
Translating Statecharts to B

Emil Sekerinski and Rafik Zurob

McMaster University, Department of Computing and Software
Hamilton, Ontario, Canada

{emil,zurobrs}@mcmaster.ca

Abstract. We present algorithms for the translation of statecharts to the Abstract
Machine Notation of the B method. These algorithms have been implemented in
iState, a tool for translating statecharts to various programming languages. The
translation proceeds in several phases. We give a model of statecharts, a model
of the code in AMN, as well as the intermediate representations in terms of class
diagrams and their textual counterpart. The translation algorithms are expressed
in terms of these models. We also discuss optimizations of the generated code. The
translation scheme is motivated by making the generated code comprehensible.

1 Introduction

Statecharts, an extension of finite state diagrams by hierarchy, concurrency, and com-
munication were conceived as a visual formalism for the design of reactive systems
[4]. Because of the appeal of the graphical notation, statecharts are now part of object-
oriented modeling techniques [2,12,13].

In this paper we present algorithms for translating statecharts to theAbstract Machine
Notation of the B method [1]. These algorithms have been implemented in iState, a tool
for translating statecharts to various programming languages. While iState can generate
code in various languages, AMN is used as a reference for several reasons: First, AMN
supports nondeterminism. Nondeterminism between transitions can arise in statecharts,
hence can be reflected directly in AMN. Secondly, AMN supports parallel (independent)
composition of statements. This turns out to be essential for the translation of concurrent
states. Additionally, invariants can be expressed in AMN, allowing statecharts to be
analyzed for safety properties.

Our goal with iState is that the resulting code is not only executable, but is also com-
prehensible. The original motivation is its use for teaching statecharts. However, having
comprehensible code allows us to get confidence in the translator and is a prerequisite
for the generated code to be further analyzed.

A translation scheme for statecharts into AMN that supports hierarchy, concurrency
and communication was proposed in [15]. In [14] the structure of its implementation
in iState is discussed: a translation in phases is presented and the intermediate repre-
sentations are formally defined and the notions of representable, normalized, and legal
statecharts are introduced, see Figure 1. Normalized statecharts appear as an interme-
diate representation and code is generated only for legal statecharts. These classes of
statecharts are defined in terms of an abstract representation given by class diagrams and
in textual form. The refinement of this abstract representation is also discussed.

M. Butler, L. Petre, and K. Sere (Eds.): IFM 2002, LNCS 2335, pp. 128–144, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Translating Statecharts to B 129

�input
Import

�

error
message

�

representable
statechart Pre-

processing
�

normalized
statechart

Validation

�

error
message

�

legal
statechart Code

Generation
�code

Fig. 1. Phases and intermediate representations of iState.

In this paper we present the translation algorithms. The algorithms are expressed in
terms of an abstract representation of statecharts [14] and an abstract representation of
AMN machines. Both abstract representations are given by class diagrams and in textual
form. We also discuss the optimization done during and after the translation. To the best
of our knowledge these algorithms are new.

An interpretation of statecharts in B for the purpose of structuring reactive systems
was proposed by Lano et al [6]. In this approach concurrent states can only be on the
outermost level such that each concurrent state can be mapped to a B machine. We
allow arbitrarily composed statecharts and translate the statechart to a single B machine.
Nguyen [11] studies the translation of both class diagrams and state transition diagrams
to B. This generalizes our approach in specifying a state transition for every object
of a class, but does not include nested and concurrent states. Laleau and Mammar [5]
describe a tool for translating UML class diagrams, state diagrams, and collaboration
diagrams to B. Building on [11], their approach is to define states in a state diagram
by predicates over the attributes of an object, i.e. typically statechart states partition the
states of objects. Our approach is to represent states directly by variables. Also, they do
not mention nested or concurrent states.

