
iState: A Statechart Translator

Emil Sekerinski and Rafik Zurob

McMaster University, Department of Computing and Software
Hamilton, Ontario, Canada, L8S 4K1
emil|zurobrs@cas.mcmaster.ca

Abstract. We describe formal steps in the design of iState, a tool for translating
statecharts into programming languages. Currently iState generates code in either
Pascal, Java, or the Abstract Machine Notation of the B method. The translation
proceeds in several phases. The focus of this paper is the formal description of
the intermediate representations, for which we use class diagrams together with
their textual counterparts. We describe how the class diagrams are further refined.
The notions of representable, normalized, and legal statecharts are introduced,
where normalized statecharts appear as an intermediate representation and code
is generated only for legal statecharts.

1 Introduction

Statecharts, conceived as a visual formalism for the design of reactive systems [3],
extend finite state diagrams by hierarchy, concurrency, and communication. These three
extensions allow the specification of complex reactive systems that would be impractical
without them. Because of the appeal of the graphical notation, statecharts have gained
popularity and are now part of object-oriented modeling techniques [4,8,9].

The concepts of hierarchy, concurrency and communication, while intuitive on their
own, interact in intricate ways. As a result, various formal semantics of statecharts and
statechart tools interpret their interaction in different ways or impose different con-
straints, e.g. [2,5]. Our approach is to use a semantics of statecharts defined by a direct
translation into a (nondeterministic) programming language, with the goal of the gen-
erated code being comprehensible: Having readable code allows us to get confidence
in the translator and in the original statechart. Furthermore, we can use the translation
scheme for explaining statecharts and illustrate this by the translator, rather than having
to use a “third domain” for the definition. Finally, in order to allow the generated code
to be further analyzed, it must be understood in the first place.

Such a translation scheme from statecharts into the Abstract Machine Notation of the
B method [1], an extension of Dijkstra’s guarded commands, was presented in [10]. The
use ofAMN is motivated by three aspects: first,AMN supports nondeterminism, allowing
nondeterministic statecharts to be translated to nondeterministic AMN machines (that
can be further refined into executable machines). This way, the nondeterminism is being
preserved rather than eliminated by the translation, as other tools typically do. Secondly,
AMN supports the parallel or independent composition of statements, which allows a
simple translation of concurrent states. Thirdly, the B method allows invariants to be

M. Gogolla and C. Kobryn (Eds.): UML 2001, LNCS 2185, pp. 376–390, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

iState: A Statechart Translator 377

✲input
Import

❄

error
message

✲

representable
statechart Pre-

processing
✲

normalized
statechart

Validation

❄

error
message

✲

legal
statechart Code

Generation
✲code

Fig. 1. Phases and intermediate representations of iState.

stated and checked. Invariants can express safety conditions and checking the invariant
will then ensure that every event is going to preserve all safety conditions.

Compared to translation schemes used by other tools, ours can be characterized as
event-centric rather than state-centric, as the main structure of the code is that of events.
The scheme is suitable for those kind of reactive systems where events are processed
quickly enough so that no queuing of events is necessary and where blocking of events
is undesirable. To our experience so far, the resulting code is not only comprehensible,
but compact and efficient as well.

The tool we built for implementing this translation scheme, iState, operates in four
phases as shown in Figure 1. In this paper we focus on formally describing the interme-
diate representations, namely the representable, normalized, and legal statecharts. We
refer to [10] for an illustration of the translation scheme and to [11] for details on the
translation algorithms and for larger examples.

The input to iState is a textual representation of statecharts that is defined by a
grammar. This representation can also be visualized through a LATEX package. However,
the Strategy pattern has been used for allowing other importers to be added, for example
a graphical front end. Currently iState generates code in AMN, Pascal, and Java. The
code generator uses an intermediate representation (which is similar to AMN) so that
other languages can be added as needed. All complete statecharts in this paper have been
processed and drawn by iState and its accompanying LATEX package.

Section 2 presents briefly all statechart elements and the event-centric translation
scheme. This prepares for the formalization of statecharts by class diagrams, together
with their textual counterpart, in Section 3. This section illustrates a general way of
translating class diagrams into a textual form. Normalized and flawed statecharts are
characterized in Section 4 and legal statecharts are characterized in Section 5. The state-
chart model is refined by eliminating associations and basic algorithms on statecharts are
discussed in Section 6. We give an example in Section 7 and conclude with a discussion
in Section 8.

