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Abstract. The Eiffel exception mechanism supports two methodolog-
ical aspects. First, a method specification by a pre- and postcondition
also determines when the method exits exceptionally, namely when the
stated postcondition cannot be satisfied. Secondly, the rescue and retry
statements combine catching an exception with a loop structure, thus
requiring a dedicated form of correctness reasoning. We present verifica-
tion rules for total correctness that take these two aspects into account.
The rules handle normal loops and retry loop structures in an analogous
manner. They also allow the Eiffel’s mechanism to be slightly general-
ized. The verification rules are derived from a definition of statements
by higher-order predicate transformers and have been checked with a
theorem prover.

1 Introduction

Programming languages offer exception handling for responding to detected fail-
ures, for dealing with rare or undesired circumstances, and for allowing for imper-
fections in the design (like an incomplete implementation). Compared to treating
these situations by an explicit case analysis—with testing for permissibility of an
operation a priori or testing for success of an operation a posteriori—exception
handling allows the original, idealized design to remain largely unchanged and
separates the concern of exceptional situations.

The exception mechanism of Eiffel is particularly methodological in that it is
combined with the specification of methods by pre- and postconditions that are
evaluated at run-time [16]. When a precondition does not hold, it is the caller’s
fault and an exception is signalled in the caller. When a postcondition does
not hold, it is the callee’s fault and an exception is signalled in the callee. If the
callee cannot establish the desired postcondition by alternative means, the callee
propagates the exception to the caller. Thus, a single postcondition determines
whether a method exits normally or exits exceptionally, i.e. fails. This is in
contrast to the view that exceptions provide an alternative exit from methods
(like “item not found”), and as such have to be mentioned in method interfaces,
together with the condition when they are raised and the postcondition in that
case [12,14,15]. The second methodological aspect in Eiffel is that an exception
handler may retry a method, in which case execution continues at the beginning
of a method. The exception handler has to ensure that the precondition of the
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method holds, independently of where the exception in the body occurred, as in
following fragment:

meth
require
pre

do
body

ensure
post

rescue
handler
retry

end

Here, handler is invoked if post does not hold at the end of body. The retry
statement will restart the method, hence handler has to establish pre. Unlike
in the termination model (as in Java) and the resumption model (as in Mesa),
the retrying model of exception handling leads to a loop structure [5,24]. In this
paper we are concerned with the correctness theory of exception handling in the
retrying model of Eiffel.

The main contribution of this paper is a mechanically formalized verification
theory for total correctness based on weakest precondition predicate transform-
ers. Predicate transformers, as introduced by Dijkstra, define the input-output
behaviour of statements and at the same time allow the extraction of verifica-
tion conditions. The treatment of exception handling with predicate transformers
goes back to Cristian [7]: statements have one entry and multiple exits (one of
those being the normal one) and are defined by a set of predicate transformers,
one for each exit. As King and Morgan point out, this disallows nondetermin-
ism [11], which is useful for the specification and development of sequential
programs and necessary for defining concurrent programs. The solution is to
use a single weakest exceptional precondition predicate transformer with one
postcondition for each exit instead. Leino and Snepscheut derive weakest excep-
tional preconditions of statements from a trace semantics [13]. Here we start
immediately with weakest exceptional preconditions. Jacobs gives a mechanical
formalization of try-catch-finally statements [10]. However, that formalization
includes all the other “abrupt termination” modes of Java, which we do not
need for Eiffel, and uses state transformers rather than predicate transformers,
which again precludes nondeterminism.

Verification rules for partial correctness of Eiffel statements have been proposed
by Nordio et al. [17]. The present work extends these rules by considering total cor-
rectness, which necessitates loop variants for normal loops and retry variants for
methods with a retry statement. Loop variants were originally considered in Eif-
fel, but not retry variants [16]. Nordio et al. justify the rules with respect to an
operational semantics; here we derive the rules from a (denotational) predicate
transformer semantics. Another difference is the linguistic form for retrying. Eiffel
originally has a retry statement which can appear only in the exception handler.
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Nordio et al. propose instead to have a retry variable, a boolean variable which de-
termines if at the end of an exception handler the body is attempted again.Tschan-
nen et al. use this formof retrying for translatingEiffel into theBoogie intermediate
verification language [21]. Here we consider retry statements, as they are of interest
on their own and as the current versions of EiffelStudio (version 7) and SmartEiffel
(version 2.3) only support retry statements. As a consequence, all statements have
three exits, the normal, exceptional, and retry exit.