Mikk et al. [10] and Lilius and Paltor [7,8] discuss the translation of statecharts to
Promela, the input language of the Spin model checker. Promela is related to AMN in
the sense that both are extensions of the guarded command language. The translation
of Lilius and Paltor relies on a universal algorithm for each step. By comparison we
generate code directly for each event. Also, they consider queuing of events according
to UML whereas we follow Harel’s statecharts in generating and consuming events
instantaneously. In order to eliminate inter-level transitions, Mikk et al. use extended
hierarchical automata as an intermediate step in the translation. In our translation scheme
inter-level transitions do not cause any additional complications. In their translation
scheme copies of the pre-state of all variables is kept in order to ensure that a state
change is sensed only in the subsequent state. In our translation scheme this is done
simply using the parallel composition of AMN (though a refinement of the generated
machine may need to introduce such variables). In their translation scheme not only
the states but also the events are represented by variables in order to maintain a set of
simultaneously generated events. In our approach we do not introduce variables for the
events but have the (syntactic) restriction that in any step an event cannot be broadcast
simultaneously more than once. Our restriction is motivated by keeping the generated
code simple and comprehensible.

Section 2 presents the abstract model of statecharts in terms of class diagrams and
in textual form. Section 3 gives the normalization algorithms carried out on that model.
Section 4 presents the abstract model of the AMN code in terms of class diagrams and



130 Emil Sekerinski and Rafik Zurob

root : XOR

{children of root form a

tree; root is not source or

target of a transition }

State

name : Identifier

Composite Basic

AND XOR

Transition

event : [Identifier]

Condition

Statement

� parent
1..∗

0..1

init
0..1

0..1 {Basic states are either

in the parent or in the

init association}

� incoming
1..∗ ∗outgoing �
1..∗ ∗

action

0..1

0..1

guard
0..1

0..1

Fig. 2. Representable statecharts defined by a class diagram.

in textual form. Section 5 presents the translation algorithms and Section 6 discusses
further processing. We conclude with a discussion in Section 7.

2 The Statechart Model

We define representable statecharts in two ways, graphically by the class diagram in
Figure 2 and in an equivalent textual form. We follow the presentation of [14] but lift
some restrictions. Our model is also related to the model of statecharts in [9]. Besides
the difference in style which arises from starting with a graphical model and the fact that
we do not consider entry and exit actions, the differences are that we do not introduce
configurations and we do not consider sets of simultaneous events.

Let us introduce Object to be the set of all objects. The class of states is a subset of
objects. Every State object has an attribute name of type Identifier. We let S → T denote
the set of all total functions from S to T .

State ⊆ Object

name ∈ State → Identifier

States are either composite states or basic states, but no state can be both basic and
composite. Furthermore, State is an abstract class, meaning that all objects of class State
must belong to one of its subclasses.

Composite ⊆ State ∧ Basic ⊆ State

Composite∩Basic = ∅ ∧ Composite∪Basic = State

Likewise, composite states are either AND states or XOR states, but no state can be both
an AND state and an XOR state. The class Composite is also abstract.

AND ⊆ Composite ∧ XOR ⊆ Composite

AND ∩XOR = ∅ ∧ AND ∪XOR = Composite

Transitions are also objects. Each transition has an optional attribute event of type
Identifier. Spontaneous transitions have no event name attached to them. We let S �→ T
denote the set of all partial functions from S to T .



Translating Statecharts to B 131

Transition ⊆ Object

event ∈ Transition �→ Identifier

Conditions and statements are objects as well.

Condition ⊆ Object ∧ Statement ⊆ Object

The guard association relates every transition to at most one condition. Likewise, the
action association relates every transition to at most one statement. We do not require
that every condition and every statement relate to exactly one transition, as conditions
and statements may appear as part of other conditions and statements, respectively. We
let S �� T denote the set of partial, injective functions from S to T .

guard ∈ Transition �� Condition

action ∈ Transition �� Statement

The outgoing association relates every state to all the transitions leaving it. Any state
may have zero or more transitions leaving it but every transition must have at least one
state as origin. We let S ↔ T denote the set of relations from S to T and ran(R) the range
of relation R.

outgoing ∈ State ↔ Transition

ran(outgoing) = Transition

The incoming association relates every transition to all the states to which it leads. Any
state may have zero or more transitions leading to it but every transition must have at
least one state as destination. We let dom(R) denote the domain of relation R.