2 An Event-Centric Translation Scheme

We give the translation scheme of statecharts to AMN first for plain state diagrams, then
for hierarchy, concurrency, and communication. Programs in AMN, called machines,
consists of a section declaring sets (types), a section declaring variables, an invariant
section, an initialization section, and a section with operations. The initialization has to
establish the invariant and all operations have to preserve it.

378 E. Sekerinski and R. Zurob

State diagrams consists of a finite number of states, transitions between states, and
an initial state. Its state is represented in AMN by a variable of an enumerated set type.

S1
✲ . . . Sn

SETS S = {S1, . . . ,Sn}
VARIABLES s
INVARIANT s ∈ S
INITIALISATION s := S1

Upon an event, a state machine can make a transition from one state to another. Events
may be generated by the environment. Transition arrows are labeled with an event and
optionally labeled with a parameter, a guard, or an action. Events are translated to
operations that may be called from the environment. The guard is an expression over the
global variables and the action is a statement over the global variables.

S1
✲E(p)[g]/a

S2

OPERATIONS
E(p) =̂ IF s = S1 ∧ g THEN s := S2 ‖ a END

The operator P‖Q stand for the parallel composition of statements P and Q: only the
variables assigned by P and Q must be distinct. For brevity, we omit parameters, guards,
and actions from now on. In general, several transitions can be labeled with the same
event. Let Si, . . . ,Sj and S′

i , . . . ,S
′
j be all (not necessarily distinct) elements of S. If some

of the source states of the transitions below coincide, several of the conditions in the
select statement may be true, leading to a nondeterministic choice.

Sj

. . .
Si

S′
j

. . .
S′

i

✲E

✲E
OPERATIONS

E =̂ SELECT s = Si THEN s := S′
i· · ·

WHEN s = Sj THEN s := S′
j

ELSE skip
END

Hierarchy. States can have two kinds of substates or children, XOR states and AND
states. If a state has XOR children, then whenever the statechart is in that state, it is
also in exactly one of its child states. We represent child states by an extra variable for
each parent state. This generalizes to children having further offsprings. Transitions can
break this hierarchy.

Si
✲E

Sk
✲F

Sj

R1
. . . Rm

SETS S = {S1, . . . ,Sn};R = {R1, . . . ,Rm}
VARIABLES s, r
INVARIANT s ∈ S ∧ r ∈ R
OPERATIONS

E =̂ IF s = Si THEN s := Sj ‖ r := R1 END
F =̂ IF s = Sj ∧ r = Rm THEN s := Sk END

Transitions between child states are only taken if the statechart is in all their parent states.
Transitions leaving a parent state also leave all the child states.

Sj
✲F

Si

Rk
✲E

Rl

OPERATIONS
E =̂ IF s = Si ∧ r = Rk THEN r := Rl END
F =̂ IF s = Si THEN s := Sj END

Concurrency. If a state has AND children, then if the statechart is in that state, it is also
in all its child states. AND states always have XOR children. AND states or concurrent
states are separated by a dashed line in statecharts.

iState: A Statechart Translator 379

root : XOR

{children of root form a

tree; root is not source or

target of a transition}

State

name : Identifier

Composite Basic

AND
{at least two children, all

of which are XOR states}

XOR

Transition

event : [Identifier]

Condition

Statement

� parent
1..∗

1..0

init
0..1

{Basic states are either

in the parent or in the

init association}

� incoming
1..∗ ∗outgoing �
1..∗ ∗

action

0..1

0..1

guard
0..1

0..1

Fig. 2. Representable statecharts defined by a class diagram.

R1
. . . Rm

Q1
. . . Ql

Si

SETS S = {S1, . . . ,Sn};Q = {Q1, . . . ,Ql};R = {R1, . . . ,Rm}
VARIABLES s,q, r
INVARIANT s ∈ S ∧ q ∈ Q ∧ r ∈ R

Transitions can fork to several AND states and can join from several AND states.

Si
E ✒

❘
Sk

✲F

R1
. . . Rm

Q1
. . . Ql

Sj

OPERATIONS
E =̂ IF s = Si THEN s := Sj ‖ q := Q1 ‖ r := R1 END
F =̂ IF s = Sj ∧ q = Ql ∧ r = Rm THEN s := Sk END

Transitions in concurrent states labeled with the same event can be taken simultaneously.
This is expressed by using parallel composition.

