

OPERATIONS
main =

VAR dbst, st, res IN
dbst OB.Open(”/tmp/customer”, ”/tmp/account”, ”/tmp/strings”);
IF dbst = TRUE THEN

st, res BC.ReadNat(”command”);
IF st = TRUE THEN

CASE res OF
EITHER 0 THEN OB.NewCustomer
OR 1 THEN OB.NewAccount

4.8 User Interface 149

OR 2 THEN OB.Deposit
OR 3 THEN OB.Withdraw
OR 4 THEN OB.Balance
OR 5 THEN OB.ChangePin
ELSE OB.Error(0)
END

END
ELSE OB.Error(1)
END;
dbst OB.Close

ELSE OB.Error(2)
END

END
END

The implementation OperationsBank 1 imports RobustBank. The operation
NewCustomer first outputs the header of the result screen, which is independent
of the outcome of the operation. Then it reads the value of the ‘name’ field, calls
RobustNewCustomer and presents the result.

The loop in operation NewAccount shows the advantage of not just using B to
create a subroutine library. In this case, loops on the user interface level would not
be proved to terminate. For brevity’s sake, some operations are omitted in the listing
below. They can, as all other constructs, be found on the book’s Web page.

IMPLEMENTATION
OperationsBank 1

REFINES
OperationsBank

IMPORTS
RB.RobustBank(100, 200)

SEES
BC.BasicCGI

CONCRETE CONSTANTS
False1

PROPERTIES
False1 BOOL NAT

VALUES
False1 = (TRUE 0), (FALSE 1)

DEFINITIONS
CASHIER HEADER(title) == HEADER(title, ”#228B22”);
ATM HEADER(title) == HEADER(title, ”#DC143C”);
HEADER(title,color) == (

BC.WriteLiteralContentType(”text/html”);
BC.WriteLiteralString(” HTML n HEAD TITLE B Bank: ”);
BC.WriteLiteralString(title); BC.WriteLiteralString(” /TITLE /HEAD n”);
BC.WriteLiteralString(” BODY BGCOLOR=”); BC.WriteLiteralString(color);

150 4. B Bank

BC.WriteLiteralString(” n H1 B Bank: ”);
BC.WriteLiteralString(title); BC.WriteLiteralString(” /H1 n”));

FOOTER == BC.WriteLiteralString(” /BODY /HTML n”);
DB FULL MSG == BC.WriteLiteralString(” P Sorry. The database is full. /P ”);
DB ERR MSG ==

BC.WriteLiteralString(” P Sorry. The databse is not working. /P ”);
UNK ACC MSG(num) == (

BC.WriteLiteralString(” P Account ”); BC.WriteNat(num);
BC.WriteLiteralString(” is not in database. /P ”));

CGI SCRIPT == ”http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/MainBank”;
MAX NAME LENGTH == 256

OPERATIONS
NewCustomer =

VAR st, name, yob, result IN
CASHIER HEADER(”New Customer”);
st, name BC.ReadTokenString(”name”, MAX NAME LENGTH);
IF st = TRUE THEN

st, yob BC.ReadNat(”yob”);
IF st = TRUE THEN

result RB.RobustNewCustomer(name, yob);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(” P Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) has been added. /P ”)

OR customerAlreadyPresent THEN
BC.WriteLiteralString(” P Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) is already in database. /P ”)

OR dbFull THEN DB FULL MSG
OR dbError THEN DB ERR MSG
END

END
ELSE BC.WriteLiteralString(” P Could not get year of birth. /P ”)
END

ELSE BC.WriteLiteralString(” P Could not get name. /P ”)
END;
FOOTER

END;
NewAccount =

VAR st, name, yob, pin, result, number, nof, found, ii IN
CASHIER HEADER(”New Account”);
st, name BC.ReadTokenString(”name”, MAX NAME LENGTH);
IF st = TRUE THEN

st, pin BC.ReadNat(”pin”);
IF st = TRUE THEN

st, yob BC.ReadNat(”yob”);
IF st = FALSE THEN

result, nof RB.RobustInitFindCustomer(name);
IF result = success THEN

4.8 User Interface 151

IF nof = 0 THEN
BC.WriteLiteralString(” P Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” is not in database. /P ”)

ELSIF nof = 1 THEN
found, yob RB.RobustFindNextCustomer;
st := TRUE

ELSE BC.WriteLiteralString(” P Choose from list: /P UL ”);
ii := 0; found, yob RB.RobustFindNextCustomer;
WHILE found = TRUE DO

BC.WriteLiteralString(” LI A HREF=”);
BC.WriteLiteralString(CGI SCRIPT);
BC.WriteLiteralString(”?command=1&name=”);
BC.WriteURLTokenString(name);
BC.WriteLiteralString(”&yob=”);
BC.WriteNat(yob);
BC.WriteLiteralString(”&pin=”);
BC.WriteNat(pin);
BC.WriteLiteralString(” ”);
BC.WriteLatin1TokenString(name); BC.WriteLiteralString(” (”);
BC.WriteNat(yob); BC.WriteLiteralString(”) /A /L ”);
found, yob RB.RobustFindNextCustomer

INVARIANT
yob NAT
RB.BK.foundCustomers (RB.BK.foundCustomers)

VARIANT
card(RB.BK.foundCustomers)+1-False1(found)

END;
BC.WriteLiteralString(” /UL ”)

END
ELSE DB ERR MSG
END

END;
IF st = TRUE THEN

result, number RB.RobustNewAccount(name, yob, pin);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(” P New account number ”);
BC.WriteNat(number);
BC.WriteLiteralString(” has been created for customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”). /P ”)

OR unknownCustomer THEN
BC.WriteLiteralString(” P Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) is not in database. /P ”)

OR dbFull THEN DB FULL MSG
OR dbError THEN DB ERR MSG
END

END
END

152 4. B Bank

ELSE BC.WriteLiteralString(” P Could not get pin. /P ”)
END

ELSE BC.WriteLiteralString(” P Could not get name. /P ”)
END;

FOOTER
END;
Deposit =

VAR st, number, amount, result, dd, name, yob IN
CASHIER HEADER(”Deposit”);
st, number BC.ReadNat(”number”);
IF st = TRUE THEN

st, amount BC.ReadNat(”amount”);
IF st = TRUE THEN

result, dd RB.RobustDeposit(number, amount);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(” P A deposit of ”);
BC.WriteNat(amount);
BC.WriteLiteralString(” has been made on account ”);
BC.WriteNat(number);
result, name, yob RB.RobustOwner(number);
IF result = success THEN

BC.WriteLiteralString(” belonging to ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”)”)

END;
BC.WriteLiteralString(”. /P ”)

OR negativeAmount THEN
BC.WriteLiteralString(” P Amount must be greater than 0. /P ”)

OR amountTooBig THEN
BC.WriteLiteralString(” P Amount too big. ”)
BC.WriteLiteralString(”No deposit has been made. /P ”)

OR unknownAccount THEN UNK ACC MSG(number)
OR dbError THEN DB ERR MSG
END

END
ELSE BC.WriteLiteralString(” P Could not get amount. /P ”)
END

ELSE BC.WriteLiteralString(” P Could not get number. /P ”)
END;
FOOTER

END;
/* Operations Withdraw, Balance, and ChangePin and Error omitted. Check the book’s Web
page. */

status Open(customerFileName, accountFileName, stringFileName) =
status RB.RobustOpen(customerFileName, accountFileName, stringFileName);

status Close =
status RB.RobustClose

END

4.9 Implementation of the Robust Abstraction 153

4.9 Implementation of the Robust Abstraction

The missing piece is the implementation of the robust layer RobustBank. We have
to make a choice as to whether we want to import Bank in the implementation
RobustBank 1 or whether we want to build directly on lower level abstractions.

Often, a more abstract specification is included into the robust level and a sim-
ilar, more concrete specification is imported in the implementation. The machine
that is included in the specification should be as abstract as possible to avoid over-
specification. The machine that is imported in the implementation should be quite
concrete to make it more useful. The use of two different constructs solves this
dilemma. However, in our case we can include, respectively import the same ma-

RobustBank_1

Bank_1Bank

RobustBank_1

Bank

transitivity of refinement

RobustBank
monotonicity

of context

algorithmic
refinement data

refinement
=

Notations

machine implementation
proved
refinement

induced
refinement

RobustBank_1

Concrete
Bank_1Abstract

Bank

RobustBank_1

Concrete
Bank

transitivity of refinement

RobustBank
monotonicity

of context
algorithmic
refinement data

refinement

Same machine Bank is both included and imported (chosen path)

More abstract construct AbstractBank is included in specification,
more concrete construct ConcreteBank is imported in implementation (rejected alternative)

%

Fig. 4.11. Import of Included Machine vs. Import of More Concrete Construct

154 4. B Bank

chine Bank in both the specification and the implementation, avoiding a proliferation
of constructs. In the alternative case Bank, respectively a more abstract version Ab-
stractBank, would have been used only in the specification, but would not have to
be refined to an implementation. Fig. 4.11 shows the two options.

Importing an already included machine without renaming, respectively renam-
ing it identically both times, constitutes an algorithmic refinement. The identity
mapping invariant is implicitly added.

The operations first check whether the parameters and the current state satisfy
the preconditions of the corresponding operations in Bank and then call them, or
report an error if the conditions do not hold.

IMPLEMENTATION
RobustBank 1(maxCustomers, maxAccounts)

REFINES
RobustBank

IMPORTS
BK.Bank(maxCustomers, maxAccounts)

SEES
StrTokenType

OPERATIONS

result RobustNewCustomer(name,yob) =
VAR status, cid IN

IF BK.fileOpen = TRUE THEN
status BK.CustomerDBFull;
IF status = FALSE THEN

status, cid BK.ThisCustomer(name,yob);
IF status = FALSE THEN

BK.NewCustomer(name,yob); result := success
ELSE result := customerAlreadyPresent
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;
result, nof RobustInitFindCustomer(name) =

IF BK.fileOpen = TRUE THEN
nof BK.InitFindCustomer(name); result := success

ELSE
result := dbError; nof := 0

END;
found, yob RobustFindNextCustomer =

IF BK.fileOpen = TRUE THEN
found, yob BK.FindNextCustomer

ELSE
found := FALSE; yob := 0

END;

4.9 Implementation of the Robust Abstraction 155

result, number RobustNewAccount(name, yob, pin) =
VAR status, cid IN

number := 0;
IF BK.fileOpen = TRUE THEN

status BK.AccountDBFull;
IF status = FALSE THEN

status, cid BK.ThisCustomer(name, yob);
IF status = TRUE THEN

number BK.NewAccount(cid, pin); result := success
ELSE result := unknownCustomer
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;
result, bal RobustBalance(number, pin) =

VAR status, aid IN
bal := 0;
IF BK.fileOpen = TRUE THEN

status, aid BK.ThisAccount(number);
IF status = TRUE THEN

status BK.Authorized(aid, pin);
IF status = TRUE THEN

bal BK.Balance(aid, pin); result := success
ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;
result, name, yob RobustOwner(number) =

VAR status, aid, cid IN
yob := 0;
IF BK.fileOpen = TRUE THEN

status, aid BK.ThisAccount(number);
IF status = TRUE THEN

cid BK.AccountOwner(aid);
name, yob BK.CustomerData(cid);
result := success

ELSE
result := unknownAccount; name := EmptyStringToken; yob := 0

END
ELSE

result := dbError; name := EmptyStringToken; yob := 0
END

END;
/* Operations RobustBalance, RobustOwner, RobustDeposit, RobustWithdraw,
and RobustChangePin omitted. Check on the book’s Web page. */

status RobustOpen(customerFileName, accountFileName, stringFileName) =
IF BK.fileOpen = FALSE THEN

156 4. B Bank

status BK.Open(customerFileName, accountFileName, stringFileName)
ELSE status := FALSE
END;

status RobustClose =
IF BK.fileOpen = TRUE THEN

status BK.Close
ELSE status := FALSE
END

END

4.10 Implementation of Bank

Our next task is to refine Bank to an implementation, because we have chosen to im-
port it into RobustBank. In Sect. 4.4 we have already outlined the basic structure of
this implementation. Now we have to take a closer look at our requirements on one
hand and the available resources, that is, the B library machines and the operating
system of the target computer, on the other. This is the gap we have to bridge.

The data structures we need to implement are object classes with attributes as
well as relations. We need to be able to create new objects, read and modify their
attributes, and externalise and internalise them. All our attributes are of types NAT
and STRTOKEN. If we provide a possibility to reference string tokens with natural
numbers, strings, respectively references to string tokens can also be stored like
NATs. Functional relations (accountOwner) can also be modelled as NAT attributes
if NAT is also chosen as the identifier type for objects.

Atelier B provides a base machine BASIC ARRAY RGE for two dimensional
array. This could be used to store objects with their NAT attributes by letting the
first index select the object and the second the desired attribute or vice versa. If the
number of fields is known, we could alternatively use a number of one-dimensional
arrays which can be directly implemented in B0.

A simple machine for file access named BASIC FILE VAR, originating from
the data-base example of the B Book [2], is also provided. This machine permits
objects with attributes of identical type to be stored and retrieved from file. Using
it to externalise strings would be very cumbersome. Also, it does not provide for
persistency between program runs as the name of the file is generated at random.
Neither does it perform any error handling; file system errors cause it to abort.

We could implement Bank directly on our own base machines BasicFile and
BasicString and on BASIC ARRAY RGE. However, it seems to be wiser to intro-
duce a middle layer, which encapsulates general support for objects. This simpli-
fies the implementation of Bank and gives us a reusable subsystem. It also frees us
from hardwiring whether we want to internalise the complete database at startup or
whether we only want to keep the currently accessed object in the main memory.

We implement Bank using a machine Object providing the aforementioned sup-
port for objects and BasicString. The specification still leaves it open whether the

4.10 Implementation of Bank 157

complete database is kept in main memory or not. In the implementation we can
no longer postpone the decision. We decide to read the whole database at startup;
the other solution for a similar object-support machine is developed by Abrial in the
aforementioned data-base example. Fig. 4.12 shows the structure of the intended
development with section numbers for reference. We create a separate project for
the object support and string machines to facilitate reuse.

Notations

machine implementation library
machine

implements

imports
(renaming to X)

hand-coded C

X

Bank
(4.5)

Object_1
(4.10.5)

Basic
File.h

Bank_1
(4.10.3)

BasicFile_1

Object
(4.10.1)

BasicFile
(4.10.4)

BASIC_AR
RAY_RGE

Basic
File.c

cu
st

om
er

s_
1

ac
co

un
ts

_1

BasicString
(4.10.2)

Basic
String_1

Basic
String.h

Basic
String.c

BS

BA BI

BF

L_SETfoundCustomers_1

Fig. 4.12. Implementation of Bank

158 4. B Bank

We proceed in a top-down fashion. We first identify the required functionality
for implementing Bank, specify the necessary machines Object and BasicString,
and then implement Bank. We then repeat the same sequence of steps for Object
and BasicString.

4.10.1 Machine Object

As stated above, Object must be able to store a set of objects, each having a given
number of attributes of identical type. We need to create new objects, modify and
read their fields, search for an object by the value of one of its fields, and check
whether the database is full or not.

Object has four parameters. The first parameter maxNofObjs denotes the maxi-
mal number of objects, which the machine can store. As discussed in Sect. 4.5, such
an upper bound is needed in a safety-critical system in order to avoid overflows.
The question remains, however, how we should constrain the maximal value of ob-
jects. This value is determined by the available main memory storing the objects
and the available disk space for externalisation. This contradicts our aim to make
the specification independent of the target computer. Even if we know our target
architecture, the available memory at run time depends also upon which other pro-
cesses are running and how many instantiations of the Object machine are present.
Obviously, we cannot formally prove the instantiations to work for any value —
except for 0. Such a proof would not be within B. In practice, we have to reason
for the complete system that the chosen instantiations are permissible for the given
resources. We implement our machine so that it allocates all the required memory
at startup. Although failure during initialisation also violates the specification, it is
usually less harmful than at run time. For the second resource, the disk storage, we
take the more optimistic and less safe assumption that the disk always has at least
as much free space as we have main memory.

MACHINE
Object(maxNofObjs, nofFields, VALUE, valueElement)

CONSTRAINTS
maxNofObjs NAT1 nofFields NAT1 valueElement VALUE

DEFINITIONS
FIELD == 0 nofFields-1; OBJECT == 0 maxNofObjs-1

VARIABLES
object, objectSequence, field, foundObjects

CONCRETE VARIABLES
fileOpen

INVARIANT
object OBJECT card(object) maxNofObjs
objectSequence perm(object) field FIELD (object VALUE)
fileOpen BOOL foundObjects object

INITIALISATION

4.10 Implementation of Bank 159

object := objectSequence := field := FIELD
fileOpen := FALSE foundObjects :=

The second parameter nofFields takes the number of fields per object. It would
be desirable to use a machine parameter of set type to designate the fields rather than
the integer range 0 nofFields-1. Using such a branded type, certain errors could be
flagged by the type checker rather than resulting in unprovable obligations at a later
stage of the development. The reason why we do not use a machine parameter of set
type is that it is not possible in B to iterate over an arbitrary set in an implementation
as will be required in the implementation of Object. An iterator base machine cannot
be implemented either because of an unfortunate C encoding decision in Atelier B.

The third parameter VALUE is the domain of the fields. The fourth parameter
valueElement takes an arbitrary element of VALUE. It is required for the deter-
ministic initialisation of a concrete variable of type VALUE in the implementation
Object 1.

OPERATIONS
obj CreateObject(initValue) =

PRE
initValue VALUE card(object) maxNofObjs fileOpen = TRUE

THEN
ANY newObj, objSeq WHERE

newObj OBJECT - object objSeq perm(object newObj)
THEN

object := object newObj objectSequence := objSeq
field := ! ii.(ii FIELD field(ii) newObj initValue)
obj := newObj

END
END;

vv GetField(oo, ff) =
PRE oo NAT oo object ff FIELD fileOpen = TRUE THEN

vv := field(ff)(oo)
END;

SetField(oo, ff, vv) =
PRE

oo NAT oo object
ff FIELD vv VALUE fileOpen = TRUE

THEN
field(ff)(oo) := vv foundObjects : P (object)

END;
is Full =

PRE fileOpen = TRUE THEN
is := bool(card(object) = maxNofObjs)

END;

nof NofObjects =
PRE fileOpen = TRUE THEN

nof := card(object)
END;

160 4. B Bank

Operation GetSequenceObj permits the traversal of all objects. For this purpose
we have introduced the variable objectSequence, which is always a permutation of
the set of objects. Operation CreateObject reshuffles the sequence to allow for more
implementation freedom. Exercise 4.5 shows how this, without the provision for
deleting objects overly general specification, allows the simple addition of object
deletion.

obj GetSequenceObj(index) =
PRE

index NAT index+1 dom(objectSequence) fileOpen = TRUE
THEN obj := objectSequence(index+1)
END;

The find operations follow the same pattern as their correspondences in Bank.

InitFind(ff, vv) =
PRE ff FIELD vv VALUE fileOpen = TRUE THEN

foundObjects := field(ff) 1 [vv]
END;

found, oo FindNext =
PRE fileOpen = TRUE THEN

IF foundObjects THEN
ANY obj WHERE obj foundObjects THEN

found, oo, foundObjects := TRUE, obj, foundObjects - obj
END

ELSE found := FALSE oo : OBJECT
END

END;

Internalizing objects with references to other objects (relations), we have to
be able to verify whether the references denote valid objects. Operation InDomain
serves this purpose.

is InDomain(obj) =
PRE obj NAT fileOpen = TRUE THEN

is := bool(obj object)
END;

If the file denoted by parameter name of Open does not exist a new file is created.

status Open(fileName) =
PRE fileName STRING THEN

ANY obj, objSeq, st WHERE
obj OBJECT card(obj) maxNofObjs
objSeq perm(obj) st BOOL

THEN
object := obj objectSequence := objSeq foundObjects : P (obj)
field : FIELD (obj VALUE) status := st fileOpen := st

END
END;

4.10 Implementation of Bank 161

status Close =
PRE fileOpen = TRUE THEN
fileOpen := FALSE status : BOOL

END

END

4.10.2 Machine BasicString

As explained in Sect. 4.7.1, machine BasicString stores all strings in the system. Be-
cause of the single writer restriction, this cannot be reflected in the B specification.
The latter only represents the mapping from natural number indices to string tokens
and the registration of strings to be externalised.

Machine BasicString can store at most maxNofStrings persistent strings. Oper-
ation AddString can be specified without any precondition that enough memory is
available for a string of a certain size as the memory allocation has already taken
place upon token generation.

MACHINE
BasicString(maxNofStrings)

CONSTRAINTS
maxNofStrings NAT1

SEES
StrTokenType

VARIABLES
regStrings, bsFileOpen

INVARIANT
regStrings NAT STRTOKEN card(regStrings) maxNofStrings
bsFileOpen BOOL

INITIALISATION
regStrings := bsFileOpen := FALSE

OPERATIONS
index AddString(ss) =

PRE
ss STRTOKEN card(regStrings) maxNofStrings
bsFileOpen = TRUE

THEN
IF ss ran(regStrings) THEN index := regStrings 1 (ss)
ELSE

ANY newId WHERE newId NAT-dom(regStrings) THEN
index, regStrings := newId, regStrings (newId ss)

END
END

END;
is IsFull =

is := bool(card(regStrings)=maxNofStrings);

162 4. B Bank

bb InDomain(index) =
PRE index NAT THEN

bb := bool(index dom(regStrings))
END;

ss GetString(index) =
PRE

index NAT index dom(regStrings) bsFileOpen = TRUE
THEN

ss := regStrings(index)
END;

found, index FindString(ss) =
PRE ss STRTOKEN THEN

IF ss ran(regStrings) THEN
found, index := TRUE, regStrings 1 (ss)

ELSE
found := FALSE index : NAT

END
END;

status, nof BsOpen(fileName) =
PRE fileName STRING THEN

ANY res, regStringsInit WHERE
res BOOL regStringsInit NAT STRTOKEN
card(regStringsInit) maxNofStrings

THEN
regStrings := regStringsInit bsFileOpen := res
status := res nof := card(regStringsInit)

END
END;

status BsClose =
PRE bsFileOpen = TRUE THEN

bsFileOpen := FALSE status : BOOL
END

END

The empty implementation as well as the hand-coded C source are available
from the book’s Web page.

4.10.3 Implementation Bank 1

Using Object, BasicString, and L SET we can now implement Bank. We instantiate
the Object machine twice to implement the customer and account objects. Library
machine L SET is used for temporary storage of the not yet retrieved set of cus-
tomers from the find operations.

IMPLEMENTATION
Bank 1(maxCustomers, maxAccounts)

REFINES
Bank

4.10 Implementation of Bank 163

IMPORTS
BASIC BOOL, BASIC ARITHMETIC,
BS.BasicString(maxCustomers),
customers 1.Object(maxCustomers, 2, NAT, 0),
accounts 1.Object(maxAccounts, 4, NAT, 0),
foundCustomers 1.L SET(maxCustomers, 0 maxCustomers-1)

SEES
StrTokenType

Constant False1 is introduced for expressing variant functions in operations
ThisCustomer and InitFindCustomer.

CONCRETE CONSTANTS
False1

PROPERTIES
False1 BOOL NAT

VALUES
False1 = (TRUE 0), (FALSE 1)

During internalisation, we have to check whether all references from accounts
to customers captured by accountOwner reference existing customers and whether
all references to strings from customerName are in the domain of the internalised
strings. Hence, internalisation fails if it fails in one of the three instantiated machines
or the consistency check fails. Rather than resetting the already internalised parts
if an error is detected, the linking invariant separates two cases. If internalisation
succeeded, the state is represented by the state of the imported machines. Otherwise,
it is the initial state. Implementation Bank 1 is a data refinement of machine Bank
as specified by the linking invariant.

DEFINITIONS
customerName 1 == 0;
customerYob 1 == 1;
accountNumber 1 == 0;
accountPin 1 == 1;
accountBalance 1 == 2;
accountOwner 1 == 3

CONCRETE VARIABLES
nextAccountNumber 1

INVARIANT
nextAccountNumber 1 NAT
((fileOpen = TRUE)

customers = customers 1.object
(ll.(ll customers 1.object

customerName(ll) = BS.regStrings(customers 1.field(customerName 1)(ll))))
customers 1.field(customerName 1) customers 1.object dom(BS.regStrings)
card(BS.regStrings) card(customers)
customerYob = customers 1.field(customerYob 1)

164 4. B Bank

accounts = accounts 1.object
accountNumber = accounts 1.field(accountNumber 1)
accountPin = accounts 1.field(accountPin 1)
accountBalance = accounts 1.field(accountBalance 1)
accountOwner = accounts 1.field(accountOwner 1)
(ll.(ll accounts 1.object

accounts 1.field(accountNumber 1)(ll) nextAccountNumber 1))
nextAccountNumber 1 MAXINT - maxAccounts + card(accounts)
customers 1.fileOpen = TRUE
accounts 1.fileOpen = TRUE
BS.bsFileOpen = TRUE
foundCustomers = ran(foundCustomers 1.set vrb))

((fileOpen = FALSE)
customers = customerName = customerYob =
accounts = accountNumber =
accountPin = accountBalance =
accountOwner =
foundCustomers =)

INITIALISATION
nextAccountNumber 1 := 0; fileOpen := FALSE

OPERATIONS
NewCustomer(name, yob) =

VAR cid, ii IN
cid customers 1.CreateObject(0);
ii BS.AddString(name);
customers 1.SetField(cid, customerName 1, ii);
customers 1.SetField(cid, customerYob 1, yob)

END;

name, yob CustomerData(cid) =
VAR sn IN

sn customers 1.GetField(cid, customerName 1);
name BS.GetString(sn);
yob customers 1.GetField(cid, customerYob 1)

END;
is CustomerDBFull =

BEGIN
is customers 1.Full;
IF is=FALSE THEN

is BS.IsFull
END

END;
found, cid ThisCustomer(name, yob) =

VAR sindex, curYob IN
cid := 0; curYob := 0; found, sindex BS.FindString(name);
IF found = TRUE THEN

customers 1.InitFind(customerName 1, sindex);
found, cid customers 1.FindNext;
IF found=TRUE THEN

curYob customers 1.GetField(cid, customerYob 1)
END;

4.10 Implementation of Bank 165

WHILE (found = TRUE) (yob curYob) DO
found, cid customers 1.FindNext;
IF found = TRUE THEN

curYob customers 1.GetField(cid, customerYob 1)
END

INVARIANT
cid 0 maxCustomers-1 found BOOL
customers 1.foundObjects customerName 1 [name]
(found = FALSE yob customerYob[customerName 1 [name]])
(found = TRUE

(cid customerName 1 [name] curYob = customerYob(cid)
(yob=curYob cid=(customerName customerYob) 1 (name,yob))
(yob curYob yob customerYob[customerName 1 [name]-

customers 1.foundObjects])))
VARIANT

card(customers 1.foundObjects) + 1 - False1(found)
END

END
END;

nof InitFindCustomer(name) =
VAR found, index, sindex IN

foundCustomers 1.CLR SET;
nof := 0;
found, sindex BS.FindString(name);
IF found = TRUE THEN

customers 1.InitFind(customerName 1, sindex);
found, index customers 1.FindNext;
WHILE found = TRUE DO

foundCustomers 1.INS SET(index);
nof := nof + 1;
found, index customers 1.FindNext

INVARIANT
(found = TRUE

customerName 1 [name] = ran(foundCustomers 1.set vrb)
customers 1.foundObjects index)

(found = FALSE
customerName 1 [name] = ran(foundCustomers 1.set vrb)
customers 1.foundObjects =)

nof = card(foundCustomers 1.set vrb)
VARIANT

card(customers 1.foundObjects)+1-False1(found)
END

END
END;

found, yob FindNextCustomer =
VAR nof, cid IN

nof foundCustomers 1.CARD SET;
IF nof = 0 THEN

found := FALSE; yob := 0
ELSE

found := TRUE;
cid foundCustomers 1.VAL SET(1);

166 4. B Bank

foundCustomers 1.RMV SET(cid);
yob customers 1.GetField(cid, customerYob 1)

END
END;

We assign consecutive account numbers to newly created accounts, where next-
AccountNumber contains the next account number which is the greatest number in
the system plus one. We do, however, not blindly trust that the internalised file ad-
heres to this convention, that is, we do not simply set nextAccountNumber to number
of accounts plus one, which would lead to an undischargable proof obligation.

number NewAccount(cid, pin) =
VAR aid IN

aid accounts 1.CreateObject(0);
accounts 1.SetField(aid, accountNumber 1, nextAccountNumber 1);
accounts 1.SetField(aid, accountPin 1, pin);
accounts 1.SetField(aid, accountBalance 1, 0);
accounts 1.SetField(aid, accountOwner 1, cid);
number := nextAccountNumber 1;
nextAccountNumber 1 := nextAccountNumber 1 + 1

END;
bal Balance(aid, pin) =

bal accounts 1.GetField(aid, accountBalance 1);
is Authorized(aid, pin) =

VAR actualPin IN
actualPin accounts 1.GetField(aid, accountPin 1);
is := bool(pin = actualPin)

END;
cid AccountOwner(aid) =

cid accounts 1.GetField(aid, accountOwner 1);
status Deposit(aid, amount) =

VAR bal, xx IN
bal accounts 1.GetField(aid, accountBalance 1);
xx := MAXINT - amount;
IF bal xx THEN

accounts 1.SetField(aid, accountBalance 1, bal+amount);
status := TRUE

ELSE
status := FALSE

END
END;

Operation Deposit introduces the local variable xx only because in B0 the argu-
ments of a comparison cannot contain arithmetic expressions.

/* Operations Withdraw, ChangePin, AccountDBFull, and ThisAccount omitted. Check on
the book’s Web page. */

status Open(customerFileName, accountFileName, stringFileName) =
VAR nofAccounts, ii, jj, aid, owner, nbr, nofStrings, nofCustomers, cid, nameNr, yob,

curAid, curNbr, curCid, curNameNr, curYob, xx, yy IN

4.10 Implementation of Bank 167

fileOpen := FALSE; nextAccountNumber 1 := 0;
status customers 1.Open(customerFileName);
IF status = TRUE THEN

status accounts 1.Open(accountFileName);
IF status = TRUE THEN

nofAccounts accounts 1.NofObjects;
ii := 0;
WHILE (ii nofAccounts) (status = TRUE) DO

aid accounts 1.GetSequenceObj(ii);
owner accounts 1.GetField(aid, accountOwner 1);
status customers 1.InDomain(owner);
nbr accounts 1.GetField(aid, accountNumber 1);
IF nbr nextAccountNumber 1 THEN

xx := MAXINT - nbr;
yy := maxAccounts - nofAccounts + 2;
IF xx yy THEN

status := FALSE
ELSE nextAccountNumber 1 := nbr + 1
END

END;
jj := ii + 1;
WHILE (jj nofAccounts) (status = TRUE) DO

curAid accounts 1.GetSequenceObj(jj);
curNbr accounts 1.GetField(curAid, accountNumber 1);
IF nbr = curNbr THEN

status := FALSE
END;
jj := jj + 1

INVARIANT
jj ii+1 nofAccounts
status BOOL
(status = TRUE

(kk.(kk ii+2 jj nbr accounts 1.field
(accountNumber 1)(accounts 1.objectSequence(kk)))

owner customers 1.object
(nbr nextAccountNumber 1

MAXINT-nbr maxAccounts-nofAccounts+2)))
VARIANT

nofAccounts - jj
END;
ii := ii + 1

INVARIANT
ii 0 nofAccounts
status BOOL
nextAccountNumber 1 NAT
(status = TRUE

(kk.(kk 1 ii
accounts 1.field(accountNumber 1)(accounts 1.objectSequence(kk))

nextAccountNumber 1
accounts 1.field(accountOwner 1)(accounts 1.objectSequence(kk))

customers 1.object
ll.(ll 1 nofAccounts kk ll

accounts 1.field(accountNumber 1)(accounts 1.objectSequence(kk))

168 4. B Bank

accounts 1.field(accountNumber 1)
(accounts 1.objectSequence(ll)))))

nextAccountNumber 1 MAXINT - maxAccounts + nofAccounts)
VARIANT

nofAccounts - ii
END;
/* Consistency check of customers 1 and BS ommitted. Check on the Web. */
foundCustomers 1.CLR SET; fileOpen := status

END
END

END;
status Close =

BEGIN
status customers 1.Close;
IF status = TRUE THEN

status accounts 1.Close;
IF status = TRUE THEN status BS.BsClose END

END;
nextAccountNumber 1 := 0; fileOpen := FALSE

END
END

4.10.4 Machine BasicFile

In order to permanently store objects on disk, as required for the implementation of
Object, we need a base machine to access the file system, which we call BasicFile.
It should let us open a file in different modes, access the file, and provide operations
to delete a file and check for the existence of a file. We want to store both natural
numbers as well as elements of a given set, passed as a machine parameter. An
instance of BasicFile represents a single file.

The variables fileName and fileMode denote the name and mode of the currently
open file. The name of the file has been specified as an arbitrary string, although
certain characters might not be permitted in file names and certain names might
denote special resources.

MACHINE
BasicFile(VALUE)

SETS
FILE MODE = READ WRITE, TRUNCATE WRITE, READ, WRITE

DEFINITIONS
READ MODE == READ WRITE, READ ;
WRITE MODE == READ WRITE, TRUNCATE WRITE, WRITE

VARIABLES
fileMode, fileOpen

INVARIANT
fileMode FILE MODE

4.10 Implementation of Bank 169

fileOpen BOOL

INITIALISATION
fileMode : FILE MODE fileOpen := FALSE

OPERATIONS
status Open(fileName, mode) =

PRE fileName STRING mode FILE MODE THEN
ANY rr WHERE rr BOOL THEN
fileMode := mode fileOpen := rr status := rr

END
END;

status Close =
PRE fileOpen = TRUE THEN
fileOpen := FALSE status : BOOL

END;
status Delete(fileName) =

PRE fileName STRING THEN
status : BOOL

END;
exists FileExists(fileName) =

PRE fileName STRING THEN
exists : BOOL

END;

The read operations are specified as returning an arbitrary value, not linking
write and read at all. Such a specification would be very difficult to capture in B,
too cumbersome to apply in reasoning in clients, and impossible to satisfy in the
implementation.

status WriteNat(num) =
PRE num NAT fileOpen = TRUE fileMode WRITE MODE THEN

status : BOOL
END;

status, num ReadNat =
PRE fileOpen = TRUE fileMode READ MODE THEN

status : BOOL num : NAT
END;

status WriteVal(val) =
PRE val VALUE fileOpen = TRUE fileMode WRITE MODE THEN

status : BOOL
END;

status, val ReadVal =
PRE fileOpen = TRUE fileMode READ MODE THEN

status : BOOL val : VALUE
END

END

170 4. B Bank

The C implementation, which is based on the code skeleton generated from the
empty B implementation, consists mostly of straightforward calls of the correspond-
ing functions of stdio.h. The procedure ReadVal BasicFile also checks whether the
read value actually represents an element of the machine parameter VALUE. Unfor-
tunately, Atelier B’s C translator only passes the upper bound of the representing
integer range in the ill-named parameter size VALUE in the initialisation. This suf-
fices for enumerated sets that are represented as consecutive integer constants start-
ing from 0. However, for instantiations of VALUE with integer ranges with a lower
bound other than 0 we cannot test whether the read value is below the indicated
range. The sources of BasicFile 1.imp, BasicFile.h, and BasicFile.c can be found
online.

4.10.5 Implementation Object 1

Using the base machine BasicFile and the library machine BASIC ARRAY RGE we
can now implement Object and, herewith, finish the development.

BASIC ARRAY RGE models a two dimensional array with the total function
arr rge RANGE (INDEX VALUE), where INDEX, VALUE, and RANGE
are machine parameters. We instantiate RANGE with the set of fields and INDEX
with the object numbers. For example, arr rge(0)(7) denotes the 0th field of the 7th
object. We use the variable nofObjs 1 to denote the number of objects and link it
to object with object = 0 nofObjs 1-1. This gives us also the linking invariant for
field as ii.(ii FIELD field(ii) = 0 nofObjs 1-1 arr rge(ii)).