incoming ∈ Transition ↔ State

dom(outgoing) = Transition

The init association relates an XOR state to at most one basic state, which we call its
init state. This is the state from which all the initializing transitions are leaving, the
destinations of which are the initial states. Init states do not appear graphically in the
statecharts, or perhaps just as fat dots. They are added here for allowing initializing and
proper transitions to be treated uniformly. Not every XOR state must have an init state.

init ∈ XOR �� Basic

The parent association relates states to their parent states, which must be composite
states. Every state has at most one parent and every composite state must have at least
one child.

parent ∈ State �→ Composite

ran(parent) = Composite

We define the relation children to be the inverse of the function parent. We let R−1

denote the inverse of relation R.

children =̂ parent−1

All basic states are either in the init or parent association.

ran(init)∪dom(parent) = Basic



132 Emil Sekerinski and Rafik Zurob

Statement

UserStatement

statement : String

Call

callee : Identifier

Parallel

parstat : set(Statement)

Fig. 3. Statements defined by a class diagram.

Condition

UserCondition

condition : String

Test

test : State

Negation

term : Condition

Infix

terms : set(Condition)

Conjunction Disjunction

Fig. 4. Conditions defined by a class diagram.

The root state is an XOR state. Every composite state is a descendant of root. We let R∗

denote the transitive and reflexive closure of relation R.

root ∈ XOR

Composite ⊆ children∗[{root}]

The root state must not be the source or target of a transition.

root 
∈ dom(outgoing)
root 
∈ ran(incoming)

This completes the textual definition of statecharts. Compared to [14] we do not require
that every AND state has two children and all children of AND states are XOR states.
While our tool enforces this in order to make the graphical and textual representation
interchangeable, our translation algorithms can cope with the more general case. For
brevity, we define the conditions of guards and the statements of actions only graphi-
cally by the class diagrams in Figures 3 and 4. Statements are either user defined, are
broadcasts, or are compositions of statements. Broadcasts are referred to as calls and the
composition is referred to as parallel.

3 Preprocessing

Normalization adds those transition arrows to representable statecharts that can be left
out. Normalization is the first step to translation. A statechart is normalized if two
conditions hold, targetsProper and transitionsComplete.



Translating Statecharts to B 133

�

�

� �

�

�

�

�

�

� �

�

�

�

(a) (b) (c) (d)

Fig. 5. (a) A statechart that violates targetsProper. (b) Normalization of the statechart in (a): the
AND target of the transition is replaced by its two XOR children. (c) A statechart that violates
transitionsComplete. (d) Normalization of the statechart in (c): the XOR child of the AND state
that is not entered by the transition is added to its targets.

Targets of transitions must be either Basic or XOR states. If a target is an AND state,
then that transition can be replaced by one that forks to all the children of that AND
state, see Fig. 5(a).

targetsProper =̂ ran(incoming) ⊆ Basic ∪XOR

If an AND state is entered by a transition, then all its children must be entered by that
transition as well, see Fig. 5(b). We define the closest common ancestor of a set ss of
states to be that state that is an ancestor of each state in ss and all other common ancestors
are also its ancestor, where each state is also its own ancestor. We let x R y denote that
the pair of x and y is in relation R. For any ss ⊆ State we define cca(ss) by:

c = cca(ss) ⇔ ∀s ∈ ss . (c parent∗ s ∧ ∀a ∈ State . (a parent∗ s ⇒ a parent∗ c))

The closest common ancestor exists for any set of states that consists of non-init states.
The path from state s to a set ss of descendants of s is the set of all states that are on
the paths from s to a state of ss. Formally, path(s,ss) is defined as those states that are
descendants of s and ancestors of states in ss, excluding s but including the states of ss.
We let R+ denote the transitive closure of relation R.

path(s,ss) =̂ children+[{s}]∩parent∗[ss]

The set to(tr) of transition tr is the set of all target states of that transition. Dually, the
set from(tr) is the set of all source states of tr:

to(tr) =̂ outgoing−1[{tr}]
from(tr) =̂ incoming[{tr}]

Following [3], the scope of a transition is the state closest to the root through which the
transition passes.

scope(tr) =̂ cca(from(tr)∪ to(tr))