Rk
✲E

R′
k

Qj
✲E

Q′
j

Si OPERATIONS
E =̂ BEGIN

IF s = Si ∧ q = Qj THEN q := Q′
j ELSE skip END ‖

IF s = Si ∧ r = Rk THEN r := R′
k ELSE skip END

END

Communication. Guards may contain state tests of the form in Qi. These are translated
to conditions of the form q = Qi.Actions may contain statements that broadcast an event.
These are translated by calling the the operation corresponding to that event. Section 7
presents an example.

3 The Statechart Model

We define representable statecharts in two ways, first graphically by the class diagram
in Figure 2 and then in an equivalent textual form; this also illustrates a general way of

380 E. Sekerinski and R. Zurob

translating class diagrams into a textual form. To start with, let us introduce Object to
be the set of all objects. The class of states is a subset of objects. Every State object has
an attribute name of type Identifier. We let S → T denote the set of all total functions
from S to T .

State ⊆ Object

name ∈ State → Identifier

States are either composite states or basic states, but no state can be both basic and
composite. Furthermore, State is an abstract class, meaning that all objects of class State
must belong to of one of its subclasses.

Composite ⊆ State ∧ Basic ⊆ State

Composite∩Basic = ∅ ∧ Composite∪Basic = State

Likewise, composite states are either AND states or XOR states, but no state can be both
an AND state and an XOR state. The class Composite is also abstract.

AND ⊆ Composite ∧ XOR ⊆ Composite

AND ∩XOR = ∅ ∧ AND ∪XOR = Composite

Transitions are also objects. Each transition has an optional attribute event of type
Identifier. Spontaneous transitions have no event name attached to them. We let S 	→ T
denote the set of all partial functions from S to T .

Transition ⊆ Object

event ∈ Transition 	→ Identifier

Conditions and statements are objects as well.

Condition ⊆ Object ∧ Statement ⊆ Object

The guard association relates every transition to at most one condition. Likewise, the
action association relates every transition to at most one statement. We do not require
that every condition and every statement relate to exactly one transition, as conditions
and statements may appear as part of other conditions and statements, respectively. We
let S 	� T denote the set of partial, injective functions from S to T .

guard ∈ Transition 	� Condition

action ∈ Transition 	� Statement

The outgoing association relates every state to all the transitions leaving it. Any state
may have zero or more transitions leaving it but every transition must have at least one
state as origin. We let S ↔ T denote the set of relations from S to T and ran(R) the range
of relation R.

outgoing ∈ State ↔ Transition

ran(outgoing) = Transition

iState: A Statechart Translator 381

The incoming association relates every transition to all the states to which it leads. Any
state may have zero or more transitions leading to it but every transition must have at
least one state as destination. We let dom(R) denote the domain of relation R.

incoming ∈ Transition ↔ Transition

dom(outgoing) = Transition

The init association relates every XOR state to exactly one basic state, which we call
the init state. This is the state from which all the initializing transitions are leaving,
the destinations of which are the initial states. Init states do not appear graphically in
the statecharts, or perhaps just as fat dots. They are added here for allowing initializing
and proper transitions to be treated uniformly. We let S � T denote the set of all total,
injective functions from S to T .

init ∈ XOR � Basic

The parent association relates states to their parent states, which must be composite
states. Every state has at most one parent and every composite state must have at least
one child.

parent ∈ State 	→ Composite

ran(parent) = Composite

We define the relation children to be the inverse of the function parent. We let R−1

denote the inverse of relation R.

children =̂ parent−1

Every AND state has at least two children and all children of AND states are XOR states.
We let R[S] denote the image of set S under relation R and card(S) the cardinality of the
set S.

∀as ∈ AND . card(children[{as}]) ≥ 2)
children[AND] ⊆ XOR

All basic states are either in the init or parent association.

ran(init)∪dom(parent) = Basic

The root state is an XOR state. Every composite state is a descendant of root. We let R∗

denote the transitive and reflexive closure of relation R.

root ∈ XOR

Composite ⊆ children∗[{root}]

The root state must not be the source or target of a transition.

root �∈ dom(outgoing)
root �∈ ran(incoming)

This completes the textual definition of statecharts. For brevity, we define the conditions
of guards and the statements of actions only graphically by the class diagrams in Figures 3
and 4. Their textual counterpart is derived analogously.