IMPLEMENTATION
Object 1(maxNofObjs, nofFields, VALUE, valueElement)

REFINES
Object

IMPORTS
BI.BasicFile(VALUE),
BA.BASIC ARRAY RGE(0 maxNofObjs-1, VALUE, 0 nofFields-1)

DEFINITIONS
FIELD == 0 nofFields-1; OBJECT == 0 maxNofObjs-1;
READ MODE == READ WRITE, READ ;
WRITE MODE == READ WRITE, TRUNCATE WRITE, WRITE

CONCRETE VARIABLES
nofObjs 1, findField, findValue, findMax, findNext

INVARIANT
nofObjs 1 0 maxNofObjs object = 0 nofObjs 1-1
size(objectSequence) = nofObjs 1
(ii.(ii 0 nofObjs 1-1 objectSequence(ii+1) = ii))
(ii.(ii FIELD field(ii) = 0 nofObjs 1-1 (BA.arr rge(ii))))
(fileOpen = TRUE (BI.fileOpen = TRUE BI.fileMode WRITE MODE))
findField FIELD findValue VALUE
findMax -1 nofObjs 1-1 findNext 0 nofObjs 1

4.10 Implementation of Bank 171

foundObjects = (field(findField) 1 [findValue]) findNext findMax

INITIALISATION
nofObjs 1 := 0; fileOpen := FALSE;
findField := 0; findValue := valueElement; findMax := -1; findNext := 0

OPERATIONS
obj CreateObject(initValue) =

VAR fld IN
fld := 0;
WHILE fld nofFields DO

BA.STR ARR RGE(fld, nofObjs 1, initValue);
fld := fld + 1

INVARIANT
fld 0 nofFields BA.arr rge FIELD (OBJECT VALUE)
(ii.(ii FIELD field(ii) = 0 nofObjs 1-1 (BA.arr rge(ii))))
(ii.(ii 0 fld-1 BA.arr rge(ii)(nofObjs 1) = initValue))

VARIANT
nofFields - fld

END;
obj := nofObjs 1; nofObjs 1 := nofObjs 1 + 1

END;
vv GetField(oo, ff) =

vv BA.VAL ARR RGE(ff, oo);
SetField(oo, ff, vv) =

BA.STR ARR RGE(ff, oo, vv);
is Full =

IF nofObjs 1 = maxNofObjs THEN is := TRUE
ELSE is := FALSE
END;

nof NofObjects =
nof := nofObjs 1;

obj GetSequenceObj(index) =
obj := index;

InitFind(ff, vv) =
BEGIN
findField := ff; findValue := vv; findMax := nofObjs 1-1; findNext := 0

END;
found, oo FindNext =

VAR val, maxObj, findStart IN
found := FALSE; oo := 0;
IF findNext findMax THEN

val BA.VAL ARR RGE(findField, findNext);
findStart := findNext;
WHILE (findNext findMax) (val findValue) DO
findNext := findNext + 1;
val BA.VAL ARR RGE(findField, findNext)

INVARIANT
findNext findStart findMax
(ll.(ll findStart findNext-1 BA.arr rge(findField)(ll) findValue))

172 4. B Bank

val = BA.arr rge(findField)(findNext)
VARIANT
findMax-findNext

END;
IF val = findValue THEN

found := TRUE; oo := findNext
END;
findNext := findNext + 1

END
END;

is InDomain(obj) =
is := bool(obj nofObjs 1);

status Open(fileName) =
VAR st, ii, fld, vv IN

status BI.FileExists(fileName);
IF status = TRUE THEN

status BI.Open(fileName, READ);
IF status = TRUE THEN

status, nofObjs 1 BI.ReadNat;
IF (status = TRUE) (nofObjs 1 maxNofObjs) THEN

ii := 0;
WHILE (status = TRUE) (ii nofObjs 1) DO
fld := 0;
WHILE (status = TRUE) (fld nofFields) DO

status, vv BI.ReadVal;
BA.STR ARR RGE(fld, ii, vv);
fld := fld + 1

INVARIANT
fld 0 nofFields status BOOL

VARIANT
nofFields - fld

END;
ii := ii + 1

INVARIANT
ii 0 nofObjs 1 status BOOL

VARIANT
nofObjs 1 - ii

END;
IF status = TRUE THEN

status BI.Close;
IF status = TRUE THEN

status BI.Open(fileName, TRUNCATE WRITE)
END

END
ELSE

nofObjs 1:=0;
status := FALSE

END
ELSE

nofObjs 1 := 0
END

ELSE
nofObjs 1 := 0; status BI.Open(fileName, TRUNCATE WRITE)

4.11 B-Toolkit Implementation 173

END;
findMax := -1; findNext := 0;
fileOpen := status

END;
status Close =

VAR ss, ii, fld, vv IN
ss BI.WriteNat(nofObjs 1);
IF ss = TRUE THEN

ii := 0;
WHILE (ss = TRUE) (ii nofObjs 1) DO
fld := 0;
WHILE (ss = TRUE) (fld nofFields) DO

vv BA.VAL ARR RGE(fld, ii);
ss BI.WriteVal(vv);
fld := fld + 1

INVARIANT
fld 0 nofFields

VARIANT
nofFields - fld

END;
ii := ii + 1

INVARIANT
ii 0 nofObjs 1

VARIANT
nofObjs 1 - ii

END
END;
IF ss = TRUE THEN

status BI.Close
ELSE

status := FALSE; ss BI.Close
END;
fileOpen := FALSE

END
END

At this point we can translate the complete project.

4.11 B-Toolkit Implementation

In this section we list some of the changes necessary to port the case study from
Atelier B to the B-Toolkit. The point of this section is to illustrate the large differ-
ences between the two tools —even on the language level!— which make porting
a non-trivial task. The magnitude of such a port can be compared to the translation
of an X Window program written in K&R C to ANSI C on the Apple Macintosh:
both require some little changes on the language level and the use of a different
base library. The rest of this section is mainly targeted at B-Toolkit users who are
interested in a description of the adaptations made in the B-Toolkit version of the
ATM.

174 4. B Bank

4.11.1 Differences in the Supported Language

The following ‘syntactic’ differences can be compensated for with simple rewrites:
In the B-Toolkit, machine parameters are not repeated in refinements and imple-
mentations.
In the B-Toolkit, lowercase machine parameters are implicitly constrained to be
of type SCALAR.
Ordered pairs must be written as a b rather than a b in the B-Toolkit,
whereas both notations are allowed in Atelier B.
Sets and constants are valued in the PROPERTIES clause; there is no special
values VALUES clause as in Atelier B.
The constant MAXINT, the greatest representable natural number, is not prede-
fined in the B-Toolkit.
In the B-Toolkit, the subset 0 MAXINT is denoted by SCALAR rather than NAT.
The type SCALAR is defined in machine Scalar TYPE, which must be imported
if scalars are used.
In the B-Toolkit, booleans are defined as enumerated type in the library machine
Bool TYPE, which must be imported if booleans are used.
In the B-Toolkit, strings are defined as sequences in the library String TYPE,
which must be imported if strings are used.
In the B-Toolkit, there can only be one DEFINITION clause per construct. Defi-
nitions are visible in the whole construct, not just from the syntactic introduction
point on forward as in Atelier B. Parameters of definitions are restricted to single-
letter identifiers (jokers). Definitions containing the parallel operator (‘ ’) must
be parenthesised.
In the B-Toolkit, renamed variables must be parenthesised if the inverse is taken.
In the B-Toolkit, the bool(P) operator, which converts the value of a condition to
a BOOL, is not available in implementations. An if-clause must be used instead.
The B-Toolkit C translator does not accept arithmetic expressions as actual pa-
rameters. The values of arithmetic expressions must be evaluated and stored in
local variables, which can then be passed as parameters.
The C translator does not accept read access to output parameters, even if they
have been properly initialized. Local variables, which are at the end of the op-
eration assigned to the output parameters, must be used within the operation in
place of output parameters appearing on the right hand side of assignments or in
conditions.
Whereas the Atelier B translator creates only few name clashes, which lead to
errors at link time, its correspondent in the B-Toolkit cannot even handle opera-
tions on different layers with identical names. Hence, one is forced to invent new
names and, thereby, pollute the name space.

The following differences make porting from the Atelier B to the B-Toolkit dif-
ficult:

The B-Toolkit does not support dot renaming in implementations. This means
that renamed textual copies of multiple used constructs must be made. In our

4.11 B-Toolkit Implementation 175

case, Object and all the constructs it needs would have to be textually present
with different name prefixes. This also requires identical proofs to be performed
for each copy. This restriction in the B-Toolkit is due to the fact that all constructs
are single instance only which is also exhibited by the C translator putting im-
plementation data into global variables rather than instantiation records. On the
level of base machines, which reside in the standard library, textual renaming is
performed automatically upon configuration. The team library does not provide
for renaming.
In the B-Toolkit all constants are abstract, whereas Atelier B has both concrete
and abstract constants. The B-Toolkit translator decides which constants can be
used in implementations.
Concrete variables and variables in implementations are not supported. All global
variables, such as nextAccountNumber 1, must be implemented using library ma-
chines. Sets which are both included and imported lead to name clashes. Different
renaming does not help because sets do not participate in renaming. Hence, sets
must be factored out into separate machines which are only seen in the specifi-
cation. Third-party constructs which do not respect this design pattern, such as
the library machines in B-Toolkit prior to version 4, can, therefore, not be easily
extended as extension is performed by both including and importing the same
machine.

The following differences would make porting from the B-Toolkit to Atelier B
difficult. Some of these ‘additional features’ are used in the B-Toolkit version:

Machines can contain the VAR clause. Hence, we can use it to hide the return
parameter dd from Deposit in RobustDeposit.
Machine parameters are visible in the PROPERTIES clause. Hence, we could
model the set CUSTOMER of machine Bank as an abstract set with cardinality
maxCustomers and value it to CUSTOMER = 0..maxCustomers-1 in the imple-
mentation. To rule out any circular definitions, Atelier B does not permit this in
accordance with [2, Chapter 12.1.7].
The B-Toolkit allows strings to be passed as parameters. Hence, there is no need
to introduce string tokens. Strings being sequences implies that functions such as
size are applicable. Porting a construct which makes use of this from B-Toolkit
would be difficult. In general, string support in the B-Toolkit is better. Unfortu-
nately, B-Toolkit’s C translator creates fixed length arrays for local string vari-
ables and does not perform any overflow tests.
Sets of imported or seen machines can be used in the instantiation of other ma-
chines.
Set machine parameters can be instantiated with ‘unions’ (‘ ’) of sets. This is not
described in the B Book [2]; it could be understood as type sums. Unfortunately,
on the implementation level, where sets are represented as (initial) intervals of
natural numbers, operations on such sets are based on the natural number pro-
jections only, leading, in our opinion, to ill-typed expressions and wrong results.
Thus, for sets COLORS = red, blue, green and FRUITS = apple, banana,
grape we can calculate red, blue banana, grape = blue = banana as

176 4. B Bank

both blue and banana are represented by 2. Union of sets is used extensively by
the base generator (see below).

4.11.2 Differences in the Provided Base Machines and Libraries

In the B-Toolkit, all provided library machines are base machines, whereas Atelier B
comes only with a small set of base machines and numerous extensions in the form
of normal B developments. In the B-Toolkit, base machines reside in the standard
library (SLIB).

The B specification of base machines must be given in a separate project, oth-
erwise the linker requires an implementation in B and does not use the hand-coded
C source. After successful analysis and compilation, the configured construct along
with its C implementation is copied to the SLIB, to which one needs write permis-
sion. The main differences in the C encoding are the representation of machine data
in global variables rather than in instance records and the division of header infor-
mation into the ‘.h’ and a ‘.g’ file. Note that when introducing a construct from the
SLIB, the C sources are copied. Thus, if the (implementation of the) base machine
is changed, it must be removed and reintroduced into projects using it.

Compilation and linking is under the control of the tool. Hence, external source
files such as cgic cannot simply be added manually to the Makefile as in Atelier B.
Instead, they need to be introduced as so-called lower-level SLIB constructs. Lower-
level SLIB constructs have no B specification and can only be accessed from the C
code of other SLIB constructs. Instead of a lower-level SLIB, a normal C library can
be created out of the legacy code and included manually in a normal SLIB construct.

4.11.3 Adapting the Development

The B-Toolkit implementation takes the above listed language differences into ac-
count. Additionally, supplied base machines have been used in place of the self-
developed persistent object machines. The B-Toolkit provides base machines for
objects and string objects. Library machine Bank str obj, where Bank is the re-
name prefix for the instanciation, provides for string objects, like our own base
machine BasicString. Rename ffnc obj provides for two dimensional arrays; it
replaces Object of our Atelier B development. We introduce two copies called
CUSTOMER ffnc obj and ACCOUNT ffnc obj for storing customers and accounts
respectively.

In combination with machine file dump, the multiple object machines also pro-
vide for persistency. A file is opened with file dump into which all machines can ex-
ternalise their state. Unfortunately, the code contains no error or consistency check-
ing. Atelier B’s library also contains a machine BASIC SAVE which roughly corre-
sponds to file dump; however, it does not function anymore and the corresponding
procedures have been removed from the B specification of the other library ma-
chines.

4.11 B-Toolkit Implementation 177

4.11.4 Automatic Translation of Object Models

The B-Toolkit acknowledges the fact that object models can be automatically trans-
lated to B machines. From a textual description of the object model a set of machines
and corresponding implementations is generated. The base description (Fig. 4.13)
lists global variables (customers and accounts) as well as the object classes
(CUSTOMER and ACCOUNT) with their attributes and the relations. Relations
can be expressed asymmetrically by being part of one of the participating object
classes, as done in the example, or as separate entities.

From the base construct, a list of operations on the global variables and on ob-
jects of the listed classes is generated. After optional manual filtering of the opera-
tions’ list, a set of machines and implementations is generated. The implementations
are based on constructs from the standard library described above. Based on Bank-
Foundation it would then be possible to implement Bank. Editing the generated
machines and implementations directly is not recommended because of the lack of
backward propagation to the base construct; it would result in breaking the link and
the possibility to regenerate the constructs after changing the base.

It is doubtful whether using the base generation tool would be justified in our
case. Even if certain aspects are actually formally proved and the code is automat-
ically generated, added complexity is a source for errors. Manual reuse of those
library constructs that are actually needed seems to be better suited in our case.

SYSTEM
BankFoundation

IS

GLOBAL
customers : SET(CUSTOMER)[100];
accounts : SET(ACCOUNT)[200]

END;

BASE
CUSTOMER

MANDATORY
name : STRING [256]; yob : NAT

END;

BASE
ACCOUNT

MANDATORY
number : NAT; pin : NAT;
balance : NAT; owner : CUSTOMER

END

END

Fig. 4.13. Base Construct for Automatic Generation

178 4. B Bank

The B-Toolkit comes with three small data base like examples, called PERSON1,
PERSON2, and PERSON3, which illustrate the differences between the manual
use of the standard library constructs and the application of the base generator.

4.12 Discussion

4.12.1 Related Work

The B Book [2] contains a much smaller example of a database application. The
database example as well as an ATM case study are included in the Atelier B dis-
tribution. The documentation of the ATM, which is in French only, provides an
exemplary requirement specifications, a traceability matrix, and a set of test scenar-
ios. On the other hand, it lacks a description of the construction process as well as
a detailed explanation of the produced code. The ATM relies on a Tcl/Tk graphical
interface as main program and delegates more work to unverified base machines.

A comprehensive B bibliography is maintained by the B users group on the Web
at http://estas1.inrets.fr:8001/ESTAS/BUG/WWW/BUGhome/BUGhome.html.

4.12.2 Metrics

Fig. 4.14 provides some metrics of the development. The empty implementations of
the base machines, the hand-coded C sources, and the HTML pages are not included.

4.12.3 What Have We Proved?

We would like to conclude with a few remarks on proofs. What have we actually
proved in our development? We have proved that all operations of the machines
respect their invariants and that the implementations are refinements of their spec-
ifications, provided that the B theory is correct, the tools generated all necessary
obligations, and the tools did not discharge any false obligations.

What haven’t we proved? We haven’t proved that the specification corresponds
to the informal requirements; especially, that we have captured all requirements
as invariants. Furthermore, we haven’t proved that the hand-coded base machines
actually satisfy their specifications. We are also at the mercy of the B to C translator,
the C compiler, and the used computers with their operating systems.

In conclusion, the many unprovable and unproved aspects even of a formal de-
velopment in B are a clear sign, that good engineering practices, including anima-
tion, peer code review, and testing, are also important in a ‘proved’ development.

4.13 Exercises

Exercise 4.1 (Search operations). Give the cashier the possibility to display all
customers who have their 20th birthday this year and are entitled to a present. Use
the pattern of SetFindCustomer and FindNextCustomer of machine Bank.

4.13 Exercises 179

Machines

total obvious proof proof percent
length obligations obligations auto proved

MainBank 9 lines 3 0 100
OperationsBank 49 lines 19 0 100
RobustBank 239 lines 101 10 100
Bank 288 lines 394 49 95
Object 171 lines 125 17 100
BasicFile 102 lines 26 0 100
BasicString 98 lines 41 6 100
BasicCGI 72 lines 15 0 100
StrTokenType 14 lines 1 0 100
Total 1042 lines 725 82 98

Implementations (without base machines)

total obvious proof proof percent
length obligations obligations auto proved

MainBank 1 52 lines 16 4 100
OperationsBank 1 334 lines 1028 285 99
RobustBank 1 206 lines 856 27 85
Bank 1 305 lines 526 643 71
Object 1 204 lines 291 230 70
StrTokenType 1 10 lines 3 2 100
Total 1111 lines 2720 1191 78

Fig. 4.14. Statistics of the Development

Exercise 4.2 (Online banking). Extend the bank so that customers can transfer
money from one account to another over the Internet. The customer logs in using
the account number, a password, and a one time code. The latter can for simplicity
be chosen to be the login number. After login, the customer can make any num-
ber of transfers from her accounts to any accounts. The session is terminated by an
explicit logout or after a fixed timeout. Withdrawals must now also be authorisable
using the customer’s password rather than the secret PINs of the individual accounts.
Tool generated forms, similar to the lists generated by ‘new account’, which contain
hidden information, like the ‘command’ field, can be used so that the password and
one time code must only be entered once. For the timeout, a base machine giving
the time must be added and the time when a one time code was first used must be
stored on disk between program runs.

Exercise 4.3 (Simplified specification of accounts). As noted in Sect. 4.5.3, ac-
count numbers being unique they could be used as object identifiers for accounts
in machine Bank. Remove the sets ACCOUNT and accounts, change the type of

180 4. B Bank

accountNumber to NAT and the domain of the other account attributes to account-
Number, and constrain the cardinality of accountNumber to maxAccounts. Introduce
the current specification as a refinement of the new one. Optionally, introduce the
simplified specification as refinement of the current specification to gain an equiva-
lence proof by mutual refinement.

Exercise 4.4 (Subtyping). Use subtyping modelled by subsetting to introduce two
kinds of accounts. Savings accounts which get interest and cheque accounts without
interest, but with the advantage that they allow overdrafts up to a certain limit.

Exercise 4.5 (Deleting customers and accounts). Provide for the deletion of cus-
tomers and accounts. Be careful not to allow the deletion of accounts with non zero
balance and of customers with accounts. Which invariants of the current system
depend on the fact that deletion of customers and accounts is not possible?

Exercise 4.6 (Non-deterministic choice of error codes). If several preconditions
of a transaction are not satisfied, the robust operations prescribes exactly which
result code must be returned. For example, if RobustNewAccount is called with a
non-existent customer when the account data base is full, dbFull rather than un-
knownCustomer must be reported. Respecify the robust operations so that the choice
of the reported violated condition is arbitrary, thus avoiding overspecification.

Part II

Reactive Systems

5. Parallel Programming with the B Method
Michael Butler, Marina Waldén

5.1 Introduction
In later chapters we shall use B AMN to design examples of so-called reactive sys-
tems. Reactive systems are systems that maintain an on-going interaction with their
environment. Reactive systems may also be composed of parallel interacting sub-
systems. Examples of such systems include plant controllers and electronic mail
services. The action system formalism, introduced by Back and Kurki-Suonio [5],
provides a framework for designing reactive systems by providing ways of mod-
elling on-going interaction, techniques for parallel decomposition of systems and,
of course, techniques for refining systems.

As we have already seen, a system is specified in B AMN as an abstract ma-
chine consisting of a state and some operations acting on that state. This is essen-
tially the same structure as an action system, which describes the behaviour of a
parallel reactive system in terms of some state variables and the atomic actions (i.e.,
operations) that can make changes to the state. The operations of both B machines
and action systems are described using notations based on Dijkstra’s guarded com-
mand language [22]. Action systems are used to construct parallel and distributed
systems in a stepwise manner as described by Back and Sere [7]. Stepwise refine-
ment of action systems is formalised within the refinement calculus [7] based on
the weakest-precondition calculus of Dijkstra. As B machines are also refined in a
stepwise manner relying on this calculus, we can refine action systems within the
B-Method. Thus action systems and B AMN are quite similar and, as we shall see
in this and subsequent chapters, applying the action system notions of parallelism
within B AMN is straightforward and it allows us to design parallel reactive systems
using B AMN.

Different views as to what constitutes the observable behaviour of an action sys-
tem may be taken. In this chapter, we consider a state-based view of action systems.
In the state-based view, action systems have a local and a global state. An action
system interacts with the environment, i.e., other action systems, via its global state.
It is, thus, only the global state that is visible to and accessible to the environment. In
the event-based view, action systems only have internal state and they interact with
the environment via shared actions. A state-based view is also taken in Chapters 6
and 7, while an event-based view is studied in Chapter 8.

In this chapter we give a brief introduction to action systems and describe how
they can be embedded in the B-Method. We also study action systems extended with

184 5. Parallel Programming with the B Method

procedures. We show how action systems can be composed into parallel systems. Fi-
nally, we compare the proof obligations of action system refinement and refinement
within the B-Method.

5.2 Actions and Action Systems

We consider the action system framework and its embedding in the B-Method giving
a brief introduction to action systems.

5.2.1 Action Systems in B AMN

We write the general form of an action system A as an Abstract Machine Specifica-
tion:

MACHINE A
INCLUDES

GlobalVar z
VARIABLES

x
INVARIANT

I x z
INITIALISATION

Init x
OPERATIONS

a1 A1 ;
am Am

END

Here the variables z are the global variables and x are the local variables. Each
variable is associated with some domain of values. The set of possible assignments
of values to the state variables constitutes the state space. The data invariant of A is
given as I x z . The initialisation statement Init x assigns initial values to the local
variables x. The global variables z are used for interaction with the environment,
i.e., other action systems. Each action Ai is a statement on the state variables and is
named ai.

Since the global variables should be available to more than one action system,
we need to treat them differently from the local variables. The global variable z of
the action system A is included as a machine, GlobalVar z, in the abstract machine
specification A. A separate machine should exist for each global variable. An action
system can then include exactly those global variables it refers to. In the machine
GlobalVar z we declare the global variable z and give its properties in the invariant
clause:

5.2 Actions and Action Systems 185

MACHINE GlobalVar z
VARIABLES

z
INVARIANT

T z
INITIALISATION

Init z
OPERATIONS

assign z y PRE T y THEN z : y END
END

The variable z is assigned via an operation assign z(y), where the value y to be
assigned to z is given as the parameter. All assignments to z in an action Ai in the
action system A are replaced by calls to assign z in the corresponding operations in
the machine specification A.

If a global variable z is a read-only variable in the action system A and is of type
natural number or set, it can alternatively be given as parameters in the machine A,
A(z), with their properties in the constraints-clause.

The behaviour of an action system is that of Dijkstra’s guarded iteration state-
ment [22] on the state variables: the initialisation statement is executed first; there-
after, as long as there are enabled actions, one action at a time is non-deterministically
chosen and executed. When none of the actions are enabled, the action system ter-
minates.

If two actions are independent, i.e., they do not have any variables in common,
they can be executed in parallel. Their parallel execution is then equivalent to ex-
ecuting the actions one after the other, in either order. More on these topics and
further references can be found elsewhere [5, 7, 8].

5.2.2 Actions in B AMN

Actions will be specified as statements in the generalised substitution notation
of B AMN. The semantics of generalised substitutions is defined using weakest-
precondition formulae: for statement S and postcondition P, the formula S P char-
acterises those initial states from which S is guaranteed to terminate in a state sat-
isfying P. The formula S f alse represents those initial states from which S is guar-
anteed to establish any postcondition; to see this, we have that for any P,

f alse P

Now, since S is monotonic, we have

S f alse S P

We say that S behaves miraculously in an initial state satisfying S f alse, since it
can establish any postcondition. For example, the statement

186 5. Parallel Programming with the B Method

SELECT f alse THEN T END

is miraculous in any initial state since

SELECT f alse THEN T END f alse true

We take the view that a statement is “enabled” only in those initial states in which
it behaves non-miraculously. The condition under which a statement S is enabled is
called its guard, written gd S , where

gd S S f alse

From this we get the following rules for calculating the guards of guarded state-
ments, unbounded and bounded choice statements, as well as assignment statements:

gd SELECT G THEN S END G gd S
gd ANY x WHERE P THEN S END x P gd S

gd CHOICE S OR T END gd S gd T
gd x : E true

For example, we get

gd ANY x WHERE x a THEN a : a x END
x x a true

a

which means that this unbounded choice statement is enabled only when a .

A common form of an action is SELECT G THEN S END, where the guard
G is a boolean expression on some state variables and the body S is a statement
on these variables. We say that this action is enabled in a state when its guard G
evaluates to true and S is enabled. The action is a guarded statement which has the
weakest precondition,

SELECT G THEN S END P G S P

The syntax of an action interpreted as an operation in the B-Method is:

Operation name PRE P THEN SELECT G THEN S END END

where the precondition P mostly has the value true and can then be left out.
Fig. 5.1 decribes a simple action system that sorts five natural number variables.

Each action swaps adjacent pairs of variables if the value of the lower one is greater
than the value of the higher one. Eventually the variables will end up sorted in
ascending order and all the actions will be disabled.

5.3 Procedures Within Action Systems 187

MACHINE Sort
VARIABLES

x1 x2 x3 x4 x5
INVARIANT

x1 NAT x2 NAT x3 NAT x4 NAT x5 NAT
OPERATIONS

Swap1 SELECT x1 x2 THEN x1 x2 : x2 x1 END ;
Swap2 SELECT x2 x3 THEN x2 x3 : x3 x2 END ;
Swap3 SELECT x3 x4 THEN x3 x4 : x4 x3 END ;
Swap4 SELECT x4 x5 THEN x4 x5 : x5 x4 END

END

Fig. 5.1. An Action System that Sorts Five Variables

5.3 Procedures Within Action Systems

In order to express communication and synchronisation within action systems com-
posed in parallel, as described in Sect. 5.4, we use action systems extended with
procedures [6, 7].

5.3.1 Procedures

Let us first study the procedures in the action systems. A procedure is declared by
giving a procedure header, p, as well as a procedure body, P. The call on a param-
eterless procedure p P within the statement S is determined by the substitution:

S S P p

Thus, the body P of the procedure p is substituted for each call on the procedure in
the statement S, i.e. the statement is expanded.

The procedures can also pass parameters. There are three different mechanisms
of parameter passing for procedures: call-by-value, call-by-result and call-by-value-
result. Call-by-value is denoted as p f , call-by-result as f p and call-by-value-
result as f p f , where f is a parameter. This is actually the B mechanism.
We note that the value-result parameter f is renamed to f on the lefthand side in
the declaration. Procedures with parameters can be expanded in the same way as
procedures without parameters. Let y z p x y P be a procedure declaration,
where x y and z are formal parameters. A call on p with the actual parameters a b
and c can then be expanded in the following way

S S P b c p a b

where P is the statement

VAR x y y z IN x : a ; y : b ; P ; b : y ; c : z END

188 5. Parallel Programming with the B Method

Furthermore, we permit the procedure bodies to have guards that are not equiv-
alent to true. If an action calls a procedure that is not enabled, the system acts as if
the calling action never was enabled. Thus, the enabledness of the whole statement
is determined by the enabledness of the procedure. The calling action and the proce-
dure are executed as a single atomic entity. This can easily be seen by an example.
Let us consider the action

A SELECT a THEN S1 ; P ; S2 END

and the procedure declaration

P SELECT b THEN T END.

Expanding the action A then gives the following action:

SELECT a S1 b THEN S1 ; T ; S2 END

when S1, T and S2 are considered to be always enabled. The guard of the action A
is, thus, gd A a S1 b .

In an action system a global procedure declaration can model the receiving of a
message, while a procedure call on an imported procedure can be seen as sending a
message. Since the calling action and the procedure are executed as a single atomic
entity, they are synchronised. Thus, by using this extended action system framework
we can also model synchronisation and communication via procedures.

5.3.2 Procedures within Abstract Machines

An action system A with procedures is of the form

MACHINE A
INCLUDES

GlobalVar z,
GlobalProcE r,
LocalProcA q

VARIABLES
x

INVARIANT
I x z

INITIALISATION
Init x

OPERATIONS
p1 P1 ;
pk Pk ;
a1 A1 ;
am Am

END

5.3 Procedures Within Action Systems 189

on the state variables x and z, where the variables x and z are the local and the global
variables, respectively, as before. The data invariant is given as I x z . The proce-
dures r are the imported procedures of A. They are declared in another action system
and called from within A. Together with the exported procedures p, which are de-
clared in A, but called from other action systems, they form the global procedures.
The local procedures q are both declared and called within A. The local procedures
are assumed to be distinct from the global ones.

A procedure without parameters is interpreted as a statement in B AMN in the
same way as an action with the precondition true. Procedures with input parameters
have a non-trivial precondition. For example, the procedure y z p x y P of
an action system is in B AMN given as:

y z p x y PRE T x y THEN P END

where T x y gives the types of the input parameters x and y. Again the parameter
on the lefthand side is renamed.

The global procedures p are given in the same abstract machine as the actions.
The local procedures q, on the other hand, are introduced in a separate machine:

MACHINE LocalProc q
OPERATIONS

q1 Q1 ;
ql Ql

END

This is due to the fact that if an operation A calls an operation B, then A and B cannot
be operations of the same machine due to restrictions in the B-Method. Since the
local procedures are called from actions in A, they cannot themselves be located in
A. The exported global procedures p, on the other hand, are assumed to be called
from another machine. The global procedures r that are called in the actions of A,
but not declared in A, are introduced by including the machine GlobalProcE r:

MACHINE GlobalProcE r
OPERATIONS

r skip
END

where their headers are given. Since the bodies of these procedures are not of interest
to us, they can be given as skip or remain undefined. These procedures are declared
in some other system E composed in parallel with A in the manner described in the
next section.

190 5. Parallel Programming with the B Method

MACHINE A
INCLUDES

GlobalVar u, GlobalVar z,
LocalProcA, GlobalProcA

VARIABLES
x

INVARIANT
R x u z

INITIALISATION
Init x

OPERATIONS
a1 A1 ;
...

am Am

END

MACHINE B
INCLUDES

GlobalVar v, GlobalVar z,
LocalProcB, GlobalProcB,
GlobalProcA

VARIABLES
y

INVARIANT
S y v z

INITIALISATION
Init y

OPERATIONS
b1 B1 ;
...

bn Bn

END

Fig. 5.2. The Action Systems A and B in B AMN

5.4 Parallel Composition

Action systems can be composed to form parallel systems [7]. The parallel compo-
sition of the action systems A and B is written A B. This composition is formed by
merging the variables and actions of the subsystems A and B. The local state vari-
ables of the subsystems have to be distinct. This can, however, easily be achieved
by renaming before forming the composition.

Let us now consider the action systems A and B given in B AMN in Fig. 5.2,
where the variable lists x and y contain no common variables. The global variables
and the procedures are defined as previously. The parallel composition A B of A
and B is then defined as the abstract machine AB in Fig. 5.3. The common global
variable z of A and B will also be a global variable of the parallel composition A B.
Similarily the global procedures of A declared in GlobalProcA are considered as
global procedures of A B, even if they are exported procedures of A and imported
procedures of B. For the rest the variables, the invariant and the initialisation, as well
as the operations in A and B are simply merged to form A B.

The invariant of A B is the conjunction of the invariants of the subsystems A
and B. This imposes, however, an extra requirement on the operations of the sub-
systems. The operations Ai should preserve the invariant S, while the operations B j
should preserve invariant R. This is mainly a restriction on the assignments to the
common global variables z in the operations Ai and B j. These proof obligations are
an extension of the normal proof obligations prescribed by the B-Method. In the
B-Method, a machine cannot be included in several different machines simultane-
ously. Since machines A and B of Fig. 5.3 share GlobalVar z and GlobalProcA,

5.4 Parallel Composition 191

MACHINE AB
INCLUDES

GlobalVar u, GlobalVar v, GlobalVar z,
LocalProcA, GlobalProcA,
LocalProcB, GlobalProcB

VARIABLES
x y

INVARIANT
R x u z S y v z

INITIALISATION
Init x Init y

OPERATIONS
a1 A1 ;
...
am Am ;
b1 B1 ;
...
bn Bn

END

Fig. 5.3. The Parallel Composition of Action Systems A and B

they cannot be part of the same development in the B-Method and proof obligations
requiring that they preserve each other’s invariants would not be necessary. How-
ever, we wish them to be part of the same development and hence need to check that
they do preserve each other’s invariants.

The global variables are here included as separate machines. In cases where they
are read-only, they could also be declared as parameters of the machines. Consider
the machines A and B with their global variables u z and v z in Fig. 5.2. Let us first
assume z to be a read-only variable in A, but not in B. The parallel composition of
A(z) and B then gives the same result AB as in Fig. 5.3. In cases where z is read-only
in both components, i.e., we would have A(z) and B(z), their parallel composition
would be the machine AB(z). As the final case we consider the global variable u of
A to be read-only. We then have that the parallel composition of A u and B yields
the machine AB(u).

We can note that the global procedures of A in Fig. 5.2 are given in a sepa-
rate machine GlobalProcA instead of in the operations-clause. A similar approach
is taken in B. Additionally we assume that B calls the global procedures of A in-
cluding these procedures in B. The global procedures are, here, given in separate
machines, since some of them will be called locally in the composed machine AB.
This approach is necessary in the B-Method whenever we consider more than one
action system at a time and these action systems call the global procedures of each
other.

192 5. Parallel Programming with the B Method

MACHINE SortA
INCLUDES GlobalVar x3
VARIABLES

x1 x2
INVARIANT

x1 NAT x2 NAT
OPERATIONS

Swap1 SELECT x1 x2 THEN x1 x2 : x2 x1 END ;
Swap2 SELECT x2 x3 THEN x2 x3 : x3 x2 END

END

MACHINE SortB
INCLUDES GlobalVar x3
VARIABLES

x4 x5
INVARIANT

x4 NAT x5 NAT
OPERATIONS

Swap3 SELECT x3 x4 THEN x3 x4 : x4 x3 END ;
Swap4 SELECT x4 x5 THEN x4 x5 : x5 x4 END

END

Fig. 5.4. Parallel Sort

As an example of parallel composition, consider the two action systems Sort1
and Sort2 of Fig. 5.4. The parallel composition of these is similar to the single
system Sort of Fig. 5.1 except that x3 is global in Sort1 Sort2.

5.5 Refining Action Systems

Specification machines usually contain abstract data structures that are not directly
implementable in a programming language. Data refinement is used in order to bring
abstract specifications towards implementations by replacing the local variables of
the abstract machine with concrete variables that are more easily implemented. A
general discussion on data refinement is given in Chapter 1.

5.5.1 Data Refinement of Actions

An abstraction invariant R x x z relating the abstract variables x and the concrete
variables x , as well as the global variables z, is used to replace abstract statements

5.5 Refining Action Systems 193

with concrete statements. If S is a statement on the variables x z, S is a statement
on the variables x z, and R x x z is the abstraction invariant, then we write

S R S

for “S is data-refined by S under abstraction invariant R”.

5.5.2 Refinement of Action Systems

We may refine an action system A with an action system A , where A and A have
corresponding actions and global state, but possibly different local variables. Let
the abstract action system A have the variables x and z, and the refined action sys-
tem A have the variables x and z. The variables x are the abstract local variables
that are data refined into the concrete local variables x . They are invisible to the
environment. The global variables z, on the other hand, form the interface to the
environment and are left unchanged.

In Fig. 5.5 the abstract action system A and its refinement A are shown as ab-
stract machines with the refinement relation R x x z . The machines for the global
variables and the local procedures are as before. In the refinement machine A the lo-
cal procedures q are refined. We have also renamed the global variable z to z due to
restrictions in the B-Method and include the modified machine GlobalVar z . How-
ever, in the invariant clause we state that the global variables z and z really are the
same, z z . For ease of reference, we let R x x z z denote the whole abstraction
invariant R x x z z z .

Let us now study the refinement rule:

Definition 5.1. For the abstract action system A and the concrete action system A
in Fig. 5.5, A is refined by A with abstraction invariant R x x z z , denoted A

R A , provided each of the conditions below hold.

1. Init x R Init x
2. Pi R Pi , for i 1 k
3. Ai R Ai, for i 1 m
4. R gd Pi gd Pi , for i 1 k.
5. R gd Ai gd Ai , for i 1 m.

Conditions 1, 2 and 3 ensure that the initialisation and each operation, i.e., each
global procedure and action, of A is a refinement of its counterpart in A, and are
referred to as data-refinement conditions. These are precisely the conditions that
define refinement of machines in B AMN [2]. Conditions 4 and 5 ensure that a
global procedure or an action in A is only enabled, if the corresponding global
procedure or action in A is enabled, and are referred to as progress conditions. In
order to be able to prove these two conditions within the B-Method extra operations
need to be introduced into the machines of the action systems. This is discussed later
in Chapter 7. The refinement of the local procedures q is proved via Conditions 3
and 5 for the actions by expanding the procedure calls in the actions as explained in
Sect. 5.3.1.

194 5. Parallel Programming with the B Method

MACHINE A

INCLUDES
GlobalVar z,
LocalProc q

VARIABLES
x

INVARIANT
I x z

INITIALISATION
Init x

OPERATIONS
p1 P1 ;
...
pk Pk ;
a1 A1 ;
...

am Am

END

REFINEMENT A
REFINES

A
INCLUDES

GlobalVar z
LocalProc q

VARIABLES
x

INVARIANT
R x x z z z

INITIALISATION
Init x

OPERATIONS
p1 P1 ;
...
pk Pk ;
a1 A1 ;
...

am Am

END

Fig. 5.5. An Abstract Action System A and its Refinement A in B AMN

Intuitively, A R A means that any observable behaviour of A is also an ob-
servable behaviour of A. Back and von Wright have investigated this notion more
formally in [9]. There, the observable behaviour of an action system is modelled
as a set of state-traces, where a state-trace is a finite or infinite sequence of states
representing a possible evolution of the state of a system. Action system A is re-
fined by A when the state-traces of A are a subset of the state-traces of A. Back and
von Wright show that the refinement rule of Definition 5.1 is sound in this model,
since the rule implies state-trace refinement. This state-trace approach is similar to
the approach of Abadi and Lamport [1] to modelling reactive systems.

5.5.3 Refinement and Parallel Composition

The conditions in Definition 5.1 are sufficient to guarantee correct data refinement
between action systems that are executed in isolation. The action system A might,
however, occur in parallel composition with another action system B. If action sys-
tem A is refined by A , A R A , for some abstract relation R, then A B is refined by
A B under the same relation R. The context B has then to be taken into account in
the refinement rule. We have that A B R A B, if the following holds for every
action B in B:

R B true B R

5.6 Discussion 195

Thus, the context B should not interfere with the action system A and it should
preserve the abstract relation R.

5.6 Discussion

In this chapter we gave a brief introduction to action systems and described how they
can be embedded in the B-Method. The structure of an action system corresponds
closely to the structure of a B machine. We saw that the action system notions of
shared global variables and shared global procedures can be modelled within the B
framework. The only extension we needed was the extra proof obligation on parallel
systems requiring that they preserve each other’s invariants.

Some examples of parallel composition and refinement will be given in later
chapters.