The states entered by a transition are all the states on the path from the scope of the
transition to the targets of the transition. For symmetry, we define the states exited by a
transition as all the states on the path from the scope of the transition to the sources of
the transition.

entered(tr) =̂ path(scope(tr), to(tr))
exited(tr) =̂ path(scope(tr), from(tr))



134 Emil Sekerinski and Rafik Zurob

This finally allows us to state the requirement that for all states entered by a transition, if
the state is an AND state, then all children of that state must be entered by the transition
as well. We let R �S denote the restriction of the range of relation R to set S, formally
defined as R; id(S).

transitionsComplete =̂ (entered �AND);children ⊆ entered

We present an algorithm that makes all targets proper and all transitions complete. The
algorithm iterates over all transitions. For each transition, a set vs of states to be visited
is maintained. This is initially the set of all AND states entered by the transition. Each of
these states is replaced by the set rs of all its children that are not entered by the transition.
This continues until there are no more states to be visited. The children that are added in
the replacement step can be either XOR, AND, or Basic states. Of these, the AND states
have to be visited as well and are therefore added to vs. Assuming that the hierarchy is
finite, the algorithm terminates and establishes targetsProper and transitionsComplete.
We let x :∈ e denote the nondeterministic assignment of an element of the set e to x.
We write R[S] := T for modifying the relation R such that all elements of S relate to all
elements of T , formally R := R ⊕ (S ×T), where ⊕ stands for the relational overwrite.

procedure normalize
for tr ∈ Transition do

var vs : set(State) ;
begin vs := entered(tr)∩AND ;

while vs 
= ∅ do
var s : State,rs : set(State) ;
begin s :∈ vs ; rs := children[{s}]− entered(tr) ;

incoming[{tr}] := incoming[{tr}]−{s}∪ rs ;
vs := vs −{s}∪ (rs ∩AND)

end
end

Besides normalization, the preprocessing step also renames states with the same name
but in different parts of the statechart by appending the names of the parent states. As
states do not necessarily carry user-defined names, unique names are generated for those.

The validation step, which follows the preprocessing step, detects remaining name
conflicts as well as a number of other errors: (1) Transitions must not be between con-
current states. (2) A transition can fork only to concurrent states. (3) A transition can join
only from concurrent states. (4) There must not be a cycle in spontaneous transitions.
(5) Every init state must have a transition leaving it. (6) The init transition must go to a
child. (7) init states cannot be targets of transitions. (8) init transitions must not have an
event or a guard. (9) No spontaneous transition can leave the target of an init transition.
(10) Broadcasts don’t lead to the same event being generated twice. These are further
discussed in [14]. Violating these conditions would either cause the translation to fail or
the generated code to be invalid.



Translating Statecharts to B 135

Code
variables : Identifier �→ set(Identifier)
operations : Identifier �→ Statement
initialization : Statement

Fig. 6. Generated code defined by a class diagram.

Statement

Assignment

left : Identifier
right : Identifier

Skip Select

when:set(Condition×Statement)
else : Statement

Case
tag : Identifier
case:set(Identifier×Statement)

Fig. 7. Statements added to the class for the purpose of code generation.

4 The Code Model

The model of the code is given in Fig. 6. The attribute variables defines variables of enu-
merated set type by mapping variables to their possible values. The attribute operations
maps operations to their body. The generated operations have no parameters. The ini-
tialization is a statement. All identifiers in variables and the domain of operations have
to be distinct. In case the same state name appears in different parts of a statechart, this
is resolved by appending the name of the pare nt states, otherwise an error is reported.

In order to model the generated statements, we extend the class of statements by those
in Fig. 7. Generated statements may be of all the classes UserStatement, Call, Parallel,
Assignment, Skip, Select, and Case. In order to model the generated conditions, we
extend the class of conditions by the Equality as in Fig. 8. Generated conditions may
be of the classes UserCondition, Negation, Conjunction, Disjunction, and Equality, but
not of the class Test.