382 E. Sekerinski and R. Zurob

Statement

UserStatement

statement : String

Broadcast

broadcast : Identifier

ComposedStatement
0..1

0..1

statement1

statement2{A statement is either in the
statement1 or statement2
association}

Fig. 3. Statements defined by a class diagram.

Condition

UserCondition

condition : String

Test

test : State

Negation BinaryCondition

Conjunction Disjunction

0..1

0..1

term1

term2

0..1

term
{A condition is either in the

term, term1, or term2 association}

Fig. 4. Conditions defined by a class diagram.

✲

✲

✲ ✛

✛

✲

S
❄

T
❄✲

(a) (b) (c)

Fig. 5. (a) A statechart violating targetsProper. (b) A statechart violating transitionsComplete.
(c) A statechart with two initial states S and T , both of which have reachable parents, but S is
reachable and T is unreachable.

4 Normalized and Flawed Statecharts

The purpose of defining normalized statecharts is that recognizing whether a statechart
is flawed or illegal is simplified. Normalization is also a first step in translating to code.
Normalization adds those transition arrows to a representable statechart that are allowed
to be left out. A statechart is normalized if two conditions hold, targetsProper and
transitionsComplete, see Fig. 5 (a) and (b).

Targets of transitions must be either Basic or XOR states—if a target were an AND
state, then that transition can be replaced by one that forks to all the XOR children of
that AND state:

targetsProper =̂ ran(incoming) ⊆ Basic ∪XOR

iState: A Statechart Translator 383

As all XOR states have an init state, this condition allows the set of all basic target states
to be determined by transitively following the init association.

If an AND state is entered by a transition, then all XOR children must be entered by
that transition as well. We define the closest common ancestor of a set ss of states to be
that state that is an ancestor of each state in ss and all other common ancestors are also
its ancestor, where each state is also its own ancestor. We let x R y denote that the pair
of x and y is in relation R. For any ss ⊆ State we define cca(ss) by:

c=cca(ss)⇔∀s∈ss . (c parent∗ s ∧ ∀a∈State . (a parent∗ s ⇒ a parent∗ c))

The closest common ancestor exists for any set of states that consists of non-init states.
The path from state s to a set ss of children of s is the set of all states that are on the paths
from s to a state of ss. Formally, path(s,ss) is defined as those states that are descendants
of s and ancestors of states in s, excluding s but including the states of ss.

paths(s,ss) =̂ children+[{s}]∩parent∗[ss]

Following [5], the scope of a transition is the state closest to the root through which the
transition passes.

scope(tr) =̂ cca(from(tr)∪ to(tr))

The states entered by a transition are all the states on the path from the scope of the
transition to the targets of the transition. For symmetry, we define the states exited by a
transition as all the states on the path from the scope of the transition to the sources of
the transition.

entered(tr) =̂ path(scope(tr), to(tr))
exited(tr) =̂ path(scope(tr), from(tr))

This finally allows us to state the requirement that for all states entered by a transition, if
the state is an AND state, then all children of that state must be entered by the transition
as well. We let R �S denote the restriction of the range of relation R to set S, formally
defined as R; id(S).

transitionsComplete =̂ (entered �AND);children ⊆ entered

Flawed statecharts are those that are legal but are likely incorrect. Flawed statecharts can
appear while they are still being worked on, so by allowing them to be translated they can
also be tested. However, iState issues a warning. More precisely, a statechart is flawed
if a non-init state is unreachable, formally ¬statesReachable. Reachability is defined
here solely based on the existence of transitions. A more involved definition taking the
enabledness of transitions into account is possible, but quickly leads to conditions that
are outside the scope of the tool.

A state is reachable if it is a target of a transition leaving a reachable state, or if it
has a reachable descendant. The root state is assumed to be reachable. We define the
relation connected to relate two states if there is a transition between them, including an
init transition. We let R;S denote the relational composition of relations R and S:

connected =̂ (outgoing; incoming)∪ init

384 E. Sekerinski and R. Zurob

R ✛

S ✛❄
Q

R

S ✛

✒

❘
T

R

S✲

✲
R

S
❄
✻

(a) (b) (c) (d)

Fig. 6. Statecharts violating (a) transitionsBetweenXORstates, (b) forksToANDstates, (c) joins-
FromANDstates, and (d) spontaneousAcyclic.