All theorems (formulae (1) to (23)) have been checked with the Isabelle/HOL
theorem prover; for this reason, we allow ourselves to omit proofs 1. The formal-
ization is a shallow embedding in which each statement is directly defined as a
term in the logic. This style goes back to Gordon [8] and has been explored for
program verification and refinement, e.g. [4,23,18]. As noted by Harrison [9], this
is a more natural formalization compared to a deep embedding, in which the syn-
tax of statements and their meaning are inductively defined. A shallow embed-
ding has also the advantage that all data types and operators of the underlying
logic are immediately available in the programming language for specification
and reasoning. The advantage of a deep embedding, to allow proofs over the
structure of statements, is not needed here. The second contribution of this pa-
per is to work out a shallow embedding of Eiffel statements with three exits. By
comparison, the formalization of Jacobs uses a deep embedding [10]. Program-
ming languages have partially defined expressions (pointer dereferencing, array
indexing, arithmetic operations) and conditional boolean operators (and then
and or else), which cannot be expressed directly in HOL, a logic of total func-
tions. In order to avoid a dedicated logic with partial functions, the approach is
to introduce partial functions within HOL only for program expression and to
continue using total functions for reasoning about statements.

An elegant way to define loops is in terms of strong iteration Sω, which stands
for S being repeated zero or more times, i.e., skip, S , S ; S , . . ., but possibly
infinitely often. (Weak iteration S ∗ repeats S only finitely often.) Such a defini-
tion allows the algebraic properties of loops to be derived, which are useful for
transformations like splitting/merging loops and atomicity refinement, e.g. as
in [3,6,22]. The third contribution of this paper is to explore an algebraic style
of defining retry loops. Here we have statements with three exits, i.e. with three
kinds of “sequential composition”, one for each exit. Thus three kinds of strong
iteration are defined, one for each exit.

This work originated in an effort to identify and formalize design patterns
for exception handling; one of those patterns is a simpler form of retrying [19].
The formalization here covers specifically the Eiffel mechanism of retrying. The
authors’ work on a new notion of partial correctness was inspired by the method-
ological aspects of exception handling in Eiffel [20].

Outline. As a prelude, the meaning of program expressions with undefinedness
and conditional operators is given in Section 1. The definition of Eiffel statements
is split in two parts. First a core language is defined by weakest preconditions

1 The Isabelle/HOL formalization is available at
http://www.cas.mcmaster.ca/~zhangt26/SBMF/

http://www.cas.mcmaster.ca/~zhangt26/SBMF/
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in Section 2. The remaining statements of Eiffel are defined in terms of the core
statements in Section 3. Correctness assertions are derived from the weakest
preconditions for all statements in Section 4. This allows the conditions for
method correctness to be derived in Section 5. The example of computing the
square root by binary search is used to illustrate the application of the rules in
Section 6. We conclude with a summary and discussion.

Notation. Following higher order logic, every term has a type and predicates
are boolean terms. We write = for the equality of terms and ≡ for the equality
of predicates. Arithmetic operators bind stronger than =, which itself binds
stronger than boolean operators, which themselves bind stronger than ≡.

2 Program Expressions

Before embarking on defining statements, we need to determine on how to treat
possible undefinedness in expressions. We distinguish terms in the underlying
logic, here higher order logic, from program expressions, here those of Eiffel. A
boolean term, even one like x/y > 0 and a[i ] < k is always true or false. However,
the program expressions x/y > 0 and a[i ] < k may not always yield a result. For
program expression E its definedness ΔE and value ‘E ’ are in part determined
by the underlying machine; the result of ΔE and ‘E ’ are terms. Formally, a
program expression of type T is a total function whose range is either some
element of T or None.