5 Translation

Assuming that the statechart is normalized and legal, code is generated for the variables,
for the initialization, and for the operations in sequence.We write x := new C for creating
a new object of class C. We assume that all classes are subtypes of class Object. If C is
in addition a subtype of classes C1, . . . ,Cn, then x := new C is defined as x :
∈ Object ;
Object := Object ∪{x} ; C1 := C1 ∪{x} ; . . . ; Cn := Cn ∪{x}. Hence, we are identifying
a class with the set of all objects of that class. For example, c := new Code is equivalent
to c :
∈ Object ; Object := Object ∪{c} ; Code := Code∪{c}.



136 Emil Sekerinski and Rafik Zurob

Condition

Equality

lefteq : Identifier
righteq : Identifier

Fig. 8. Condition added to the class hierarchy for the purpose of code generation.

procedure generate : Code
var c : Code
begin c := new Code ;

generateVariables(c) ;
c.initialization := generateInitialization(root) ;
generateOperations(c) ;
return c

end

For each composed state a variable is created. The values of this variable are the names
of its children; we assume that in the preprocessing steps all states have been given a
name. As the children may themselves be composed, new names have to be introduced.
For example we could have:

S1

T

S2

W X1 X2

U V
root ∈ {S1,S2}
s1 ∈ {T}
u ∈ {V}
w ∈ {X1,X2}

The variable declarations are generated by traversing all XOR states and generating a
corresponding variable. If a is an attribute of an object x of class C, we write x.a instead
of a(x).

procedure generateVariables(c : Code)
begin c.variables := ∅ ;

for s ∈ XOR do
c.variables(lc(s.name)) := UC((children ; name)[{s}])

end

The functions lc(s) and uc(s) convert an identifier represented as a string to lower case
and upper case, respectively. For our purposes it suffices to assume that lc(s) 
= uc(s)
for any identifier s. The function UC(ss) converts all strings of the set ss to upper case.



Translating Statecharts to B 137

For each event in the statechart an operation in the code is generated:

procedure generateOperations(c : Code)
begin c.operations := ∅ ;

for eid ∈ ran(event) do
c.operations(eid) := generateTransition(eid,root)

end

There can be several transitions on the same event, including transitions leaving the same
state, leading possibly to nondeterminism.All transitions on the same level are translated
to a select statement. For example, assuming that r is the variable for the enclosing XOR
state, we generate:

T

S

V

U

�E[h]/b

�E[g]/a
E =̂ SELECT r = S ∧ g THEN r := U ‖ a

WHEN r = R ∧ h THEN r := V ‖ b
ELSE skip
END

Transitions on outer levels have priority over transitions on the same event in inner levels.
The procedure generateTransitions(eid,s) first generates the code for transition tr with
scope(tr) = s and event(tr) = eid and then recursively code for the children of s.

procedure generateTransitions(eid : Identifier,s : State) : Statement
var sel : Select ;
begin sel := new Select ; sel.when := ∅ ;

for tr ∈ scope−1[{s}]∩ event−1[{eid}] do
sel.when := sel.when∪{(generateGuard(tr,s),generateAction(tr,s))} ;

sel.else := generateChildTransitions(eid,s) ;
return sel

end

For generating the code for transitions in children, we have to distinguish the type of the
children. If a child is a Basic state, then it cannot contain transitions and no code needs
to be generated. If the child is an XOR state, a case analysis needs to be generated. For
example, assuming that r is the variable for the enclosing XOR state, we generate:

V�E[g]S

T �E
U

E =̂ SELECT r = S ∧ g THEN r := V
ELSE

CASE r OF
EITHER S THEN

SELECT s = T THEN s := U
ELSE skip
END

OR V THEN skip
END

END
END

Simplifications of the generated code are discussed in Sec. 6. If the child is an AND
state, then a parallel composition is generated. In the following example state S is an
AND state with two XOR children. Assuming that r is the variable for the enclosing
XOR state, we generate:



138 Emil Sekerinski and Rafik Zurob

W
X �E Y

T
U �E V

S
�E Z

E =̂ SELECT r = S THEN r := Z
ELSE

CASE t OF
EITHER U THEN t := V
OR V THEN skip
END

END
‖
CASE w OF

EITHER X THEN w := X
OR Y THEN skip
END

END
END

The procedure generateChildTransitions(eid,s) generates code for transitions on event
eid where the scope of the transition is a child of s.