Then connected∗[{root}] is the set of all states explicitly reachable from root. States
may be reachable even if there is no transition leading to them, but they have a reachable
child, see Fig. 5 (c). We therefore consider the ancestors of reachable states as reachable
as well. The set of reachable states must be equal to the set of non-init states.

statesReachable =̂ (connected∗;parent∗)[{root}] = ran(parent)

5 Legal Statecharts

Legal statecharts have to satisfy a number of conditions: transitionsBetweenXORstates,
forksToANDstates, joinsFromANDstates, spontaneousAcyclic, initTransitionsComplete,
initToChildren, initNotTarget, initUnlabeled, noSpontaneousLeavingInitial, broadcasts-
Acyclic, see Fig. 6 and 7. All legal statecharts can be translated to code, even if they are
flawed.

No transition must cross a concurrency line. This would be the case if the scope of
a transition is an AND state.

transitionsBetweenXORstates =̂ ran(scope) ⊆ XOR

Transitions must not fork to different children of an XOR state. More precisely, the
closest common ancestor of any pair of targets of a transition must be an AND state.

forksToANDstates =̂
∀ tr ∈ Transition . (∀s ∈ to(tr), t ∈ to(tr) . (s �= t ⇒ cca({s, t}) ∈ AND))

Dually, transitions must not join from different children of an XOR state. More precisely,
the closest common ancestor of any pair of sources of a transition must be an AND state.

joinsFromANDstates =̂
∀ tr ∈ Transition . (∀s ∈ from(tr), t ∈ from(tr) . (s �= t ⇒ cca({s, t}) ∈ AND))

A chain of spontaneous transitions must not contain a cycle. We define spontaneous-
Connected to be the relation between states with a spontaneous transition between them,
including init transitions. We let R �− S denote the restriction of the range of relation R
to those elements not in S, formally defined as R; id(ran(R)−S).

spontaneousConnected =̂ ((outgoing�−dom(event); incoming)∪ init

iState: A Statechart Translator 385

R

S

❄
R

S

✛

❄
R

S ✛❄

R

S ✛E
❄

R

S
❄

E/F ✻F/E

R

S ✛

✻

(a) (b) (c) (d) (e) (f)

Fig. 7. Statecharts violating (a) initTransitionsComplete, (b) initToChildren, (c) initNotTarget, (d)
initUnlabeled, (e) broadcastsAcyclic, and (f) noSpontaneousLeavingInitial

We let id(S) denote the identity relation on set S.

spontaneousAcyclic =̂ id(Transition)∩ spontaneousConnected∗ = ∅
Every XOR state has a basic init state and there must be a transition leaving it.

initTransitionsComplete =̂ ran(init) ⊆ dom(outgoing)

The transitions leaving the init state, the init transitions, must go to a child of the state
to which the init state belongs.

initToChildren =̂ init;connected ⊆ children

No init state must be a target of a transition.

initNotTarget =̂ ran(init)∪ ran(incoming) = ∅
We define initTransitions to be the set of all transitions leaving some init state.

initTransitions =̂ outgoing[ran(init)]

These transitions must not be labeled with an event or be associated with a guard or an
action.

initUnlabeled =̂
initTransitions ∩ (dom(event)∪dom(guard)∪dom(action)) = ∅

Transitions leaving an initial state must not be spontaneous.

noSpontaneousLeavingInitial =̂ connected[initTransitions]∩dom(event) = ∅
Finally, broadcasting must not be cyclic. For example, if on event E a transition broad-
casts event F then no other transition must on event F broadcast event E. This generalizes
to a cycle involving more than two transitions and it generalizes to the case when, say, on
event E a transition does not itself broadcast event F but is followed by a chain of sponta-
neous transitions of which one broadcasts event F. We define spontaneousSuccessor to
be the relation between transitions that relates a transition to all spontaneous transitions
immediately following it.

spontaneousSuccessor =̂ incoming; (outgoing�−dom(event))

386 E. Sekerinski and R. Zurob

root : XOR

{children of root form a

tree; root is not source or

target of a transition}

State
name : Identifier
parent : Composite
transitionIn : Set(Transition)
transitionOut : Set(Transition)

Composite

children : Set(State){children has at

least one element}

Basic

AND

init : Basic

{at least two children, all

of which are XOR states}

XOR

Transition
event : [Identifier]
guard : Condition
action : Statement
from : Set(State)
to : Set(State)
{Sets from and to contain

at least one element each}

Condition

Statement

{A Basic state either has

a parent or is an init state}

Fig. 8. Refined class diagram of representable statecharts. Associations with a zero-or-one multi-
plicity are refined by attributes that can be null. Associations with higher multiplicity are replaced
by set-valued attributes that must not contain null.