We consider a subset of Eiffel operators on booleans and integers: assuming
that c is a constant, x a variable, and ≈ is =, < or another relational operator,
◦ is +,−, or ∗, and | is // or \\ (integer division and modulo), we have

Δc =̂ True ‘c’ =̂ c

Δx =̂ True ‘x ’ =̂ x

Δ(E andF ) =̂ ΔE ∧ΔF ‘E andF ’ =̂ ‘E ’ ∧ ‘F ’

Δ(E orF ) =̂ ΔE ∧ΔF ‘E orF ’ =̂ ‘E ’ ∨ ‘F ’

Δ(E and thenF ) =̂ ΔE ∧ (‘E ’ ⇒ ΔF ) ‘E and thenF ’ =̂ ‘E ’ ∧ ‘F ’

Δ(E or elseF ) =̂ ΔE ∧ (¬‘E ’ ⇒ ΔF ) ‘E or elseF ’ =̂ ‘E ’ ∨ ‘F ’

Δ(E ≈ F ) =̂ ΔE ∧ΔF ‘E ≈ F ’ =̂ ‘E ’ ≈ ‘F ’

Δ(E | F ) =̂ ΔE ∧ΔF ∧ ‘F ’ 	= 0 ‘E | F ’ =̂ ‘E ’ | ‘F ’

Δ(E ◦ F ) =̂ ΔE ∧ΔF ∧
min int ≤ ‘E ◦ F ’

≤ max int

‘E ◦ F ’ =̂ ‘E ’ ◦ ‘F ’

where min int and max int are the smallest and largest machine-representable
integers, operators and and or evaluate both operands, and operators and then
and or else evaluate conditionally. For example, assuming that min int ≤ 0 ≤
l ≤ u ≤ max int , we can show for program expression (l + u) // 2 that
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Δ((l + u) // 2) ≡ l + u ≤ max int (1)

‘(l + u) // 2’ = (l + u) // 2 (2)

and:

Δ(l + (u − l) // 2) ≡ True (3)

‘l + (u − l) // 2’ = l + (u − l) // 2 = (l + u) // 2 (4)

That is, program expressions (l + u) // 2 and l + (u − l) // 2 have the same
value, namely the term (l + u) // 2, but the later is always defined under above
assumption, whereas the former is not. We give the proof of (4):

‘(l + (u − l) // 2)’ = (l + u) // 2

≡ l + (u − l) // 2 = (l + u) // 2 definition of val

≡ l ∗ 2 + (u − l) // 2 ∗ 2 = (l + u) // 2 ∗ 2 congruence, distribution

≡ l ∗ 2 + (u − l) = l + u as x // y ∗ y = x if y 	= 0

≡ l + u = l + u arithmetic

The distinction between terms in the logic and program expressions keeps the
logic simple, e.g. all familiar laws of the boolean algebra like the law of the
excluded middle still hold, while allowing to capture all restrictions of an under-
lying machine.

3 Core Statements

We consider a core language of statements with three exits, namely normal,
exceptional, and retry exit. The statement abort is completely uncontrollable
and the statement stop blocks execution. The statements skip, raise, retry do
not modify any variables, but jump to each of the three exits directly instead.
skip terminates normally, raise terminates exceptionally, and retry terminates
retrying.

Let a, b, c be predicates. In a language with single exit, the statement
assume a or [a] terminates if a is true and blocks if a is false. With three
exits, the statement [a, b, c] terminates normally if a is true, terminates excep-
tionally if b is true, terminates retrying if c is true, and blocks if all are false.
If several conditions are true, the choice among the corresponding exits is non-
deterministic. The assignment x := e, where x is a variable and e is a term,
always terminates normally. The nondeterministic choice S �T executes either
S if S does not block and executes T if T does not block. If both do not block,
the choice is nondeterministic. The normal (sequential) composition S ;T starts
with statement S and continues with statement T on normal termination of S ,
the exceptional (sequential) composition S ;E T continues with T on exceptional
termination of S , and the retrying (sequential) composition S ;R T continues with
T on retrying termination of S .
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This is formalized by a generalization of Dijkstra’s weakest precondition pred-
icate transformers. For predicates q, r , s ,