196 5. Parallel Programming with the B Method

6. Production Cell
Emil Sekerinski 1

6.1 Introduction

This chapter is about specifying and implementing a control program for a produc-
tion cell using action systems in AMN. The production cell consists of five ma-
chines: two conveyor belts, an elevating and rotating table, a two-arm robot, and
a press. The machines are equipped with a total of 18 sensors for determining the
positions of the machines and for sensing the transported plates and a total of eight
actuators for setting the motors.

The production cell is a typical example of a discrete control system. In reality,
all machines evolve continuously. However, at certain points the change of their
state is notified to the control program, which may react to this change. Hence,
the evolution of the system can be sufficiently represented as a sequence of steps.
This means that discrete control systems can be modelled with (discrete) action
systems. This chapter presents a general approach to developing control programs
for discrete systems in AMN, and illustrates this with the complete development of
a control program for a production cell.

6.1.1 Specifying Control Systems with Action Systems

When concerned with the correctness of the control program, or controller for short,
we note that it cannot be judged on its own but rather depends on the expected be-
haviour of the controlled plant as well. Hence, for formally verifying the correctness
of a controller, the behaviour of the plant, here in the form of the five production cell
machines, has to be specified as well.

For discrete control systems, the plant can be modelled as an action system with
only actions, which become enabled as the system evolves, and the controller as an
action system with only procedures, which are called by the plant. The controller
procedures are understood as “interrupt procedures” which are called upon certain
sensor changes. The controller reads the sensors and sets the actuators. In turn, the
plant reads the actuators and sets the sensors (see Fig. 6.1). In this model, different
components of the plant may evolve concurrently, but the controller has no concur-
rent activity in parallel to the plant: the controller only reacts “instantaneously” to
events from the plant. This can be justified as the controller procedures are rather

1 Work done at Åbo Akademi, Finland.

198 6. Production Cell

simple and can be executed sufficiently fast compared to the evolution of the plant
such that their execution time is negligible. This is an assumption for modelling con-
trol systems which can often, although not always, be made. If it does not hold, the
model of the controller has to include execution times, which is beyond the scope
of this chapter (this is studied, for example, in [29]).

Sensors
Plant

Actions
Plant

Actions
Actuators

State
Controller

Controller

State
Controller

Plant

Fig. 6.1. Model of a Discrete Control System

6.1.2 Structure of the Development

The approach taken here is to start with a model of the whole production cell sys-
tem as an action system in AMN. This model describes the behaviour of the whole
system, i.e. the mechanical plant and the controller. Next, plant and controller are
separated in a refinement step, in the sense that their parallel composition refines the
initial specification. The plant specification describes the assumptions about the be-
haviour of the plant; it is not further refined. It can be used for checking whether the
actual plant does indeed satisfy these assumptions. Finally, in a second refinement
step, the controller is implemented.

The controller is developed by first viewing each machine as a system in iso-
lation and modelling each machine as an action system in AMN (Sec. 6.3). Next,
the controllers of all machine are derived by separating controller and plant in a
refinement step (Sec. 6.4). Then, the specification of the whole production cell is
constructed using the specifications of the individual machines (Sec. 6.5). Finally,
the controller of the whole system is derived (Sec. 6.6), reusing the previously de-
rived controllers of the machines. In this way, the specifications and controllers of
the machines become reusable for other plants.

This chapter gives an example of an action system in AMN with a compara-
tively large number of actions, but with simple bodies involving only simple data
structures. The whole variety of structuring facilities of AMN are used. No loop in-
troduction or other more complicated algorithmic refinement steps are needed. The
whole development, including the proofs, is carried out with Atelier B.

The generated code for the controller can be connected to a graphical simulation
of the production cell. For this, some additional code is needed for reading sensor
values and writing actuator settings. This code, as well as the graphical simulation,
can be obtained from the book’s World Wide Web page.

For an understanding of the approach, this chapter can be read selectively by
focusing on specific machines. Most of the issues of developing a control program

6.2 The Production Cell 199

for a single machine can be studied with the feed belt. A simple interaction between
two machines is that of the feed belt and the table. The robot is an example of a
machine with a structured state space and involved internal safety requirements as
well as an involved interaction with other machines. Finally, the deposit belt is an
example of a machine where the state cannot be fully observed but which still can
be treated with the same technique.

6.2 The Production Cell

The production cell consists of five interacting machines, a conveyor belt (the feed
belt), an elevating and rotating table, a robot with two orthogonal arms, a press, and
another conveyor belt (the deposit belt), arranged as in Fig. 6.2.

deposit belt

robot
press

arm 2

arm 1

table
feed belt Fig. 6.2. Top View of the

Production Cell

The task of the production cell is to press metal plates which arrive on the feed
belt and to place them on the deposit belt. The following actions happen in sequence
while a metal plate traverses through the cell:

The feed belt conveys the plate onto the table.
The table elevates and rotates the plate to a position where the first robot arm can
grip the plate.
The first robot arm grips the plate, the robot rotates counterclockwise and feeds
the press.
The press forges the plate and opens again.
The robot, after rotating clockwise, unloads the press with its second arm.
The robot turns counterclockwise and releases the metal plate over the deposit
belt.
The deposit belt conveys the plate to its end.

All machines act in parallel thus allowing several plates to be processed concur-
rently. The robot is equipped with two arms in order to maximise throughput of the
production cell: the robot is supposed to fetch a plate from the table while another

200 6. Production Cell

plate is still being pressed such that the press can be quickly unloaded and loaded
again. The control program has to ensure that

the metal plates are processed properly, i.e. all metal plates are transported prop-
erly and pressed exactly once and
safety requirements of the machines are guaranteed, i.e. the machines do not move
beyond end positions and do not collide.

We give a description of the “logical” properties of the machines, leaving out
details such as their geometry and speed, as well as the interface to the sensors and
actuators.

Fig. 6.3. The Feed Belt

The Feed Belt. The feed belt transports plates placed on its left end to its right end
and then to the table (see Fig. 6.3). A photo-electric cell goes “on” when a plate
arrives at the right end and goes “off” when it leaves the belt (and thus has moved
onto the table). The motor for the belt may be switched on and off: it has to be on
while waiting for a new plate and has to be switched off when a plate is at the end
of the belt but cannot be delivered onto the table.

Fig. 6.4. The Table

The Table. The table lifts a single plate to the height of the robot and rotates the
plate clockwise such that it is orthogonal to the first robot arm. (The latter is needed
because the robot arms have no rotating grippers.)

6.2 The Production Cell 201

The table (see Fig. 6.4) has two reversing electric motors, one for elevating and
one for rotating. Mechanical sensors indicate whether the table is at its left, right,
upper, and lower end position, respectively. The table must not move beyond its end
position. We assume that initially the table is in its lower left position.

Fig. 6.5. The Robot

The Robot. The robot has two orthogonal arms on a rotating base (see Fig. 6.5).
Both robot arms may extend and retract by reversing electric motors. Both arms
have three sensor positions, an inner, middle, and outer position, respectively. These
arm positions are reported by mechanical sensors.

position 2 position 3position 1

Fig. 6.6. The Three Robot Positions, with Both Arms of the Robot Retracted

The base has a reversing motor for rotation. The three relevant positions of the
base are indicated by a mechanical sensor for each position (see Fig. 6.6).

1. In position 1, arm 1 has to extend to middle position for fetching a metal plate
from the table.

202 6. Production Cell

2. In position 2, arm 2 has to extend to its outer position for picking a metal plate
from the press.

3. In position 3, arm 1 has to extend to its outer position for loading the press and
the arm 2 has to extend to its middle position for placing a metal plate on the
deposit belt.

While rotating the robot, both arms have to be retracted to their inner position.
Neither the robot base nor the robot arms must move beyond their respective end
positions.

Electromagnetic grippers at the end of each arm can hold a metal plate as long as
they are switched on. We assume that initially the robot base is at position 3, arm 1
is at its inner position and arm 2 is at its middle position, and both grippers are off.

Fig. 6.7. The Press

The Press. The press has a platform on which the metal plates are placed by the
robot (see Fig. 6.7). It closes by moving its platform up and opens by moving the
platform down by a reversing motor. Due to the different heights of the robot arms,
different positions have to be taken for loading and unloading the press: it is un-
loaded by robot arm 2 in lower end position and loaded by robot arm 1 in middle
position. Three mechanical sensors indicating the lower, middle and upper position,
respectively.

Since the press platform and the robot arms may collide, the following safety
requirements have to be guaranteed. Firstly, when the robot is in position 3, robot
arm 1 may extend only if the platform is in loading (middle) position. Secondly,
when the robot is in position 2, robot arm 2 may extend only if the platform is in
unloading (lower) position. The platform may move only after the respective robot
arm has retracted to its inner position again. Of course, the platform must not move
beyond its upper and lower end position. We assume that initially the press is at its
lower position and is empty.
The Deposit Belt. The deposit belt transports plates placed by the robot on its right
end to its left end. A photo-electric cell goes “on” when a plate arrives at the left

6.3 Specification of the Machines 203

end and goes “off” when it has been removed (by a person or some other machine).
The motor for the belt may be switched on and off: it has to be off while waiting
for a new plate to be placed by the robot or while a plate is at its end. It has to be
switched on when a plate is placed on it and no other plate is at the belt’s end. A
new plate may only be placed on the belt if there is no other plate on the belt or one
plate is at the end of the belt; in both cases the belt motor must be off.

Fig. 6.8. The Deposit Belt

6.3 Specification of the Machines

For a modular specification of the production cell, first the behaviour of each ma-
chine is specified separately as an AMN machine. The following principles are ap-
plied:

All possible machine states are identified and are represented by variables of ap-
propriate types.
Each relevant sensor change is mapped to one action.
Possibly additional actions for the interaction of the machine with its environment
are introduced.
Safety requirements of the machines are expressed in the respective invariants.

A schema of the machine specification is given in Fig. 6.9. We interpret these
machine specifications as action systems where all operations are actions. When
a parameterised action is selected, the parameters will have some arbitrary value
which is determined by the machine’s environment. Alternatively, non-determinism
of the environment can be modelled by a non-deterministic choice within the action.
If the machines are viewed in isolation, these two mechanisms are equivalent. How-
ever, these actions are later composed to larger actions where this non-determinism
is reduced. This composition can be more conveniently expressed when the non-
determinism is controlled by parameters.

When looking at machine specifications in isolation, the names of the actions
are irrelevant. However, later for the production cell specification, the actions will
be referred to by their names for composing larger actions.

204 6. Production Cell

MACHINE Machine
VARIABLES

machine state
INVARIANT

variable types
safety requirements

INITIALISATION
machine state initialisation

OPERATIONS
Action (parameters)

SELECT guard THEN
machine state change

END ;
. . .

END
Fig. 6.9. Schema for Machine Specifications

At this stage, only the safety requirements concerning the individual production
cell machines can be expressed. Safety requirements concerning the interaction of
the machines are expressed when constructing the specification of the whole pro-
duction cell.

6.3.1 The Feed Belt

For an abstract model of the feed belt, we identify the following states:

Running The belt is running with no part at the sensor.
Stopped The belt is stopped with a part at the sensor.
Delivering The belt is running but with a part at the sensor.

The type of the feed belt state is defined in a separate AMN machine:

MACHINE FeedBeltTypes
SETS

FEEDBELT Running , Stopped , Delivering
END

The belt is initialised to state Running. From Running it may go to state De-
livering or first to Stopped and then to Delivering. From state Delivering, the belt
goes to state Running again. The transitions between the states are caused by actions
EndReached and PartLeft, which correspond to sensor changes, and by the action
ContinueDelivery, which represents an interaction with the environment:

6.3 Specification of the Machines 205

MACHINE FeedBelt
SEES FeedBeltTypes
VARIABLES

belt
INVARIANT

belt FEEDBELT
INITIALISATION

belt : Running
OPERATIONS

EndReached A part reaches the end of the belt; for this, the belt must have been running.
The parameter halt indicates whether the belt has to be stopped or can be kept running.

EndReached (halt)
PRE halt BOOL THEN

SELECT belt Running halt TRUE THEN
belt : Stopped

WHEN belt Running halt FALSE THEN
belt : Delivering

END
END ;

ContinueDelivery The environment is ready to accept the part at the end of the belt.

ContinueDelivery
SELECT belt Stopped THEN belt : Delivering END ;

PartLeft The part on the belt has left the belt; for this, the belt must have been delivering.

PartLeft
SELECT belt Delivering THEN belt : Running END

END

6.3.2 The Table

For an abstract model of the table, we represent its elevating state and its rotating
state. Concerning the elevating state, the table is in exactly one of the following
states:

AtUpper , AtLower The table is at its upper or lower sensor position, respectively.
MovingUp , MovingDown The table is moving upwards or downwards, respec-

tively.

Concerning the rotating state, the table is in exactly one of the following states:

206 6. Production Cell

AtLeft , AtRight The table is at its left (counterclockwise) or right (clockwise) sen-
sor position, respectively.

RotatingRight , RotatingLeft The table is rotating to the right (clockwise) or to the
left (counterclockwise) sensor position, respectively.

The type of the elevating and rotating state of the table is defined in a separate
AMN machine:

MACHINE TableTypes
SETS

ELEV AtUpper , MovingUp , AtLower , MovingDown ;
ROT AtLeft , RotatingRight , AtRight , RotatingLeft

END

We assume that the table is initially in state AtLower and AtLeft. From there, it
goes to state MovingUp and RotatingRight simultaneously, and from there to state
AtUpper and AtRight in either order. From there, the table goes to state MovingDown
and RotatingRight simultaneously, and from these back again to AtLower and AtLeft
in either order.

The actions PartPlaced and PartTaken represent interactions with the environ-
ment, the actions UpReached, DownReached, RightReached, and LeftReached cor-
respond to sensor changes.

MACHINE Table
SEES TableTypes
VARIABLES

elev , rot
INVARIANT

elev ELEV rot ROT
INITIALISATION

elev : AtLower rot : AtLeft
OPERATIONS

PartPlaced A part is placed on the table; for this, the table must be in lower left position.

PartPlaced
SELECT elev AtLower rot AtLeft THEN

elev : MovingUp rot : RotatingRight
END ;

PartTaken A part is removed from the table; for this, the table must be in upper right
position.

PartTaken
SELECT elev AtUpper rot AtRight THEN

6.3 Specification of the Machines 207

elev : MovingDown rot : RotatingLeft
END ;

UpReached The table reaches its upper sensor position. For this, the table must have
been moving upwards. The parameter moveBack, determined by the table’s environment,
indicates whether the table stays in its upper end position or moves back to lower left end
position.

UpReached (moveBack)
PRE moveBack BOOL THEN

SELECT elev MovingUp moveBack TRUE THEN
elev : MovingDown rot : RotatingLeft

WHEN elev MovingUp moveBack FALSE THEN
elev : AtUpper

END
END ;

DownReached The table reaches its lower sensor position. For this, the table must have
been moving downwards.

DownReached
SELECT elev MovingDown THEN elev : AtLower END ;

RightReached The table reaches its right sensor position. For this, the table must have
been moving rightwards. The parameter moveBack, determined by the table’s environ-
ment, indicates whether the table stays in its right end position or moves back to lower
left end position.

RightReached (moveBack)
PRE moveBack BOOL THEN

SELECT rot RotatingRight moveBack TRUE THEN
elev : MovingDown rot : RotatingLeft

WHEN rot RotatingRight moveBack FALSE THEN
rot : AtRight

END
END ;

LeftReached The table reaches its left sensor position. For this, the table must have been
moving leftwards.

LeftReached
SELECT rot RotatingLeft THEN rot : AtLeft END

END

We did not assume anything about the relative speeds of rotating and elevating.
If it was guaranteed by the mechanics that the table reaches its right and left end
position before its upper and lower end position, respectively, we could model this
by changing the action UpReached and DownReached as follows:

208 6. Production Cell

UpReached (moveBack)
PRE moveBack BOOL THEN

SELECT elev MovingUp rot AtRight moveBack TRUE THEN
elev : MovingDown rot : RotatingLeft

WHEN elev MovingUp rot AtRight moveBack FALSE THEN
elev : AtUpper

END
END ;

DownReached
SELECT elev MovingDown rot AtLeft THEN elev : AtLower
END ;

The advantage of strengthening the specification in this way is that the logic of
the controller may get simplified. The disadvantage is that the resulting controller
can only be used if this assumption about the mechanics is indeed guaranteed. Since
in our case we cannot make such an assumption anyway, we proceed with the more
general specification.

6.3.3 The Robot

For an abstract model of the robot, we model the state of the robot base and the state
of each of the two robot arms with their grippers. The robot base is either:

AtPos1 , AtPos2 , AtPos3 The robot base is at sensor position 1, 2, or 3, respectively.
RotatingFwdToPos2 The robot base is rotating from position 1 counterclockwise to

position 2.
RotatingFwdToPos3 The robot base is rotating from position 2 counterclockwise to

position 3.
RotatingBackToPos2 The robot base is rotating from position 3 clockwise to posi-

tion 2.
RotatingBackToPos1 The robot base is rotating from position 2 clockwise to posi-

tion 1.

The robot arms are in exactly one of following states:

AtInner , AtMiddle The robot arm is at its inner or middle sensor position, respec-
tively. Note that there is a sensor for the outer position, but the arms do not rest
there, they immediately retract again. Hence there is no need to represent it.

ExtendingToMiddle The robot arm is extending from its inner to its middle sensor
position.

ExtendingToOuter The robot arm is retracting from its middle to its outer sensor
position.

RetractingToMiddle The robot arm is retracting from its outer to its middle sensor
position.

RetractingToInner The robot arm is retracting from its middle to its inner sensor
position.

6.3 Specification of the Machines 209

MACHINE TwoArmRobotTypes
SETS

ROBOTBASE AtPos1 , RotatingFwdToPos2 , AtPos2 , RotatingFwdToPos3 , AtPos3 ,
RotatingBackToPos2 , RotatingBackToPos1 ;

ROBOTARM AtInner , ExtendingToMiddle , RetractingToInner , AtMiddle ,
ExtendingToOuter , RetractingToMiddle

END

The grippers of the robot arms either hold or don’t hold a part, which is repre-
sented by the boolean variables arm1Holding and arm2Holding, respectively.

In order to generalise the specification of the robot, we refer to the other ma-
chines in a more general way, rather than assuming the particular machines of the
production cell. The robot loads and unloads a processing unit, here the press, by
performing following sequence of moves cyclically:

After a part becomes available in position 1, arm 1 fetches the part, arm 1 retracts
to innermost position, and the robot turns to position 2.
When processing finishes while in position 2, arm 2 extends to its outermost
position, fetches the part, retracts to its innermost position, and the robot turns to
position 3.
When the processing unit becomes again ready for being loaded while in posi-
tion 3, arm 1 extends to its outermost position, releases the part it holds, and re-
tracts to its innermost position. Also, arm 2 extends and, when the deposit (which
is here a belt) becomes ready, releases its part. When both arms are free and re-
tracted, the robot turns to position 1 and extends arm 1 to its middle position.

We assume that initially the robot is in position 3, arm 1 is at its inner position,
arm 2 is at its middle position, and both grippers are released. To initiate the cycle,
first arm 2 has to retract to its inner position.

The actions PartAvailable, ProcessingFinished, ProcessingReady, DepositReady
represent interactions with the environment, the actions Pos1Reached, Pos2Reached
Pos3Reached, Arm1InReached, Arm1MiddleReached, Arm1OutReached, Arm2In-
Reached, Arm2MiddleReached, and Arm2OutReached correspond to sensor changes.
MACHINE TwoArmRobot
SEES TwoArmRobotTypes
VARIABLES

base , arm1 , arm2 , arm1Holding , arm2Holding
INVARIANT

base ROBOTBASE arm1 ROBOTARM arm2 ROBOTARM
arm1Holding BOOL arm2Holding BOOL

Safety Requirement Arm 1 must not be extended beyond its middle position at robot
position 1 and must not extend at all at robot position 2. Arm 2 must not be extended
at all at robot position 1 and must not be extended beyond its middle position at robot
position 3.

210 6. Production Cell

(base AtPos1 arm1 ExtendingToMiddle , AtMiddle , RetractingToInner)
(base AtPos1 arm1 ExtendingToMiddle , AtMiddle

arm1Holding FALSE)
(base AtPos1 arm1 RetractingToInner arm1Holding TRUE)
(base AtPos1 arm2 AtInner arm2Holding FALSE)
(base AtPos2 arm1 AtInner arm1Holding TRUE)
(base AtPos2 arm2 AtInner , ExtendingToMiddle , ExtendingToOuter ,

RetractingToMiddle , RetractingToInner)
(base AtPos2 arm2 AtInner , ExtendingToMiddle , ExtendingToOuter

arm2Holding FALSE)
(base AtPos2 arm2 RetractingToMiddle , RetractingToInner

arm2Holding TRUE)
(base AtPos3 arm1 AtInner , ExtendingToMiddle , ExtendingToOuter ,

RetractingToMiddle , RetractingToInner)
(base AtPos3 arm1 ExtendingToMiddle , ExtendingToOuter

arm1Holding TRUE)
(base AtPos3 arm1 RetractingToMiddle , RetractingToInner

arm1Holding FALSE)
(base AtPos3 arm2 ExtendingToMiddle , AtMiddle , RetractingToInner ,

AtInner)
(base AtPos3 arm2 ExtendingToMiddle , AtMiddle

arm2Holding TRUE)
(base AtPos3 arm2 RetractingToInner , AtInner

arm2Holding FALSE)

Safety Requirement The robot must rotate only with both arms retracted.

(base RotatingFwdToPos2 arm1 AtInner arm1Holding TRUE)
(base RotatingFwdToPos2 arm2 AtInner arm2Holding FALSE)
(base RotatingFwdToPos3 arm1 AtInner arm1Holding TRUE)
(base RotatingFwdToPos3 arm2 AtInner arm1Holding TRUE)
(base RotatingBackToPos2 arm1 AtInner)
(base RotatingBackToPos2 arm2 AtInner)
(base RotatingBackToPos1 arm1 AtInner arm2Holding FALSE)
(base RotatingBackToPos1 arm2 AtInner arm2Holding FALSE)

INITIALISATION
base : AtPos3
arm1 : AtInner arm2 : RetractingToInner
arm1Holding : FALSE arm2Holding : FALSE

OPERATIONS

PartAvailable A part becomes available for being transported to processing and the robot
is ready to take it, i.e. the robot is in position 1 and arm 1 is extended to middle position.
Then arm 1 retracts to its inner position, holding the part.

PartAvailable
SELECT base AtPos1 arm1 AtMiddle THEN

arm1 : RetractingToInner arm1Holding : TRUE

6.3 Specification of the Machines 211

END ;

ProcessingFinished Processing of a part has finished and the robot is ready for taking it,
i.e. the robot is in position 2 and arm 2 is retracted. Then arm 2 extends.

ProcessingFinished
SELECT base AtPos2 arm2 AtInner THEN

arm2 : ExtendingToMiddle
END ;

ProcessingReady A part may be processed and the robot is ready for placing it, i.e. the
robot is in position 3 and arm 1 is retracted and holds a part. Then arm 1 extends to its
outer position via its middle position.

ProcessingReady
SELECT base AtPos3 arm1 AtInner arm1Holding TRUE THEN

arm1 : ExtendingToMiddle
END ;

DepositReady The next machine becomes ready for further transporting a part and the
robot is in position 3 and arm 2 is in middle position. As stated in the invariant, arm 2
holds a (processed) part in this position. Arm 2 then releases the part and retracts to its
inner position.

DepositReady
SELECT base AtPos3 arm2 AtMiddle THEN

arm2 : RetractingToInner arm2Holding : FALSE
END ;

Pos1Reached The robot base reaches position 1 while rotating backward. Then the rotat-
ing motor stops and arm 1 extends in order to pick up an unprocessed part.

Pos1Reached
SELECT base RotatingBackToPos1 THEN

base : AtPos1 arm1 : ExtendingToMiddle
END ;

Pos2Reached The robot base reaches position 2. This happens while either the robot base
rotates forward from position 1 or rotates backward from position 3. In case it reaches
position 2 from position 1, it stops and if unload is true, arm 2 extends to the outer position
via the middle position. In case the base rotates back from position 3, it continues to rotate
to position 1.

Pos2Reached (unload)
PRE unload : BOOL THEN

SELECT base RotatingFwdToPos2 THEN
base : AtPos2
IF unload TRUE THEN arm2 : ExtendingToMiddle END

WHEN base RotatingBackToPos2 THEN

212 6. Production Cell

base : RotatingBackToPos1
END

END ;

Pos3Reached The robot base reaches position 3 while rotating forward from position 2.
Arm 2 extends to its middle position and, as stated in the invariant, holds a part. If load is
true, arm 1 extends as well in order to release the unprocessed part it holds.

Pos3Reached (load)
PRE load : BOOL THEN

SELECT base RotatingFwdToPos3 THEN
base : AtPos3
IF load TRUE THEN arm1 : ExtendingToMiddle END
arm2 : ExtendingToMiddle

END
END ;

Arm1InReached Arm 1 reaches its inner position while retracting from its middle po-
sition position. This happens either in robot position 1 after arm 1 has picked up a part,
or in position 3 after arm 1 has released a part. In position 1 the robot starts to rotate
forward to position 2, and in position 3 the robot starts to rotate backward to position 1
via position 2, provided robot arm 2 is retracted as well.

Arm1InReached
SELECT arm1 RetractingToInner base AtPos1 THEN

arm1 : AtInner base : RotatingFwdToPos2
WHEN arm1 RetractingToInner base AtPos3 THEN

arm1 : AtInner
IF arm2 AtInner THEN base : RotatingBackToPos2 END

END ;

Arm1MiddleReached Arm 1 reaches its middle position. This happens while either the
base is at position 1 and arm 1 is extending to its middle position, or while the base is
at position 3 and arm 1 is extending to its outer position via its middle position, holding
a part, or while the base is in position 3 and arm 1 is retracting from its outer position.
As follows from the invariant, arm 1 is extending to and retracting from its outer position
only when the robot base in at position 3. When extending in position 1, the parameter
fetchPart determines whether there is a part available for fetching. If so, arm 1 grabs it
and retracts again, otherwise it stops there.

Arm1MiddleReached (fetchPart)
PRE fetchPart BOOL THEN

SELECT arm1 ExtendingToMiddle base AtPos1 THEN
IF fetchPart FALSE THEN arm1 : AtMiddle
ELSE arm1 : RetractingToInner arm1Holding : TRUE
END

WHEN arm1 ExtendingToMiddle base AtPos3 THEN
arm1 : ExtendingToOuter

WHEN arm1 RetractingToMiddle THEN
arm1 : RetractingToInner

END

6.3 Specification of the Machines 213

END ;

Arm1OutReached Arm 1 reaches its outer position. As follows from the invariant, the
robot must be at position 3 and arm 1 must be holding a part. Then arm 1 releases the part
and retracts to its inner position.

Arm1OutReached
SELECT arm1 ExtendingToOuter THEN

arm1 : RetractingToMiddle arm1Holding : FALSE
END ;

Arm2InReached Arm 2 reaches its inner position. This happens in robot position 2 after
picking up a processed part or in robot position 3 after releasing the processed part. In
position 2 the robot starts to rotate forward to position 3. In position 3, the robot starts to
rotate backward to position 1 via position 2, provided arm 1 is retracted as well.

Arm2InReached
SELECT arm2 RetractingToInner base AtPos2 THEN

arm2 : AtInner base : RotatingFwdToPos3
WHEN arm2 RetractingToInner base AtPos3 THEN

arm2 : AtInner
IF arm1 AtInner arm1Holding FALSE THEN

base : RotatingBackToPos2
END

END ;

Arm2MiddleReached Arm 2 reaches its middle position, while either the base is at po-
sition 3 and arm 2 extends to its middle position, while the base is at position 2 and arm 2
extends to its outer position via the middle position, or while arm 2 retracts from its outer
position. According to the invariant, the base is in this case at position 2. When extending
in position 3 and the parameter depositPart is true, the processed part is released and the
arm retracts again, otherwise it stops there.

Arm2MiddleReached (depositPart)
PRE depositPart BOOL THEN

SELECT arm2 ExtendingToMiddle base AtPos3 THEN
IF depositPart FALSE THEN arm2 : AtMiddle
ELSE arm2 : RetractingToInner arm2Holding : FALSE
END

WHEN arm2 ExtendingToMiddle base AtPos2 THEN
arm2 : ExtendingToOuter

WHEN arm2 RetractingToMiddle THEN
arm2 : RetractingToInner

END
END ;

Arm2OutReached Arm 2 reaches its outer position. According to the invariant, the base
is in position 3. Arm 2 picks up a part and retracts again.

Arm2OutReached

214 6. Production Cell

SELECT arm2 ExtendingToOuter THEN
arm2 : RetractingToMiddle arm2Holding : TRUE

END
END

6.3.4 The Press

For an abstract model of the press, the press is in exactly one of the following states:

AtUnloading , AtLoading The press is at its lower sensor position for unloading or
at its middle sensor position for loading, respectively. Note that there is a sensor
for the upper position in which the press is closed, but the press does not rest
there, it immediately opens again. Hence there is no need to represent it.

MovingToLoading , MovingToUnloading The press is moving upwards from its
lower position to its middle position or moving downwards from its middle
position to its lower position, respectively.

Pressing , Opening The press is moving upwards from its middle sensor position
to its upper position or moving downwards from its upper sensor position to its
middle position, respectively.

MACHINE PressTypes
SETS

PRESS AtUnloading , MovingToLoading , AtLoading , Pressing , Opening ,
MovingToUnloading

END

The press goes cyclically from state AtLoading, after being loaded, to states
Pressing, Opening, MovingToUnloading, and AtUnloading, where after the part has
been taken it goes to states MovingToLoading and AtLoading again. We assume that
the table is initially in its middle position and may have a pressed part available; to
initiate the cycle, the press has to move to its unloading position.

The actions PartPlaced and PartTaken represent interactions with the environ-
ment, the actions DownReached, MiddleReached, and UpReached correspond to
sensor changes.
MACHINE Press
SEES PressTypes
VARIABLES

press
INVARIANT

press PRESS
INITIALISATION

press : MovingToUnloading

6.3 Specification of the Machines 215

OPERATIONS

PartPlaced A part is placed in the press and the press may close. For this, the press must
be in its middle, loading position.

PartPlaced
SELECT press AtLoading THEN press : Pressing END ;

PartTaken A part is fetched from the press and the press may move towards the middle
position (for getting loaded again). For this, the press must be in its lower unloading
position.

PartTaken
SELECT press AtUnloading THEN press : MovingToLoading
END ;

DownReached The press reaches the lower sensor position. For this, the press must be
below the middle position and must have been moving downwards. The press motor is
then stopped such that the press can be unloaded.

DownReached
SELECT press MovingToUnloading THEN press : AtUnloading
END ;

MiddleReached The press reaches the middle sensor position. This happens when either
the press is above the middle position and moves downwards or is below the middle
position and moves upwards. In the first case, the press continues to move downwards
and in the second case the press stops for being loaded.

MiddleReached
SELECT press MovingToLoading THEN press : AtLoading
WHEN press Opening THEN press : MovingToUnloading
END ;

UpReached The press reaches the upper sensor position. For this, the press must be above
the middle position and must have been moving upwards. Then the motor is reversed for
opening the press again.

UpReached
SELECT press Pressing THEN press : Opening END

END

6.3.5 The Deposit Belt

For an abstract model of the deposit belt, the deposit belt is in exactly one of the
following states:

216 6. Production Cell

Empty The belt is stopped and there are no parts on it.
Transporting The belt is running with one part being transported.
Available The belt is stopped with a part at the end.
AvailableAndPlaced The belt is stopped with a part at the end and a second part is

at the front of the belt.

MACHINE DepositBeltTypes
SETS

DEPOSITBELT Empty , Transporting , Available , AvailableAndPlaced
END

We assume that the belt is initially in state Empty. From there, it goes to states
Transporting and then to Available. From state Available, the belt goes either to state
Empty or to state AvailableAndPlaced and from there to state Transporting. The
transitions between these states are caused by the action PartPlaced, which repre-
sents an interaction with the environment, or the actions EndReached and PartTaken,
which correspond to sensor changes:

MACHINE DepositBelt
SEES DepositBeltTypes
VARIABLES

belt
INVARIANT

belt DEPOSITBELT
INITIALISATION

belt : Empty
OPERATIONS

PartPlaced A part is placed on the front of the belt, provided no part is already there. The
belt starts to transport if no part is at the end of the belt.

PartPlaced
SELECT belt Empty THEN belt : Transporting
WHEN belt Available THEN belt : AvailableAndPlaced
END ;

EndReached A part reaches the end of the belt. The belt is then stopped, with a part
available at its end.

EndReached
SELECT belt Transporting THEN belt : Available END ;

PartTaken The part at the end of the belt is taken. If another part is placed on the front of
the belt, the belt starts to run.

6.4 Derivation of the Machine Controllers 217

PartTaken
SELECT belt Available THEN belt : Empty
WHEN belt AvailableAndPlaced THEN belt : Transporting
END

END

6.4 Derivation of the Machine Controllers
The next step is to decompose each machine into a plant and a controller. A general
approach is as follows:

The plant is represented as an action system in AMN with local variables and with
actions. The controller is represented as an action system with local variables and
procedures.
Actuators and sensors become global variables to the plant and controller and are
put in separate AMN machines. The actuators are read by the plant and set via
operation calls by the controller. The sensors are read by the controller and set
via operation calls by the plant. For this, the plant includes the sensors and sees
the actuators. Dually, the controller includes the actuators and sees the sensors.
The abstract machine is refined by the parallel composition of the plant and con-
troller, with the actuators and sensors made local to the parallel composition. The
abstraction invariant relates the abstract machine state to the plant state, the con-
troller state and to the sensors and actuators. By having possibly different plant
and controller states we can take into account that the controller may have only
partial observability of the plant and may need to keep track of the plant evolution
in its own way.
The actions of the plant refine the corresponding actions of the machine: the
guards are now expressed in terms of the plant variables, sensors, and actuators;
the bodies of the actions model the evolution of the machine by changing the
plant state and the sensors and then calling the corresponding controller proce-
dures, like interrupt procedures. For this, the plant includes the controller and
refines the abstract machine specification.

The general decomposition schema for this approach is shown in Fig. 6.10. If
a plant action does not require a reaction of the controller, the corresponding call
can be omitted. Also, if the actuators can not only be set but also read, appropriate
procedures in the actuator machine can be added. Having the actuators and sensors
encapsulated in separate machines allows to abstract from the details of a particular
communication mechanism, which depends on the underlying hardware and oper-
ating environment, e.g. memory mapped I/O or calls to send and receive operations.

Since this is a refinement step, the invariance properties of each machine are
inherited automatically: the controller, when “applied” to the plant, guarantees all
previously shown safety requirements.

Although our goal is to produce controllers for the machines, we get as a byprod-
uct specifications of the physical plant as well. These specifications are not going to

218 6. Production Cell

REFINEMENT MachinePlant
REFINES Machine
INCLUDES MachineCtrl , MachineSensors
VARIABLES

plant state
INVARIANT

variable types
refinement invariant for plant variables,
controller variables, actuators, sensors

INITIALISATION
plant state and sensors initialisation

OPERATIONS
Action (parameters)

SELECT refined guard THEN
plant state and sensors change ;
ActionCtrl (parameters)

END ;
. . .

END

MACHINE MachineCtrl
INCLUDES MachineActuators
SEES MachineSensors
VARIABLES

controller state
INVARIANT

variable types
INITIALISATION

controller state and actuators
initialisation

OPERATIONS
ActionCtrl (parameters)

controller state and
actuators change ;

. . .

END

MACHINE MachineSensors
VARIABLES

sensors
INVARIANT

variable types
INITIALISATION

sensors : any value

OPERATIONS
SetSensor (ss)

sensor : ss ;
. . .

END

MACHINE MachineActuators
VARIABLES

actuators
INVARIANT

variable types
INITIALISATION

actuators : any value

OPERATIONS
SetActuator (aa)

actuator : aa ;
. . .

END

Fig. 6.10. General Decomposition Schema for Plant and Controller

6.4 Derivation of the Machine Controllers 219

be implemented in AMN, but can be used to check whether the physical plant does
indeed conform to these specifications.

This schema, although generally applicable, has the disadvantage that, when the
system gets large the abstraction invariant can get rather complex. For the produc-
tion cell machines, we can employ a variation of this schema, shown in Fig. 6.11
and Fig. 6.12. This schema helps in composing the production cell controller of the
machine controller by keeping the abstraction invariants local to the controllers. It
also incorporates two further simplifications:

The decomposition into plant and controller and the introduction of sensors and
actuators is split into two successive refinement steps. The first refinement step
does not involve data refinement and yields an abstract specification of the plant
and the controller. The second refinement step refines the controller by introduc-
ing the sensors and actuators with an abstraction invariant. Thus, the sensors and
actuators become local variables of the controller rather than its global variables
as in the general schema.
As the machines are equipped with enough sensors, each controller can keep track
of the plant state. Thus, we can identify the controller and plant state with the
abstract machine state. In the decomposition step, we keep it in CONCRETE -
VARIABLES in the controller (which is included in the plant). This way, the plant
and later the combined controller of the production cell can read those variables.
Since all sensors are binary, all sensor changes can be signalled to the controller
by a controller call for each sensor value. There is no need to represent the sensors
explicitly in AMN machines.
A difference to the general schema is that we only get an abstract plant specifica-
tion, not one which involves the sensors and actuators.

In this schema, the machine controllers (Fig. 6.11) now appear to be similar to
the original machine specification (Fig. 6.9). However, there is one significant dif-
ference: the operations in the controller are procedures with preconditions whereas
the operations in the machines are actions with guards. Thus, in a subsequent re-
finement step the preconditions of the controller procedures may be weakened or
eliminated.

For the refinement of the abstract machines to the plants, the conditions for ac-
tion system refinement as given in Chapter 5 have to hold. Of the four conditions
given in Definition 5.1, the first three (the initialisations are data-refined, the pro-
cedures are data-refined, and the actions are data-refined) are those of AMN refine-
ment and checked by the tools. The fourth condition (under the abstraction invariant
the guard of each abstract action implies the guard of the refining action) holds in
our scheme trivially since the guards remain unchanged.