The relation transitionBroadcast between Transition and Identifier relates each transition
to all events that the action of the transition can broadcast, taking into account the way
broadcast statement may be composed.

transitionBroadcast =̂ action; (statement1∪ statement2)∗;broadcast

The relation triggers between identifiers representing events relates each event to all
events possibly triggered by that event, taking into account that transitions may be
followed by a spontaneous transition also broadcasting events.

triggers =̂ event−1;spontaneousSuccessor∗; transitionBroadcast

The condition that broadcasting must not be cyclic is expressed by stating that triggers
is not cyclic.

broadcastsAcyclic =̂ id(Identifier)∩ triggers∗ = ∅

6 Refinement of the Statechart Model

We refine the model of representable statecharts by replacing associations with attributes.
For brevity we give only the class diagram, see Fig. 8. On the refined model, we formulate
algorithms for validating statecharts. In formulating the algorithms we use some object-
oriented notation. Let x be an object reference, a an attribute, C a class.

x.a =̂ a(x)
x is C =̂ x ∈ C

iState: A Statechart Translator 387

The procedure cca(s, t) computes the closest common ancestor of non-init states s and
t by first constructing paths from root to s and t, respectively, and then returning the
last common state in those paths. The running time is bounded by the height of the tree,
which is usually a small number.

procedure cca(s, t : State) : State
var l,m : seq(State) ; r : State ;
begin l := 〈s〉 ; m := 〈t〉 ;

while s �= root do begin s := s.parent ; l := l ◦ 〈s〉 end ;
while t �= root do begin t := t.parent ; m := m ◦ 〈t〉 ◦m end ;
repeat r := head(l) ; l := tail(l) ; m := tail(m)
until l = 〈〉 ∨ m = 〈〉 ∨ head(l) �= head(m) ;
return r

end

The procedure scope(tr) determines the scope of transition tr by repeatedly taking the
closest common ancestor of the scope computed so far and an arbitrarily chosen element
of the to and from set of that transition. It running time is proportional to the size of the
to and from sets. We let x :∈ e denote the nondeterministic assignment of an element of
the set e to x.

procedure scope(tr : Transition) : State
var r : State ;
begin {tr.from �= ∅ ∧ tr.to �= ∅}

r :∈ tr.from ∪ tr.to ;
for s ∈ tr.from ∪ tr.to−{r} do r := cca(r,s) ;
return r

end

The procedure transitionsBetweenXORstates checks for transitions crossing concurrency
lines by checking whether the scope of each transition is and AND state. Its running time
is proportional to the sum of the sizes of the to and from sets of each transition.

procedure transitionsBetweenXORstates : boolean
begin

for tr ∈ Transition do
if scope(tr) is AND then return false ;

return true
end

The procedure forksToANDstates checks whether the targets of transitions go to different
AND states. Its running time is proportional to the sum of the squares of the sizes of the
to sets of all transitions.

procedure forksToANDstates : boolean
var ss : set(State) ; s : State ;
begin

for tr ∈ Transition do
begin ss := tr.to ;

388 E. Sekerinski and R. Zurob

Fig. 9. An example with concurrent states, broadcasting, state tests, and nondeterminism.

while ss �= ∅ do
begin s :∈ ss ; ss := ss −{s} ;

for t ∈ ss do if cca(s, t) is XOR then return false
end

end ;
return true

end

An extended report contains the remaining algorithms [11]. In iState these are directly
implemented in Java using the collection classes, some as part of the code generation.

7 Example

Below is the AMN code generated for the statechart of Figure 9. If the system is in
substate Y of W and in substate U of S, then on event E the next substate of W could be
either X of Z . This is reflected by the nondeterministic select statement in the B code.
For Pascal and Java, a deterministic if-then-else statement is generated instead. A case
statement is generated instead of a select statement if the selection is among different
states, hence is deterministic. Pascal and B require that operations are defined before
they are called. The code generator achieves this by a topological sort of the operations.
For B, additionally auxiliary definitions have to be generated to avoid calls between
operations. In any case, the resulting code will never contain circular calls.