procedure generateChildTransitions(eid : Identifier,s : State) : Statement
if s ∈ Basic then return new Skip
else if s ∈ XOR then

var ca : Case ;
begin ca := new Case ; ca.tag := name(s) ; ca.cases := ∅ ;

for cs ∈ children[{s}] do
ca.cases := ca.cases ∪{(name(cs),generateTransitions(eid,cs))} ;

return ca
end

else
var pa : Parallel ;
begin pa := new Parallel ; pa.parstat := ∅ ;

for cs ∈ children[{s}] do
pa.parstat := pa.parstat ∪{generateTransitions(eid,cs)} ;

return pa
end

Making a step to a new state requires updating as many variables as XOR and Basic
states are entered. In addition, the action associated with the transitions is executed. For
example, assuming that r is the variable for the enclosing XOR state, we generate:

S �E/a
T

U

E =̂ SELECT r = S THEN
r := T ‖ t := U ‖ a

ELSE skip
END

Procedure generateAction(tr,s) generates the parallel composition of assignment state-
ments needed to move from the state s to the targets of the transition tr. Using parallel
composition ensures that the new state is sensed only in the next step. If an XOR state is
a target, the initialization of it is generated recursively. If the transition has an associated
action, that action is added to the parallel composition without translation: broadcasting
an event in the statechart is interpreted as calling the operation of that event in AMN.



Translating Statecharts to B 139

The composition of user defined action and broadcasts in statecharts is interpreted as
their parallel composition in AMN.

procedure generateAction(tr : Transition,s : State) : Statement
var pa : Parallel ;
begin pa := new Parallel ; pa.parstat := ∅ ;

for t ∈ entered(tr)− children[AND] do
var as : Assignment ;
begin as := new Assignment ;

as.left := lc(name(parent(t))) ; as.right := uc(name(t)) ;
pa.parstat := pa.parstat ∪{as} ;
if t ∈ XOR ∧ t ∈ to(tr) then

pa.parstat := pa.parstat ∪{generateInitialization(t)}
end ;

if tr ∈ dom(action) then
pa.parstat := pa.parstat ∪{action(tr)} ;

return pa
end

Making a step out of a state requires testing as many variables as XOR and Basic states
are exited. In addition, the guard associated with the transition needs to be tested. For
example, assuming that r is the variable for the enclosing XOR state, we generate:

S

T �E[g]
U

E =̂ SELECT r = S ∧ s = T ∧ g THEN
r := U

ELSE skip
END

Procedure generateGuard(tr,s) generates the conjunction of state tests needed for tran-
sition tr to leave state s. If the transition has an associated guard, that is added to the
conjunction.

procedure generateGuard(tr : Transition,s : State) : Condition
var co : Conjunction ;
begin co := new Conjunction ; co.terms := ∅ ;

for t ∈ exited(tr)− children[AND] do
co.terms := co.terms ∪{generateTest(t)}

if tr ∈ dom(guard) then
co.terms := co.terms ∪{generateCondition(tr,guard(tr))} ;

return co
end

Procedure generateTest(s) generates the code for testing whether the parent of s is in s.

procedure generateTest(s : State) : Condition
var eq : Equality ;
begin eq := newEquality ;

eq.lefteq := lc(name(parent(s))) ;
eq.righteq := uc(name(s)) ;
return eq

end



140 Emil Sekerinski and Rafik Zurob

A state test requires testing a concurrent state. If that is nested, its parents have to be tested
as well, up to (but excluding) the AND state that is the closest common ancestor of the
source states of the transition with the state test and the state being tested. However, tests
are only necessary for XOR states that are not children of AND states. For example,
assuming that r is the variable for the enclosing XOR state, we generate after some
simplifications:

S
T

U V�E[in(Y)]

W

X
Y

E =̂ IF r = S ∧ t = U ∧ w = X ∧ x = Y THEN
t := V

END

Procedure generateCondition(tr,c) transforms conditions as they appear in statecharts to
conditions in AMN. It does so by recursively traversing the condition and only replacing
state test with a conjunction of equalities.