The following three types for actuator values are used:
MACHINE ActuatorTypes
SETS

MOTOR RUN , HALT ;
REVMOTOR FWD , BACK , STOP ;
GRIPPER HOLD , RELEASE

220 6. Production Cell

REFINEMENT MachinePlant
REFINES Machine
INCLUDES MachineCtrl

OPERATIONS
Action (parameters)

SELECT guard THEN
ActionCtrl (parameters)

END ;
. . .

END

MACHINE MachineCtrl
CONCRETE VARIABLES

machine state
INVARIANT

variable types
INITIALISATION

machine state initialisation

OPERATIONS
ActionCtrl (parameters)

PRE guard THEN
machine state change

END ;
. . .

END

Fig. 6.11. Decomposition Schema for the Production Cell Machines

IMPLEMENTATION MachineCtrlImp
REFINES MachineCtrl
IMPORTS MachineActuators
INVARIANT

refinement invariant for actuators
INITIALISATION

machine state and
actuators initialisation

OPERATIONS
ActionCtrl (parameters)

machine state change and
actuator setting ;

. . .

END

MACHINE MachineActuators
VARIABLES

actuators
INVARIANT

variable types
INITIALISATION

actuators : any value

OPERATIONS
SetActuator (aa)

actuator : aa ;
. . .

END

Fig. 6.12. Refinement Schema for the Controllers of the Production Cell

6.4 Derivation of the Machine Controllers 221

END

6.4.1 The Feed Belt

The first refinement step decomposes FeedBelt into FeedBeltPlant and FeedBeltCtrl.
The refinement of the action EndReached relies on the fact that

SELECT belt Running halt TRUE THEN
belt : Stopped

WHEN belt Running halt FALSE THEN
belt : Delivering

END

is equivalent to:

SELECT belt Running THEN
IF halt TRUE THEN belt : Stopped
ELSE belt : Delivering
END

END

The resulting code is:

MACHINE FeedBeltCtrl
SEES FeedBeltTypes
CONCRETE VARIABLES

belt
INVARIANT

belt FEEDBELT
INITIALISATION

belt : Running
OPERATIONS

EndReachedCtrl (halt)
PRE halt BOOL belt Running THEN

IF halt TRUE THEN belt : Stopped
ELSE belt : Delivering
END

END ;
ContinueDeliveryCtrl

PRE belt Stopped THEN belt : Delivering END ;
PartLeftCtrl

PRE belt Delivering THEN belt : Running END
END

REFINEMENT FeedBeltPlant
REFINES FeedBelt
SEES FeedBeltTypes

222 6. Production Cell

INCLUDES FeedBeltCtrl
OPERATIONS

EndReached (halt)
PRE halt BOOL THEN

SELECT belt Running THEN EndReachedCtrl (halt) END
END ;

ContinueDelivery
SELECT belt Stopped THEN ContinueDeliveryCtrl END ;

PartLeft
SELECT belt Delivering THEN PartLeftCtrl END

END

The second refinement step introduces in the controller the actuator motor of
type MOTOR for the feed belt motor. It is set to RUN if the feed belt is Running or
Delivering and is be set to HALT if the feed belt is Stopped. Also, in this refinement
step the preconditions are eliminated.

MACHINE FeedBeltActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motor MOTOR
INITIALISATION

motor : MOTOR
OPERATIONS

SetMotor (mm)
PRE mm MOTOR THEN motor : mm END

END

IMPLEMENTATION FeedBeltCtrlImp
REFINES FeedBeltCtrl
SEES FeedBeltTypes , ActuatorTypes
IMPORTS FeedBeltActuators
INVARIANT

(belt Running , Delivering motor RUN)
(belt Stopped motor HALT)

INITIALISATION
belt : Running ; SetMotor (RUN)

OPERATIONS
EndReachedCtrl (halt)

IF halt TRUE THEN belt : Stopped ; SetMotor (HALT)
ELSE belt : Delivering

6.4 Derivation of the Machine Controllers 223

END ;
ContinueDeliveryCtrl

BEGIN belt : Delivering ; SetMotor (RUN) END ;
PartLeftCtrl

belt : Running
END

6.4.2 The Table

The first refinement step decomposes Table into TablePlant and TableCtrl. Like
above, SELECT statements with multiple branches are transformed into SELECT
statements with a single guard and body.

MACHINE TableCtrl
SEES TableTypes
CONCRETE VARIABLES

elev , rot
INVARIANT

elev ELEV rot ROT
INITIALISATION

elev : AtLower rot : AtLeft
OPERATIONS

PartPlacedCtrl
PRE elev AtLower rot AtLeft THEN

elev : MovingUp rot : RotatingRight
END ;

PartTakenCtrl
PRE elev AtUpper rot AtRight THEN

elev : MovingDown rot : RotatingLeft
END ;

UpReachedCtrl (moveBack)
PRE moveBack BOOL elev MovingUp THEN

IF moveBack TRUE THEN
elev : MovingDown rot : RotatingLeft

ELSE elev : AtUpper
END

END ;
DownReachedCtrl

PRE elev MovingDown THEN elev : AtLower END ;
RightReachedCtrl (moveBack)

PRE moveBack BOOL rot RotatingRight THEN
IF moveBack TRUE THEN

elev : MovingDown rot : RotatingLeft
ELSE rot : AtRight
END

END ;

224 6. Production Cell

LeftReachedCtrl
PRE rot RotatingLeft THEN rot : AtLeft END

END

REFINEMENT TablePlant
REFINES Table
SEES TableTypes
INCLUDES TableCtrl
OPERATIONS

PartPlaced
SELECT elev AtLower rot AtLeft THEN PartPlacedCtrl END ;

PartTaken
SELECT elev AtUpper rot AtRight THEN PartTakenCtrl END ;

UpReached (moveBack)
PRE moveBack BOOL THEN

SELECT elev MovingUp THEN UpReachedCtrl (moveBack)
END

END ;
DownReached

SELECT elev MovingDown THEN DownReachedCtrl END ;
RightReached (moveBack)

PRE moveBack BOOL THEN
SELECT rot RotatingRight THEN RightReachedCtrl (moveBack)
END

END ;
LeftReached

SELECT rot RotatingLeft THEN LeftReachedCtrl END
END

The second refinement step introduces in the controller the actuators elevMotor
and rotMotor of type REVMOTOR for elevating and rotating the table, respectively.
The actuator elevMotor is set to FWD if the table is MovingUp, to BACK if the
table is MovingDown, and to STOP if the table is AtLower or AtUpper position. The
actuator rotMotor is set analogously. Also, in this refinement step the preconditions
are eliminated.

MACHINE TableActuators
SEES ActuatorTypes
VARIABLES

elevMotor , rotMotor
INVARIANT

elevMotor REVMOTOR rotMotor REVMOTOR
INITIALISATION

elevMotor : REVMOTOR rotMotor : REVMOTOR

6.4 Derivation of the Machine Controllers 225

OPERATIONS
SetElevMotor (em)

PRE em REVMOTOR THEN elevMotor : em END ;
SetRotMotor (rm)

PRE rm REVMOTOR THEN rotMotor : rm END
END

IMPLEMENTATION TableCtrlImp
REFINES TableCtrl
SEES TableTypes , ActuatorTypes
IMPORTS TableActuators
INVARIANT

(elev MovingUp elevMotor FWD)
(elev MovingDown elevMotor BACK)
(elev AtLower , AtUpper elevMotor STOP)
(rot RotatingRight rotMotor FWD)
(rot RotatingLeft rotMotor BACK)
(rot AtLeft , AtRight rotMotor STOP)

INITIALISATION
elev : AtLower ; rot : AtLeft ;
SetElevMotor (STOP) ; SetRotMotor (STOP)

OPERATIONS
PartPlacedCtrl

BEGIN
elev : MovingUp ; rot : RotatingRight ;
SetElevMotor (FWD) ; SetRotMotor (FWD)

END ;
PartTakenCtrl

BEGIN
elev : MovingDown ; rot : RotatingLeft ;
SetElevMotor (BACK) ; SetRotMotor (BACK)

END ;
UpReachedCtrl (moveBack)

IF moveBack TRUE THEN
elev : MovingDown ; SetElevMotor (BACK) ;
rot : RotatingLeft ; SetRotMotor (BACK)

ELSE elev : AtUpper ; SetElevMotor (STOP)
END ;

DownReachedCtrl
BEGIN elev : AtLower ; SetElevMotor (STOP) END ;

RightReachedCtrl (moveBack)
IF moveBack TRUE THEN

elev : MovingDown ; SetElevMotor (BACK) ;
rot : RotatingLeft ; SetRotMotor (BACK)

ELSE rot : AtRight ; SetRotMotor (STOP)
END ;

226 6. Production Cell

LeftReachedCtrl
BEGIN rot : AtLeft ; SetRotMotor (STOP) END

END

6.4.3 The Robot

The first refinement step decomposes TwoArmRobot into TwoArmRobotPlant and
TwoArmRobotCtrl. As previously, SELECT statements with multiple branches are
transformed into SELECT statements with a single guard and body. The refinement
of the action Pos2Reached relies on the fact that

SELECT base RotatingFwdToPos2 THEN
base : AtPos2

WHEN base RotatingBackToPos2 THEN
belt : RotatingBackToPos1

END

is equivalent to:

SELECT base RotatingFwdToPos2, RotatingBackToPos2 THEN
IF base RotatingFwdToPos2 THEN

base : AtPos2
ELSE belt : RotatingBackToPos1
END

END

Similar equivalences are used for Arm1InReached, Arm1MiddleReached, Arm2-
InReached, and Arm2MiddleReached. The resulting code is:

MACHINE TwoArmRobotCtrl
SEES TwoArmRobotTypes
CONCRETE VARIABLES

base , arm1 , arm2 , arm1Holding , arm2Holding
INVARIANT

base ROBOTBASE arm1 ROBOTARM arm2 ROBOTARM
arm1Holding BOOL arm2Holding BOOL

INITIALISATION
base : AtPos3
arm1 : AtInner arm2 : RetractingToInner
arm1Holding : FALSE arm2Holding : FALSE

OPERATIONS
PartAvailableCtrl

PRE base AtPos1 arm1 AtMiddle THEN
arm1 : RetractingToInner arm1Holding : TRUE

END ;
ProcessingFinishedCtrl

PRE base AtPos2 arm2 AtInner THEN
arm2 : ExtendingToMiddle

6.4 Derivation of the Machine Controllers 227

END ;
ProcessingReadyCtrl

PRE base AtPos3 arm1 AtInner arm1Holding TRUE THEN
arm1 : ExtendingToMiddle

END ;
DepositReadyCtrl

PRE base AtPos3 arm2 AtMiddle THEN
arm2 : RetractingToInner arm2Holding : FALSE

END ;
Pos1ReachedCtrl

PRE base RotatingBackToPos1 THEN
base : AtPos1 arm1 : ExtendingToMiddle

END ;
Pos2ReachedCtrl (unload)

PRE unload BOOL base RotatingFwdToPos2 , RotatingBackToPos2
THEN

IF base RotatingFwdToPos2 THEN
base : AtPos2
IF unload TRUE THEN arm2 : ExtendingToMiddle END

ELSE base : RotatingBackToPos1
END

END ;
Pos3ReachedCtrl (load)

PRE load BOOL base RotatingFwdToPos3 THEN
base : AtPos3
IF load TRUE THEN arm1 : ExtendingToMiddle END
arm2 : ExtendingToMiddle

END ;
Arm1InReachedCtrl

PRE arm1 RetractingToInner THEN
arm1 : AtInner
IF base AtPos1 THEN base : RotatingFwdToPos2
ELSIF arm2 AtInner THEN base : RotatingBackToPos2
END

END ;
Arm1MiddleReachedCtrl (fetchPart)

PRE fetchPart BOOL arm1 ExtendingToMiddle , RetractingToMiddle
THEN

IF arm1 ExtendingToMiddle base AtPos1 THEN
IF fetchPart FALSE THEN arm1 : AtMiddle
ELSE arm1 : RetractingToInner arm1Holding : TRUE
END

ELSIF arm1 ExtendingToMiddle THEN arm1 : ExtendingToOuter
ELSE arm1 : RetractingToInner
END

END ;
Arm1OutReachedCtrl

PRE arm1 ExtendingToOuter THEN
arm1 : RetractingToMiddle arm1Holding : FALSE

END ;

228 6. Production Cell

Arm2InReachedCtrl
PRE arm2 RetractingToInner THEN

arm2 : AtInner
IF base AtPos2 THEN base : RotatingFwdToPos3
ELSIF arm1 AtInner arm1Holding FALSE THEN

base : RotatingBackToPos2
END

END ;
Arm2MiddleReachedCtrl (depositPart)

PRE depositPart BOOL arm2 ExtendingToMiddle ,
RetractingToMiddle THEN
IF arm2 ExtendingToMiddle base AtPos3 THEN

IF depositPart FALSE THEN arm2 : AtMiddle
ELSE arm2 : RetractingToInner arm2Holding : FALSE
END

ELSIF arm2 ExtendingToMiddle THEN
arm2 : ExtendingToOuter

ELSE
arm2 : RetractingToInner

END
END ;

Arm2OutReachedCtrl
PRE arm2 ExtendingToOuter THEN

arm2 : RetractingToMiddle arm2Holding : TRUE
END

END

REFINEMENT TwoArmRobotPlant
REFINES TwoArmRobot
SEES TwoArmRobotTypes
INCLUDES TwoArmRobotCtrl
OPERATIONS

PartAvailable
SELECT base AtPos1 arm1 AtMiddle THEN PartAvailableCtrl
END ;

ProcessingFinished
SELECT base AtPos2 arm2 AtInner THEN ProcessingFinishedCtrl
END ;

ProcessingReady
SELECT base AtPos3 arm1 AtInner arm1Holding TRUE THEN

ProcessingReadyCtrl
END ;

DepositReady
SELECT base AtPos3 arm2 AtMiddle THEN DepositReadyCtrl
END ;

Pos1Reached
SELECT base RotatingBackToPos1 THEN Pos1ReachedCtrl END ;

Pos2Reached (unload)

6.4 Derivation of the Machine Controllers 229

PRE unload BOOL THEN
SELECT base RotatingFwdToPos2 , RotatingBackToPos2 THEN

Pos2ReachedCtrl (unload)
END

END ;
Pos3Reached (load)

PRE load BOOL THEN
SELECT base RotatingFwdToPos3 THEN Pos3ReachedCtrl (load)
END

END ;
Arm1InReached

SELECT arm1 RetractingToInner THEN Arm1InReachedCtrl END ;
Arm1MiddleReached (fetchPart)

PRE fetchPart BOOL THEN
SELECT arm1 ExtendingToMiddle , RetractingToMiddle THEN

Arm1MiddleReachedCtrl (fetchPart)
END

END ;
Arm1OutReached

SELECT arm1 ExtendingToOuter THEN Arm1OutReachedCtrl
END ;

Arm2InReached
SELECT arm2 RetractingToInner THEN Arm2InReachedCtrl END ;

Arm2MiddleReached (depositPart)
PRE depositPart BOOL THEN

SELECT arm2 ExtendingToMiddle , RetractingToMiddle THEN
Arm2MiddleReachedCtrl (depositPart)

END
END ;

Arm2OutReached
SELECT arm2 ExtendingToOuter THEN Arm2OutReachedCtrl END

END

The second refinement step introduces the following actuators in the controller:

rotMotor This actuator of type REVMOTOR is for rotating the robot base. It is set
to FWD if the base is RotatingFwdToPos2 or RotatingFwdToPos3, it is set to
BACK if the base is RotatingBackToPos2 or RotatingBackToPos1, and it is set
to STOP if the base is AtPos1, AtPos2, or AtPos3.

arm1Motor , arm2Motor These actuators of type REVMOTOR are for extending
and retracting arm 1 and arm 2, respectively. They are set to FWD if the corre-
sponding arm is ExtendingToMiddle or ExtendingToOuter, they are set to BACK
if the corresponding arm is RetractingToInner or RetractingToOuter, and are set
to STOP if the arm is AtInner or AtMiddle. (Recall that the arms never stay at
the outer position, they retract immediately.)

arm1Gripper , arm2Gripper These actuators of type GRIPPER are set to HOLD
if arm1Holding or arm2Holding is true, respectively, and are set to RELEASE
otherwise.

230 6. Production Cell

Also, in this refinement step the preconditions are eliminated. The resulting code
is:

MACHINE TwoArmRobotActuators
SEES ActuatorTypes
VARIABLES

rotMotor , arm1Motor , arm2Motor , arm1Gripper , arm2Gripper
INVARIANT

rotMotor REVMOTOR
arm1Motor REVMOTOR arm2Motor REVMOTOR
arm1Gripper : GRIPPER arm2Gripper GRIPPER

INITIALISATION
rotMotor : REVMOTOR
arm1Motor : REVMOTOR arm2Motor : REVMOTOR
arm1Gripper : GRIPPER arm2Gripper : GRIPPER

OPERATIONS
SetRotMotor (rm)

PRE rm REVMOTOR THEN rotMotor : rm END ;
SetArm1Motor (a1)

PRE a1 REVMOTOR THEN arm1Motor : a1 END ;
SetArm2Motor (a2)

PRE a2 REVMOTOR THEN arm2Motor : a2 END ;
SetArm1Gripper (g1)

PRE g1 GRIPPER THEN arm1Gripper : g1 END ;
SetArm2Gripper (g2)

PRE g2 GRIPPER THEN arm2Gripper : g2 END
END

IMPLEMENTATION TwoArmRobotCtrlImp
REFINES TwoArmRobotCtrl
SEES TwoArmRobotTypes , ActuatorTypes
IMPORTS TwoArmRobotActuators
INVARIANT

(rotMotor FWD) (base RotatingFwdToPos2 , RotatingFwdToPos3)
(rotMotor BACK) (base RotatingBackToPos2 , RotatingBackToPos1)
(rotMotor STOP) (base AtPos1 , AtPos2 , AtPos3)
(arm1Motor FWD) (arm1 ExtendingToMiddle , ExtendingToOuter)
(arm1Motor BACK) (arm1 RetractingToInner , RetractingToMiddle)
(arm1Motor STOP) (arm1 AtInner , AtMiddle)
(arm2Motor FWD) (arm2 ExtendingToMiddle , ExtendingToOuter)
(arm2Motor BACK) (arm2 RetractingToInner , RetractingToMiddle)
(arm2Motor STOP) (arm2 AtInner , AtMiddle)
(arm1Gripper HOLD) (arm1Holding TRUE)
(arm2Gripper HOLD) (arm2Holding TRUE)

6.4 Derivation of the Machine Controllers 231

INITIALISATION
base : AtPos3 ; arm1 : AtInner ; arm2 : RetractingToInner ;
SetRotMotor (STOP) ; SetArm1Motor (STOP) ; SetArm2Motor (BACK) ;
arm1Holding : FALSE ; arm2Holding : FALSE ;
SetArm1Gripper (RELEASE) ; SetArm2Gripper (RELEASE)

OPERATIONS
PartAvailableCtrl

BEGIN
arm1 : RetractingToInner ; SetArm1Motor (BACK) ;
arm1Holding : TRUE ; SetArm1Gripper (HOLD)

END ;
ProcessingFinishedCtrl

BEGIN arm2 : ExtendingToMiddle ; SetArm2Motor (FWD) END ;
ProcessingReadyCtrl

BEGIN arm1 : ExtendingToMiddle ; SetArm1Motor (FWD) END ;
DepositReadyCtrl

BEGIN
arm2 : RetractingToInner ; arm2Holding : FALSE ;
SetArm2Motor (BACK) ; SetArm2Gripper (RELEASE)

END ;
Pos1ReachedCtrl

BEGIN
base : AtPos1 ; SetRotMotor (STOP) ;
arm1 : ExtendingToMiddle ; SetArm1Motor (FWD)

END ;
Pos2ReachedCtrl (unload)

IF base RotatingFwdToPos2 THEN
base : AtPos2 ; SetRotMotor (STOP) ;
IF unload TRUE THEN

arm2 : ExtendingToMiddle ; SetArm2Motor (FWD)
END

ELSE base : RotatingBackToPos1
END ;

Pos3ReachedCtrl (load)
BEGIN

base : AtPos3 ; SetRotMotor (STOP) ;
IF load TRUE THEN

arm1 : ExtendingToMiddle ; SetArm1Motor (FWD)
END ;
arm2 : ExtendingToMiddle ; SetArm2Motor (FWD)

END ;
Arm1InReachedCtrl

BEGIN
arm1 : AtInner ; SetArm1Motor (STOP) ;
IF base AtPos1 THEN

base : RotatingFwdToPos2 ; SetRotMotor (FWD)
ELSIF arm2 AtInner THEN

base : RotatingBackToPos2 ; SetRotMotor (BACK)
END

232 6. Production Cell

END ;
Arm1MiddleReachedCtrl (fetchPart)

IF arm1 ExtendingToMiddle base AtPos1 THEN
IF fetchPart FALSE THEN

arm1 : AtMiddle ; SetArm1Motor (STOP)
ELSE

arm1 : RetractingToInner ; SetArm1Motor (BACK) ;
arm1Holding : TRUE ; SetArm1Gripper (HOLD)

END
ELSIF arm1 ExtendingToMiddle THEN arm1 : ExtendingToOuter
ELSE arm1 : RetractingToInner
END ;

Arm1OutReachedCtrl
BEGIN

arm1 : RetractingToMiddle ; SetArm1Motor (BACK) ;
arm1Holding : FALSE ; SetArm1Gripper (RELEASE)

END ;
Arm2InReachedCtrl

BEGIN
arm2 : AtInner ; SetArm2Motor (STOP) ;
IF base AtPos2 THEN

base : RotatingFwdToPos3 ; SetRotMotor (FWD)
ELSIF arm1 AtInner arm1Holding FALSE THEN

base : RotatingBackToPos2 ; SetRotMotor (BACK)
END

END ;
Arm2MiddleReachedCtrl (depositPart)

IF arm2 ExtendingToMiddle base AtPos3 THEN
IF depositPart FALSE THEN

arm2 : AtMiddle ; SetArm2Motor (STOP)
ELSE

arm2 : RetractingToInner ; SetArm2Motor (BACK) ;
arm2Holding : FALSE ; SetArm2Gripper (RELEASE)

END
ELSIF arm2 ExtendingToMiddle THEN arm2 : ExtendingToOuter
ELSE arm2 : RetractingToInner
END ;

Arm2OutReachedCtrl
BEGIN

arm2 : RetractingToMiddle ; arm2Holding : TRUE ;
SetArm2Gripper (HOLD) ; SetArm2Motor (BACK)

END
END

6.4.4 The Press

The first refinement step decomposes Press into PressPlant and PressCtrl. The SE-
LECT statement with two branches in the action MiddleReached is transformed into
a SELECT statements with a single guard and body.

6.4 Derivation of the Machine Controllers 233

MACHINE PressCtrl
SEES PressTypes
CONCRETE VARIABLES

press
INVARIANT

press PRESS
INITIALISATION

press : MovingToUnloading

OPERATIONS
PartPlacedCtrl

PRE press AtLoading THEN press : Pressing END ;
PartTakenCtrl

PRE press AtUnloading THEN press : MovingToLoading END ;
DownReachedCtrl

PRE press MovingToUnloading THEN press : AtUnloading END ;
MiddleReachedCtrl

PRE press MovingToLoading , Opening THEN
IF press MovingToLoading THEN press : AtLoading
ELSE press : MovingToUnloading
END

END ;
UpReachedCtrl

PRE press Pressing THEN press : Opening END
END

REFINEMENT PressPlant
REFINES Press
SEES PressTypes
INCLUDES PressCtrl
OPERATIONS

PartPlaced
SELECT press AtLoading THEN PartPlacedCtrl END ;

PartTaken
SELECT press AtUnloading THEN PartTakenCtrl END ;

DownReached
SELECT press MovingToUnloading THEN DownReachedCtrl END ;

MiddleReached
SELECT press MovingToLoading , Opening THEN

MiddleReachedCtrl
END ;

UpReached
SELECT press Pressing THEN UpReachedCtrl END

END

234 6. Production Cell

The second refinement step introduces in the controller the actuator motor of
type REVMOTOR for the press motor. It is set to FWD if the press is Moving-
ToLoading or Pressing, to BACK if the press is Opening or MovingToUnloading,
and to STOP if the press is AtUnloading or AtLoading. Also, in this refinement step
the preconditions are eliminated.
MACHINE PressActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motor REVMOTOR
INITIALISATION

motor : REVMOTOR
OPERATIONS

SetMotor (mm)
PRE mm REVMOTOR THEN motor : mm END

END

IMPLEMENTATION PressCtrlImp
REFINES PressCtrl
SEES PressTypes , ActuatorTypes
IMPORTS PressActuators
INVARIANT

(press MovingToLoading , Pressing motor FWD)
(press Opening , MovingToUnloading motor BACK)
(press AtUnloading , AtLoading motor STOP)

INITIALISATION
press : MovingToUnloading ; SetMotor (BACK)

OPERATIONS
PartPlacedCtrl

BEGIN press : Pressing ; SetMotor (FWD) END ;
PartTakenCtrl

BEGIN press : MovingToLoading ; SetMotor (FWD) END ;
DownReachedCtrl

BEGIN press : AtUnloading ; SetMotor (STOP) END ;
MiddleReachedCtrl

IF press MovingToLoading THEN
press : AtLoading ; SetMotor (STOP)

ELSE press : MovingToUnloading
END ;

UpReachedCtrl
BEGIN press : Opening ; SetMotor (BACK) END

6.4 Derivation of the Machine Controllers 235

END

6.4.5 The Deposit Belt

The first refinement step decomposes DepositBelt into DepositBeltPlant and De-
positBeltCtrl. Again, SELECT statements with multiple branches are transformed
into SELECT statements with a single guard and body.

MACHINE DepositBeltCtrl
SEES DepositBeltTypes
CONCRETE VARIABLES

belt
INVARIANT

belt DEPOSITBELT
INITIALISATION

belt : Empty
OPERATIONS

PartPlacedCtrl
PRE belt Empty , Available THEN

IF belt Empty THEN belt : Transporting
ELSE belt : AvailableAndPlaced
END

END ;
EndReachedCtrl

PRE belt Transporting THEN belt : Available END ;
PartTakenCtrl

PRE belt Available , AvailableAndPlaced THEN
IF belt Available THEN belt : Empty
ELSE belt : Transporting
END

END
END

REFINEMENT DepositBeltPlant
REFINES DepositBelt
SEES DepositBeltTypes
INCLUDES DepositBeltCtrl
OPERATIONS

PartPlaced
SELECT belt Empty , Available THEN PartPlacedCtrl END ;

EndReached
SELECT belt Transporting THEN EndReachedCtrl END ;

PartTaken
SELECT belt Available , AvailableAndPlaced THEN

236 6. Production Cell

PartTakenCtrl
END

END

In this refinement step, the operation PartTakenCtrl is noteworthy: its effect de-
pends on whether a part is placed on the front of the belt (AvailableAndPlaced) or
not (Available), which is not observable by any sensor readings. Hence, it is es-
sential that the deposit belt controller keeps track of the plant state. (For the other
machines, the state is fully observable and keeping the plant state in extra variables
is merely a convenience for testing the state.)

The second refinement step introduces in the controller the actuator motor of
type MOTOR for the deposit belt motor. It is set to RUN if the deposit belt is Trans-
porting and to HALT if the deposit belt is Empty, Available, or AvailableAndPlaced.
Also, in this refinement step the preconditions are eliminated.

MACHINE DepositBeltActuators
SEES ActuatorTypes
VARIABLES

motor
INVARIANT

motor MOTOR
INITIALISATION

motor : MOTOR
OPERATIONS

SetMotor (mm)
PRE mm MOTOR THEN motor : mm END

END

IMPLEMENTATION DepositBeltCtrlImp
REFINES DepositBeltCtrl
SEES ActuatorTypes , DepositBeltTypes
IMPORTS DepositBeltActuators
INVARIANT

(belt Transporting motor RUN)
(belt Empty , Available , AvailableAndPlaced motor HALT)

INITIALISATION
belt : Empty ; SetMotor (HALT)

OPERATIONS
PartPlacedCtrl

IF belt Empty THEN belt : Transporting ; SetMotor (RUN)
ELSE belt : AvailableAndPlaced
END ;

EndReachedCtrl

6.5 Specification of the Production Cell 237

BEGIN belt : Available ; SetMotor (HALT) END ;
PartTakenCtrl

IF belt Available THEN belt : Empty
ELSE belt : Transporting ; SetMotor (RUN)
END

END

6.5 Specification of the Production Cell

The production cell is specified in terms of the specifications of the individual ma-
chines:

All machines are included once. By this, their variables and their initialisations
are inherited. For referring to the machines more easily, they are given short
names by renaming.
For each sensor change of each machine, there is one action in the production cell.
In the simplest case, a production cell action “calls” the corresponding action of
the machine concerned with this sensor change. In case the sensor change leads
possibly to an interaction with another machine, that interaction is specified as
well.
Safety requirements concerning the interaction of the machines are expressed in
the invariant.

The structure of the resulting specification is shown in Fig. 6.13. Note that the
production cell is not expressed as the parallel composition of the machines, but
rather by reusing the specifications of the machines through inclusion. Since the
machines are included, their variables can only be changed through their operations.
This ensures that the invariant of each machine is also an invariant of the production
cell. In this way, the safety properties of the machines get automatically promoted
to safety properties of the production cell.

ProductionCell FeedBelt

Table

TwoArmRobot

Press

DepositBelt
Fig. 6.13. Structure of the Produc-
tionCell Specification: Arrows Stand
for Inclusion

238 6. Production Cell

MACHINE ProductionCell
SEES

FeedBeltTypes , TableTypes , TwoArmRobotTypes , PressTypes , DepositBeltTypes
INCLUDES

FB . FeedBelt , TB . Table , RB . TwoArmRobot , PR . Press , DB . DepositBelt
INVARIANT

Safety Requirement Delivery from the feed belt to the table is allowed only if the table
is at lower left position.

(FB . belt Delivering TB . elev AtLower TB . rot AtLeft)

Safety Requirement Robot arm 1 may only extend towards the press if the press is in its
middle position. Robot arm 2 may only extend towards the press only if the press is in its
lower position.

(RB . base AtPos3 PR . press AtUnloading RB . arm1 AtInner)
(RB . base AtPos2 PR . press AtUnloading RB . arm2 AtInner)

Safety Requirement The press may only move if arm 1 is safe and if arm 2 is safe.

(RB . base AtPos3 RB . arm1 AtInner PR . press AtLoading)
(RB . base AtPos2 RB . arm2 AtInner PR . press AtUnloading)

OPERATIONS

FeedBeltEndReached A part reaches the end of the feed belt. If the table is ready for
loading, i.e. in its lower left position, the feed belt continues to run, otherwise it stops.

FeedBeltEndReached
FB . EndReached (bool (TB . elev AtLower TB . rot AtLeft)) ;

FeedBeltPartLeft A part has left the feed belt and is placed on the table.

FeedBeltPartLeft
BEGIN FB . PartLeft TB . PartPlaced END ;

TableUpReached The table reaches its upper position. If it is also in its right position, i.e.
becomes ready for unloading, and the robot is waiting for unloading the table, the robot
picks the part.

TableUpReached
IF TB . rot AtRight RB . base AtPos1 RB . arm1 AtMiddle THEN

TB . UpReached (TRUE) RB . PartAvailable
ELSE TB . UpReached (FALSE)

6.5 Specification of the Production Cell 239

END ;

TableDownReached The table reaches its lower position. If it is also in its left position,
i.e. becomes ready for loading, and a part is available on the feed belt, the feed belt
continues to run.

TableDownReached
BEGIN

TB . DownReached
IF TB . rot AtLeft FB . belt Stopped THEN

FB . ContinueDelivery
END

END ;

TableRightReached The table reaches its right position. If it is also in its upper position,
i.e. becomes ready for unloading, and the robot is waiting for unloading the table, the
robot picks the part.

TableRightReached
IF TB . elev AtUpper RB . base AtPos1 RB . arm1 AtMiddle THEN

TB . RightReached (TRUE) RB . PartAvailable
ELSE TB . RightReached (FALSE)
END ;

TableLeftReached The table reaches its left position. If it is also in its lower position, i.e.
becomes ready for loading, and a part is available on the feed belt, the feed belt continues
to run.

TableLeftReached
BEGIN

TB . LeftReached
IF TB . elev AtLower FB . belt Stopped THEN

FB . ContinueDelivery
END

END ;

RobotPos1Reached The robot base reaches position 1. The robot then continues to ex-
tend arm 1.

RobotPos1Reached RB . Pos1Reached ;

RobotPos2Reached The robot base reaches position 2, either while rotating forward or
while rotating backward. If rotating forward and if the press is ready for unloading, the
robot continues to unload it.

RobotPos2Reached
RB . Pos2Reached (bool (PR . press AtUnloading)) ;

240 6. Production Cell

RobotPos3Reached The robot base reaches position 3. Arm 2 starts to extend to its mid-
dle position. If the press is ready for being loaded, the robot continues with loading the
press by extending arm 1.

RobotPos3Reached RB . Pos3Reached (bool (PR . press AtLoading)) ;

RobotArm1InReached Robot arm 1 reaches its inner position, while the robot is either
in position 1 after picking a part or position 3 after placing a part in the press. In position 1,
the robot starts to rotate forward. In position 3, the press starts to process and the robot
starts to rotate backward, provided arm 2 is free.

RobotArm1InReached
BEGIN

IF RB . base AtPos3 THEN PR . PartPlaced END
RB . Arm1InReached

END ;

RobotArm1MiddleReached Robot arm 1 reaches its middle position, while the robot is
either in position 1 or position 3. In position 1, if the table has a part available, the part is
fetched and both the robot and table continue. In position 3, the arm continues to extend
or retract.

RobotArm1MiddleReached
IF RB . base AtPos1 TB . elev AtUpper TB . rot AtRight THEN

RB . Arm1MiddleReached (TRUE) TB . PartTaken
ELSE RB . Arm1MiddleReached (FALSE)
END ;

RobotArm1OutReached Robot arm 1 reaches its outer position, while the robot is in
position 3 for loading the press. The arm then releases the gripper and retracts.

RobotArm1OutReached RB . Arm1OutReached ;

RobotArm2InReached Robot arm 2 reaches its inner position, while the robot is in po-
sition 2 (for unloading the press). The robot then rotates forward and the press moves to
its loading position.

RobotArm2InReached
BEGIN

IF RB . base AtPos2 THEN PR . PartTaken END
RB . Arm2InReached

END ;

RobotArm2MiddleReached Robot arm 2 reaches its middle position, while the robot is
either in position 2 (for unloading the press) or in position 3 (for depositing the part). In
position 2 it continues to extend or retract, in position 3 it releases the part it is holding
with arm 2, provided the deposit belt is free.

6.5 Specification of the Production Cell 241

RobotArm2MiddleReached
IF RB . base AtPos3 DB . belt Empty THEN

RB . Arm2MiddleReached (TRUE) DB . PartPlaced
ELSE RB . Arm2MiddleReached (FALSE)
END ;

RobotArm2OutReached Robot arm 2 reaches its outer position, while the robot is in
position 2 (for unloading the press). The arm then picks the part in the press and retracts.

RobotArm2OutReached RB . Arm2OutReached ;

PressDownReached The press reaches its lower position. If the robot is in position 2, the
robot continues with unloading the press.

PressDownReached
BEGIN

PR . DownReached
IF RB . base AtPos2 THEN RB . ProcessingFinished END

END ;

PressMiddleReached The press reaches its middle position. If the robot is in position 3
and arm 1 holds an unprocessed part, the robot starts loading the press.

PressMiddleReached
BEGIN

IF PR . press MovingToLoading RB . base AtPos3
RB . arm1 AtInner RB . arm1Holding TRUE THEN
RB . ProcessingReady

END
PR . MiddleReached

END ;

PressUpReached The press reaches its upper position. The press then opens again.

PressUpReached PR . UpReached ;

DepositBeltEndReached The part on the deposit belt reaches the end of the belt. The
belt stops. If the robot is holding a part over the deposit belt, the part is released.

DepositBeltEndReached
BEGIN

DB . EndReached
IF RB . base AtPos3 RB . arm2 AtMiddle THEN

RB . DepositReady
END

END ;

DepositBeltPartTaken The part at the end of the deposit belt is removed. The deposit
belt may continue to run if there is another part on it.

242 6. Production Cell

DepositBeltPartTaken DB . PartTaken
END

The actions considered so far were of the standard form SELECT P THEN
S or of the more general form SELECT P1 THEN S1 WHEN P2 THEN S2
END. Here, the composed actions are of a more complex form. Still, they can be
equivalently expressed in the standard form. For example, action FeedBeltPartLeft
is defined by:

FB . PartLeft TB . PartPlaced

Using the definitions of PartLeft and PartPlaced, this is after renaming equivalent
to:

SELECT FB . belt Delivering THEN FB . belt : Running END
SELECT TB . elev AtLower TB . rot AtLeft THEN

TB . elev : MovingUp TB . rot : RotatingRight
END

For the subsequent transformation, we rewrite this using the definition of SELECT
(see Appendix):

FB . belt Delivering FB . belt : Running
TB . elev AtLower TB . rot AtLeft

TB . elev : MovingUp TB . rot : RotatingRight

1 S S
2 S T T S
3 S T U S T U
4 true S S
5 P Q S P Q S
6 P S T P S T

if T true holds
7 P S T P S T

if T true holds
8 P Q S P Q P S

9 S S S
10 S T T S
11 S T U S T U
12 true S S
13 P Q S P Q S
14 P S T P S T
15 P S T P S T
16 P Q S P Q P S

Fig. 6.14. Transformation Rules for Statements S, T , U and Predicates P, Q

Fig. 6.14 gives basic identities which can be used for merging the two actions into
one. The predicate S true characterises those states for which termination is guar-
anteed (the precondition) of S. In the machine ProductionCell, termination is guar-
anteed for all operations, hence this predicate holds. By applying rule (6) twice and
then simplifying with rule (5), we get:

FB . belt Delivering TB . elev AtLower TB . rot AtLeft
FB . belt : Running TB . elev : MovingUp TB . rot : RotatingRight

Finally, this is equivalently expressed in AMN as follows, which is now the standard
form for actions:

6.6 Derivation of the Production Cell Controller 243

SELECT FB . belt Delivering TB . elev AtLower TB . rot AtLeft THEN
FB . belt : Running TB . elev : MovingUp TB . rot : RotatingRight

END

Using the rules in Fig. 6.14, the other actions can be transformed to standard form
as well.