wp ‘S ’ (q, r , s)

is the weakest precondition such that S terminates, on normal termination q
holds finally, on exceptional termination r holds finally, and on retrying termi-
nation s holds finally 2:

wp ‘abort’ (q, r , s) =̂ False

wp ‘stop’ (q, r , s) =̂ True

wp ‘skip’ (q, r , s) =̂ q

wp ‘raise’ (q, r , s) =̂ r

wp ‘retry’ (q, r , s) =̂ s

wp ‘[a, b, c]’ (q, r , s) =̂ (a ⇒ q) ∧ (b ⇒ r) ∧ (c ⇒ s)

wp ‘x := e’ (q, r , s) =̂ q[x\e]
wp ‘S � T ’ (q, r , s) =̂ wp ‘S ’ (q, r , s) ∧ wp ‘T ’ (q, r , s)

wp ‘S ; T ’ (q, r , s) =̂ wp ‘S ’ (wp ‘T ’ (q, r , s), r , s)

wp ‘S ;ET ’ (q, r , s) =̂ wp ‘S ’ (q,wp ‘T ’ (q, r , s), s)

wp ‘S ;RT ’ (q, r , s) =̂ wp ‘S ’ (q, r ,wp ‘T ’ (q, r , s))

As a direct consequence, we have that stop = [False,False,False], skip =
[True,False,False], raise = [False,True,False], and retry=[False,False,True].
For local variable declarations, let X0 be the initial value of variables of type X
and let q, r , s be predicates that do not mention variable x :

wp ‘ local x : X S ’ (q, r , s) =̂ (wp ‘S ’ (q, r , s))[x\X0]

One more construct is needed for defining loops. In a language with single-exit
statements, the iteration Sω repeats S an arbitrary number of times, i.e. in-
tuitively is skip�S � (S ; S ) � (S ; S ; S ) . . ., until S blocks. While-loops can
be defined in terms of iteration by while g doS end = ([g] ; S )ω ; [¬g]. Here,
statements have three exits, so three variants of iteration exist: Sω repeats S
on normal termination; if S terminates exceptionally or retrying, Sω terminates
immediately. The iteration SωE repeats S on exceptional termination; if S ter-
minates normally or retrying, SωE terminates immediately. Finally, the iteration
SωR repeats S on retrying termination; if S terminates normally or exceptionally,
SωR terminates immediately.

Iterations are defined in terms of fixed points. We skip the definition here
and instead give the main rule for reasoning about iterations 3. The formulation

2 In the formalization with Isabelle/HOL, a statement is identified with its predicate
transformer, thus we would write S(q , r , s) instead of wp ‘S ’ (q , r , s). We use the
latter notation here for familiarity.

3 The Isabelle/HOL formalization contains the details.



Verification Rules for Exception Handling in Eiffel 185

follows the treatment of statements with single exits by Back and von Wright [2].
Let W 	= ∅ be a well-founded set, i.e. a set in which there are no infinitely
decreasing chains, and let pw for w ∈ W be an indexed collection of predicates
called ranked predicates of the form pw ≡ p ∧ v = w . Here p is the invariant
and v the variant. We define p<w ≡ (∃w ′ ∈ W · w ′ < w ∧ pw ′ ) to be true if a
predicate with lower rank than pw is true:

(∀w ∈ W · qw ⇒ wp ‘S ’ (q<w , r , s)) ⇒ (q ⇒ wp ‘Sω’ (q, r , s)) (5)

(∀w ∈ W · rw ⇒ wp ‘S ’ (q, r<w , s)) ⇒ (r ⇒ wp ‘SωE ’ (q, r , s)) (6)

(∀w ∈ W · sw ⇒ wp ‘S ’ (q, r , s<w )) ⇒ (s ⇒ wp ‘SωR ’ (q, r , s)) (7)

The first of these rules states that if under qw statement S terminates normally
while decreasing the rank of qw , then under q statement S terminates eventually
with q; if S terminates exceptionally with r or retrying with s , then Sω termi-
nates likewise. Similarly, the last of these rules states that if under sw statement
S terminates retrying while decreasing the rank of sw , then under r statement
S terminates eventually with s ; if S terminates normally with q or exceptionally
with r , then Sω terminates likewise.