procedure generateCondition(tr : Transition,c : Condition) : Condition
if c ∈ UserCondition then return c
else if c ∈ Test then

var co : Conjunction,s : State ;
begin co := new Conjunction ; co.terms := ∅ ;

s := cca(from(tr)∪{c.test}) ;
for t ∈ path(s,{c.test})− children[AND] do

co.terms := co.terms ∪{generateTest(t)} ;
return co

end
else if c ∈ Negation then

var ne : Negation ;
begin ne := new Negation ; ne.term := generateCondition(tr,c.term) ;

return ne
end

else
var in : Infix ;
begin in := new Infix ; in.terms := ∅ ;

for d ∈ c.terms do
in.terms := in.terms ∪{generateCondition(tr,d)} ;

return in
end

Finally, procedure generateInitialization(s) generates the initialization of an XOR state
by first determining the single transition leaving its init state.

procedure generateInitialization(s : XOR) : Statement
return generateAction(outgoing(init(s)),s)

The restriction to only a single init transition can be lifted if instead a nondeterministic
assignment is generated.



Translating Statecharts to B 141

6 Further Processing

The generated code can in many cases be further simplified. The simplifications include:

– Intra-level transitions may generate code of the form SELECT ELSE S END which
is simplified to S.

– If there is only a single transition on a level for an event, the generated code of
the form SELECT C THEN A ELSE B END can be simplified to IF C THEN A
ELSE B END.

– Case statements can be simplified by leaving out all alternatives with body skip and
adding ELSE skip instead.

– Case statements with a single alternative after above simplification can be rewritten
as if statements.

– An if statement of the form IF C THEN A ELSE skip END can be simplified to
IF C THEN A END.

Currently all the simplifications are done during code generation. Here is the original
and simplified code of the example in Sec. 5. It also illustrates how the testing of guards
is moved:

E =̂ SELECT r = S ∧ g THEN r := V
ELSE

CASE r OF
EITHER S THEN

SELECT s = T THEN s := U
ELSE skip
END

OR V THEN skip
END

END
END

E =̂ IF r = S THEN
IF g THEN r := V
ELSE

IF s = T THEN s := U
END

END
END

Another example of simplified code is given in [14]. Further optimizations like merging
nested if and select statements are left as future work.

AMN does not allow calls of operations within the same machine. As broadcasting
of events is translated to calling of operations, auxiliary definitions are generated for
the called operations and these auxiliary definitions are “called” instead. For this, the
call dependency is analyzed and the operations are first topologically sorted. In case of
circular dependencies an error is reported.

Transitions without an event are spontaneous as they can be taken without that an
event is generated, but may have a guard and action associated. Our code generator
implements a run-to-completion of transitions: if a state is reached that has an outgoing
spontaneous transition that can be taken it is taken. This is repeated for further sponta-
neous transitions. Circularities in spontaneous transitions are detected and reported as
an error.

7 Discussion

A number of tools support code generation from statecharts, including xjCharts, with-
Class, and Rhapsody. Compared to translation schemes used by other tools, ours can
be characterized as event-centric rather than state-centric, as the main structure of the



142 Emil Sekerinski and Rafik Zurob

code is that of events, rather than classes for states. Our scheme is suitable for those kind
of reactive systems where events are processed quickly enough so that no queuing of
events is necessary and where blocking of events is undesirable. To our experience so
far, the resulting code is not only comprehensible, but compact and efficient as well.

Our semantics of statecharts comes close to that of Mikk et al. [10], with the main
difference being that we do not support sets of simultaneous events.Also, we currently do
not support event parameters, enter and exit actions, histories, timed events, overlapping
states, and sync states. These remain the subject of ongoing work.

An interesting consequence of our use of parallel composition and the restriction to
operations that are not mutually recursive is that many problematic situations for which
statecharts are known are ruled out. Here is an example with two concurrent states. On
event E, one may argue whether state S ends up in T or U. To the right we give the
code to which that would correspond. As the code would contain mutual recursion, the
statechart is rejected as illegal:

R
S T U� �E/F �E

V
W X� �F/E

E =̂ IF r = noname0 THEN
CASE r OF

EITHER U THEN
skip

OR T THEN
r := U

OR S THEN
F ‖ r := T

END
END

END
F =̂ IF r = noname0 THEN

IF v = W THEN
E ‖ v := X

END
END

In the following statechart one can argue whether on event E a transition from S to T or
to U is made. The translation would contain two assignments to variable r in parallel,
which is not allowed.