6.6 Derivation of the Production Cell Controller

The final step is to construct the controller of the production cell out of the con-
trollers of the machines. This is done in two refinement steps:

The first refinement step decomposes the production cell into a production cell
plant and a production cell controller. The plant is modelled as an action system
with only actions and the controller as an action system with only procedures.
The plant includes the controller and refines the production cell. The controller
procedures call the controllers of the machines following the pattern of how the
production cell actions are composed of the actions of the machines.
In the second refinement step the controller is implemented by eliminating those
constructs which are not allowed in AMN implementations.

MACHINE ProductionCellCtrl
SEES

FeedBeltTypes , TableTypes , TwoArmRobotTypes , PressTypes , DepositBeltTypes
INCLUDES

FB . FeedBeltCtrl , TB . TableCtrl , RB . TwoArmRobotCtrl , PR . PressCtrl ,
DB . DepositBeltCtrl

OPERATIONS
FeedBeltEndReachedCtrl

PRE FB . belt Running THEN
FB . EndReachedCtrl (bool (TB . elev AtLower TB . rot AtLeft))

END ;
FeedBeltPartLeftCtrl

PRE FB . belt Delivering TB . elev AtLower TB . rot AtLeft THEN
FB . PartLeftCtrl TB . PartPlacedCtrl

END ;
TableUpReachedCtrl

PRE TB . elev MovingUp THEN
IF TB . rot AtRight RB . base AtPos1 RB . arm1 AtMiddle
THEN TB . UpReachedCtrl (TRUE) RB . PartAvailableCtrl
ELSE TB . UpReachedCtrl (FALSE)
END

END ;
TableDownReachedCtrl

PRE TB . elev MovingDown THEN
TB . DownReachedCtrl

244 6. Production Cell

ProductionCellCtrl

Table

FeedBelt

FeedBeltCtrl

DepositBelt

ProductionCellPlant
ProductionCell

TablePlant

Press

FeedBeltPlant

TableCtrl

TwoArmRobot

TwoArmRobotCtrl

DepositBeltPlant

PressPlant

PressCtrl

DepositBeltCtrl

TwoArmRobotPlant

Fig. 6.15. Structure of the Development: Arrows Stand for Inclusion and Tiling Indicates
Refinement

IF TB . rot AtLeft FB . belt Stopped THEN
FB . ContinueDeliveryCtrl

END
END ;

TableRightReachedCtrl
PRE TB . rot RotatingRight THEN

IF TB . elev AtUpper RB . base AtPos1 RB . arm1 AtMiddle
THEN TB . RightReachedCtrl (TRUE) RB . PartAvailableCtrl
ELSE TB . RightReachedCtrl (FALSE)
END

END ;
TableLeftReachedCtrl

PRE TB . rot RotatingLeft THEN

6.6 Derivation of the Production Cell Controller 245

TB . LeftReachedCtrl
IF TB . elev AtLower FB . belt Stopped THEN

FB . ContinueDeliveryCtrl
END

END ;
RobotPos1ReachedCtrl

PRE RB . base RotatingBackToPos1 THEN RB . Pos1ReachedCtrl
END ;

RobotPos2ReachedCtrl
PRE RB . base RotatingFwdToPos2 , RotatingBackToPos2 THEN

RB . Pos2ReachedCtrl (bool (PR . press AtUnloading))
END ;

RobotPos3ReachedCtrl
PRE RB . base RotatingFwdToPos3 THEN

RB . Pos3ReachedCtrl (bool (PR . press AtLoading))
END ;

RobotArm1InReachedCtrl
PRE RB . arm1 RetractingToInner

(RB . base AtPos3 PR . press AtLoading) THEN
IF RB . base AtPos3 THEN PR . PartPlacedCtrl END
RB . Arm1InReachedCtrl

END ;
RobotArm1MiddleReachedCtrl

PRE RB . arm1 ExtendingToMiddle , RetractingToMiddle THEN
IF RB . base AtPos1 TB . elev AtUpper TB . rot AtRight THEN

RB . Arm1MiddleReachedCtrl (TRUE) TB . PartTakenCtrl
ELSE RB . Arm1MiddleReachedCtrl (FALSE)
END

END ;
RobotArm1OutReachedCtrl

PRE RB . arm1 ExtendingToOuter THEN RB . Arm1OutReachedCtrl
END ;

RobotArm2InReachedCtrl
PRE RB . arm2 RetractingToInner

(RB . base AtPos2 PR . press AtUnloading) THEN
IF RB . base AtPos2 THEN PR . PartTakenCtrl END
RB . Arm2InReachedCtrl

END ;
RobotArm2MiddleReachedCtrl

PRE RB . arm2 ExtendingToMiddle , RetractingToMiddle THEN
IF RB . base AtPos3 DB . belt Empty THEN

RB . Arm2MiddleReachedCtrl (TRUE) DB . PartPlacedCtrl
ELSE RB . Arm2MiddleReachedCtrl (FALSE)
END

END ;
RobotArm2OutReachedCtrl

PRE RB . arm2 ExtendingToOuter THEN RB . Arm2OutReachedCtrl
END ;

PressDownReachedCtrl

246 6. Production Cell

PRE PR . press MovingToUnloading
(RB . base AtPos2 RB . arm2 AtInner)

THEN
PR . DownReachedCtrl
IF RB . base AtPos2 THEN RB . ProcessingFinishedCtrl END

END ;
PressMiddleReachedCtrl

PRE PR . press MovingToLoading , Opening THEN
IF PR . press MovingToLoading RB . base AtPos3

RB . arm1 AtInner
THEN RB . ProcessingReadyCtrl
END
PR . MiddleReachedCtrl

END ;
PressUpReachedCtrl

PRE PR . press Pressing THEN PR . UpReachedCtrl END ;
DepositBeltEndReachedCtrl

PRE DB . belt Transporting THEN
DB . EndReachedCtrl
IF RB . base AtPos3 RB . arm2 AtMiddle THEN

RB . DepositReadyCtrl
END

END ;
DepositBeltPartTakenCtrl

PRE DB . belt Available THEN DB . PartTakenCtrl END
END

REFINEMENT ProductionCellPlant
REFINES ProductionCell
SEES

FeedBeltTypes , TableTypes , TwoArmRobotTypes , PressTypes , DepositBeltTypes
INCLUDES

ProductionCellCtrl
OPERATIONS

FeedBeltEndReached
SELECT FB . belt Running THEN FeedBeltEndReachedCtrl END ;

FeedBeltPartLeft
SELECT FB . belt Delivering THEN FeedBeltPartLeftCtrl END ;

TableUpReached
SELECT TB . elev MovingUp THEN TableUpReachedCtrl END ;

TableDownReached
SELECT TB . elev MovingDown THEN TableDownReachedCtrl
END ;

TableRightReached
SELECT TB . rot RotatingRight THEN TableRightReachedCtrl
END ;

6.6 Derivation of the Production Cell Controller 247

TableLeftReached
SELECT TB . rot RotatingLeft THEN TableLeftReachedCtrl END ;

RobotPos1Reached
SELECT RB . base RotatingBackToPos1 THEN RobotPos1ReachedCtrl
END ;

RobotPos2Reached
SELECT RB . base RotatingFwdToPos2 , RotatingBackToPos2 THEN

RobotPos2ReachedCtrl
END ;

RobotPos3Reached
SELECT RB . base RotatingFwdToPos3 THEN

RobotPos3ReachedCtrl
END ;

RobotArm1InReached
SELECT RB . arm1 RetractingToInner THEN RobotArm1InReachedCtrl
END ;

RobotArm1MiddleReached
SELECT RB . arm1 ExtendingToMiddle , RetractingToMiddle THEN

RobotArm1MiddleReachedCtrl
END ;

RobotArm1OutReached
SELECT RB . arm1 ExtendingToOuter THEN

RobotArm1OutReachedCtrl
END ;

RobotArm2InReached
SELECT RB . arm2 RetractingToInner THEN

RobotArm2InReachedCtrl
END ;

RobotArm2MiddleReached
SELECT RB . arm2 ExtendingToMiddle , RetractingToMiddle THEN

RobotArm2MiddleReachedCtrl
END ;

RobotArm2OutReached
SELECT RB . arm2 ExtendingToOuter THEN

RobotArm2OutReachedCtrl
END ;

PressDownReached
SELECT PR . press MovingToUnloading THEN

PressDownReachedCtrl
END ;

PressMiddleReached
SELECT PR . press MovingToLoading , Opening THEN

PressMiddleReachedCtrl
END ;

PressUpReached
SELECT PR . press Pressing THEN PressUpReachedCtrl END ;

DepositBeltEndReached
SELECT DB . belt Transporting THEN DepositBeltEndReachedCtrl

248 6. Production Cell

END ;
DepositBeltPartTaken

SELECT DB . belt Available THEN DepositBeltPartTakenCtrl
END

END

IMPLEMENTATION ProductionCellCtrlImp
REFINES ProductionCellCtrl
SEES

FeedBeltTypes , TableTypes , TwoArmRobotTypes , PressTypes , DepositBeltTypes
IMPORTS

FB . FeedBeltCtrl , TB . TableCtrl , RB . TwoArmRobotCtrl , PR . PressCtrl ,
DB . DepositBeltCtrl

OPERATIONS
FeedBeltEndReachedCtrl

IF TB . elev AtLower TB . rot AtLeft THEN
FB . EndReachedCtrl (TRUE)

ELSE FB . EndReachedCtrl (FALSE)
END ;

FeedBeltPartLeftCtrl
BEGIN FB . PartLeftCtrl ; TB . PartPlacedCtrl END ;

TableUpReachedCtrl
IF TB . rot AtRight RB . base AtPos1 RB . arm1 AtMiddle THEN

TB . UpReachedCtrl (TRUE) ; RB . PartAvailableCtrl
ELSE TB . UpReachedCtrl (FALSE)
END ;

TableDownReachedCtrl
BEGIN

TB . DownReachedCtrl ;
IF TB . rot AtLeft FB . belt Stopped THEN

FB . ContinueDeliveryCtrl
END

END ;
TableRightReachedCtrl

IF TB . elev AtUpper RB . base AtPos1 RB . arm1 AtMiddle THEN
TB . RightReachedCtrl (TRUE) ; RB . PartAvailableCtrl

ELSE TB . RightReachedCtrl (FALSE)
END ;

TableLeftReachedCtrl
BEGIN

TB . LeftReachedCtrl ;
IF TB . elev AtLower FB . belt Stopped THEN

FB . ContinueDeliveryCtrl
END

END ;
RobotPos1ReachedCtrl RB . Pos1ReachedCtrl ;
RobotPos2ReachedCtrl

6.6 Derivation of the Production Cell Controller 249

IF PR . press AtUnloading THEN RB . Pos2ReachedCtrl (TRUE)
ELSE RB . Pos2ReachedCtrl (FALSE)
END ;

RobotPos3ReachedCtrl
IF PR . press AtLoading THEN RB . Pos3ReachedCtrl (TRUE)
ELSE RB . Pos3ReachedCtrl (FALSE)
END ;

RobotArm1InReachedCtrl
BEGIN

IF RB . base AtPos3 THEN PR . PartPlacedCtrl END ;
RB . Arm1InReachedCtrl

END ;
RobotArm1MiddleReachedCtrl

IF RB . base AtPos1 TB . elev AtUpper TB . rot AtRight THEN
RB . Arm1MiddleReachedCtrl (TRUE) ; TB . PartTakenCtrl

ELSE RB . Arm1MiddleReachedCtrl (FALSE)
END ;

RobotArm1OutReachedCtrl RB . Arm1OutReachedCtrl ;
RobotArm2InReachedCtrl

BEGIN
IF RB . base AtPos2 THEN PR . PartTakenCtrl END ;
RB . Arm2InReachedCtrl

END ;
RobotArm2MiddleReachedCtrl

IF RB . base AtPos3 DB . belt Empty THEN
RB . Arm2MiddleReachedCtrl (TRUE) ; DB . PartPlacedCtrl

ELSE RB . Arm2MiddleReachedCtrl (FALSE)
END ;

RobotArm2OutReachedCtrl
RB . Arm2OutReachedCtrl ;

PressDownReachedCtrl
BEGIN

PR . DownReachedCtrl ;
IF RB . base AtPos2 THEN RB . ProcessingFinishedCtrl END

END ;
PressMiddleReachedCtrl

BEGIN
IF PR . press MovingToLoading RB . base AtPos3

RB . arm1 AtInner
THEN RB . ProcessingReadyCtrl
END ;
PR . MiddleReachedCtrl

END ;
PressUpReachedCtrl PR . UpReachedCtrl ;
DepositBeltEndReachedCtrl

BEGIN
DB . EndReachedCtrl ;
IF RB . base AtPos3 RB . arm2 AtMiddle THEN

RB . DepositReadyCtrl

250 6. Production Cell

END
END ;

DepositBeltPartTakenCtrl DB . PartTakenCtrl
END

6.7 Discussion

The development was done completely with Atelier B version 3.2. Table 6.1 sum-
marises the length and the proving results for groups of AMN machines.

The entry ActuatorTypes comprises the AMN machines ActuatorTypes and Ac-
tuatorTypesImp (the dummy implementation). The entry FeedBelt comprises the
AMN machines FeedBelt, FeedBeltPlant, FeedBeltCtrl, FeedBeltCtrlImp, Feed-
BeltActuators, FeedBeltActuatorsImp (a simple device-specific implementation),
FeedBeltTypes, and FeedBeltTypesImp (the required dummy implementation). The
subsequent entries are analogous. The entry ProductionCell comprises the AMN
machines ProductionCell, ProductionCellPlant, ProductionCellCtrl, and Produc-
tionCellCtrlImp. The implementations of FeedBeltActuators etc. which are required
for interfacing to the actuators are left out of the table.

The obvious proof obligations are those which are discharged immediately when
generated. All other proof obligations are submitted for automatic proving. Those
which could not be proved automatically, were proved interactively. The numbers
show a high degree of automation in the proofs and suggest that AMN, the tool
support, and the chosen modelling approach are suitable for this kind of problem.
However, it should be noted that all variables of the production cell range over finite
types and thus a complete automation of the proofs is theoretically possible.

total obvious proof proof number percent
length obligations obligations unproved autoproved

ActuatorTypes 16 lines 8 0 0 100
FeedBelt 181 lines 69 12 0 100
Table 299 lines 191 39 0 100
TwoArmRobot 672 lines 1522 555 31 94
Press 222 lines 102 21 0 100
DepositBelt 188 lines 73 15 0 100
ProductionCell 578 lines 1770 194 23 88
Total 2157 lines 3735 836 54 94

Table 6.1. Statistics of the Development

We like to add some critical observations about using AMN. First, specifications
are complicated by the fact that sequential composition is currently not allowed in
AMN machines (but it is allowed in refinements and implementations). For example,
it would have been simpler to define TableUpReached in ProductionCell by

TB . UpReached ;

6.7 Discussion 251

IF ... robot can pick up part ... THEN
RB . PartAvailable TB . PartTaken

END

for expressing that when the table reaches its upper position, it either stays there or
moves back again. Since this is not allowed, the action TB.UpReached was given a
parameter which determines whether the table should move back or not, i.e. whether
the TB.PartTaken action should be performed as well. This leads to the situations
that some actions of Table have such an additional parameter and some don’t and is
the only reason why action parameters are needed for the production cell at all. It
also leads to slight code duplication. Another solution would have been to formulate
the ProductionCell specification with sequential composition as an AMN refinement
which refines some dummy AMN machine.

Secondly, guards and preconditions are treated asymmetrically in the sense that
preconditions of (composed) operations have to be stated explicitly but guards don’t.
The ProductionCell actions are composed of actions of included AMN machines but
the guard of the composed action is not stated explicitly. By contrast, the procedures
of ProductionCellCtrl are composed of procedures of included AMN machines and
the preconditions of the composed procedures need to be stated explicitly.

Finally, as discussed in Chapter 5, action system refinement leads to more proof
obligations than those of AMN machine refinement. Although these can also be
handled within AMN (see also Chapter 7), these are not generated automatically.
For the production cell, this no problem since the guards of the actions were left
unchanged in refinement, hence the additional proof obligation for action system
refinement, the exit condition, holds trivially. However, with the proposed general
refinement schema for control systems, automatic generation of these proof obliga-
tions would be helpful.

We conclude by discussing some related approaches. The traditional model of
discrete event control systems, with separate specifications of the controller and the
controlled system, is based on formal language theory [72]. Established and tool-
supported approaches for the specification and verification of reactive systems are
Statecharts [34] and Esterel [11]. Both have been applied to control systems, but
typically with only the controller being specified. Statecharts and Esterel assume
that the outputs of the program are in perfect synchrony with the inputs, i.e. the
execution time is zero. This is the same assumption made here.

The distinguishing feature of the action system approach is that it allows the
description of a control system on different levels of abstraction, with a number of
proof obligations guaranteeing that each level is a refinement of the previous one.
Here we have illustrated how this allows the initial specification to be a concise
and abstract model of the control system and details of actuators and sensors to be
introduced later. As also illustrated in subsequent chapters of this book, distribution
can be introduced in refinement steps, thus allowing the development of distributed
control systems.

Another approach to modelling control systems with action systems, where the
controller is a set of actions rather than procedures, is proposed in [73]. A case study

252 6. Production Cell

of refining a control system with action systems, where the continuous behaviour of
the plant is taken into account, is presented in [17].

The production cell has been formally treated by numerous approaches [50]. A
development of a control program by refinement where the machines are modelled
as communicating processes is given in [27]. This allows a simpler specification
of the machines but makes proofs of safety properties difficult since the machines
have no state. The production cell has also been treated by an extension of AMN by
traces, threads and temporal logic formulae [48].

6.8 Exercises

Exercise 6.1 (Additional Machine for Graphical Simulation). The derived con-
troller can be used for driving a graphical simulation of the production cell, if for
that purpose a sixth machine, a crane, is added. The crane takes parts on the de-
posit belt and puts them on the feed belt again, making the whole process cyclic.
The crane has an electromagnetic gripper which may be turned on and off, a bidi-
rectional motor for lifting and lowering the gripper, and a bidirectional motor for
moving the crane forward (towards the feed belt) and backward (towards the de-
posit belt). Sensors are placed at the upper, the lower, the feed belt and the deposit
belt end position, respectively. The crane must move between the two conveyor belts
only in the upper position. For picking up a part from the deposit belt, the gripper
has to be lowered, for placing a part on the feed belt the gripper has simply to be
released. The graphical simulation and a description of its interface can be found on
the book’s Web page.

Exercise 6.2 (Avoiding Processing Delays). The specification of the robot has the
following deficiency. When a part is ready in the press, the robot first waits until
another part is available on the table, and only after picking up that part is the press
unloaded. If the arrival of new parts on the table is delayed, unloading the press is
delayed as well. Improve the specification of the robot such that the press may be
unloaded immediately in these situations. When is the decision whether to unload
the press or first to pick up a new part on the table made best? Would you make it
dependent on the state of the table, the feed belt (which both may signal that a new
part is arriving shortly), or the deposit belt (which may not allow a part to be placed
on it)?

Exercise 6.3 (Faster Robot Movement). Assume that the robot may rotate and
move its arms simultaneously and that the press may be loaded and unloaded with
extended and rotating robot arms. Modify the robot operations and weaken the
safety requirements accordingly.

Exercise 6.4 (Non-deterministic Initialisation). The plant specification assumes
that all machines are in proper initial positions. A more realistic specification would

6.8 Exercises 253

allow arbitrary initial positions. Also, sensors like those on the end of the con-
veyor belts might report the presence of a part. Express this by appropriate non-
deterministic assignments to the variables in the initialisation. To cope with non-
deterministic initialisation, introduce a variable which determines whether the sys-
tem is in INIT or NORMAL mode. In INIT mode, the only action of the machines
is to go to defined positions for further operation. Make the appropriate changes.
Would you introduce a mode variable for each machine or for the whole production
cell? Would you insist that all safety requirements hold in initialisation mode?

Exercise 6.5 (Shutdown). The production cell specification assumes that the sys-
tem is continuously running until power is switched off. Introduce a SHUTDOWN
mode, in which all machines are stopped gracefully, and an operation ShutDown
which enters that mode. Would you introduce a SHUTDOWN mode for each ma-
chine or for the whole production cell? Would you shut down all machines simulta-
neously or in a certain order?

Exercise 6.6 (Emergency Stop). Introduce an operation EmergencyStop of the pro-
duction cell which immediately stops all motors but keeps the grippers switched on.
How would you recover from such a situation? Do all safety requirements still hold
in the case of an emergency stop?

Exercise 6.7 (Fault Detection). The preconditions of the (abstract) machine con-
trollers express constraints under which theses procedures will be called. In case
a machine breaks, these constraints might not hold. For example, if the feed belt
sensor breaks, it might report that the part at the end left the belt even though the
belt is not running. Make the controller more robust by checking for failures. De-
cide how to react to each failure: either ignore it if safe operation is still possible
(assuming that the failure is transient), issue a warning on the screen and continue,
or do an emergency stop. Would you also change the machine specifications and the
plants? Note that a violation of a constraint may also be the consequence of an ear-
lier failure. Also note that some abnormal situations may also occur due to human
intervention, e.g. removing or placing a part.

Exercise 6.8 (Further Machine Requirements). Formalise the following safety
requirements as invariance properties:

If the table is moving upwards (downwards), it is either in its right (left) position
or rotating towards it.
Robot arm 1 is holding a part if and only if the robot is at position 1 and arm 1
is retracting to the inner position, the robot is at position 2, or the robot is at
position 3 and robot arm 1 is extending to the middle or outer position.

Express and formalise similar requirements for the table turning to the left and
to the right, and for robot arm 2.

Add the following variables for modelling the state of the machines more pre-
cisely: a variable indicating whether a part is on the table, and a variable whether
a part is in the press. Modify all affected operations to update those variables. For-
malise following requirements as invariance properties:

254 6. Production Cell

If a part is on the table, it is either moving towards or at its upper right position.
If no part in on the table, it is either moving towards or at its lower left position.
The table is never in loading position with an part on it.
The table is never in unloading position with no part on it.

Can you think of similar requirements for the press?

Exercise 6.9 (Additional Sensors). Assume that two additional sensors are added
to the production cell, one indicating whether a part is on the table and one indicating
whether a part is in the press. Use those sensors for a non-deterministic initialisation
(Exercise 6.4), and for a more elaborate fault detection (Exercise 6.7).

7. Distributed Load Balancing
Marina Waldén

7.1 Introduction

We specify a load balancing algorithm using action systems with procedures as de-
scribed in Chapter 5. A process network is considered to be associated with an
action system assigning each variable to a process. Messages are passed between
the processes by explicit communication. In a distributed action system each action
and procedure is local to some process referring only to variables of that process.

Our goal is to give the load balancing algorithm as a distributed action system.
The initial specification of the load balancing algorithm is not yet distributed. In
order to refine the algorithm into a distributed action system we use the superposi-
tion refinement method [5, 30, 44], a powerful program modularisation and struc-
turing method for developing action systems in a layered manner by superposing a
computation on top of an existing one. We carry out three superposition steps each
introducing mechanisms that take the centralised initial specification of the load
balancing algorithm into a description that is completely distributed. Superposition
refinement is a special case of the more general data refinement method presented in
Chapter 5. We show how this refinement method is formalised within the B-Method.

7.2 Informal Problem Description

Let us now study the load balancing algorithm [33]. We consider a network of pro-
cesses, where the network forms a connected graph (V,E). The edges E in the graph
are the communication links between the processes V. Communication can only
take place between processes directly connected by an edge and it can go in both
directions. Even so, the graph is considered to be a rooted directed tree, where the
edges are directed towards the root. Each process is assumed to know the identities
of its direct neighbours and the number of tasks it posesses, i.e., its load.

The threshold, top, that states the preferable load of a process is considered
to be a fixed positive number (top 0), and is a constant of the load balancing
algorithm. In node i the number of tasks is denoted by load i. The tasks themselves
are irrelevant for the algorithm. Initially all the loads are 0 and the tasks are arbitrary
elements of the set Tasks.

In the load balancing system each node i receives new loads from an environ-
ment. Thus, we have a reactive system. The load balancing algorithm strives to

256 7. Distributed Load Balancing

load balancing

(top = 6)

6

3 4

5

load balancing

(top = 6)
8

6

7

7

(b)

i

j

i

j

(a)

i

j
j

i

Fig. 7.1. (a) Sending Down a Task in the Tree, and (b) Sending Up a Task in the Tree

7

5 3

698

7

7 6

6 6 6

load balancing

(top = 6)

Fig. 7.2. An Example of a Network Before and After Executing the Load Balancing Algo-
rithm

distribute the load in the system evenly among the processes. If node j has a load
less than the threshold, and its father, node i, in the tree structure has a load greater
than or equal to the threshold, a task can be moved down from node i to its son, node
j by increasing the load of j and decreasing the load of i as in Fig. 7.1(a). On the
other hand, if node i has too many tasks and its father, node j, has a load less than or
equal to the threshold, a task can be sent from node i up to its father, node j, which
is shown in Fig. 7.1(b). The load balancing makes it possible for a node in the tree
to transfer tasks from one of its branches to another. The load balancing in a tree of
nodes is then as in Fig. 7.2. Following the computation pattern above no process is
idle forever, if there is enough work to be done.

The load of a node is always greater than or equal to zero during the computation
as stated in the invariant:

i i V load i 0

This is due to the fact that initially the load of a node i is assigned 0 and during the
computation the load is only decreased if it is greater than or equal to top 0 ,
otherwise it is increased. The new loads sent to the load balancing system from the
environment are assumed to be greater than or equal to 0.

At termination, when new loads are not sent to the system, each node either has
a load greater than or equal to the threshold top or a load less than or equal to top:

i i V load i top i i V load i top

7.3 Problem Specification 257

7.3 Problem Specification

Let us now write the specification of the load balancing algorithm as an action sys-
tem using B AMN. For better readability, we restrict the graph of our machine to
a graph with two nodes, node 1 and node 2. Node 2 is considered to be the root. It
is, however, easy to extend the algorithm to contain more than two nodes. By ex-
pressing the loads as functions from nodes to natural numbers, we could even have
replication of nodes.

The load balancing algorithm is given as the abstract machine specification Ac-
tions1. The name Actions1 refer to “the actions in step 1”. Note that there is some
redundancy in some of the procedures: when a procedure has parameters, the type
of the parameter is restricted in a PRE-substitution. The procedure itself may have
a guard given in a SELECT-substitution. Sometimes the former condition implies
the latter, but here we prefer to keep this redundancy in order to be faithful to the
original action systems’ ideas [82], see e.g. the operation New Load 1P below.

MACHINE Actions1 (top)

top denotes the preferable load of a process

CONSTRAINTS
top 0

SEES
TaskProcessing

TaskProcessing contains the abstract type TASKS and operations for processing tasks,
described below

VARIABLES
load1 , load2 , task1 , task2

load1 and load2 denote the number of tasks in nodes 1 and 2

task1 and task2 denote tasks in nodes 1 and 2

INVARIANT
load1 load2 task1 TASKS task2 TASKS

INITIALISATION
load1 : 0 load2 : 0 task1 : TASKS task2 : TASKS

Initially all loads are 0 and each task variable is an arbitrary member of the abstract type
TASKS

OPERATIONS

258 7. Distributed Load Balancing

New loads ll are received from the environment via the global procedures New Load

New Load 1P(ll)
PRE ll THEN

SELECT ll 0 THEN load1 : ll
END

END ;
New Load 2P(ll)

PRE ll THEN
SELECT ll 0 THEN load2 : ll
END

END ;

Operations to be introduced later in the refinement:

Commit 12 skip ;
Commit 21 skip ;

Bal Loads Down 21 sends a task from node 2 down to the child node 1 when node 2 is
overloaded

Bal Loads Down 21
SELECT load1 top load2 top
THEN Process Task 1 (task2) load1 : load1 1 load2 : load2 1
END ;

Bal Loads Up 12 sends a task from node 1 up to the parent node 2 when node 1 is
overloaded

Bal Loads Up 12
SELECT load2 top load1 top
THEN Process Task 2 (task1) load2 : load2 1 load1 : load1 1
END ;

Operations to be introduced later in the refinement:

Release Nodes 12 skip ;
Release Nodes 21 skip ;

Exit Cond contains the exit condition of the action system for verification purposes

Exit Cond

7.3 Problem Specification 259

SELECT (load1 top load2 top) (load2 top load1 top)
THEN skip
END

END

The types of the tasks and the operations processing them are defined in the
machine TaskProcessing below. The operations are given as skip, since they are not
of interest to us. Because of this it is enough to give the machine TaskProcessing in
the SEES-clause of Actions1 above. In case these operations change the state of the
action system Actions1, the machine TaskProcessing would need to be given in the
INCLUDES-clause of Actions1.

MACHINE TaskProcessing
SETS

TASKS

TASKS is an abstract type of the tasks in the system

OPERATIONS

Process Task models a task being processed without specifying how

Process Task 1(task) PRE task TASKS THEN skip END ;
Process Task 2(task) PRE task TASKS THEN skip END

END

We consider a variable, an action, as well as a procedure with the first index i to
belong to node i. In a distributed system actions and procedures of a node refer only
to variables of that node. The load balancing algorithm Actions1 is not distributed,
since variables of both node 1 and node 2 are referenced in order to evaluate the
guards of the actions Bal Loads Down 21 and Bal Loads Up 12 of nodes 1 and
2. Furthermore, variables of both node 1 and node 2 are assigned to in these actions.

In this chapter we develop a distributed load balancing algorithm, where each
node only accesses its own variables. This development is performed by superposing
a set of mechanisms on the specification Actions1 and introducing procedures in
such a way that, for example, an action with references to variables of both nodes
1 and 2 can be separated into an action with references to the variables of node 1
and a procedure with references to the variables of node 2 called by this action. This
will result in an algorithm where each action and procedure only refers to variables
of a single node.

260 7. Distributed Load Balancing

7.4 Superposition Refinement
We use the superposition method to develop the distributed load balancing algo-
rithm. Superposition is a powerful program modularisation and structuring method
for developing parallel and distributed systems [5, 30, 44]. By applying the super-
position method to a program, we can increase the degree of parallelism of the pro-
gram and decentralise the control in the program. We add new functionality to the
algorithm while the original computation is preserved. The new functionality could,
for example, be an information gathering mechanism that replaces direct access to
shared variables.

The superposition method has been formalised as a program refinement rule
within the refinement calculus for action systems [8]. It is a special kind of data
refinement and it is expressed as below for action systems extended with procedures
[75].

Let A and A be the two action systems given in B AMN in Fig. 7.3. The global
variables are the imported variables u and the exported variables z. The imported
variables are assumed to be read-only variables in A and A . They are declared
in some other action system. The exported variables on the other hand are declared
and initialised inA andA . Since they are also accessible from other action systems,
they are declared in the machine GlobalVar z. The local variables x are declared in
both action systems. The superposition step adds new local variables y into A . The
purpose of these new local variables is to encode the superposed mechanism. This
is done by refining the global procedures Pi and the actions Ai. Additionally some
new actions B j can be introduced.

Informally, an action systemA is correctly data refined by another action system
A using the data invariant R when:

(S1) the initialisation in A establishes R for any initial values on u and f , where
f denotes all the formal parameters of all the global procedures declared in A ,

(S2) each body of a global procedure Pi is data refined by the corresponding proce-
dure body Pi using R, i.e., the procedure Pi has the same effect on the variables
x and z as Pi,

(S3) every action Ai is data refined by the corresponding Ai using R, i.e., the action
Ai has the same effect on the variables x and z as Ai,

(S4) every action Bi is a data refinement of the empty statement skip using R, i.e.,
these actions cannot modify the original variables x and z,

(S5) all actions in A are disabled whenever all actions in A are disabled when R
holds, i.e., whenever the computation of A terminates so does that of A ,

(S6) if a procedure Pi is enabled in A , so is Pi in A or then actions in A will
enable Pi , i.e., in case A can continue its computation by responding to a call
on Pi so can A or then Pi will become enabled in some later state, and

(S7) the computation denoted by the actions B1 Bk terminates provided R
holds, i.e., the new actions cannot by themselves introduce an infinite, non-
terminating computation into the system.

The correctness of the data refinement of the local procedures q is checked in step
(S3) by expanding the calling statements in the actions as described in Chapter 5.

7.4 Superposition Refinement 261

MACHINE A(u)

INCLUDES
GlobalVar z,
LocalProcA q, GlobalProcE r

VARIABLES
x

INVARIANT
I x z u

INITIALISATION
x : x0

OPERATIONS
P1 SELECT gP1

THEN sP1 END ;
Pn SELECT gPn

THEN sPn END ;
A1 SELECT gA1

THEN sA1 END ;
Al SELECT gAl

THEN sAl END ;
B1 skip ;

Bk skip ;
exit cond

SELECT gA1 gAl
THEN skip END

END

REFINEMENT A
REFINES

A

INCLUDES
GlobalVar z
LocalProcA q , GlobalProcE r

VARIABLES
x y

INVARIANT
R x y z u z z

INITIALISATION
x y : x0 y0

OPERATIONS
P1 SELECT gP1

THEN sP1 END ;
Pn SELECT gPn

THEN sPn END ;
A1 SELECT gA1

THEN sA1 END ;
Al SELECT gAl

THEN sAl END ;
B1 SELECT gB1

THEN sB1 END ;
Bk SELECT gBk

THEN sBk END ;
exit cond

SELECT gA1 gAl
gB1 gBk

THEN skip END
END

Fig. 7.3. Superposition Refinement Within the B-Method

The enabledness of the local procedures is checked within (S5). New procedures
are not introduced in this refinement step. They are assumed to be introduced in a
separate step where no refinements are involved.

Formally the superposition method is stated as a refinement rule as follows.

Definition 7.1 (Superposition refinement). Consider the abstract action systemA
and the concrete action system A as in Fig. 7.3. Let gA be the disjunction of the
guards of the actions Ai, gA the disjunction of the guards of the actions Ai and gB
the disjunction of the guards of the actions B j. Let further f denote all the formal
parameters of all the procedures Pi. Then A is superposition refined by A using
R x y z u f , denoted A R A , if

262 7. Distributed Load Balancing

S1 R x0 y0 z0 u f
S2 Pi R Pi for i 1 n
S3 Ai R Ai for i 1 l
S4 R Bi for i 1 k
S5 R gA gB gA
S6 R gPi

gPi WHILE gPi DO
CHOICE A1 OR OR Al OR B1 OR OR Bk

OR SELECT gA gB THEN END END
END T RUE for i 1 n

S7 R WHILE gB DO CHOICE B1 OR OR Bk END END T RUE

Intuitively, a superposition refinement is a data refinement. Hence, it can be justified
via the general theory on data refinement. In a superposition step, no new computa-
tions are added into the set of traces of an action system, as the observable behaviour
of a system w.r.t. the original variables is kept unchanged.

Generally, the data refinement of Condition (S3), Ai R Ai, holds if

A1 PRE gA THEN sAi END R sAi and
A2 R gAi gAi

This follows directly from the rule of data refining one action with another as de-
scribed in Chapter 5. Thus, according to (A1) Ai has the same effect on the program
variables as Ai has when R holds and, moreover, Ai establishes R. The Condition
(A2) requires that Ai is enabled whenever Ai is enabled provided R holds. The Con-
ditions (S2) and (S4) are defined in the same way.

The Conditions (S1) - (S3) follow directly from Definition 5.1 in Chapter 5. The
refinement of the auxiliary actions B j is expressed with the Condition (S4) and (S7).
These conditions have no corresponding conditions in Definition 5.1. Condition (S5)
is a modification of the Condition (4) in Definition 5.1 taking the auxiliary actions
into consideration. In Definition 5.1 Conditions (2) and (4) together state that the
guards of the procedures are not allowed to change during the refinement process.
Condition (S6), however, allows the guards of the procedure Pi to be strengthened
as long as the refined procedure Pi will be enabled within the refined action system
A . We can note that the superposition refinement A R A is the same as the data
refinement A R A when there are no auxiliary actions in A and the guards of the
procedures are not changed.

Successive superposition refinements of action systems can be modelled as fol-
lows:

If A0 R1 A1 and A1 R2 A2 then A0 R1 R2 A2

7.5 Superposition Step Within the B-Method 263

MACHINE GlobalVar z
VARIABLES

z
INVARIANT

T z
INITIALISATION

z : z0
OPERATIONS

assign z(y) PRE T y THEN z : y END
END

Fig. 7.4. Declaration of a Global Variable z of A

MACHINE LocalProcA q
OPERATIONS

q1 SELECT gQ1 THEN sQ1 END ;
...

ql SELECT gQl THEN sQl END
END

Fig. 7.5. The Local Procedures of A

7.5 Superposition Step Within the B-Method
We will now discuss how the superposition rule can be interpreted within the B-
Method, in order to be able to perform the derivation of the distributed load balanc-
ing algorithm using the B-Method.

Let us consider the specification A and its superposition refinement A given in
Fig. 7.3. The invariant R x y z u used in the refinement step is considered to in-
clude the invariant I x z u of the action system being refined. The exported global
variable z is included as the separate machine in Fig. 7.4, while the read-only global
variables u are given as parameters. The local procedures, q, and their refinements
are given in the separate abstract machines LocalProcA q and LocalProcA q , re-
spectively. These machines only contain an OPERATIONS-clause where each local
procedure qi is represented as an operation as in Fig. 7.5. The imported global pro-
cedures r are introduced via the machine GlobalProcE r in Fig. 7.6. Since only the
headers r of these procedures are of importance to us, they are defined as skip as
explained in Chapter 5.

In the B-Method all the refinements of a specification use the same operation
names as the specification, which means that all operations that will exist in the final
refinement also have to exist in the first specification. Since the operations B1 Bk
occur in the machine refinement A , they are introduced as skip-operations in the

264 7. Distributed Load Balancing

MACHINE GlobalProcE r
OPERATIONS

r skip
END

Fig. 7.6. The Imported Global Procedures of A

machine A . The operation exit cond is introduced in order to be able to prove Con-
dition (S5) of the superposition rule.