MACHINE example
SETS

ROOT = {noname0, M};
S = {V, T, U};
W = {Y, Z, X};
P = {Q, R}

VARIABLES
root, s, w, p

INVARIANT
root ∈ ROOT ∧ s ∈ S ∧ w ∈ W ∧ p ∈ P

INITIALISATION
root := noname0 || s := T || w := X || p := Q

DEFINITIONS
DEF H ==

IF root = noname0 THEN

iState: A Statechart Translator 389

IF (w = Z) ∧ (s = U) THEN
root := M

ELSE
IF p = R THEN

p := Q
END

END
END

;
DEF G ==

IF (w = X) ∧ (root = noname0) THEN
DEF H ||
w := Y

END

OPERATIONS
H = DEF H
;
E =

IF root = noname0 THEN
CASE s OF

EITHER V THEN s := T
OR T THEN s := U
OR U THEN skip
END

END ||
SELECT w = Y THEN

w := X
WHEN (w = Y) ∧ (s = U) THEN

w := Z
ELSE skip
END ||
SELECT p = Q THEN

p := R
END

END
;
G = DEF G
;
F =

IF (s = U) ∧ (root = noname0) THEN
DEF G ||
s := V

END
END

8 Discussion

We differ from UML statecharts in that we allow an init-state to have several outgoing
transitions, like any other state, possibly leading to nondeterminism. On the other hand,
we do require that the children of an AND state must be XOR states and not other AND
states. Currently iState does not support enter and exit actions, internal actions which
leave the system in the substate it was, history states for returning to the same substates
from which a superstate was left, timeout events timeout(E,d), which are generated d
time units after event E is generated histories, overlapping states, sync states, and boolean
expressions for events, e.g. E ∧ F. These remain the subject of ongoing research. We
believe that most can be treated as straightforward extensions, possibly with the exception
of the last one.

There has been some controversy whether the changes of a transition are visible
in the current step or in the next step, see [5] for a recent discussion. Using parallel

390 E. Sekerinski and R. Zurob

(independent) composition for updating the states of concurrent states we follow [5] by
adopting the next step approach: updating concurrent states results in compositions of
the from SELECT g THEN x := e . . .‖ SELECT h THEN y := f . . ., in which the initial
values of x and y is taken for evaluating expressions e, f ,g,h—a generalization of the
multiple assignment x,y := e, f .

A number of tools support code generation from statecharts, including xjCharts,
withClass, and Rhapsody. The code generated by Rhapsody differs from ours in being
state-centric rather than event-centric: Methods corresponding to each state are gener-
ated. Events, represented by event objects, are passed to these methods. If a state has a
transition using the passed event, it consumes the event by initiating the transition and
stopping other states from seeing the event.

Another class of tools is based on a semantics of statecharts by (extended) state
machines, for example [5,6,7]. The essence of these approaches is that statecharts are first
compiled into a state transition table which is then interpreted by a universal algorithm.
The states correspond to configurations of the statechart, i.e. they correspond to sets
of states in which the statechart can be at any time. Our translation scheme avoids the
introduction of configurations by having a separate variable for each state and it avoids
the generation of state transition tables.

Acknowledgement. We are grateful to the reviewers for their careful comments.

References

1. J.-R. Abrial. The B Book: Assigning Programs to Meaning. Cambridge University Press,
1996.

2. M. von der Beck. A comparison of statechart variants. In H. Langmaack, W.-P. deRoever,
and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture
Notes in Computer Science Vol. 863, pages 128–148. Springer Verlag, 1994.

3. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

4. D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31–
42, 1996.

5. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Transactions on
Software Engineering and Methodology, 5(5):293–333, 1996.

6. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In R. France
and B. Rumpe, editors, UML’99 – The Unified Modeling Language Beyond the Standard,
Lecture Notes in Computer Science Vol. 1723, Fort Collins, Colorado, 1999.

7. E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in Promela
/ Spin. In Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton,
1998. IEEE Computer Society Press.

8. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddi, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice-Hall, 1991.

9. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

10. E. Sekerinski. Graphical design of reactive systems. In D. Bert, editor, 2nd International
B Conference, Lecture Notes in Computer Science Vol. 1393, Montpellier, France, 1998.
Springer-Verlag.

11. E. Sekerinski and R. Zurob. From statecharts to code: A tool for the graphical design of
reactive systems. Technical report, McMaster University, 2001.

	Introduction
	An Event-Centric Translation Scheme
	The Statechart Model
	Normalized and Flawed Statecharts
	Legal Statecharts
	Refinement of the Statechart Model
	Example
	Discussion