S
U

T

�F

�E/F
E =̂ IF r = S THEN

r := T ‖ F
END

F =̂ IF r = S THEN
r := U

END

In the next example the event G is broadcast twice when the transition on event E is
taken. The translation would contain G‖G, which is illegal.

A
S1 S2� �E/F B

T1 T2� �F/G

C
U1 U2� �F/G D

V1 V2� �G

E =̂ IF r = noname0 THEN
IF a = S1 THEN

F ‖ a := S2
END

END
F =̂ IF r = noname0 THEN

IF c = U1 THEN
G ‖ c := U2

END
‖
IF b = T1 THEN

G ‖ b := T2
END

END
G =̂ IF r = noname0 THEN

IF d = V1 THEN
d := V2

END
END



Translating Statecharts to B 143

However, if G would be broadcast only once, the statechart would be valid. Finally, here
is an example that is legal and illustrates that the parallel composition leads to state
changes being sensed only after the transition. Hence, the transition on event F is not
taken.

A
S1 S2� �E/F

B
T1 T2� �F[in(S2)]

E =̂ IF r = noname0 THEN
IF a = S1 THEN

F ‖ a := S2
END

END
F =̂ IF r = noname0 THEN

IF b = T1 ∧ a = S2 THEN
b := T2

END
END

Acknowledgement

We are grateful to the reviewers for their comments.

References

1. J.-R. Abrial. The B Book: Assigning Programs to Meaning. Cambridge University Press,
1996.

2. D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31–
42, 1996.

3. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions on
Software Engineering and Methodology, 5(5):293–333, 1996.

4. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

5. R. Laleau and A. Mammar. An overview of a method and its support tool for generating B
specifications from UMl notations. In 15th IEEE International Conference on Automated
Software Engineering, ASE 2000, Grenoble, France, 2000. IEEE Computer Socitey Press.

6. K. Lano, K. Androutsopoulos, and P. Kan. Structuring reactive systems in B AMN. In 3rd
IEEE International Conference on Formal Engineering Methods,York, England, 2000. IEEE
Computer Socitey Press.

7. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In R. France
and B. Rumpe, editors, UML’99 – The Unified Modeling Language Beyond the Standard,
Lecture Notes in Computer Science 1723, pages 430–445, Fort Collins, Colorado, 1999.
Springer-Verlag.

8. J. Lilius and I. Paltor. vUML: a tool for verifying UML models. In 14th IEEE International
Conference on Automated Software Engineering, ASE’99, Cocoa Beach, Florida, 1999. IEEE
Computer Socitey Press.

9. E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel. On the formal semantics of statecharts
as supported by statemate. In BCS-FACS 2nd Northern Formal Methods Workshop, Ilkley,
1997. Springer-Verlag.

10. E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in Promela
/ Spin. In Second IEEE Workshop on Industrial-Strength Formal Specification Techniques,
Boca Raton, Florida, 1998. IEEE Computer Society Press.

11. H. P. Nguyen. Dérivation De Spécifications Formelles B à Partir De Spécifications Semi-
Formelles. Doctoral thesis, Centre d’Études et de Recherche en Informatique du CNAM,
1998.



144 Emil Sekerinski and Rafik Zurob

12. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddi, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice-Hall, 1991.

13. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

14. E. Sekerinski and R. Zurob. iState: A statechart translator. In M. Gogolla and C. Kobryn,
editors, UML 2001 – The Unified Modeling Language, 4th International Conference, Lecture
Notes in Computer Science 2185, Toronto, Canada, 2001. Springer-Verlag.

15. E. Sekerinski. Graphical design of reactive systems. In D. Bert, editor, 2nd International B
Conference, Lecture Notes in Computer Science 1393, Montpellier, France, 1998. Springer-
Verlag.


	1 Introduction
	2 The Statechart Model
	3 Preprocessing
	4 The Code Model
	5 Translation
	6 Further Processing
	7 Discussion
	References