Let us now study how the proof rule for superposition refinement of action sys-
tems can be performed in the B-Method. The proof obligations (B1) - (B4) of the
B-Method are given in the Appendix. The first superposition Condition (S1) con-
cerning the initialisation is equivalent to the Condition (B2). The Conditions (S2) -
(S5) are implied by the Condition (B4) for the global procedures Pi, the actions Ai,
the auxiliary actions Bi and the exit condition, respectively. This correspondence is
discussed in more detail elsewhere [82]. The Conditions (S6) and (S7) of the su-
perposition rule require that some extra B constructs are generated. Therefore, these
conditions are treated more thoroughly below.

The Conditions (B1) and (B3) do not correspond to any of the conditions in
the superposition rule. Since the invariant I is included in the invariant R due to the
superposition refinement and the preconditions are equivalent, they trivially hold for
the embedded action system.

7.5.1 Enabledness of Global Procedures

Let us now proceed with the Condition (S6):

R gPi
gPi WHILE gPi DO

CHOICE A1 OR OR Al OR B1 OR OR Bk
OR SELECT gA gB THEN END END

END T RUE

For the weakest precondition of the WHILE-loop we need to find a variant such that
the invariant R implies that the variant is a natural number and that the variant is
decreased each time one of the actions in the loop is executed. These conditions are
created as proof obligations (T1) - (T5) for the WHILE-loop within the B-Method.
We, thus, need to make a separate refinement step within the B-Method using a
WHILE-loop to prove this condition. The proof obligations (T1) - (T5) are given in
the Appendix.

When checking the enabledness of the global procedures Pi in the B-Method we
create an abstract machine and a machine implementation for the Condition (S6).

7.5 Superposition Step Within the B-Method 265

IMPLEMENTATION NewGlobalProc
REFINES

OldGlobalProc
IMPORTS

AllActionSystem
OPERATIONS

EnableProc
VAR x y z e IN

x : x0 ; y : y0 ; z : z0 ; e : e0 ;
IF gPi THEN

WHILE gPi DO
x y z e AllActions x y z e

INVARIANT R x y z u Re z u e
VARIANT E e
END

END
END

END

Fig. 7.7. Construct in B for Checking Enabledness of Global Procedures

The abstract machine specification OldGlobalProc has the invariant R gPi and
one operation, skip. Its machine implementation NewGlobalProc will then have
the invariant TRUE and a WHILE-loop as the refined operation. The condition on
the guard gPi is automatically generated from an IF-substitution (observe the slight
redundancy in the machine, but not in the Condition (S6)). This implementation is
generated considering the refined machine A and is shown in Fig. 7.7.
A new expression E e operating on the variables e is created as the variant. The
invariant R x y z u of the Abstract Machine refinement A is included in the in-
variant of the loop. The relation Re z u e gives the definition of the variant and is
also included in the invariant. Furthermore, the initialisation of the refinement A
is the initialisation of the loop. The negation of the guard of the global procedure,

gPi , forms the WHILE-loop condition. Hence, a separate implementation machine
is needed for each global procedure. The non-deterministic choice of the actions in
the Condition (S6) is represented as a call to the operation AllActions in the in-
cluded machine specification AllActionSystem. The operation AllActions shown in
Fig. 7.8 is a SELECT-substitution containing all the operations of A , i.e., the non-
deterministic choice of the actions in A .

The Condition (S6) in the superposition rule can now be expressed in terms of
proof obligations generated within the B-Method:

S6 T 2 T4
The Conditions (T1), (T3), and (T5) do not directly correspond to any condition

in the superposition rule. The Condition (T1) is partly proved by proving the Condi-
tion (B2) and (T3) by proving (B4) for Ai and Bi, but additionally they check that the
variant establishes the invariant Re z u e in the initialisation and in the operations

266 7. Distributed Load Balancing

xo yo zo AllActions x y z
PRE x y z Types THEN

SELECT gA1 THEN sA1
WHEN gA2 THEN sA2
...

WHEN gAl THEN sAl
WHEN gB1 THEN sB1
...

WHEN gBk THEN sBk
WHEN gA1 gAl gB1 gBk

THEN skip
END

END

Fig. 7.8. The Non-Deterministic Choice Between all the Operations in the Refined Machine

Ai and Bi. Since the postcondition of the loop is considered to be TRUE here, the
Condition (T5) holds trivially.

7.5.2 Termination of Auxiliary Actions

The last condition, (S7), of the superposition rule:

R WHILE gB DO CHOICE B1 OR OR Bk END END T RUE

can be checked within the B-Method in a similar way as the enabledness of the
global procedures, Condition (S6). Thus, we also create an abstract machine speci-
fication and a machine implementation for the Condition (S7).

Here, the abstract machine specification has TRUE as the invariant and skip as
the initialisation and as the only operation. The machine implementation will again
have the invariant TRUE and a WHILE-loop as the refined operation. This refined
operation, TermOfActions, is given in Fig. 7.9. The operation TermOfActions corre-
sponds to the operation EnableProc previously created for the Condition (S6). We
can, however, note that the WHILE-loop condition here constitutes of the disjunc-
tion of the guards of the auxiliary actions. Furthermore, the operation AuxAction
called from the WHILE-loop gives the non-deterministic choice merely of the aux-
iliary actions Bi. This operation is represented as a SELECT-substitution in the same
way as the operation AllAction for the Condition (S6).

The Condition (S7) in the superposition rule can now as the Condition (S6) be
translated into terms of proof obligations generated in the B-Method by:

S7 T 2 T4

Hence, there are corresponding proof obligations in the B-Method for each Con-
dition (S1)-(S7) in the superposition rule.

7.6 Refinement Step 1: Distributing Loads 267

TermOfActions
VAR x y z e IN

x : x0 ; y : y0 ; z : z0 ; e : e0 ;
WHILE gB1 gBk DO

x y z e AuxActions x y z e
INVARIANT R x y z u Re z u e
VARIANT E e
END

END

Fig. 7.9. Operation for Checking Termination of Auxiliary Actions

7.6 Refinement Step 1: Distributing Loads

Let us now study the development of the distributed load balancing algorithm using
the superposition refinement. We want to have a distributed load balancing algo-
rithm where each action and procedure of a node refer only to the variables of that
node. In order to achieve this from the machine specification Actions1, we have
to distribute the loads as follows. We introduce the procedures Trans Task 1P and
Trans Task 2P modelling the links between node 1 and node 2. They are called
from the actions Bal Loads Down 21 and Bal Loads Up 12, respectively. Let us,
for example, consider the action Bal Loads Down 21. This action is modified to
send a task of node 2 to the neighbouring node 1 via the procedure Trans Task 1P
and at the same time decrease load2 of node 2 by one. Node 1 then increases its
variable load1 upon receiving the task via this procedure. Hence, we have the as-
signment to load2 in the action Bal Loads Down 21 of node 2 and the assign-
ment to load1 in the procedure Trans Task 1P of node 1 called from the action
Bal Loads Down 21, and we have distributed the variable load.

The local procedures Trans Task 1P and Trans Task 2P are introduced as the
same kind of operations within the B-Method as the actions and the global proce-
dures. Since these local procedures are called from the actions in Actions1P, we
introduce a new machine, Procedures1, only containing these procedures. This ma-
chine is then included in the machine Actions1P. The global procedures are only
called from other action systems than Actions1P and can therefore be operations
in Action1P. This corresponds well to proof obligations in the superposition refine-
ment step, where the global procedures are proved with the Conditions (S2) and (S6)
and the local procedures are proved via the Conditions (S3) and (S5) for the actions.
An overview of this step is given in Fig. 7.10. The refinement relation is given as a
“staircase”, while the arrows show which machines are included in others. The bold
lines denote the current step.

The machine refinement Actions1P representing the global procedures and the
actions of the load balancing algorithm is given below.

REFINEMENT Actions1P
REFINES

268 7. Distributed Load Balancing

Actions1P

Actions1

Procedures1

Fig. 7.10. Overview of the Derivation After the First Refinement Step

Actions1
SEES

TaskProcessing
INCLUDES

Procedures1

The machine Procedures1 contains the local procedures as operations

VARIABLES
load1 , load2 , task1 , task2

INVARIANT
load1 load2 task1 TASKS task2 TASKS

INITIALISATION
load1 : 0 load2 : 0 task1 : TASKS task2 : TASKS

OPERATIONS
New Load 1P(ll)

PRE ll THEN
SELECT ll 0 THEN load1 : ll
END

END ;
New Load 2P(ll)

PRE ll THEN
SELECT ll 0 THEN load2 : ll
END

END ;
Commit 12 skip ;
Commit 21 skip ;

Bal Loads Down 21 of node 2 sends task2 to node 1 and order node 1 to change load1
via the procedure Trans Task 1P, when node 2 is overloaded

Bal Loads Down 21
SELECT load1 top load2 top
THEN load1 Trans Task 1P (2 , task2 , load1) ; load2 : load2 1
END ;

7.6 Refinement Step 1: Distributing Loads 269

Bal Loads Up 12 of node 1 sends task1 to node 2 to increase load2 via the procedure
Trans Task 2P

Bal Loads Up 12
SELECT load2 top load1 top
THEN load2 Trans Task 2P (1 , task1 , load2) ; load1 : load1 1
END ;

Release Nodes 12 skip ;
Release Nodes 21 skip ;
Exit Cond

SELECT (load1 top load2 top) (load2 top load1 top)
THEN skip
END

END

The new local procedures are given as follows:

MACHINE Procedures1
SEES

TaskProcessing

OPERATIONS

The procedure Trans Task processes the task, taskm that it receives from node mm and
increases its load by 1

load1 0 Trans Task 1P(mm , taskm , load1)
PRE mm 2 taskm TASKS load1 THEN

Process Task 1 (taskm) load1 0 : load1 1
END ;

load2 0 Trans Task 2P(mm , taskm , load2)
PRE mm 1 taskm TASKS load2 THEN

Process Task 2 (taskm) load2 0 : load2 1
END

END

We can note that the new machine Procedures1 does not have a state space
of its own. In this machine the state space of the action system is changed via
the parameters of the procedures. The variable load1, therefore, is still an input
as well as an output parameter in the procedure call Trans Task 1P in action
Bal Loads Down 21, even if we claim that we have distributed its assignment com-
pletely into Trans Task 1P.

Expanding the procedure calls in the two operations Bal Loads Down 21 and
Bal Loads Up 12 in the machine refinement Actions1P results in the correspond-
ing operations in the machine specification Actions1. We actually only write the
machine in a different form, when we introduce new procedures. Thus, Actions1P
and Procedures1P together is a re-written form of Actions1.

270 7. Distributed Load Balancing

Actions2

Actions1P

Actions1

Procedures2

Procedures1

Aux_Actions2

All_Actions2 Proc_Guard2

New_Actions2

Proc_Guard1P

No_Actions1P

Fig. 7.11. Overview of the Derivation After the Second Refinement Step

In this step we do not introduce any auxiliary actions nor do we change the
guards of the global procedures. Thus, we do not need to introduce any extra con-
structs in the B-Method to prove this refinement step. The five proof obligations gen-
erated for this refinement step were all trivial and were automatically discharged.

7.7 Refinement Step 2: Estimation of Neighbouring Loads

As the second refinement step we add a mechanism to estimate the loads of each
neighbour. The more knowledge a node has about its neighbours the more precisely
it can perform its share of the load balancing independently. Thus, this step will
make the control more decentralised and distributed in the system.

The load estimation can be performed by adding the variables estim and rec to
the algorithm. For example, the variable estim12 denotes the estimate that node 1
has about the load in the neighbouring node 2. The boolean variable rec12 has the
value TRUE, when node 2 is committed to node 1 and node 1 has the right estimate
of load2, otherwise it has the value FALSE. The values of estim21 and rec21 are
defined in the same way. This refinement step is a superposition refinement.

Fig. 7.11 gives an overview of the load balancing system at the second refine-
ment step. Via the machines Actions2 and Procedures2 we can check the refine-
ment of the initialisation, the actions, the procedures and the exit condition. The
enabledness of the procedure guards is checked via the machines Proc Guard1P,
Proc Guard2 as well as All Actions2 and the termination condition via the ma-
chines No Actions1P, New Actions2 as well as Aux Actions2.

7.7.1 Refinement of Actions and Procedures

Let us consider the refined load balancing algorithm in Actions2 and Procedures2.
Initially the estimate estim is 0 and the variable rec has the value FALSE. We split the
load balancing into three phases in this step. In the first phase nodes 1 and 2 commit
to each other for changing loads and update their estimates, estim12 and estim21,
to correspond to the loads load2 and load1, respectively. In the second phase nodes
1 and 2 change their loads as long as there is an imbalance between them. In this
phase the estimates of nodes 1 and 2 are also updated. Thus, a node will always have
the right estimate of the neighbour that it is changing loads with. In the third phase
when the loads are balanced between nodes 1 and 2, the commitment between them

7.7 Refinement Step 2: Estimation of Neighbouring Loads 271

is released and they are free to commit to other neighbours. Furthermore, a node
can only be given a new load from the environment, when it is not involved in load
balancing with some other node.

The load balancing, the second phase, in the refined action system is han-
dled via the old operations Bal Loads Down 21 and Bal Loads Up 12 as well
as Trans Task 1P and Trans Task 2P. These are modified to update the load esti-
mates estim21 and estim12. For the first and the third phase we need to introduce the
auxiliary actions Commit and Release Nodes. Each node i should have the auxiliary
actions Commit ij and Release Nodes ij for each outgoing edge i j and each in-
coming edge j i . In Actions2, where E 1 2 , node 1 has one outgoing edge
and node 2 has one incoming edge. Thus, the auxiliary operations are Commit 12
and Release Nodes 12 of node 1, and Commit 21 and Release Nodes 21 of node
2.

The refined machine Actions2 can now be given as follows:

REFINEMENT Actions2
REFINES

Actions1P
SEES

Bool TYPE , TaskProcessing
INCLUDES

Procedures2
VARIABLES

load1 , load2 , task1 , task2 , estim12 , estim21 , rec12 , rec21

estim12 denotes the estimate that node 1 has about the load in node 2.

rec12 has the value TRUE when node 2 is committed to node 1, otherwise FALSE.

INVARIANT
load1 load2 task1 TASKS task2 TASKS

estim12 estim21 rec12 BOOL rec21 BOOL
(rec12 TRUE load2 estim12)
(rec21 TRUE load1 estim21)

Node 1 has the right estimate of the load in node 2, load2 estim12 , when node 2 is
committed to node 1, rec12 TRUE .

INITIALISATION
load1 , load2 : 0 , 0 task1 : TASKS task2 : TASKS

estim12 , estim21 : 0 , 0 rec12 , rec21 : FALSE , FALSE

Initially the estimates are set to 0 and no nodes are committed.

OPERATIONS

272 7. Distributed Load Balancing

If node 1 is not committed to any neighbour, it can receive a new load from the environ-
ment via New Load 1P.

New Load 1P(ll)
PRE ll THEN

SELECT rec12 FALSE rec21 FALSE ll 0
THEN load1 : ll
END

END ;
New Load 2P(ll)

PRE ll THEN
SELECT rec12 FALSE rec21 FALSE ll 0
THEN load2 : ll
END

END ;

Commit 12 can be executed if
- there is an estimated imbalance between the loads of nodes 1 and 2 or
- node 2 does not have a good enough estimate of load1 or
- node 2 is already committed to node 1.
Node 1 should not be comitted to node 2 upon execution.
The estimate estim21 is updated and node 1 becomes committed to node 2.
Note that A B C A B C below.

Commit 12
SELECT

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21)
rec12 TRUE rec21 FALSE

THEN estim21 : load1 ; rec21 : TRUE
END ;

Commit 21
SELECT

Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12)
rec21 TRUE rec12 FALSE

THEN estim12 : load2 ; rec12 : TRUE
END ;

Bal Loads Down 21 can be executed when nodes 1 and 2 are committed and node 2 is
overloaded. When the task, task2, is sent to node 1 the loads and estimates are updated in
the nodes 1 and 2.

Bal Loads Down 21
SELECT estim21 top load2 top rec21 TRUE
THEN

load1 , estim12 Trans Task 1P (2 , task2 , load1 , estim12 , rec12) ;
load2 : load2 1 ; estim21 : estim21 1

END ;

7.7 Refinement Step 2: Estimation of Neighbouring Loads 273

Bal Loads Up 12
SELECT estim12 top load1 top rec12 TRUE
THEN

load2 , estim21 Trans Task 2P (1 , task1 , load2 , estim21 , rec21) ;
load1 : load1 1 ; estim12 : estim12 1

END ;

Release Nodes 12 can be executed if nodes 1 and 2 are committed to each other and
there is no imbalance between these nodes. The nodes are released from the commitment
by assigning FALSE to the rec-variables.

Release Nodes 12
SELECT (Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE
THEN rec12 : FALSE ; rec21 : FALSE
END ;

Release Nodes 21
SELECT (Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
THEN rec21 : FALSE ; rec12 : FALSE
END ;

Exit Cond
SELECT

Guard Commit 12 Guard Commit 21
Guard Bal Load Down 21
Guard Bal Load Up 12
Guard Release Nodes 12 Guard Release Nodes 21

THEN skip
END

DEFINITIONS
Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21) rec12 TRUE
rec21 FALSE ;

Guard Commit 21
Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12) rec21 TRUE

rec12 FALSE ;
Guard Bal Load Down 21

estim21 top load2 top rec21 TRUE rec12 TRUE ;
Guard Bal Load Up 12

estim12 top load1 top rec12 TRUE rec21 TRUE ;
Guard Release Nodes 12

(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE ;
Guard Release Nodes 21

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
END

In this step we extend the invariant of Actions1P with the definition of the new
variables, estim and rec to get the invariant of Actions2. Except for the types of the
new variables, the invariant in Actions2 should also state that when rec ij holds,

274 7. Distributed Load Balancing

node i has the right estimate of load j:

i j i j V i j E j i E
rec i j T RUE load j estim i j

considering that E 1 2 . In case there were more edges in E than we consider
here, the invariant would also need to state that when rec ij has the value TRUE,
i.e., node j is committed to node i, the nodes i and j cannot be committed to any
other node. This can formally be given as:

i j i j V i j E j i E rec i j T RUE
k k V i k E k i E k j

rec ik FALSE rec ki FALSE
k k V j k E k j E k i

rec jk FALSE rec k j FALSE

The procedures Trans Task 1P and Trans Task 2P are turned into guarded pro-
cedures in this refinement step. Since they model a node receiving a task from a
neighbouring node, the sending node must be committed to this node for the proce-
dure to be enabled. The local procedures are given as follows:

MACHINE Procedures2
SEES

Bool TYPE , TaskProcessing

OPERATIONS

Trans Task 1P receives a task from node mm 2 and updates the load of node 1 as
well as its estimate of the load of the sender, if the sender is committed to node 1

load1 0 , estim12 0 Trans Task 1P(mm , taskm , load1 , estim12 , rec12)
PRE mm 2 taskm TASKS load1 estim12 rec12 BOOL
THEN

SELECT rec12 TRUE
THEN

Process Task 1 (taskm)
load1 0 : load1 1 estim12 0 : estim12 1

END
END ;

load2 0 , estim21 0 Trans Task 2P(mm , taskm , load2 , estim21 , rec21)
PRE mm 1 taskm TASKS load2 estim21 rec21 BOOL
THEN

SELECT rec21 TRUE
THEN

Process Task 2 (taskm)
load2 0 : load2 1 estim21 0 : estim21 1

END

7.7 Refinement Step 2: Estimation of Neighbouring Loads 275

END
END

We have proven the Conditions (S1) - (S5) of the superposition refinement. Out
of the 22 obligations generated, only the two concerning the operation Exit cond
could not be discharged automatically. By supplying the tool with some logical
rules that simplify these obligations, these can also be proved. The superposition
Conditions (S6) and (S7) will be treated in the following subsections.

7.7.2 Refining the Guards of the Global Procedures

A node cannot receive a new load from the environment, if it is comitted to change
loads with a neighbouring node. Thus, when introducing the load estimates and
splitting up the load balancing in this refinement step, the guards of the global pro-
cedures New Loads are strengthened. Because of this the enabledness of the global
procedures must be checked explicitly via the Condition (S6). Since the guards of
the procedures New Load 1P and New Load 2P are identical, we only need to
check one of them.

We first create the machine specification Proc Guard1P. The invariant of the
machine Actions2 and the guard of the procedure New Load in the machine Ac-
tions1P form the invariant of the new machine. In the OPERATIONS-clause there
is only a skip-operation.

MACHINE Proc Guard1P (top)
CONSTRAINTS

top 0
SEES

Bool TYPE , TaskProcessing
VARIABLES

load1 , load2 , task1 , task2 , estim12 , estim21 , rec12 , rec21 , ll
INVARIANT

The invariant of Actions2:

This invariant is given here for verification purposes and forms the antecedent of the
proof rule (S6) checking enabledness of global procedures R gP

load1 load2 task1 TASKS task2 TASKS
estim12 estim21 rec12 BOOL rec21 BOOL
(rec12 TRUE load2 estim12)
(rec21 TRUE load1 estim21)

The guard of procedure New Load in Actions1P:

276 7. Distributed Load Balancing

ll ll 0
INITIALISATION

load1 , load2 : 0 , 0 task1 : TASKS task2 : TASKS ll :
estim12 , estim21 : 0 , 0 rec12 , rec21 : FALSE , FALSE

Given in order to establish the invariant

OPERATIONS

Proc Enabled to be introduced as a check for enabledness of the global procedure
New Load

Proc Enabled skip
END

Next, we create a machine implementation Proc Guard2 from the actions and
the global procedures of the refinement machine Actions2. The negation of the guard
of the procedure New Load 1P is given as the WHILE-condition and the operation
All Actions in machine All Actions2 is called from the loop. This operation consists
of a non-deterministic choice of all the actions in Actions2.

IMPLEMENTATION Proc Guard2
REFINES

Proc Guard1P
SEES

Bool TYPE , TaskProcessing , Functions
IMPORTS

All Actions2

All Actions2 contains all the actions of Actions2

OPERATIONS
Proc Enabled

VAR load1 , load2 , estim12 , estim21 , rec12 , rec21 , ll , C1 , C2 , C3 IN

The initialisation of Actions2:

load1 : 0 ; load2 : 0 ; estim12 : 0 ; estim21 : 0 ;
rec12 : FALSE ; rec21 : FALSE ; ll : 0 ;

C1 is 1 if rec12 has the value TRUE, and 0 otherwise
C2 is 1 if rec21 has the value TRUE, and 0 otherwise

7.7 Refinement Step 2: Estimation of Neighbouring Loads 277

C3 models the imbalance among the loads
These variables are updated each time the loop is executed

C1 BTS BOOL (rec12) ; C2 BTS BOOL (rec21) ;
C3 imbalance (load1 , load2 , top , estim12 , estim21 , rec12 , rec21) ;
IF (rec12 FALSE rec21 FALSE ll 0) THEN

Perform only if the global procedure New Load in Actions2 is not directly enabled

WHILE (rec12 FALSE rec21 FALSE ll 0) DO

Execute as long as the global procedure New Load is not enabled

load1 , load2 , estim12 , estim21 , rec12 , rec21 , C3
All Actions (load1 , load2 , estim12 , estim21 , rec12 , rec21 , top , C3) ;
C1 BTS BOOL (rec12) ; C2 BTS BOOL (rec21)

INVARIANT

The invariant of Actions2:

load1 load2
estim12 estim21 rec12 BOOL rec21 BOOL
(rec12 TRUE load2 estim12)
(rec21 TRUE load1 estim21)
ll

The properties of the variant, explained above

C1 C2 C3
(rec12 TRUE C1 1) (rec12 FALSE C1 0)
(rec21 TRUE C2 1) (rec21 FALSE C2 0)

VARIANT

The variant decreases each time the loop is executed:
2 C1 C2 decreases each time a node becomes committed, and

C3 decreases after each balance action and at release of commitment between two nodes

2 (C1 C2) C3
END

END
END

END

The non-deterministic choice of the actions in the refinement machine Actions2
is given in the machine All Actions2 below. The tasks are declared within this spec-

278 7. Distributed Load Balancing

ification machine, even if the rest of the variables are declared within the implemen-
tation machine Proc Guard2. This is due to the fact that the tasks are treated in a
non-deterministic manner in the derivation of the load balancing algorithm and the
machine implementation does not allow non-determinism. We can observe that we
do not use the implementation machine in the usual way here, but in such a way
that we are able to generate the right proof obligations for proving the superposition
refinement.

MACHINE All Actions2
SEES

Bool TYPE , TaskProcessing
INCLUDES

Procedures2
VARIABLES

task1 , task2

The variable task is treated non-deterministically and is therefore declared here

INVARIANT
task1 TASKS task2 TASKS

INITIALISATION
task1 : TASKS task2 : TASKS

OPERATIONS

All Actions represents the non-deterministic choice among all the actions in the refined
machine Actions2

load1 0 , load2 0 , estim12 0 , estim21 0 , rec12 0 , rec21 0 , C3 0
All Actions(load1 , load2 , estim12 , estim21 , rec12 , rec21 , top , C3)

PRE load1 load2 estim12 estim21
rec12 BOOL rec21 BOOL top 1 C3

THEN

Commit 12 Commit 21 Bal Loads Down 21 Bal Loads Up 12
Release Nodes 12 Release Nodes 21 Exit Cond

SELECT
Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21)

rec12 TRUE rec21 FALSE
THEN estim21 0 : load1 rec21 0 : TRUE
WHEN

Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12)

7.7 Refinement Step 2: Estimation of Neighbouring Loads 279

rec21 TRUE rec12 FALSE
THEN estim12 0 : load2 rec12 0 : TRUE
WHEN

estim21 top load2 top rec21 TRUE
THEN

load1 0 , estim12 0 Trans Task 1P (2 , task2 , load1 , estim12 , rec12)
load2 0 : load2 1 estim21 0 : estim21 1
C3 0 : C3 1

WHEN
estim12 top load1 top rec12 TRUE

THEN
load2 0 , estim21 0 Trans Task 2P (1 , task1 , load2 , estim21 , rec21)

load1 0 : load1 1 estim12 0 : estim12 1
C3 0 : C3 1

WHEN
(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE

THEN rec12 0 : FALSE rec21 0 : FALSE C3 0 : 0
WHEN

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
THEN rec21 0 : FALSE rec12 0 : FALSE C3 0 : 0
WHEN

Guard Commit 12 Guard Commit 21
Guard Bal Load Down 21
Guard Bal Load Up 12
Guard Release Nodes 12 Guard Release Nodes 21

THEN skip
END

END
DEFINITIONS

Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21) rec12 TRUE
rec21 FALSE ;

Guard Commit 21
Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12) rec21 TRUE

rec12 FALSE ;
Guard Bal Load Down 21

estim21 top load2 top rec21 TRUE rec12 TRUE ;
Guard Bal Load Up 12

estim12 top load1 top rec12 TRUE rec21 TRUE ;
Guard Release Nodes 12

(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE ;
Guard Release Nodes 21

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
END

In the variant, (2 - (C1 + C2)) + C3, of the WHILE-loop we state that the system
becomes more balanced each time the balancing actions Bal Loads Down 21 and
Bal Loads Up 12 are executed. The variable C3 represents this decreasing imbal-
ance in the following way. It is decreased by one after each balancing operation and,

280 7. Distributed Load Balancing

furthermore, by three after the commitment between the nodes has been released.
This is expressed in the machine Functions.

MACHINE Functions
SEES

Bool TYPE

OPERATIONS

The variable C3 is part of the loop variant for the load balancing algorithm.
It records the decrease in the imbalance of the system during execution.
When a commitment is released it is decreased by 3.

C3 imbalance(load1 , load2 , top , estim12 , estim21 , rec12 , rec21)

PRE load1 load2 top 1
estim12 estim21 rec12 BOOL rec21 BOOL

THEN
IF load1 top load2 top THEN C3 : 3 (top load2)
ELSIF load1 top load2 top THEN C3 : 3 (top load1)
ELSIF (load1 estim21) (load2 estim12)

rec12 TRUE rec21 TRUE THEN C3 : 3
ELSE C3 : 0
END

END
END

The 59 proof obligations generated for the machine Proc Guards2 form the en-
abledness condition for the global procedure New Load in the machine refinement
Actions2. Of these proof obligations only 10 could not be discharged automatically.
The definition of the variant gives the extra rules needed to discharge these proof
obligations.

7.7.3 Termination of Auxiliary Actions

The termination of the auxiliary actions Commit and Release Nodes needs to be
checked with Condition (S7) in order for Actions2 to be a superposition refinement
of Actions1P. This condition is checked within the B-Method by first creating a
machine No Actions1P to represent the non-existence of the auxiliary actions of
Actions2 in Actions1P.

MACHINE No Actions1P (top)
CONSTRAINTS

top 0

OPERATIONS

7.7 Refinement Step 2: Estimation of Neighbouring Loads 281

Aux Actions Term models the termination of no auxiliary actions in Actions1P

Aux Actions Term skip
END

Furthermore, we create the implementation machine New Actions2 to model the
termination of the auxiliary actions in Actions2. The same invariant and variant are
used here as previously when checking the guards of the global procedures.

IMPLEMENTATION New Actions2
REFINES

No Actions1P
SEES

Bool TYPE , Functions
IMPORTS

Aux Actions2

Aux Actions2 contains the auxiliary actions of Actions2

OPERATIONS
Aux Actions Term

VAR load1 , load2 , estim12 , estim21 , rec12 , rec21 , C1 , C2 , C3 IN

The initialisation of Actions2:

load1 : 0 ; load2 : 0 ; estim12 : 0 ; estim21 : 0 ;
rec12 : FALSE ; rec21 : FALSE ;

C1 is 1 if rec12 has the value TRUE, and 0 otherwise
C2 is 1 if rec21 has the value TRUE, and 0 otherwise
C3 models the imbalance among the loads
These variables are updated each time the loop is executed

C1 BTS BOOL (rec12) ; C2 BTS BOOL (rec21) ;
C3 imbalance (load1 , load2 , top , estim12 , estim21 , rec12 , rec21) ;
WHILE Guard Commit 12 Guard Commit 21

Guard Release Nodes 12 Guard Release Nodes 21 DO

Execute as long as one of the auxiliary actions are enabled

estim12 , estim21 , rec12 , rec21 , C3
Aux Actions (load1 , load2 , estim12 , estim21 , rec12 , rec21 , top , C3) ;
C1 BTS BOOL (rec12) ; C2 BTS BOOL (rec21)

INVARIANT

282 7. Distributed Load Balancing

The invariant of Actions2:

load1 load2
estim12 estim21 rec12 BOOL rec21 BOOL
(rec12 TRUE load2 estim12)
(rec21 TRUE load1 estim21)

The properties of the variant, as explained above:

C1 C2 C3
(rec12 TRUE C1 1) (rec12 FALSE C1 0)
(rec21 TRUE C2 1) (rec21 FALSE C2 0)

VARIANT

The variant decreases each time the loop is executed:
2 C1 C2 decreases each time a node becomes committed and

C3 decreases at release of commitment between two nodes

2 (C1 C2) C3
END

END
DEFINITIONS

Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21) rec12 TRUE
rec21 FALSE ;

Guard Commit 21
Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12) rec21 TRUE

rec12 FALSE ;
Guard Release Nodes 12

(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE ;
Guard Release Nodes 21

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
END

The non-deterministic choice of the auxiliary operations in the refinement ma-
chine Actions2 is given in the machine Aux Actions2 below.

MACHINE Aux Actions2
SEES

Bool TYPE

OPERATIONS

7.7 Refinement Step 2: Estimation of Neighbouring Loads 283

Aux Actions represents the non-deterministic choice of all the auxiliary actions in the
refined machine Actions2

estim12 0 , estim21 0 , rec12 0 , rec21 0 , C3 0
Aux Actions(load1 , load2 , estim12 , estim21 , rec12 , rec21 , top , C3)

PRE load1 load2 estim12 estim21
rec12 BOOL rec21 BOOL top 1 C3

THEN

Commit 12 Commit 21 Release Nodes 12 Release Nodes 21

SELECT
Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21)

rec12 TRUE rec21 FALSE
THEN estim21 0 : load1 rec21 0 : TRUE
WHEN

Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12)
rec21 TRUE rec12 FALSE

THEN estim12 0 : load2 rec12 0 : TRUE
WHEN

(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE
THEN rec12 0 : FALSE rec21 0 : FALSE C3 0 : 0
WHEN

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
THEN rec21 0 : FALSE rec12 0 : FALSE C3 0 : 0
END

END
DEFINITIONS

Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top)
END

The 28 proof obligations generated by the B-Toolkit imply the Condition (S7) in
the superposition rule. By also discharging these proof obligations we have proved
the superposition step completely. For this construct only three of the generated
proof obligations could not be discharged automatically. According to the definition
of the variant they are, however, trivially true and can be discharged with the help
of the interprover.

7.7.4 Introducing New Procedures

The auxiliary actions Commit 12 and Release Nodes 12 of node 1 assign variables
of both node 1 and node 2, i.e., the variables with the first index 1 and 2. Since the
actions of each node in a distributed system should only assign variables of the node

284 7. Distributed Load Balancing

Actions2P

Actions2

Actions1P

Actions1

Procedures2P

Procedures2

Procedures1

Aux_Actions2

All_Actions2 Proc_Guard2

New_Actions2

Proc_Guard1P

No_Actions1P

Fig. 7.12. Overview of the Derivation After the new Procedures are Introduced in the Second
Refinement Step

itself, we create two new procedures Trans Load and Release Refl for each node in
the network. The procedure Trans Load models a link for sending loads between
nodes, while the procedure Release Refl synchronises the release of a commitment
between two nodes. All the assignments to the variables of for example node 2 in
the auxiliary actions Commit 12 and Release Nodes 12 of node 1 are moved to the
procedures Trans Load 2P and Release Refl 2P, respectively. These assignments
are replaced by calls to the procedures in the corresponding actions. Hence, we have
taken yet another step towards a distributed system.

The actions are now given in the machine Actions2P and the procedures in the
machine Procedures2P. Fig. 7.12 shows how these machines are related to the pre-
viously developed system.

REFINEMENT Actions2P
REFINES

Actions2
SEES

Bool TYPE , TaskProcessing
INCLUDES

Procedures2P
VARIABLES

load1 , load2 , task1 , task2 , estim12 , estim21 , rec12 , rec21
INVARIANT

load1 load2 task1 TASKS task2 TASKS
estim12 estim21 rec12 BOOL rec21 BOOL
(rec12 TRUE load2 estim12)
(rec21 TRUE load1 estim21)

INITIALISATION
load1 , load2 : 0 , 0 task1 : TASKS task2 : TASKS

estim12 , estim21 : 0 , 0 rec12 , rec21 : FALSE , FALSE

OPERATIONS
New Load 1P(ll)

PRE ll THEN
SELECT rec12 FALSE rec21 FALSE ll 0
THEN load1 : ll

7.7 Refinement Step 2: Estimation of Neighbouring Loads 285

END
END ;

New Load 2P(ll)
PRE ll THEN

SELECT rec12 FALSE rec21 FALSE ll 0
THEN load2 : ll
END

END ;

Commit 12 transfers the load of node 1 to node 2 for updating via procedure
Trans Load 2P

Commit 12
SELECT

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21)
rec12 TRUE

THEN estim21 , rec21 Trans Load 2P (1 , load1 , rec21)
END ;

Commit 21
SELECT

Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12)
rec21 TRUE

THEN estim12 , rec12 Trans Load 1P (2 , load2 , rec12)
END ;

Bal Loads Down 21
SELECT estim21 top load2 top rec21 TRUE
THEN

load1 , estim12 Trans Task 1P (2 , task2 , load1 , estim12 , rec12) ;
load2 : load2 1 ; estim21 : estim21 1

END ;
Bal Loads Up 12

SELECT estim12 top load1 top rec12 TRUE
THEN

load2 , estim21 Trans Task 2P (1 , task1 , load2 , estim21 , rec21) ;
load1 : load1 1 ; estim12 : estim12 1

END ;

Release Nodes 12 releases the commitment in node 1 and requests node 2 to do the same
via procedure Release Refl 2P

Release Nodes 12
SELECT (Imbalance (load1 , estim12)) rec12 TRUE
THEN rec12 : FALSE ; rec21 Release Refl 2P (1 , rec21)
END ;

Release Nodes 21
SELECT (Imbalance (estim21 , load2)) rec21 TRUE
THEN rec21 : FALSE ; rec12 Release Refl 1P (2 , rec12)
END ;

286 7. Distributed Load Balancing

Exit Cond
SELECT

Guard Commit 12 Guard Commit 21
Guard Bal Load Down 21
Guard Bal Load Up 12
Guard Release Nodes 12 Guard Release Nodes 21

THEN skip
END

DEFINITIONS
Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , estim21) rec12 TRUE
rec21 FALSE ;

Guard Commit 21
Imbalance (estim21 , load2) BadlyEstimated (load2 , estim12) rec21 TRUE

rec12 FALSE ;
Guard Bal Load Down 21

estim21 top load2 top rec21 TRUE rec12 TRUE ;
Guard Bal Load Up 12

estim12 top load1 top rec12 TRUE rec21 TRUE ;
Guard Release Nodes 12

(Imbalance (load1 , estim12)) rec12 TRUE rec21 TRUE ;
Guard Release Nodes 21

(Imbalance (estim21 , load2)) rec21 TRUE rec12 TRUE
END

The new procedures Trans Load and Release Refl are added to the procedures
in Procedures2 to form the machine Procedures2P.