A fundamental property of weakest preconditions is conjunctivity; it allows
the weakest precondition of a conjunction of postconditions to be determined in
terms of the precondition of each of the postconditions. Let Q be a non-empty
set of triples of predicates. Extending ∧ element-wise to triples, we say that
statement S is conjunctive if:

wp ‘S ’ (∧Q ∈ Q ·Q) ≡ (∧Q ∈ Q · wp ‘S ’Q)

All statements above are conjunctive or preserve conjunctivity. A consequence
of conjunctivity is monotonicity, which states that for predicate triples Q ,R:

(Q ⇒ R) ⇒ (wp ‘S ’Q ⇒ wp ‘S ’R)

where ⇒ is extended element-wise to triples. Hence all statements above are
monotonic.

Weakest preconditions allow to define various useful domains. The termina-
tion domain tr ‘S ’ characterizes those states in which S will terminate at any
exit. The normal termination domain nr ‘S ’, the exceptional termination domain
ex ‘S ’, and the retrying termination domain rt ‘S ’ characterize those states in
which S is guaranteed to terminate normally, exceptionally, or retrying. The
enabledness domain en ‘S ’ characterizes those states in which S does not block:

tr ‘S ’ ≡ wp ‘S ’ (True,True,True)

nr ‘S ’ ≡ wp ‘S ’ (True,False,False)

ex ‘S ’ ≡ wp ‘S ’ (False,True,False)

rt ‘S ’ ≡ wp ‘S ’ (False,False,True)

en ‘S ’ ≡ ¬wp ‘S ’ (False,False,False)
For example retry always terminates, never terminates normally or exception-
ally, always terminates retrying, and never blocks. We do not go further into the
properties of domain.
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4 Derived Statements

The assignment x := E , where E is now a program expression, terminates nor-
mally if E is defined, in which case the value of E is assigned to x , and ter-
minates exceptionally if E is undefined, without changing any variables. The
statement checkB end only evaluates B without changing any variables and
terminates exceptionally if B is not defined or its value is false. The statements
if B thenS end and if B thenS elseT end also terminate exceptionally if B is
not defined.

x := E =̂ [ΔE ,¬ΔE ,False] ; x := ‘E ’

checkB end =̂ [ΔB ∧ ‘B ’,¬ΔB ∨ ¬‘B ’,False]

if B thenS end =̂ ([ΔB ∧ ‘B ’,¬ΔB ,False] ; S ) �
[ΔB ∧ ¬‘B ’,¬ΔB ,False]

if B thenS elseT end =̂ ([ΔB ∧ ‘B ’,¬ΔB ,False] ; S ) �
([ΔB ∧ ¬‘B ’,¬ΔB ,False] ; T )

Immediately we have that checkB end = if B then skipelse raise end and
if B thenS end = if B thenS else skip end as consequences.

The loop fromS untilB loopT end first executes S and then, as long as B
is false, executes T , and repeats that provided T terminates normally. If S or T
terminate exceptionally, the whole loop terminates immediately exceptionally. If
S or T terminate retrying, the whole loop terminates immediately retrying.

fromS untilB loopT end =̂ S ;
([ΔB ∧ ¬‘B ’,¬ΔB ,False] ; T )ω ;
[ΔB ∧ ‘B ’,¬ΔB ,False]