MACHINE Procedures2P
SEES

Bool TYPE , TaskProcessing

OPERATIONS
load1 0 , estim12 0 Trans Task 1P(mm , taskm , load1 , estim12 , rec12)

PRE mm 2 taskm TASKS load1 estim12 rec12 BOOL
THEN

SELECT rec12 TRUE
THEN

Process Task 1 (taskm)
load1 0 : load1 1 estim12 0 : estim12 1

END
END ;

load2 0 , estim21 0 Trans Task 2P(mm , taskm , load2 , estim21 , rec21)
PRE mm 1 taskm TASKS load2 estim21 rec21 BOOL
THEN

SELECT rec21 TRUE
THEN

Process Task 2 (taskm)
load2 0 : load2 1 estim21 0 : estim21 1

7.8 Refinement Step 3: Distributing the Estimates 287

END
END ;

Trans Load 1P receives the load of node mm 2 and updates the estimate of the load
of the sender while registering that the sender has committed to node 1 rec12 : TRUE

estim12 0 , rec12 0 Trans Load 1P(mm , loadm , rec12)
PRE mm 2 loadm rec12 BOOL THEN

SELECT rec12 FALSE
THEN estim12 0 : loadm rec12 0 : TRUE
END

END ;
estim21 0 , rec21 0 Trans Load 2P(mm , loadm , rec21)

PRE mm 1 loadm rec21 BOOL THEN
SELECT rec21 FALSE
THEN estim21 0 : loadm rec21 0 : TRUE
END

END ;

Release Refl releases the commitment to the sender mm 2 by assigning rec12 to
FALSE

rec12 0 Release Refl 1P(mm , rec12)
PRE mm 2 rec12 BOOL THEN

SELECT rec12 TRUE
THEN rec12 0 : FALSE
END

END ;
rec21 0 Release Refl 2P(mm , rec21)

PRE mm 1 rec21 BOOL THEN
SELECT rec21 TRUE
THEN rec21 0 : FALSE
END

END
END

Expanding the procedure calls in the actions Commit and Release Nodes in Ac-
tions2P will result in the operations Commit and Release Nodes in Actions2. Hence,
this step involves merely a re-writing of the machine. All the 30 proof obligations
generated in this step were automatically discharged.

7.8 Refinement Step 3: Distributing the Estimates

In the machine Actions2P we refer to variables of node 2, estim21 and rec21, in the
operation Commit 12 of node 1. Since an operation of a node should only refer to
its own variables in a distributed algorithm, we need to introduce a mechanism for

288 7. Distributed Load Balancing

Actions3

Actions2P

Actions2

Actions1P

Actions1

Procedures3

Procedures2P

Procedures2

Procedures1

All_Actions3

Aux_Actions2

All_Actions2

Proc_Guard3

Proc_Guard2

New_Actions2
Proc_guard2P

Proc_Guard1P

No_Actions1P

Fig. 7.13. Overview of the Derivation After the Third Refinement Step

a node to know what estimates its neighbours have about it without referencing the
estimate of that neighbouring node. In the third superposition step we, therefore,
add the variables oldload12, oldload21, send12 and send21. The variable oldload12
gives the value of the load of node 1 last sent to node 2, i.e. the estimate node 2
has about load1. The boolean variable send12 has the value TRUE, if the value of
load1 has been sent to node 2 and node 1 is committed to change loads with node
2. When the commitment is released send12 is assigned the value FALSE. The vari-
ables oldload21 and send21 are interpreted similarly. This refinement step is given
in the machines Actions3 and Procedures3 below. Their relations to the previously
developed machines are shown in the overview in Fig. 7.13. The enabledness of the
procedure guards are checked via the machines Proc Guards2P, Proc Guards3 and
All Actions3.

REFINEMENT Actions3
REFINES

Actions2P
SEES

Bool TYPE , TaskProcessing
INCLUDES

Procedures3
VARIABLES

load1 , load2 , task1 , task2 , estim12 , estim21 , rec12 , rec21 ,
oldload12 , oldload21 , send12 , send21

oldload12 contains the value of load1 latest sent to node 2, i.e. the estimate node 2 has
about load1

send12 has the value TRUE if the value of load1 has been sent to node 2 and node 1
is comitted to node 2, when the nodes 1 and 2 are not committed it has the value FALSE

INVARIANT
load1 load2 task1 TASKS task2 TASKS

estim12 estim21 rec12 BOOL rec21 BOOL
oldload12 oldload21 send12 BOOL send21 BOOL
(rec12 TRUE load2 estim12)

7.8 Refinement Step 3: Distributing the Estimates 289

(rec21 TRUE load1 estim21)
(send12 TRUE oldload12 load1)
(send21 TRUE oldload21 load2)

When node 1 is committed to node 2, the load of node 1, load1, is the same as the load
last sent from node 1 to node 2, oldload12

(send12 TRUE rec21 TRUE) (rec21 TRUE send12 TRUE)
(send21 TRUE rec12 TRUE) (rec12 TRUE send21 TRUE)

send12 is a mirror of rec21 and send21 is a mirror of rec12

oldload12 estim21 oldload21 estim12

oldload12 and estim21 always correspond to each other, as well as oldload21 and estim12

INITIALISATION
load1 , load2 : 0 , 0 task1 : TASKS task2 : TASKS

estim12 , estim21 : 0 , 0 rec12 , rec21 : FALSE , FALSE
oldload12 , oldload21 : 0 , 0 send12 , send21 : FALSE , FALSE

Initially oldload12 and oldload21 are 0 and send12 and send21 have the value FALSE,
since no nodes are committed

OPERATIONS

New Load 1P assigns a new load to node 1, if node 1 is not committed to another node

New Load 1P(ll)
PRE ll THEN

SELECT rec12 FALSE send12 FALSE ll 0
THEN load1 : ll
END

END ;
New Load 2P(ll)

PRE ll THEN
SELECT rec21 FALSE send21 FALSE ll 0
THEN load2 : ll
END

END ;

Commit 12 sends load1 to node 2 to update the load estimates in node 2 and register this
load as sent. Furthermore, it commits node 1 to node 2. Commit 12 is enabled in case of
an imbalance, a too bad estimate in node 2 or a commitment of node 2 to node 1

290 7. Distributed Load Balancing

Commit 12
SELECT

Imbalance (load1 , estim12) BadlyEstimated (load1 , oldload12)
rec12 TRUE send12 FALSE

THEN
estim21 , rec21 Trans Load 2P (1 , load1 , rec21) ;
oldload12 : load1 ; send12 : TRUE

END ;
Commit 21

SELECT
Imbalance (estim21 , load2) BadlyEstimated (load2 , oldload21)

rec21 TRUE send21 FALSE
THEN

estim12 , rec12 Trans Load 1P (2 , load2 , rec12) ;
oldload21 : load2 ; send21 : TRUE

END ;

Bal Loads Down 21 sends a task from node 2 to node 1 and updates the loads and
the estimates in nodes 1 and 2, if the nodes are committed to each other and there is an
imbalance between them

Bal Loads Down 21
SELECT estim21 top load2 top rec21 TRUE send21 TRUE
THEN

load1 , estim12 , oldload12
Trans Task 1P (2 , task2 , load1 , estim12 , rec12 , oldload12 , send12) ;
load2 : load2 1 ; estim21 : estim21 1 ;
oldload21 : oldload21 1

END ;
Bal Loads Up 12

SELECT estim12 top load1 top rec12 TRUE send12 TRUE
THEN

load2 , estim21 , oldload21
Trans Task 2P (1 , task1 , load2 , estim21 , rec21 , oldload21 , send21) ;
load1 : load1 1 ; estim12 : estim12 1 ;
oldload12 : oldload12 1

END ;

Release Nodes 12 releases the commitment synchronously between nodes 1 and 2, when
there is no imbalance between these committed nodes

Release Nodes 12
SELECT (Imbalance (load1 , estim12)) rec12 TRUE send12 TRUE
THEN

rec12 , send12 : FALSE , FALSE ;
rec21 , send21 Release Refl 2P (1 , rec21 , send21)

END ;

7.8 Refinement Step 3: Distributing the Estimates 291

Release Nodes 21
SELECT (Imbalance (estim21 , load2)) rec21 TRUE send21 TRUE
THEN

rec21 , send21 : FALSE , FALSE ;
rec12 , send12 Release Refl 1P (2 , rec12 , send12)

END ;

Exit Cond represents the exit condition

Exit Cond
SELECT

Guard Commit 12 Guard Commit 21
Guard Bal Load Down 21
Guard Bal Load Up 12
Guard Release Nodes 12 Guard Release Nodes 21

THEN skip
END

DEFINITIONS
Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , oldload12)
rec12 TRUE send12 FALSE rec21 FALSE ;

Guard Commit 21
Imbalance (estim21 , load2) BadlyEstimated (load2 , oldload21)

rec21 TRUE send21 FALSE rec12 FALSE ;
Guard Bal Load Down 21 estim21 top load2 top rec21 TRUE

send21 TRUE rec12 TRUE send12 TRUE ;
Guard Bal Load Up 12 estim12 top load1 top rec12 TRUE

send12 TRUE rec21 TRUE send21 TRUE ;
Guard Release Nodes 12 (Imbalance (load1 , estim12)) rec12 TRUE

send12 TRUE rec21 TRUE send21 TRUE ;
Guard Release Nodes 21 (Imbalance (estim21 , load2)) rec21 TRUE

send21 TRUE rec12 TRUE send12 TRUE
END

The variables oldload12 and oldload21 are initially assigned 0 and the vari-
ables send12 and send21 are initially FALSE. During the execution the variables
oldload12 and send12 reflect the changes in the variables estim21 and rec21, respec-
tively. We strengthen the invariant of Actions2P to include this relation between the
new variables (oldload, send) and the old ones (load, estim, rec) considering that
E 1 2 . The variable oldload ij is always updated when the nodes i and j are
committed:

i j i j V i j E j i E
send i j T RUE oldload i j load i

292 7. Distributed Load Balancing

Furthermore, the variables send and rec correspond to each other in the following
way

i j i j V i j E j i E send i j rec ji

and the variables oldload and estim as follows

i j i j V i j E j i E oldload i j estim ji

All the operations are updated to reflect the changes in the variables. The oper-
ations are modified only to refer to local variables, which for example means that
operation Commit 12 of node 1 only refers to variables of node 1, except for the
parameters in the procedure call on Trans Load 2P.

The local procedures are also changed to model the distribution of the estimation
with the new variables oldload and send.

MACHINE Procedures3
SEES

Bool TYPE , TaskProcessing

OPERATIONS

Trans Task 1P receives a task from node mm 2 and updates its loads and estimates,
if the nodes 1 and mm are committed

load1 0 , estim12 0 , oldload12 0
Trans Task 1P(mm , taskm , load1 , estim12 , rec12 , oldload12 , send12)

PRE mm 2 taskm TASKS load1 estim12 rec12 BOOL
oldload12 send12 BOOL

THEN
SELECT rec12 TRUE send12 TRUE
THEN

Process Task 1 (taskm) oldload12 0 : oldload12 1
load1 0 : load1 1 estim12 0 : estim12 1

END
END ;

load2 0 , estim21 0 , oldload21 0
Trans Task 2P(mm , taskm , load2 , estim21 , rec21 , oldload21 , send21)

PRE mm 1 taskm TASKS load2 estim21 rec21 BOOL
oldload21 send21 BOOL

THEN
SELECT rec21 TRUE send21 TRUE
THEN

Process Task 2 (taskm) oldload21 0 : oldload21 1
load2 0 : load2 1 estim21 0 : estim21 1

END
END ;

7.8 Refinement Step 3: Distributing the Estimates 293

Trans Load 1P receives a load from node mm 2 and updates its estimate of this load,
if the sender mm is not committed to node 1 upon the procedure call

estim12 0 , rec12 0 Trans Load 1P(mm , loadm , rec12)
PRE mm 2 loadm rec12 BOOL THEN

SELECT rec12 FALSE
THEN estim12 0 : loadm rec12 0 : TRUE
END

END ;
estim21 0 , rec21 0 Trans Load 2P(mm , loadm , rec21)

PRE mm 1 loadm rec21 BOOL THEN
SELECT rec21 FALSE
THEN estim21 0 : loadm rec21 0 : TRUE
END

END ;

Release Refl 1P releases the commitment between nodes 1 and mm 2

rec12 0 , send12 0 Release Refl 1P(mm , rec12 , send12)
PRE mm 2 rec12 BOOL send12 BOOL THEN

SELECT rec12 TRUE send12 TRUE
THEN rec12 0 : FALSE send12 0 : FALSE
END

END ;
rec21 0 , send21 0 Release Refl 2P(mm , rec21 , send21)

PRE mm 1 rec21 BOOL send21 BOOL THEN
SELECT rec21 TRUE send21 TRUE
THEN rec21 0 : FALSE send21 0 : FALSE
END

END
END

We can prove the Conditions (S1) - (S3) and (S5) in the superposition rule by
proving the 42 proof obligations generated for the refinement Actions3. There are
no auxiliary actions in this refinement step. Hence, the Conditions (S4) and (S7),
concerning the refinement and the termination of the auxiliary actions, need not be
proven here.

The guards of the global procedures are changed in this refinement step, such
that we, for example, have send12 instead of rec21 and oldload12 instead of es-
tim21 in the procedure New Load1P. This change means that we would need to
check the enabledness of the global procedures in Condition (S6). The change is,
however, trivial since the invariant states that (send12 rec21) and (oldload12 =
estim21). Thus, the guards of the global procedures New Load in the machine Ac-
tions2P are equivalent to the corresponding ones in the machine Actions3. We have
proved this condition using the B-Toolkit by creating similar machines as in the pre-
vious step. The step generated 75 proof obligations of which 63 could be discharged
automatically. The rest could again be discharged with the interprover by adding the

294 7. Distributed Load Balancing

definition of the variant to the proof rules. We have omitted this part here, since it is
similar to the previous step.

7.9 Decomposition of the Load Balancing Algorithm
In a distributed action system each action and procedure is local to a node referring
only to variables of that node. The values of the variables of a node are only visible
to other nodes by explicitly communicating them to that node via procedure calls.
When embedding an action system within the B-Method a distributed algorithm
consists of machines, where the operations in each machine refer to variables of one
node. Several machines can belong to the same node.

Even though the load balancing algorithm, Actions3 and Procedures3, that we
have derived is distributed in action system sense, the operations of both nodes 1
and 2 are given in the same machine construct. Because of this we also have to
declare the variables of both nodes in the machine Actions3 and perform the changes
to the state space in Procedures3 with parameters. We can, however, decompose
the system so that operations in a machine construct only refer to variables of one
node and make the system explicitly distributed. The decomposition is the reverse
procedure to the parallel composition of action systems, as explained in Chapter 5.

Let us now decompose the load balancing algorithm within the B-Method. If we
included all procedures and actions of a node into one machine, we would have a
cyclic reference between the machines of node 1 and node 2, since the actions of
node 1 call the procedures of the neighbouring node 2 and vice versa. If we separate
all the operations that represent local procedures of a node into one machine and
all operations that represent actions and global procedures of a node into another
machine, we avoid these cyclic references. We then have an action-machine and a
procedure-machine for each node in the network. These machines will, however,
both assign the same variables, which is not allowed within the B-Method. The so-
lution to this is to create a third component for a node, a variable-machine. In this
machine the variables are declared and given types. The variables are assigned via
the operations in the variable-machine. All the assignments in the action-machine
and the procedure-machine are replaced by calls to these operations. In the decom-
posed algorithm each node then controls itself and we have a decentralised control
in the system. The overview of this decomposition is shown in Fig. 7.14.

We now reorganise the actions and the procedures in Actions3 and Procedures3
according to the description above. Here we have chosen to show only the machines
of node 1. The machines of node 2 are similar.

MACHINE Node1 Actions (top)
CONSTRAINTS

top 0

The threshold top giving the preferable load of a process

SEES

7.9 Decomposition of the Load Balancing Algorithm 295

Node1

decomposition

Node2

P2

A2A1

P1

V1 V2

V1, V2; A1, A2

Actions
+Variables

Procedures

P1, P2

INCLUDES

Fig. 7.14. Decomposition of Action Systems Within B-Method

Bool TYPE , TaskProcessing
INCLUDES

Node1 Var , Node2 Proc

The variables of node 1 and the procedures of the neighbouring node 2

OPERATIONS

The global procedures of node 1 assigning the variables of node 1 via assignment opera-
tions:

New Load 1P(ll)
PRE ll THEN

SELECT rec12 FALSE send12 FALSE ll 0
THEN load1 assign (ll)
END

END ;

The actions of node 1 assigning the variables of node 1 via assignment operations:

Commit 12
SELECT

Imbalance (load1 , estim12) BadlyEstimated (load1 , oldload12)
rec12 TRUE send12 FALSE

THEN
Trans Load 2P (1 , load1)
oldload12 assign (load1) send12 assign (TRUE)

END ;

296 7. Distributed Load Balancing

Bal Loads Up 12
SELECT estim12 top load1 top rec12 TRUE send12 TRUE
THEN

Trans Task 2P (1 , task1) load1 assign (load1 1)
estim12 assign (estim12 1) oldload12 assign (oldload12 1)

END ;
Release Nodes 12

SELECT (Imbalance (load1 , estim12)) rec12 TRUE send12 TRUE
THEN

rec12 assign (FALSE) send12 assign (FALSE)
Release Refl 2P (1)

END ;

The exit condition of the action system of node 1:

Exit Cond 1
SELECT

Guard Commit 12 Guard Bal Load Up 12
Guard Release Nodes 12

THEN skip
END

DEFINITIONS
Imbalance (x , y) x top y top (x top y top) ;
BadlyEstimated (x , y) x top y top (x top y top)

(x top y top) (x top y top) ;
Guard Commit 12

Imbalance (load1 , estim12) BadlyEstimated (load1 , oldload12)
rec12 TRUE send12 FALSE rec21 FALSE ;

Guard Bal Load Up 12 estim12 top load1 top rec12 TRUE
send12 TRUE rec21 TRUE send21 TRUE ;

Guard Release Nodes 12 (Imbalance (load1 , estim12)) rec12 TRUE
send12 TRUE rec21 TRUE send21 TRUE

END

We give the imported global variables as parameters of the action-machine,
Node1 Actions, since this is the machine with the main operations of the node. We
do not declare any variables in this machine, but we include them via the variable-
machine, Node1 Var. The procedures of the neighbouring nodes, here Node2 Proc,
should also be included. The global procedure New Load 1P of node 1 is an op-
eration of Node1 Actions, as well as the actions Commit 12, Bal Loads Up 12
and Release Nodes 12 of node 1. These operations assign the variables via calls to
the assignment operations in Node1 Var. Furthermore, the parameters only needed
for changing the state space in Actions3 and Procedures3 are not included in the
procedure calls here.

In the machine Node1 Proc the operations consist of the procedures of node
1: Trans Task 1P, Trans Load 1P and Release Refl 1P. We include the variables
of node 1 in this machine in the same way as in the machine Node1 Actions. The

7.9 Decomposition of the Load Balancing Algorithm 297

variables are also here assigned via assignment operations. Since the variables of
node 1 are included in this machine, they need not be referenced and changed via
procedure parameters as in Procedures3.

MACHINE Node1 Proc
SEES

Bool TYPE , TaskProcessing
INCLUDES

Node1 Var

The variables of node 1

OPERATIONS

The local procedures of node 1 assigning the variables of node 1 via assignment opera-
tions:

Trans Task 1P(mm , taskm)
PRE mm 2 taskm TASKS THEN

SELECT rec12 TRUE send12 TRUE
THEN

Process Task 1 (taskm) oldload12 assign (oldload12 1)
load1 assign (load1 1) estim12 assign (estim12 1)

END
END ;

Trans Load 1P(mm , loadm)
PRE mm 2 loadm THEN

SELECT rec12 FALSE
THEN estim12 assign (loadm) rec12 assign (TRUE)
END

END ;
Release Refl 1P(mm)

PRE mm 2 THEN
SELECT rec12 TRUE send12 TRUE
THEN rec12 assign (FALSE) send12 assign (FALSE)
END

END
END

The state space, i.e. the variables of nodes 1 and 2, is split up in the decom-
position and therefore the actions and procedures of node 1 in Node1 Actions and
Node1 Procedures only refer to variables of node 1, while the actions of node 2 in
Node2 Actions and Node2 Procedures only refer to the variables of node 2. All the
variables of node 1 are declared and initialised in the machine Node1 Var. Further-
more, each variable has an assignment operation and can only be assigned via this
operation. The value to be assigned is given as a parameter of the operation.

298 7. Distributed Load Balancing

MACHINE Node1 Var
SEES

Bool TYPE , TaskProcessing
VARIABLES

load1 , task1 , estim12 , rec12 , oldload12 , send12

The variables of node 1

INVARIANT
load1 task1 TASKS estim12 rec12 BOOL

oldload12 send12 BOOL

The types of the variables of node 1

INITIALISATION
load1 : 0 task1 : TASKS estim12 : 0 rec12 : FALSE

oldload12 : 0 send12 : FALSE

Initialisation of the variables of node 1

OPERATIONS

Assignments to the variables of node 1:

load1 assign(ll) PRE ll THEN load1 : ll END ;
task1 assign(tt) PRE tt TASKS THEN task1 : tt END ;
estim12 assign(ll) PRE ll THEN estim12 : ll END ;
oldload12 assign(ll) PRE ll THEN oldload12 : ll END ;
rec12 assign(bb) PRE bb BOOL THEN rec12 : bb END ;
send12 assign(bb) PRE bb BOOL THEN send12 : bb END

END

The invariant contains only the type information here, because a single assign-
ment operation does not establish the whole invariant of Actions3. However, since
the decomposition step only involves re-arranging the variables and the operations
of the system, all the operations and variables of node 1 in Actions3 and Procedures3
can also be found in Node1 Actions, Node1 Proc and Node1 Var. By creating these
machines containing actions, procedures and variables for each node in the network
we have developed a distributed load balancing algorithm using the B-Method.

7.11 Exercises 299

7.10 Discussion

In this chapter we have derived a distributed load balancing algorithm from a non-
distributed specification using the B-Method. The specification of the algorithm was
given as an action system translated into an abstract machine specification. The al-
gorithm was then refined in three steps within the B-Method. The refinement steps
were constructed in such a way that the proof obligations generated from them corre-
sponded to the conditions of the superposition rule within the action systems frame-
work. In the first step of the derivation we distributed the loads by introducing proce-
dures to the system. As the following step we added an estimation mechanism using
the superposition refinement. When proving that step we needed to introduce two
extra constructs within the B-Method: one implementation machine for checking
the enabledness of the global procedures and another for checking the termination
of the auxiliary actions. The computation in the auxiliary actions was distributed by
introducing more procedures. As a final superposition step we added a new mech-
anism to keep track of the estimates of the neighbours. Since we did not introduce
any auxiliary actions in this step, we only needed to create one extra B construct,
the one for checking the enabledness of the global procedures, when proving the last
superposition step using the B-Method. An overview of the derivation was given in
Fig. 7.13. By decomposing the resulting algorithm so that each machine contains
operations and refers to variables of only one node, we have reached a distributed
load balancing algorithm within the B-Method.

Using the B-Toolkit as a mechanical aid to prove the superposition refinement
of a system gives us some advantages compared to performing the refinement steps
manually. It is easier to detect errors in the algorithm, as well as inadequacies in the
invariant. These shortcomings are usually detected when studying the proof obliga-
tions that cannot be automatically proved. Additionally, using the autoprover in the
B-Toolkit for the superposition proofs gives us more confidence in these proofs.

There are, however, also drawbacks when using the B-Method for deriving ac-
tion systems. The substitutions allowed in the specifications and refinements are
very restrictive. For example, a WHILE-loop cannot be introduced until the last re-
finement step, the machine implementation. Therefore, in order to be able to prove
the superposition rule within the B-Method, we need to create extra B constructs.

In conclusion, we can say that even if the B-Method is intended for refining
sequential programs, we are able to use it in the derivation of distributed programs.
This is due to the fact that we can write an action system within the B-Method.
However, to carry out the derivation of distributed programs within the B-Method
demands some efforts with the original B-Method. The extensions discussed in the
next chapter and elsewhere [18] would facilitate this process.

7.11 Exercises

Exercise 7.1 (Verification of Decomposition). Show that the decomposed system
is a refinement of Actions3 and Procedures3 in the last refinement step.

300 7. Distributed Load Balancing

Exercise 7.2 (Load Balancing in C). Generate C-code for the decomposed load
balancing algorithm.

Exercise 7.3 (Expanding the Network). Derive the load balancing algorithm for a
network with more than two nodes.

8. Distributed Electronic Mail System
Michael Butler

8.1 Introduction

In this chapter, we use an action system/AMN combination to design a distributed
email system. The design starts with the abstract specification of an email service
as a single machine with a simple state structure. The goal is to implement this
abstract service on a store-and-forward network, where not all nodes are directly
connected and messages may pass through a number of intermediate nodes before
reaching their recipient. The first refinement of the abstract machine involves the
introduction of data structures more closely resembling the store-and-forward archi-
tecture. Subsequent design steps involve the parallel decomposition of the system
into subsystems representing the agents at each node in the network and the direct
communications links in network.

Chapter 5 introduced the state-based view of action systems. In this chapter,
we take an event-based view of action systems. In the event-based view, the exe-
cution of an operation is regarded as an event, but only the identity of the event
is observable and the state is regarded as being internal and not observable. The
event-based view corresponds to the way in which system behaviour is modelled
in various process algebras such as ACP [10], CCS [55] and CSP [38]. An exact
correspondence between action systems and CSP was made by Morgan [56]. Using
this correspondence, techniques for event-based refinement and parallel composi-
tion of action systems have been developed in [19, 20]. In this chapter, we shall use
the event-based view of action systems, applying the techniques of [19, 20] to B
abstract machines.

Before going through the case study, we look more closely at the event-based
view of action systems. In particular, we look at how actions can represent com-
munication events, how such events can be hidden from the environment, and how
systems can be combined in parallel such that they interact through shared actions.

8.2 Event-Based Actions Systems

Fig. 8.1 contains an action system, called VM1, specified as a B abstract machine.
This is intended to represent a simple vending machine. The state of the machine
is represented by the variable n. The machine has two actions represented by the

302 8. Distributed Electronic Mail System

operations coin and choc. Initially n is set to 0 so that only the coin action is enabled.
When the coin action is executed, n is set to 1, and only the choc action is enabled.
Execution of the choc action then results in coin being enabled again and so on.
Thus VM1 describes a system that alternatively engages in a coin action then a choc
action forever.

MACHINE VM1

VARIABLES n

INVARIANT n 0 1

INITIALISATION

n : 0

OPERATIONS

coin SELECT n 0 THEN n : 1 END

choc SELECT n 1 THEN n : 0 END

END

Fig. 8.1. Simple Vending Machine

An event-based view means that the environment of an abstract machine can
only interact with the machine through its actions and has no direct access to a ma-
chine’s state. The environment of a machine can also control the execution of actions
by blocking them. This will be seen clearly in Sect. 8.4, where parallel composition
of action systems is described.

For any abstract machine M, we write & M for the set of action names in M.
For example,

& VM1 coin choc
We refer to & M as the alphabet of M. We write M a for the action named a in
machine M. For example,

VM1.coin SELECT n 0 THEN n : 1 END

8.2.1 Parameter Passing

The actions of an action system can be input actions, with associated input param-
eters, or output actions, with associated output parameters. An input action will be
represented by a B AMN operation of the form

name x S
where x represents the input parameter(s). An input action models a channel through
which a machine is willing to accept an input value whenever that action is enabled.
An output action will be represented by a B AMN operation of the form

8.2 Event-Based Actions Systems 303

y name S

where y represents the output parameter(s). An output action models a channel
through which a machine is willing to deliver an output value whenever that ac-
tion is enabled.

We shall assume that no action can be both an input action and an output action.
See Sect. 8.7 for a discussion of this issue.

Fig. 8.2 specifies an action system representing an ordered buffer. It is always
ready to accept values of type T on the left channel, and to output on the right
channel a value that has been input but not yet output. Values are output in the order
in which they are input.

MACHINE Buffer1

VARIABLES s

INVARIANT s seq T

INITIALISATION

s :

OPERATIONS

left x SELECT x T THEN s : s x END

y right SELECT s THEN y s : s s END

END

Fig. 8.2. Ordered Buffer

8.2.2 Refinement

When refining an action system M by an action system N, both M and N must
have the same alphabet, though they may have different state-spaces. Refinement is
defined as follows:

Definition 8.1. For abstract action system M and concrete action system N, where
& M & N , M is refined by N with abstraction invariant AI, denoted M AI N,
provided each of the following conditions hold:

1. M init AI N init
2. M a AI N a, each a & M
3. AI gd M a gd N a , each a & M .

This definition is a special case of the definition introduced in Chapter 5.

304 8. Distributed Electronic Mail System

8.2.3 Example Refinement: Unordered Buffer

We specify and refine a buffer that does not guarantee to output values in the order
in which they are input. An unordered buffer is described by an action system that
has a bag of values as its state variable. A bag is a collection of elements that may
have multiple occurrences of any element. We write bag T for the set of finite bags
of type T . Bags will be enumerated between bag brackets and . Addition of bags
b, c, is written b c, while subtraction is written b c. Bag containment is written
x b.

The action system UBuffer1 of Fig. 8.3 describes an unordered buffer that com-
municates values of type T . The initialisation statement of UBuffer1 sets the bag
to be empty. The input action left accepts input values of type T , adding them to
the bag a. Provided a is non-empty, the output action right non-deterministically
chooses some element from a and outputs it.

MACHINE UBuffer1

VARIABLES a

INVARIANT a bag T

INITIALISATION

a :

OPERATIONS

left x
SELECT

x T
THEN

a : a x
END

y right
ANY y WHERE

y a
THEN

a y : a y y
END

END

Fig. 8.3. Unordered Buffer

It can be shown that UBuffer1 is refined by Buffer1 of Fig. 8.2. As an abstraction
invariant, we use

AI a bag s
where bag s represents the bag of elements in sequence s. The proof obligations
generated by Definition 8.1 are as follows:

8.3 Internal Actions 305

UBuffer.init AI Buffer.init
UBuffer.left AI Buffer.left
UBuffer.right AI Buffer.right
AI gd(UBuffer.left) gd(Buffer.left)
AI gd(UBuffer.right) gd(Buffer.right)

8.3 Internal Actions

In this section, action systems are extended to include internal actions. Internal ac-
tions are not visible to the environment of a machine and are thus outside the control
of the environment. Any number of executions of an internal action may occur in
between each execution of a visible action. Any state from which internal actions
can be executed infinitely is said to be divergent. Internal actions do not have input
or output parameters.

An example of an action system with internal actions is given in Fig. 8.4.
UBuffer2 represents an unordered buffer with an input channel left and an output
channel right. However, instead of having a single bag as its state variable, UBuffer2
has two bags, b and c. The left action places input values in bag b, while the right
action takes output values from bag c. Values are moved from b to c by the internal
action mid, which is enabled as long as b is non-empty. Since b is finite, mid will
eventually be disabled, so it cannot cause divergence.

We write ' M for the set of internal actions in system M.

8.3.1 Refinement with Internal Actions

Intuitively it can be seen that UBuffer2 behaves in the same way as UBuffer1 of
Fig. 8.3. We shall introduce a proof rule that allows us to verify that UBuffer1
UBuffer2. This rule is a special form of simulation in which the concrete system has
some internal actions, and the abstract system has no internal actions.

To ensure that the internal actions do not introduce divergence, we use a well-
foundedness argument. A set WF, with irreflexive partial order , is well-founded
if each non-empty subset of WF contains a minimal element under . For exam-
ple, the natural numbers with the usual ordering, or the cartesian product of two
or more well-founded sets with lexicographic ordering, all form well-founded sets.
The well-foundedness argument requires the use of a well-founded set WF and a
variant, which is an expression in the state-variables. The variant should always be
an element of W F, and it should be decreased by each internal action of the concrete
system.

The simulation rule is as follows:

Definition 8.2. Let M and N be action systems where & M & N and ' M .
M is simulated by N with abstraction invariant AI, well-founded set W F, and variant
E, denoted M AI WF E N, provided each of the following conditions hold:

1. M init AI N init

306 8. Distributed Electronic Mail System

MACHINE UBuffer2

VARIABLES b c

INVARIANT b bag T c bag T

INITIALISATION

b c :

OPERATIONS

left x
SELECT

x T
THEN

b : b x
END

y right
ANY y WHERE

y c
THEN

c y : c y y
END

INTERNAL OPERATIONS

mid
ANY z WHERE

z b
THEN

b c : b z c z
END

END

Fig. 8.4. Unordered Buffer with an Internal Action

2. M a AI N a, each a & M
3. skip AI N h, each h ' N
4. AI E WF
5. AI E e N h E e , each h ' N
6. AI gd M a gd N a h h ' N gd N h , each a & M

Conditions 1, 2, and 3 are data-refinement conditions. Conditions 1 and 2 are the
same as in Definition 8.1. Condition 3 ensures that each internal action of N causes
no change to the corresponding abstract state. Conditions 4 and 5 are referred to
as non-divergence conditions. Condition 4 ensures that the variant E is an element
of WF , while Condition 5 ensures that the internal actions of N always decrease E
when executed. Together, Conditions 4 and 5 ensure that the internal actions of N are
eventually disabled and so cannot introduce divergence. Condition 6 is a progress

8.4 Parallel Composition 307

condition and ensures that, whenever an action of M is enabled, either the corre-
sponding action of N is enabled, or some internal action of N is enabled.

8.3.2 Example

To show that UBuffer1 UBuffer2, we use the abstraction invariant

AI a b c

We use the size of bag b, written #b, as a variant, with as a well-founded set.
Note that UBuffer2.mid is a refinement of skip under this abstraction invariant since
the bag sum b c is unchanged by its execution. Also UBuffer2.mid decreases the
variant #b.

8.3.3 Hiding Operator

Let M be an action system, and C be a set of operation names, with C & M . We
write M C for the machine M with each action named in C converted into an internal
action. The input/output parameters of an internalised action should be localised
using the VAR x S END construct. Note that action hiding is simply a syntactic
transformation of M.

Action hiding is monotonic: if M is refined by N, then M C is refined by N C.

8.4 Parallel Composition

In this section, we describe a parallel composition operator for action systems. The
parallel composition of action systems M and N is written M N. M and N must
not have any common state variables. Instead they interact by synchronising over
shared actions (i.e., actions with common names). They may also pass values on
synchronisation. We look first at basic parallel composition and later look at parallel
composition with value passing.

8.4.1 Basic Parallel Composition of Actions

To achieve the synchronisation effect, shared actions are “fused” using the parallel
operator for actions S T . This operator satisfies the following properties:

x : E y : F x y : E F
SELECT G THEN S END SELECT H THEN T END

SELECT G H THEN S T END

Since the variables changed by constituent actions are independent, the only effect
of the parallel operator for actions is to ensure that the composite action is enabled
exactly when both component actions are enabled.

308 8. Distributed Electronic Mail System

8.4.2 Basic Parallel Composition of Action Systems

The parallel composition of action systems M and N is an action system constructed
by fusing shared actions of M and N and leaving independent actions independent.
The state variables of the composite system M N are simply the union of the
variables of M and N.

MACHINE N1

VARIABLES m

INVARIANT m 0 1

INITIALISATION

m : 0

OPERATIONS

a
SELECT

m 0
THEN

m : 1
END

c
SELECT

m 1
THEN

m : 0
END

END

MACHINE N2

VARIABLES n

INVARIANT n 0 1

INITIALISATION

n : 0

OPERATIONS

b
SELECT

n 0
THEN

n : 1
END

c
SELECT

n 1
THEN

n : 0
END

END

Fig. 8.5. Action Systems with Common Actions

As an illustration of this, consider N1 and N2 of Fig. 8.5. N1 alternates between
an a-action and a c-action, while N2 alternates between a b-action and a c-action.
The system N1 N2 is shown in Fig. 8.6. The a- and b-actions of N1 N2 come
directly from N1 and N2 respectively, while the c-action is the fusion of the c-
actions of N1 and N2. The initialisations of N1 and N2 are also fused to form the
initialisation of N1 N2. The effect of N1 N2 is that, repeatedly, the a- or the
b-actions can occur in either order, then both systems must synchronise on the c-
action.

8.4.3 Parallel Composition with Value-Passing

We extend the parallel operator to deal with parameterised actions and value-
passing. An output action from one system is composed with a similarly labelled

8.4 Parallel Composition 309

MACHINE N1 N2

VARIABLES m n

INVARIANT m n 0 1

INITIALISATION

m n : 0 0

OPERATIONS

a SELECT m 0 THEN m : 1 END

b SELECT n 0 THEN n : 1 END

c SELECT m 1 n 1 THEN m n : 0 0 END

END

Fig. 8.6. Parallel Composition of Action Systems

input action form another in such a way that the output value generated by the first
is passed on as the input value for the second. For example, given an output action
of the form

y name SELECT G THEN u y : U Y END

and an input action of the form

name x SELECT x A H THEN v : F x END

their value-passing fusion is represented as:

y name SELECT H G THEN u y v : U Y F Y END

Notice how F x becomes F Y , modelling the passing of the output value from the
output action to the input action. Notice also that the fused action is itself an output
action.

More generally, let M name be an output action of machine M and N name be
an input action of N. We shall assume1 that M name has the form:

y name ANY u y WHERE P THEN u y : u y END

and that N name has the form:

name x SELECT x A H THEN v : F x END

where H is independent of x. The value-passing fusion of these two actions is de-
fined by:

1 We only make these assumptions on actions that are to be composed in parallel with other
actions.

310 8. Distributed Electronic Mail System

Definition 8.3 (Value-passing Fusion).

y name
ANY u y WHERE P H THEN u y v : u y F y END

Furthermore, the composition of M name an N name is only permitted provided

IM P y A

where IM is the invariant of M.

This restriction ensures that the output value generated by the output action is always
acceptable by the input action.

The composition of two systems M and N is then constructed by fusing com-
monly named input-output pairs of actions as described by Definition 8.3. As before,
independently named actions remain independent. The fusion of input-input pairs of
actions is also permitted: assume M name has the form

name x SELECT x A G THEN u : F x END

and that N name has the form:

name x SELECT x B H THEN v : G x END

The fusion of these two actions is defined by:

Definition 8.4.

name x
SELECT x A B G H THEN u v : F x G x END

Fusion of output-output pairs of actions is not permitted.
Fig. 8.7 describes the action systems UBufferL and UBufferR. The system

UBufferL is simply an unbounded buffer with right renamed to mid, while UBufferR
has left renamed to mid. When UBufferL and UBufferR are placed in parallel, they
interact via the mid channel, with values being passed from UBufferL to UBufferR.
This can be seen by constructing the composite action system UBufferL UBufferR
as described above (see Fig. 8.8). The only proof obligation (from Definition 8.3)
associated with this composition is that the UBufferL.mid is guaranteed to output a
value of type T, i.e.,

b bag T UBufferL.mid y T

If the mid action of UBufferL UBufferR is hidden, then the resultant action
system is the same as UBuffer2 of Fig. 8.4. Since UBuffer1 UBuffer2, we have
that:

UBuffer1 UBufferL UBufferR mid

8.5 Email System 311

MACHINE UBufferL

VARIABLES b

INVARIANT b bag T

INITIALISATION

b :

OPERATIONS

left x
SELECT

x T
THEN

b : b x
END

y mid
ANY y WHERE

y b
THEN

b y : b y y
END

END

MACHINE UBufferR

VARIABLES c

INVARIANT c bag T

INITIALISATION

c :

OPERATIONS

y right
ANY y WHERE

y c
THEN

c y : c y y
END

mid x
SELECT

x T
THEN

c : c x
END

END

Fig. 8.7. Buffers

8.4.4 Design Technique

The derivation of the system UBufferL UBufferR mid illustrates a design tech-
nique that may be used to decompose an action system into parallel subsystems:
refine the state variables so that they may be partitioned amongst the subsystems,
introducing internal actions representing interaction between subsystems, then par-
tition the system into subsystems using the parallel operator in reverse. The refine-
ment of the single system can always be performed in a number of steps rather than
a single step.

Most importantly, the parallel composition of action systems is monotonic: if M
is refined by M and N is refined by N , then M N is refined by M N . This means
that when we decompose a system into parallel subsystems, the subsystems may be
refined independently.

8.5 Email System

The action systems of this case study contain indexed sets of channels, each one
offering similar behaviour. An indexed statement is used to specify the actions as-
sociated with such channel sets. For example, to specify an indexed set of input
channels i in i F , with associated actions, the following notation is used:

312 8. Distributed Electronic Mail System

MACHINE UBufferL UBufferR

VARIABLES b c

INVARIANT b bag T c bag T

INITIALISATION

b c :

OPERATIONS

left x SELECT
x T

THEN
b : b x

END

y right ANY y WHERE
y c

THEN
c y : c y y

END

y mid ANY y WHERE
y b

THEN
b c y : b y c y y

END

END

Fig. 8.8. Parallel Buffers

i in x Si

The intention is that the i-indexed statement represents a set of input actions. Si
should constrain i to be an element of F. An indexed set of output channels is writ-
ten:

y i out Si

When an indexed input action such as i in x is internalised, it is collapsed into
a single parameterless statement by transforming it to

left VAR i x Si END

Similarly for an indexed output action.

8.5.1 Abstract Specification

We suppose that an email service allows a set of users to exchange messages
amongst themselves. Each user resides at a node, and each user may engage in either

8.5 Email System 313

a send action, or a receive action. Let Node represent the set of nodes in the system.
We shall assume that Node is finite. Let Mess represent the type of messages that
may be exchanged, and let Env be the cartesian product of Node and Mess. In the
pair r m Env, r is the recipient node, m is the message, and we say that r m is
an envelope.

The initial specification of the email service, MailSys1, is given in Fig. 8.9.
Variable mail contains all messages sent but not yet received. Initially mail is empty.
For each node n, there is a send action and a receive action. Action s send accepts
an envelope r m at sending node s and adds it to the bag mail. If there is at least
one message for recipient node r in mail, then action r receive chooses one of these
messages and outputs it.

MACHINE MailSys1

SETS
Node Mess
Env Node Mess

VARIABLES mail

INVARIANT mail bag Env

INITIALISATION

mail :

OPERATIONS

s send r m
SELECT

s Node r m Env
THEN

mail : mail r m
END

m r receive
ANY n WHERE

r n mail
THEN

mail : mail r n m : n
END

END

Fig. 8.9. Electronic Mail Service

8.5.2 First Refinement of MailSys

Our goal is to implement MailSys1 as a store-and-forward network, where not all
nodes are directly connected, and envelopes must pass through a number of interme-

314 8. Distributed Electronic Mail System

diate nodes before reaching their recipient. In the first refinement step, we introduce
data structures more closely resembling the store-and-forward architecture, and in-
troduce internal actions for passing envelopes between these data structures.

In MailSys2, mail is replaced by a set of stores, one per node, and a set of
buffers representing direct links between nodes. The constant relation net Node
Node represents the connectivity of the network: a b net means there is a direct
communications link from node a to node b.

Routing relations are used to determine which intermediate nodes an envelope
may pass through. Before defining a route, we present some simple graph theory
concepts. We say that a graph G is a relation on a set of nodes N (e.g., net is a graph
on Node). A path from a to b in G is a non-empty sequence p of nodes from N, such
that piGpi 1, for each 1 i #p, and p1 a and p#p b. Let G be the reflexive
transitive closure of G. Then aG b means there is a path from a to b in G. Note that
there is always a path from a to a in G, i.e., a . An arc from a to b in G is a path
from a to b in which all nodes are distinct. If N is finite, then the elongation from
a to b in G, written eG a b , is the length of the longest arc from a to b in G. Since
the only arc from a to a is a , we have eG a a 1. We define routes as follows:
Definition 8.5. Let G be a graph on nodes N. Then Routes G , the set of routes of
G, is the set of subgraphs of G such that for all R Routes G , and all a b c N,
where a c,

aRb bR c eR a c eR b c

Here, each R Routes G is a routing relation, a b is a single step in R, and c is
a destination node. The definition says that as we move from node a to node b on
route R, the elongation to the destination node c decreases.

MailSys2 will use a fixed set of routes, each one uniquely identified by a tag
from a set Tag. These routes are represented by the constant function

route Tag Routes net

In order that each distinct pair of nodes be connected by at least one route, we shall
assume that the constant function route satisfies:

i i Tag route i Node Node

For convenience, the constants associated with routing are collected in the machine
Routing of Fig. 8.10

On input, each envelope will be assigned one of these routes by being tagged
with the route identifier. At any point on its journey the choice of the next node
to which an envelope is sent will be determined by its destination and its assigned
route. Since a route is a relation, the choice of next node may be non-deterministic.
Elongations are used as a variant to ensure that all envelopes eventually reach their
destination.

MailSys2 is then specified in Figs. 8.11 and 8.12. Corresponding to each node
in the network, there is a store (bag) of tagged envelopes. These are modelled by
the variable store. Corresponding to each direct link in the network, there is an
unordered buffer of tagged envelopes. These are modelled by the variable link. The

8.5 Email System 315

MACHINE Routing

SETS Tag

CONSTANTS net route

PROPERTIES
net Node Node
route Tag Node Node
ran route Routes net

i i Tag route i Node Node

END

Fig. 8.10. Routing Information

invariant states that there is always a path from the current position of an envelope
to its recipient in the assigned route.

MACHINE MailSys2

REFINES MailSys1

SEES Routing

VARIABLES store link

INVARIANT
store Node bag Tag Env
link net bag Tag Env

i r m i r m Tag Env a b Node
i r m store a a r route i
a b net i r m link a b b r route i

mail "a a Node env store a
" a b a b net env link a b

VARIANT
" a i r m a Node i r m store a ei a r 2
" a b i r m a b net i r m link a b ei b r 2 1

Fig. 8.11. Refined Email System

The abstract and the concrete variables are related by equating mail with the
sum of envelopes in each store and each link. We write "i bi for the summation of a
set of bags bi. Let env be the function that removes tags from tagged envelopes, i.e.
env i r m r m . If b is a bag of tagged envelopes, then env b is the correspond-

316 8. Distributed Electronic Mail System

ing bag of untagged envelopes. The abstraction invariant, AI, is then the conjunction
of the invariants of MailSys1 and MailSys2.

The variant must be shown to be decreased by the internal operations of the
refined system. We use the elongation from the current position of each envelope to
its destination in its route to define the variant. Let " j n j represent the summation
of a set of naturals n j, and let ei a b be the elongation from a to b on route i , i.e.
eroute i a b . The variant E is then defined as in Fig. 8.11.

INITIALISATION
store : !a a Node
link : !a b a b net

OPERATIONS

s send r m
ANY i WHERE

s Node i Tag
r m Env s r route i

THEN
store s : store s i r m

END

m r receive
ANY i n WHERE

r Node i r n store r
THEN

store r : store r i r n m : n
END

INTERNAL OPERATIONS

f orward
ANY a b i r m WHERE

i r m store a r a
a b route i b r route i

THEN
store a : store a i r m
link a b : link a b i r m

END

relay
ANY a b i r m WHERE

a b net i r m link a b
THEN

link a b : link a b i r m
store b : store b i r m

END

END

Fig. 8.12. Operations of the Refined Email System

8.5 Email System 317

All stores and links are initially empty. The action s send accepts an envelope
r m , chooses a route i that (directly or indirectly) connects s to r, and adds i r m

to the bag store s . If there is at least one message for recipient r in store r , then
action r receive chooses one of those messages and outputs it.

The internal action f orward takes a tagged envelope that has not yet reached
its recipient from some store a , chooses the next node b to forward the envelope
to, and places the envelope in link a b . The internal action relay simply takes an
envelope from some link a b and places it in store b .

By a sequence of f orward and relay actions, a message sent at node s is even-
tually delivered to the store of its recipient node r. This is the case since MailSys1 is
refined by MailSys2, which may be checked using Definition 8.2 and the invariant
and variant of Fig- 8.11.

8.5.3 Parallel Decomposition of MailSys

In this step, MailSys2 is decomposed into two parallel systems, Agents and Media,
specified in Figs. 8.13 and 8.14. Agents represents the behaviour of all the nodes of
the network, and has a send, receive, f orward, and relay channel for each network
node. Agents only has the state variable store. Media represents the direct com-
munications links of the network, and has a f orward and a relay channel for each
network node. Media only has the state variable link. Agents and Media communi-
cate via f orward and relay channels, and we have that

MailSys2 Agents1 Media1
a f orward a Node b relay b Node

8.5.4 Parallel Decomposition of Agents

In this step, Agents1 is decomposed into a set of parallel action systems, each
one representing the behaviour of an individual node of the network. Each action,
a name, of Agents1 only refers to store a , so that Agents1 may be partitioned into
a set of independent parallel subsystems:

Agents1 a a Node LocalAgent1 a

where LocalAgent1 a is specified in Fig. 8.15.
For any a Node, we equate store a of Agents1 with the variable lstore of

LocalAgent a and action a send of Agents1 with action send of LocalAgent a
and similarly for the other actions. Since Node is finite, the generalised parallel
composition of statements used in the initialisation is defined by iterated use of the
binary operator. The only statements that are fused in the construction of a a
Node LocalAgent1 a are the initialisations; otherwise the decomposition simply
involves the partitioning of store and the indexed actions.

318 8. Distributed Electronic Mail System

MACHINE Agents1

VARIABLES store

INVARIANT store Node bag Tag Env

INITIALISATION

store : !a a Node

OPERATIONS

s send r m
ANY i WHERE

s Node i Tag
r m Env s r route i

THEN
store s : store s i r m

END

m r receive
ANY i n WHERE

r Node i r n store r
THEN

store r : store r i r n m : n
END

b i r m a f orward
ANY b i r m WHERE

a Node
i r m store a r a
a b route i b r route i

THEN
store a : store a i r m
b i r m : b i r m

END

b relay a i r m
SELECT

a b Node i Tag r m Env
THEN

store b : store b i r m
END

END

Fig. 8.13. Network Agents

8.6 CSP Correspondence 319

MACHINE Media1

VARIABLES link

INVARIANT link net bag Tag Env

INITIALISATION

link : !a b a b net

OPERATIONS

a f orward b i r m
SELECT

a b Node i Tag r m Env
THEN

link a b : link a b i r m
END

a i r m b relay
ANY a i r m WHERE

a b net i r m link a b
THEN

link a b : link a b i r m
a i r m : a i r m

END

END

Fig. 8.14. Network Media

8.6 CSP Correspondence

In CSP [38], the behaviour of a process is viewed in terms of the events in which
it can engage in. Each process P has an alphabet of events A, and its behaviour
is modelled by a set of failures F and a set of divergences D. A failure is a pair
t X , where t is a trace of events and X is a set of events; t X F means that

P may engage in the trace of events t and then refuse all the events in X . A diver-
gence is a trace of events d, and d D means that, after engaging the trace d, P
may diverge (behave chaotically). Process A F D is refined by process A F D ,
written A F D A F D , if

F F and D D

In [56], a correspondence between CSP and an event-based view of action sys-
tems is described. This involves giving a failures-divergence semantics to action
systems, with action names representing events. Let [M] represent the failures-
divergence semantics of action system M. The definition of [M] may be found in
[19, 56]. The observable behaviour of an action system is represented by its failures-
divergence semantics and it can be shown [19, 85] that if M is refined by N (Defi-
nitions 8.1 and 8.2), then any observable behaviour of N is an observable behaviour

320 8. Distributed Electronic Mail System

MACHINE LocalAgent1 a

CONSTRAINTS a Node

VARIABLES lstore

INVARIANT lstore bag Tag Env

INITIALISATION

lstore :

OPERATIONS

send r m
ANY i WHERE

r m Env i Tag a r route i
THEN

lstore : lstore i r m
END

m receive
ANY i n WHERE

i r n lstore
THEN

lstore : lstore i r n m : n
END

b i r m f orward
ANY b i r m WHERE

i r m lstore r a
a b route i b r route i

THEN
lstore : lstore i r m
b i r m : b i r m

END

relay a i r m
SELECT

a Node i Tag r m Env
THEN

lstore : lstore i r m
END

END

Fig. 8.15. Individual Agent

8.7 Concluding 321

of M, i.e.,

[M] [N]

CSP has both a hiding operator P C for internalising events and a parallel
composition operator P Q for composing processes based on shared events.
Both operators are defined in terms of failures-divergence semantics: Let P be
the failures-divergence semantics of a CSP process P. Then P C is defined by
HIDE P C and P Q is defined by PAR P Q , where HIDE and PAR are
described in [38]. It can be shown [19] that the hiding and parallel operators for
action systems correspond to the CSP operators; that is, for action systems M and
N:

[M C] HIDE [M] C
[M N] PAR [M] [N]

Since HIDE and PAR are monotonic w.r.t. refinement, our earlier claim that the
hiding and parallel operators for action systems are monotonic is justified.

8.7 Concluding

Although operations in B AMN can have both input and output parameters, it was
stated earlier that actions can either be input actions or output actions, but not both.
Consider an AMN action of the form

y name x S

In the implementation of this operation, we would expect a delay between receipt
of x and the delivery of y. In particular, we may want to push the computation of
y into some internal actions. In order to do this using simulation (Definition 8.2),
the operation should be broken into an input action, representing receipt of x, and
an output action, representing delivery of y. In this way, we can introduce internal
actions that are executed in between receipt of x and delivery of y, contributing
towards the computation of y. It also allows us to interleave other visible actions
between receipt of x and delivery of y.

Abrial has proposed an approach to the design of protocols using the B method
[3]. With this approach, a protocol is specified as a single operation which is subse-
quently decomposed into a sequence of steps through a series of refinements. The
introduction of each new step in the protocol is justified by showing that it is a data-
refinement of the skip action. This is the same as our data-refinement condition on
internal actions being introduced by a simulation step (Definition 8.2).

We have seen the close correspondence between action systems and the abstract
machines of B and seen the similarity between their notions of refinement. Because
of this close correspondence, we are able to apply action system techniques such
as internalisation of actions and parallel composition to abstract machines. These
techniques provide a powerful abstraction mechanism since they allow us to abstract

322 8. Distributed Electronic Mail System

away from the distributed architecture of a system and the complex interactions
between its subsystems; a system, such as the email service, can be specified as a
single abstract machine and only in later refinement steps do we need to introduce
explicit subsystems and interactions between them. The reasoning required to use
these techniques involves refinement arguments and variant arguments, which is the
sort of reasoning already used in B. The techniques are also very modular since
the parallel components of a distributed system can be refined and decomposed
separately without making any assumptions about the rest of the system.

8.8 Exercises

Exercise 8.1 (Defining bags). Define a B machine providing bags and the bag op-
erations for containment, addition and subtraction.

Exercise 8.2 (Message broadcast). Extend the specification of the email system to
include an operation to broadcast a message to all users. Refine this extended system
in such a way that the broadcast operation is implemented as efficiently as possible.

Exercise 8.3 (Distributed database). Specify a simple database in B. Using the
techniques described in this chapter, refine this specification into a distributed
database where the records of the database are distributed throughout several nodes.
When a database request cannot be serviced locally, it should be passed on to the
relevant remote node.

References

1. M. Abadi and L. Lamport, The existence of refinement mappings, Theoretical Computer
Science 82(2):253–284, European Association for Theoretical Computer Science 1991.

2. J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press
1996.

3. J.-R. Abrial, Cryptographic Protocol Specification and Design, March 1995.
4. R.J.R Back, On the Correctness of Refinement Steps in Program Development, PhD.

Thesis, Dept. of Computer Science, University of Helsinki, 1978.
5. R. J. R. Back and R. Kurki-Suonio, Decentralisation of process nets with centralised con-

trol, Proc. 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting pp 131–142, ACM Press 1983.

6. R. J. R. Back and K. Sere, Action systems with synchronous communication, E. R.
Olderog ed. Programming Concepts, Methods and Calculi, IFIP Transaction A–56,
North-Holland 1994.

7. R. J. R. Back and K. Sere, From action systems to modular systems, Proc. Formal Meth-
ods Europe (FME’94): Industrial Benefit of Formal Methods, Lecture Notes in Computer
Science 873, pp 1–25, Springer-Verlag 1994.

8. R. J. R. Back and K. Sere, Superposition refinement of reactive systems, Formal Aspects
of Computing 8(3):324–346, Springer-Verlag 1996.

9. R. J. R. Back and J. von Wright, Trace refinement of action systems, Proc. CONCUR’94,
Lecture Notes in Computer Science 836, pp 367–384, Springer-Verlag 1994.

10. J. A. Bergstra and J. W. Klop, Algebra of communicating processes with abstraction,
Theoret. Computer Science 37:77–121, 1985.

11. G. Berry and G. Gonthier, The esterel synchronous programming language: Design,
semantics, implementation, Science of Computer Programming 19(2):87–152, Elsevier
1992.

12. B.W. Boehm, A spiral model of software development and enhancement, IEEE Com-
puter 21:61–72, 1988.

13. Th. Boutell, cgic: an ANSI C library for CGI programming.
http://www.boutell.com/cgic/.

14. F.P. Jr. Brooks, The Mythical Man-Month: Essays on Software Engineering - Anniver-
sary Edition, Addison-Wesley, 1995.

15. M. Büchi and W. Weck, A plea for grey-box components, Proc. Foundations of
Component-Based Systems ’97. http://www.abo.fi/˜mbuechi/.

16. M. Butler, J. Grundy, T. Långbacka, R. Ruksenas, and J. von Wright, The Refinement
Calculator: Proof support for program refinement, Lindsay Groves and Steve Reeves eds.
Formal Methods Pacific’97: Proceedings of FMP’97, Discrete Mathematics and Theoret-
ical Computer Science, pp 40–61, Springer-Verlag 1997.

17. M. Butler, E. Sekerinski, and K. Sere, An action system approach to the steam boiler
problem, J.-R. Abrial, E. Börger, and H. Langmaack eds. Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, Lecture Notes in
Computer Science 1165. Springer-Verlag 1996.

324 References

18. M. Butler and M. Waldén, Distributed system development in B, Proc. 1st Conference
on the B Method, pp 155–168, 1996.

19. M. J. Butler, A CSP Approach To Action Systems, D.Phil. Thesis, Programming Re-
search Group, Oxford University, 1992.

20. M. J. Butler, Stepwise refinement of communicating systems. Science of Computer
Programming, 27(2), September 1996.

21. B. Dehbonei and F. Mejia, Formal Development of Safety-critical Software Systems in
Railway Signalling, M.G. Hinchey and J.P. Bowen eds. Applications of Formal Methods,
pp 227–252. Prentice Hall 1995.

22. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall International, Englewood
Cliffs, New Jersey, 1976.

23. E.W. Dijkstra, Discussion at ifip working group 2.3.
24. E.W. Dijkstra, Notes on structured programming, Structured Programming, 1972.
25. E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs,

Communications of the ACM, pages 453–457, 1975.
26. M.B. Dwyer, V. Carr, and L. Hines, Model checking graphical user interfaces using

abstractions. Proc. ESEC/FSE ’97, Lecture Notes in Computer Science 1301, pp 244–
261. Springer-Verlag 1997.

27. F. Erasmy and E. Sekerinskin Stepwise refinement of control software - a case study
using raise, In M. Naftalin, T. Denvir, and M. Bertran eds. FME’94: Industrial Benefit
of Formal Methods, Lecture Notes in Computer Science 873, pages 547–566, Barcelona,
Spain, 1994. Springer–Verlag.

28. Ph. Facon et al., Mapping object diagrams into B specification, A. Bryant and L. Sem-
mens eds. Methods Integration Workshop, electronic Workshops in Computing, Springer-
Verlag 1996.

29. C.J. Fidge and A.J. Wellings, An action-based formal model for concurrent, real-time
systems, Formal Aspects of Computing 9(2):175–207, Springer-Verlag 1997.

30. N. Francez and I. R. Forman, Superimposition for interactive processes, Proc. CON-
CUR’90 Theories of Concurrency: Unification and extension, Lecture Notes in Computer
Science 458, pp 230–245, Springer-Verlag 1990.

31. I. Jacobson G. Booch, J. Rumbaugh, Unified Modeling Language User Guide, Addison-
Wesley 1998. http://www.rational.com/uml/.

32. J.V. Guttag, The Specification and Application to Programming of Abstract Data Types,
PhD. Thesis, University of Toronto, 1975.

33. J. J. Lukkien H. P.Hofstee and J. L. A. van de Snepscheut, A distributed implementation
of a task pool, J. P. Banatre and D. Le Metayer eds. Research Directions in High-Level
Parallel Programming Languages, Lecture Notes in Computer Science 574, pp 338–348,
Springer-Verlag 1991.

34. D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer
Programming 8:231–274, Elsevier 1987.

35. D. Coleman, F. Hayes, and S. Bear, Introducing objectcharts or how to use statecharts in
object-oriented design, IEEE Transactions on Software Engineering 18(1), IEEE Press
1992.

36. S.D. Hester, D.L. Parnas, and D.F. Utter, Using documentation as a software design
medium, Bell System Technical Journal, 60:1941–1977, 1981.

37. J. V. Hill, Microprocessor Based Protection Systems, Elsevier 1991.
38. C. A. R. Hoare, Communicating Sequential Processes, Prentice–Hall, 1985.
39. C.A.R. Hoare, Proof of correctness of data representations, Acta Informatica, 19:271–

281, 1972.
40. J.P. Hoare, Application of the B-Method to CICS M.G. Hinchey and J.P. Bowen eds.

Applications of Formal Methods, pp 97–123, Prentice Hall 1995.
41. IEC, Software for computers in the application of industrial safety-related systems 1992.

IEC 65A 122.

References 325

42. R. Janicki, D.L. Parnas, and J. Zucker, Tabular representations in relational documents,
In C. Brink and G. Schmidt, eds. Relational Methods in Computer Science, pages 184–
196. Springer Verlag, 1997.

43. C.B. Jones, A rigorous approach to formal methods, IEEE Computer, pp 20–21, IEEE
Press 1996.

44. S. M. Katz, A superimposition control construct for distributed systems, ACM Transac-
tions on Programming Languages and Systems 15(2):337–356, ACM Press 1993.

45. J.B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem, Proc. Amer. Math. Soc. 15, pp 48–50, 1956.

46. K. Lano, The B Language and Method: A guide to Practical Formal Development,
Springer-Verlag 1996.

47. K. Lano, Integrating formal and structured methods in object-oriented system devel-
opment, S.J. Goldsack and S.J.H. Kent eds. Formal Methods and Object Technology,
Springer-Verlag 1996.

48. K. Lano and J. Dick, Development of concurrent systems in B AMN, In He Jifeng,
eds. Proc. of 7th BCS-FACS Refinement Workshop, Workshops in Computing. Springer–
Verlag, 1996.

49. K. Lano and H. Haughton. Specification in B: An Introduction Using the B Toolkit,
Imperial College Press, London, 1996.

50. C. Lewerentz and Th. Lindner, eds. Formal Development of Reactive Systems - Case
Study Production Cell, Lecture Notes in Computer Science 891, Springer–Verlag, 1995.

51. B.H. Liskov and S.N. Zilles, Programming with abstract data types, ACM SIGPLAN
Notices, 9:50–59, 1974.

52. J.A. McDermid, ed. Theory and Practice of Refinement, Butterworth, 1989.
53. H. D. Mills, The new math of computer programming, Communications of the ACM,

18:43–48, 1975.
54. H. D. Mills, Stepwise refinement and verification in box-structure systems, Computer,

pages 23–26, 1988.
55. R. Milner, Communication and Concurrency, Prentice–Hall, 1989.
56. C. C. Morgan, Of wp and CSP, In W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and

J. Misra, eds. Beauty is our business: a birthday salute to Edsger W. Dijkstra, Springer–
Verlag, 1990.

57. C. Morgan, The generalised substitution language extended to probabilistic programs,
Proc. B’98: the 2nd International B Conference. Lecture Notes in Computer Science,
Springer Verlag, 1998.

58. C. Morgan, A. McIver, and K. Seidel, Probabilistic predicate transformers, ACM Trans-
actions on Programming Languages and Systems 18(3):325–353, ACM Press, 1996.

59. D. S. Neilson and I. H. Sorensen, The B-technologies: a system for computer aided
programming, B-Core (UK) Ltd., Oxford, U.K. 1996. Including the B-Toolkit User’s
Manual, Release 3.2.

60. D.L. Parnas, On the criteria to be used in decomposing systems into modules, Commu-
nications of the ACM, pages 1053–1058, ACM Press, 1972.

61. D.L. Parnas, On a ’buzzword’: Hierarchical structure, IFIP Congress ’74, pages 336–
339, North Holland, 1974.

62. D.L. Parnas, On the design and development of program families, IEEE Transactions on
Software Engineering, 2:1–9, IEEE Press, 1976.

63. D.L. Parnas, Precise description and specification of software, In V. Stavridou, ed.
Mathematics of Dependable Systems II, pages 1–14, Clarendon Press, 1997.

64. D.L. Parnas and P.C. Clements A rational design process: How and why to fake it, IEEE
Transactions on Software Engineering, 12:251–257, IEEE Press, 1986.

65. D.L. Parnas, Clements, and D.M. P.C., Weiss, The modular structure of complex systems,
IEEE Transactions on Software Engineering, 11:259–266, IEEE Press, 1985.

326 References

66. D.L. Parnas and J.A. Darringer, Sodas and a methodology for system design, AFIPS
1967 Fall Joint Computing Conference, pages 449–474, 1967.

67. D.L. Parnas and J. Madey, Functional documentation for computer systems engineering,
Science of Computer Programming, 25:41–61, Elsevier, 1995.

68. D.L. Parnas, J. Madey, and M. Iglewski, Precise documentation of well-structured pro-
grams, IEEE Transactions on Software Engineering, 20:948–976, IEEE Press, 1994.

69. J. Rumbaugh, M. Blaha, W. Premerlani, and F. Eddy, Object-Oriented Modeling and
Design, Prentice Hall 1991.

70. R. S. Pressman, Software Engineering : A Practitioner’s Approach, McGraw Hill, 4th
edition, 1996.

71. R.C. Prim, Shortest Connection Networks and Some Generalizations, Bell System Tech-
nical Jr. 15, pp 1389–1401, 1957.

72. P. J. G. Ramadge and W. Murray Wonham, The control of discrete event systems, Proc.
of the IEEE 77(1):81–98, IEEE Press 1989.

73. M. Rönkkö, E. Sekerinski, and K. Sere, Control systems as action systems, R. Smedinga,
M.P. Spathopoulos, and P. Kozák eds. WODES’96: Workshop on Discrete Event Systems,
pp 362–367, IEEE Press 1996.

74. E. Sekerinski, Statecharts in B, Proc. B’98: the 2nd International B Conference, Lecture
Notes in Computer Science 1393, pp 182–197, Springer-Verlag 1998.

75. K. Sere and M. Waldén, Data refinement of remote procedures, Proc. International
Symposium on Theoretical Aspects of Computer Software (TACS97), Lecture Notes in
Computer Science 1281, pp 267 – 294, Springer-Verlag 1997.

76. R. Shore, Object-oriented modelling in B, Proc. 1st Conference on the B method, pp
133–154, 1996.

77. I. Sommerville, Software Engineering, Addison-Wesley, 5th edition, 1995.
78. J.M. Spivey, ed. Understanding Z: A Specification Language and its Formal Semantic,

Cambridge University Press, 1988.
79. Stéria Méditerranée, Atelier-B, France, 1996.
80. N. Storey, Safety-Critical Computer Systems, Addison-Wesley, 1996.
81. R. Tarjan, On the Efficiency of a Good but not Linear Set Merging Algorithm, Journal

of the ACM 22, pp 215–225, ACM Press 1975.
82. M. Waldén and K. Sere, Reasoning about action systems using the B-method, Formal

Methods in System Design 13(1), Kluver 1998.
83. J.W.J. Williams, Algorithm 232: Heapsort, Communications of the ACM 7:347–348,

ACM Press 1964.
84. N. Wirth, Program development by stepwise refinement, Communications of the ACM,

14:221–227, ACM Press, 1971.
85. J. C. P. Woodcock and C. C. Morgan, Refinement of state-based concurrent systems, In

D. Bjørner, C. A. R. Hoare, and H. Langmaack, eds. Proc. of VDM ’90, Lecture Notes in
Computer Science 428. Springer–Verlag, 1990.

86. J. Wordsworth, Software Engineering with B, Addison-Wesley, September 1996.
87. F.W. Zurcher and B. Randell, Iterative multi-level modelling: A methodology for com-

puter system design, IFIP Congress 68, pages D138–D142, 1968.

Appendix

Expressions

The full syntax of expressions can be found in the B-Book of Abrial [2] and in Chap-
ter 1 of this book. In this section we remind the reader of the syntax and semantics
of some of the expressions used in the case studies of this book.

Let Eand F be expressions, z a list of variables, P a predicate, S and T sets, and
let m and n be natural numbers. Let additionally r r1 r2 be relations from Sto T and
assume that s S and t T .

E F Ordered pair
n m The set of non-negative integers between n and m

inclusive
"z P E The sum of values of the natural number expression E

for z such that P holds
S T Set of relations from S to T :

S T
s r Domain restriction:

x y x y r x s
r t Range restriction:

x y x y r y t
s r Domain subtraction:

x y x y r x S s
r t Range subtraction:

x y x y r y T t
r 1 Inverse of r:

y x y x T S x y r
r s Image of set s under relation r:

y y T x x s x y r
r1 r2 Overriding of r1 by r2:

r2 r1 r2
r1 r2 Overriding of r2 by r1:

r2 r1
p q Direct product of p and q:

x y z x y z S U V x y p x z q
rn The n:th iterate of r:

328 Appendix

r0 S , rn 1 r;rn

r The reflexive transitive closure of r:
n n rn

S T Set of partial functions from S to T :
r r S T r 1;r T

S T Set of total functions from S to T :
f f S T f S

S T Set of partial injections from S to T :
f f S T f 1 T S

S T Set of total injections from S to T :
S T S T

S T Set of partial surjections from S to T :
f f S f T

S T Set of total surjections from S to T :
S T S T

S T Set of bijections from S to T :
S T S T

!z z S P E Function construction

Substitutions

In the Generalised Subsitution Language (GSL), substitutions are interpreted as
statements of a sequential imperative programming language.

The application of a (generalised) substitution G to a predicate R, written [G] R,
is interpreted as the weakest precondition (weakest predicate) such that statement
G terminates in a state satisfying R. In Dijkstras original notation [22], this is writ-
ten as wp (G, R). If P implies [G] R, then this is equivalent to stating the under
precondition P statement G establishes postcondition R, i.e.:

P G R iff P [G] R

Generalised substitutions are axiomatised as follows:

[xx : E] R R with free occurences of xx replaced by E simple
[skip] R R skip
[P G] R P [G] R preconditioned
[P G] R P [G] R guarded
[G H] R [G] R [H] R alternate
[@zz . (G)] R zz . ([G] R), if xx not free in R unbounded choice
[G ; H] R [G] [H] R sequential

Here xx are variables, E an expression, P R predicates, and G H substitutions.

Appendix 329

Precondition and Guard

The precondition pre (G) of a generalised substitution G characterises its domain of
definedness. When G is started within that domain, then G is guaranteed to execute
in a well-defined manner and to terminate. When G is started outside its precondi-
tion, any arbitrary behaviour is possible, including nontermination. The precondi-
tion is defined by:

pre (G) [G] true precondition

Following laws can be used in determining the precondition of generalised substi-
tutions:

pre (xx : E) true
pre (P G) P pre (G)
pre (P G) P pre (G)
pre (G H) pre (G) pre (H)
pre (@xx . (G)) xx . pre (G)

The guard gd (G) of a generalised substitution G characterises the domain of
enabledness. Within that domain, G may be executed. When G is started outside its
domain of enabledness, it will not execute at all. The guard is defined by: is defined
by:

gd (G) [G] false guard

Following laws can be used in determining the guard of generalised substitutions:

gd (xx : E) true
gd (P G) P gd (G)
gd (P G) P gd (G)
gd (G H) gd (G) gd (H)
gd (@xx . (G)) xx . gd (G)

Equality and Refinement of Substitutions

Two substitutions G and H are considered to be equal, written G H, if they always
lead to the same postcondition:

G H for all predicates P: [G] P [H] P equality

Substitution G is refined by substitution H, written G H, if whenever G estab-
lishes a postcondition, so does H:

G H for all predicates P: [G] P [H] P refinement

330 Appendix

AMN Substitutions

BEGIN G END G

PRE P THEN G END P G

IF P THEN G END P G P skip

IF P THEN G ELSE H END P G P H

IF P THEN G
ELSIF Q THEN H

ELSIF R THEN K
END

P G
P Q H

P Q R K
P Q R skip

IF P THEN G
ELSIF Q THEN H

ELSIF R THEN K
ELSE L
END

P G
P Q H

P Q R K
P Q R L

CHOICE G OR OR H END G H

SELECT P THEN G END P G

SELECT P THEN G
WHEN Q THEN H

WHEN R THEN K
END

P G
Q H

R K

SELECT P THEN G
WHEN Q THEN H

WHEN R THEN K
ELSE L
END

P G
Q H

R K
P Q R L

Appendix 331

CASE E OF
EITHER l THEN G
OR p THEN H

OR q THEN K
END

END

E l G
E p H

E q K
E l , p , , q skip

CASE E OF
EITHER l THEN G
OR p THEN H

OR q THEN K
ELSE L
END

END

E l G
E p H

E q K
E l , p , , q L

VAR x IN G END @ x . G

ANY x WHERE P THEN G END @ x . (P G)

LET x BE x E IN G END @ x . (x E G)

x : bool (P) P x : TRUE
P x : FALSE

x : E @ x’ . (x’ E x : x’)

x : P @ x’ . ([x : x’] P x : x’)

f (x) : E f : f x E

Machines and Proof Obligations for Consistency

The syntactic structure of an abstract machine specification is as follows:

MACHINE Machine name(f)
CONSTRAINTS

F
CONSTANTS

c
PROPERTIES

C
VARIABLES

332 Appendix

x
INVARIANT

I
INITIALISATION

H
OPERATIONS

Operation name PRE P THEN G END ;
...

END

A machine can include other machines via an INCLUDES-clause. The in-
cluded machines become part of the including machine. An included machine can
be renamed by prefixing its name with some identifier followed by a dot in the
INCLUDES-clause. Renaming may be used to include multiple copies of a sin-
gle machine. A machine can get access to other machines via the USES-clause.
The variables, sets, and constants of the used machine can be refered to in the in-
variants and AMN substitutions of the using machine provided the variables are
not modified. When a machine SEES another machine the variables, sets, and con-
stants of the machine become known to the seeing machine. They can only appear
in AMN substitutions provided they are not modified. The EXTENDS-clause in-
cludes machines. All the operations of the included machines become operations of
the including machine. Used, seen, and extended machines can be renamed.

The B-Method supports the checking of the internal consitency of an abstract
machine. The internal consitency of the machine above is proved via the following
five proof obligations:

C1 f F
C2 F c C
C3 F C x I
C4 F C H I
C5 F C I P G I

Machine Refinement and Associated Proof Obligations

The syntactic structure of an abstract machine refinement is as follows:

REFINEMENT Refinement name
REFINES

Machine name
VARIABLES

x
INVARIANT

Appendix 333

R
INITIALISATION

H
OPERATIONS

Operation name PRE P THEN G END ;
...

END

The name of the machine beeing refined is given in the REFINES-clause. The
parameters, sets, constants, and properties are inherited from the refined machine.
The variables of the refined machine can appear in the invariant of the refining ma-
chine, but they cannot be referensed in the AMN substituitions of the refining ma-
chine. A refinement can see a list of machines using the SEES-clause.

The correctness of a refinement step w.r.t. the machines Machine name(f) and
Refinement name above is proved by verifying the following four proof obligations:

B1 x x I R
B2 H H R
B3 x x I R P P
B4 x x I R P G G R

Machine Implementation

The syntactic structure of an abstract machine implementation is the same as that of
an abstract machine refinement except that the REFINEMENT-clause is replaced
by an IMPLEMENTATION-clause. The OPERATIONS-clause gives implemen-
tations to all the operations specified in the machine denoted in the REFINES-
clause. When an implementation IMPORTS a list of machines, the variables and
constants of these machines can be used in the invariant of the importing machine.
They cannot, however, appear in the operations. The operations of the imported ma-
chines can be used by the importing machine. An implementation machine can see
other machine via the SEES-clause.

The proof obligations for an implementation are basically the same as those
for refinement. However, in an implementation we can use more programming like
construct not allowed in the other machines. The loop construct is one of them. The
proof obligations for a loop

Loop=T; WHILE P DO G INVARIANT R VARIANT E END
for some predicate R are as follows:

T 1 T R
T 2 R E NAT
T 3 l R P G R
T 4 l R P n : E G E n

334 Appendix

T 5 l R P Q