The rescue statement do S rescueT end starts with S and if S terminates nor-
mally, the whole statement terminates normally. If S terminates exceptionally,
T is executed. If T terminates normally or exceptionally, the whole statement
terminates exceptionally. This is captured by U = S ;E (T ; raise). If T ter-
minates retrying, S the whole rescue statement is attempted again. Intuitively
U ωR = skip�U � (U ;RU ) � (U ;R U ;RU ) . . . repeats zero or more times. How-
ever, doS rescueT end repeats indefinitely when T terminates retrying and
may only terminate normally or retrying. This is captured by U ωR ;R stop, hence:

do S rescueT end =̂ (S ;E (T ; raise))ωR ;R stop

This kind of exception handling differs from try S catchT end = S ;E T in two
respects: there is no loop structure in a try-catch statement and normal termi-
nation of handler T leads to normal termination of the whole statement but
to exceptional termination in do S rescueT end. This means that in Eiffel the
handler cannot contain an alternative computation to establish the desired post-
condition, but must instead direct the body S to attempt that, typically by
setting a corresponding variable and retrying.

Eiffel does not allow retry statements in the body S of doS rescueT end.
Above definition permits those, with the meaning that the whole statement is
attempted again immediately.
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5 Correctness Assertions

The total correctness assertion {p} S {q, r , s} states that under p, statement S
terminates normally with q, exceptionally with r , and retrying with s :

{p} S {q, r , s} =̂ p ⇒ wp ‘S ’ (q, r , s)

We start with two universal rules, generalizing analogous ones for single-exit
statements. In a correctness assertion, the precondition can be strengthened
and any of the three postconditions weakened. Also, correctness assertions of
a statement can be conjoined, thus allowing proofs to be split. By convention,
predicates listed on separated lines are to be conjoined:

p′ ⇒ p
{p} S {q, r , s}
(q ⇒ q ′) ∧ (r ⇒ r ′) ∧ (s ⇒ s ′)

⇒ {p′} S {q ′, r ′, s ′} (8)

{p} S {q, r , s}
{p′} S {q ′, r ′, s ′} ⇒ {p ∧ p′} S {q ∧ q ′, r ∧ r ′, s ∧ s ′} (9)

The first of these follows from the monotonicity of wp ‘S ’ and the second from
the conjunctivity of wp ‘S ’. The correctness rules for Eiffel statements are:

p ⇒ s ≡ {p} retry {q, r , s} (10)

p ∧ΔE ⇒ q[x\‘E ’]
p ∧ ¬ΔE ⇒ r

≡ {p} x := E {q, r , s} (11)

p ∧ΔB ∧ ‘B ’ ⇒ q
p ∧ ¬ΔB ⇒ r
p ∧ ¬‘B ’ ⇒ r

≡ {p} checkB end {q, r , s} (12)

{p} S {t , r , s}
{t}T {q, r , s} ⇒ {p} S ; T {q, r , s} (13)

{p ∧ΔB ∧ ‘B ’} S {q, r , s}
p ∧ΔB ∧ ¬‘B ’ ⇒ r
p ∧ ¬ΔB ⇒ s

⇒ {p} if B thenS end {q, r , s} (14)

{p ∧ΔB ∧ ‘B ’} S {q, r , s}
{p ∧ΔB ∧ ¬‘B ’}T {q, r , s}
p ∧ ¬ΔB ⇒ s

⇒ {p} if B thenS elseT end {q, r , s} (15)

For the loop from S untilB loopT end, we assume that the postconditions are
of a particular form: at normal termination, the loop invariant holds, B is defined
and true. At exceptional termination, either the exceptional postcondition of S or
T holds (in case S or T failed), or the invariant holds and B is not defined (in case
the evaluation of B failed). On retrying termination, the retrying postcondition
of S or T holds (in case S or T executed retry). The role of S is to establish
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the loop invariant, here q:

{p} S {q, r , s}
{qw ∧ΔB ∧ ¬‘B ’}T {q<w , r , s}

⇒ (16)

{p} from S untilB loopT end {q ∧ΔB ∧ ‘B ’, r ∨ (q ∧ ¬ΔB), s}

Recall that qw = q ∧ v = w where q is the invariant, v the variant, and w ∈ W .
In Eiffel, variants are integer expressions and the well-founded set W of their
values are non-negative integers. For integer variants, we have the following rule,
where w > 0:

{p} S {q, r , s}
{q ∧ v = w ∧ΔB ∧ ¬‘B ’}T {q ∧ v < w , r , s}

⇒ (17)

{p} from S untilB loopT end {q ∧ΔB ∧ ‘B ’, r ∨ (q ∧ ¬ΔB), s}

The rule for doS rescueT end requires that progress towards termination is
made whenever S or T exits retrying; termination here means normal termina-
tion if S terminates normally or exceptional termination if T terminates nor-
mally or exceptionally:

{pw} S {q, tw , p<w}
{tw}T {r , r , p<w}

⇒ (18)

{p} do S rescueT end {q, r , s}

For integer variants, we have following rule, where w > 0:

{p ∧ v = w} S {q, t ∧ v = w , p ∧ v < w}
{t ∧ v = w}T {r , r , p ∧ v < w}

⇒ (19)

{p} do S rescueT end {q, r , s}

Here p is the retry invariant and v is the retry variant.

6 Method Correctness

In Eiffel, each method is specified by a single precondition and single postcondi-
tion only. The normal exit is taken if the desired postcondition is established and
the exceptional exit is taken if the desired postcondition cannot be established.
Thus the situations under which an exceptional exit is taken is implicit in the
method specification and a “defined” outcome is always possible, even in the
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presence of unanticipated failures. Since methods never terminate retrying, and
some statements only terminate normally, we introduce two abbreviations:

{p} S {q, r} =̂ {p} S {q, r ,False}
{p} S {q} =̂ {p} S {q,False}

We propose to restrict the exceptional postcondition in case the specified post-
condition cannot be established [20]. Since classes typically have a class invariant,
the class invariant should hold even at exceptional termination, as otherwise the
program is left in an inconsistent state and a subsequent call to the same ob-
ject may fail. (As a consequence, if re-establishing the class invariant cannot
be guaranteed, the class invariant needs to be weakened appropriately.) More
generally, let p be the condition that holds before a call to method m with
body local x : X do S rescueT end, where p captures the computation that
has been made by the whole program up to this point. We then require a call to
m either to terminate normally with the desired postcondition q or terminate
exceptionally with p:

{p} local x : X do S rescueT end {q, p}
That is, in case of failure, the method may leave the state changed, but has to
undo sufficiently such that p holds again. This regime allows then failures to be
propagated back over arbitrarily many method calls. From the correctness theo-
rems for statements, we get immediately following rule, where p, q are predicates
that may not mention x and p′

w is a collection of ranked predicates.

p ∧ x = X0 ⇒ p′

{p′
w} S {q ′, tw , p′

<w}
{tw}T {p′, p′, p′

<w}
p′ ⇒ p

q ′ ⇒ q

⇒
{p}
local x : X doS rescueT end

{q, p}
(20)

For integer variants, we have following rule, where w > 0:

p ∧ x = X0 ⇒ p′

{p′ ∧ v = w} S {q ′, t ∧ v = w , p′ ∧ v < w}
{t ∧ v = w}T {p′, p′, p′ ∧ v < w}
p′ ⇒ p

q ′ ⇒ q

⇒
{p}
local x : X doS rescueT end

{q, p}

(21)

7 Example: Binary Search of Square Root

Suppose the task is to compute the approximate non-negative integer square
root of n, which is a non-negative integer itself, such that Result2 ≤ n <
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(Result+1)2 using bounded arithmetic 4. Assume that the result must be be-
tween l and u. The loop

fromuntil u − l = 1 loop

m := l + (u − l) // 2

if n < m ∗m then u := m else l := m end

end

maintains the invariant p ≡ 0 ≤ l < u ∧ l2 ≤ n < u2. The statement m :=
l + (u − l) // 2 will establish m = (l + u) // 2 according to (4) and never fail
according to (3). However, the if statement will fail if m ∗m > max int . Since
necessarily n ≤ max int , we know that in case of failure n < m ∗m, thus after
assigning u := m the loop can continue. We use the abbreviation {retry: q} for
{False,False, q}. The full implementation with annotation is as follows:

sqrt(n, l , u : INTEGER) : INTEGER
{p}
local
m : INTEGER

{retry invariant: p}
{retry variant: u − l}
do
{loop invariant: p}
{loop variant: u − l}
fromuntil u − l = 1 loop
m := l + (u − l) // 2
{p ∧m = (l + u) // 2}
if n < m ∗m then u := m else l := m end
{p, p ∧m = (l + u) // 2 ∧ n < m2}

end
{p ∧ u − l = 1}
Result := l

rescue
{p ∧m = (l + u) // 2 ∧ n < m2}
u := m
{p}
retry
{retry: p}

end
{Result 2 ≤ n < (Result+1)2}

Note that the retry loop only needs to decrease the variant on the retry exit.

4 The Eiffel Standard [1] and Meyer [16] suggest that an arithmetic overflow leads to an
exception. SmartEiffel (version 2.3) does raise an exception, but EiffelStudio (version
7) does not. However, the example can be expressed in EiffelStudio by first formulat-
ing a class for safe arithmetic, see http://www.cas.mcmaster.ca/~zhangt26/SBMF/

http://www.cas.mcmaster.ca/~zhangt26/SBMF/
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8 Discussion

In this paper we have derived verification rules for the retrying mechanism of
Eiffel exceptions. Beside the contribution of total correctness rules, the novel
aspects of the derivation are that we started with a weakest exceptional precon-
dition semantics and defined both normal loops and retry loops through strong
iteration. All theorems have been checked with Isabelle/HOL.

The statements considered include the check statement, but we have not
discussed ensure and require method specifications. Since these are evaluated
at run-time in Eiffel, they are restricted to be program expressions (extended
with the old notation). However, since these are evaluated program expression
they have be treated like the check statement. It should be straightforward to
extend the approach for method correctness (Sec. 6) accordingly.

We have neither considered dynamic objects, therefore no method calls, nor
other features of Eiffel like inheritance. While we believe that exception handling
is largely independent of other features and the treatment here would carry over
to a more general setting, this remains to be shown.

Strong and weak iteration are appealing because of their rich algebraic struc-
ture. However, we have not explored the resulting algebraic properties of rescue
and retry statements. For example, following theorems can be shown to hold:

do skip rescue S end = skip (22)

doraise rescue retry end = abort (23)

An interesting consequence of our definition of statements is that retry state-
ments can also appear in the main body of a method, not only the exception
handler. The proof rule (18) supports this use. With this, the binary search of
the square root example can be rewritten without the from / until loop, using
only the retry loop:

sqrt2(n, l , u : INTEGER) : INTEGER
{p}
local
m : INTEGER

{retry invariant: p}
{retry variant: u − l}
do
m := l + (u − l) // 2
{p ∧m = (l + u) // 2}
if n < m ∗m then u := m else l := m end
{p, p ∧m = (l + u) // 2 ∧ n < m2}
if u − l > 1 thenretry end
{p ∧ u − l = 1, retry: p ∧ u − l > 1}
Result := l

rescue
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{p ∧m = (l + u) // 2 ∧ n < m2}
u := m
{p}
retry
{retry: p}

end
{Result 2 ≤ n < (Result+1)2}

Nordio et al. propose to replace the retry statement with a retry variable in
order to avoid the third exit [17]. Below is their example of safe division, with
annotation to show termination of the retry loop; the example shows that the
third exit does not cause further complications:

safe division (x , y : INTEGER) : INTEGER
local
z : INTEGER

{retry invariant: (y 	= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0))}
{retry variant: 1− z}
do
Result := x // (y + z )
{(y = 0 ⇒ Result = x ) ∧ (y 	= 0 ⇒ Result = x // y), y = 0 ∧ z = 0}

rescue
{y = 0 ∧ z = 0}
z := 1
{y = 0 ∧ z = 1}
retry
{retry: y = 0 ∧ z = 1}

end
{(y = 0 ⇒ Result = x ) ∧ (y 	= 0 ⇒ Result = x // y)}
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